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1. Introduction. Let the set T be either [0,0) or {0,1,2,...}, E a countable set and

(Q,% P) a probability space.

Definition 1. A semiregenerative phenomenon Z = {Zt 0 (t,£) € TxE} on a probability
space (9, F P) is a stochastic process taking values 0 or 1 and such that for (tr,fr) € TxE

(r>1), with 0=ty<ty <t JEE we have

P{Z, , =27, , =..=2, , =1|Zy =1}
tf T Pty 6.4 0j

2
i (1)
=1 P{Z, _ =1|Z =1} (4, =]).
i=1 4 0.6 0
For each £€ E, denote Z,= {Z, ,, t € T}. Since

r
=P{z, ,=1|Zy =1} 11 P{Z, . ,=1|Z,,=1},

Zyisa (possibly delayed) regenerative phenomenon in the sense of Kingman [7] in the
continuous time case T = [0,w), and a recurrent event (phenomenon) in the sense of Feller
[5] in the discrete time case T = {0,1,2,...}. The family Z’ = {Z), te E} is a family of
linked regenerative phenomena, for which a theory was developed by Kingman [6] in the
case of finite E; later he reformulated the results in terms of quasi—Markov chains

(Kingman [7]). We explain this concept below.

Example 1. Let J = {J b€ T} be a time—homogeneous Markov chain on the state space

E and denote



The random variables Z,, satisfy the relationship (1), which is merely the Markov

property. More generally, let C be a fixed subset of E and

These random variables also satisfy (1) and thus Z = {Z, ,, (t,{) € TxC} is a
semiregenerative phenomenon. In particular, suppose that C is a finite subset of E and

define
Ktz‘]t ithEC, and=Oith¢C. (5)
Then {K,,t €T} isa quasi-Markov chain on the state space C U {0}. o

While the quasi—Markov chain does provide a good example of a semiregenerative
phenomenon (especially in the case of finite E), it does not reveal the full features of these
phenomena; in particular, it does not establish their connection with Markov additive

processes. Thus, let
¢={(t,0) € TxE: Z, = 1}. (6)

We shall call ¢ the semiregenerative set associated with Z. The main theme of this paper
is the correspondence between the set ¢ and the range of a Markov renewal process (in the
discrete time case) and of a Markov subordinator with a unit drift (in the continuous time
case). Kingman ([7], p. 123) has remarked that associated with a quasi—Markov chain
there is a process of type F studied by Neveu [9]. The Markov subordinator we construct
for our purpose is indeed a process of type F, but we concentrate on properties of the

range of this process. For a detailed description of Markov additive processes see Cinlar

([21,(3])-



To complete Definition 1 we specify the initial distribution {aj, j € E}, where

P{ZOj =1} = 3 (7)

with aj >0, Ea,j = 1. As in the case of regenerative phenomena, it can be proved that the
relation (1) determines all finite dimensional distributions of Z and that Z is strongly
regenerative (that is, (1) holds for stopping times). We shall write P i and Ej for the
probability and the expectation conditional on the event {Zg j= 1}.

In the discrete time case we call Z a semirecurrent phenomenon and denote
ujk(n) = P{an = 1|Z()j =1} ; (8)

where ujk(O) = 5jk‘ In the continuous time case let

ij(t) =P{Z, = 1|Z0j =1} (9)
where P jk(0) = éjk' The phenomenon is standard if

Py (t) = 6y as t=0+. (10)

In this case it is known that the limit

1 — Pyt
m —niiY (j€E) (11)

60 + t
is known to exist (possibly infinite); if this limit is finite, then j is said to be stable.

In section 2 we consider semirecurrent phenomena and provide some examples. The
main result is that the semirecurrent set ( corresponds to the range of a Markov renewal
process (MRP) and conversely, a semirecurrent set can only arise in this manner
(Theorem 3). For details of the results from Markov renewal theory used in this paper see

Cinlar ([4], Chapter 10). In section 3 we construct a Markov subordinator with a unit drift



whose range turns out to be a semiregenerative set (Theorem 4). In the case where E is
finite we prove that every semiregenerative set corresponds to the range of a Markov
subordinator (Theorem 7). Our approach yields results analogous to Kingman's ([7],
Chapter 5) for quasi—Markov chains. While our approach (based on Definition 1) is thus
more rewarding in these respects, our techniques are simpler, being based on properties of
Markov renewal processes. Bondesson [1] has investigated the distribution of occupation
times of quasi—Markov processes. We shall not investigate this problem for
semiregenerative phenomena.

In the literature there are extensive investigations of semiregenerative processes.
These are processes imbedded in which there is an MRP (or equivalently, in view of
Theorem 3, a semirecurrent phenomenon). We take the view that semiregenerative
phenomena are important by themselves and therefore worthy of study.

Professor Erhan Cinlar has remarked to the author that several papers by him,
J. Jacod, H. Kaspi and B. Maisonneuve on regenerative systems have a bearing on the
theory developed in this paper. However, our approach is different from theirs and makes
the results more accessible to applied probabilists. In particular, the theory developed in
this paper provides a proper perspective to the work of Kulkarni and Prabhu [8] and

Prabhu [10], to which no reference is made by the above authors; see Examples 3 and 5.



2. Semirecurrent phenomena. We write JV+ = {0,1,2,...} and Z= /V+><E. Let (¢ be

the semirecurrent set defined by (6).

Definition 2. Let T, =0 andfor r>1

0

T, =min{n > T _;: (n,f) € ¢ for some . (12)

We shall call Tr the semirecurrence times of Z.

Let J. = ¢ when Zep =1 Definition 1 shows that this ¢ is unique. We have

the following.

Theorem 1. The process {(T,J ), r 2 0} is a Markov renewal process (MRP) on the state

space £

Proof: We have

P{T 1 =0 d 1 = g Td s TRd ) (13)
=P {TH_1 Trzanr,Jr+1=€} a.s. O
We shall denote by
( D) = P{T, =n,J, =k (14)

the semirecurrence time distribution of Z. We have qgﬁ)(o) = Oy and qgg)(n) =0 for
n > 1. We shall write qgll{)(n) = jk(n). On account of the Markov renewal property we

have for r,s> 0



(E+8)(n). (15)

53 Dl e-m) = of

m=0 {€E

Theorem 2. The probabilities {ujk(n), ne Jf o j,;k € E} defined by (8) form the unique

solution of the equations

—1

Xy () = gy, (n) + T s djp(m)xy (n—m) (16)
m=1 /€E

with 0 < Xjk(n> < 1. This solution is given by

g (1) = :1 altm) (1)

(the summation being effectively finite).

Proof: From (6) and (12) it follows that for n > 1,

ujk(n) = Pj{(Tr’Jr) = (n,k) for some r> 1}

Il

altm), (18)

the sum going only upto r = n since T ;2T a.s. Wehave

g (n) = qj(ll{)(n) + El q§1t<+1)(n)
oo n—I1 (t)
= Jk(n) o1 m§1 gEEng(m)ng (n—m)



using (15). This gives

-1

00 = )+ B S ggmg(nom). (19)

Thus the ujk(n) satisfy the equations (16). To prove uniqueness we find that if {xjk(n)}

is a solution of (16), then

n—I1 n—m—1
X, (n)=q.,(n)+ X I q,(m)q,(n-m)+ I Y qpy,(0—m—m’)x,,, (m")
Jk( ) Jk( : m=1 /eE Je( d Zk( m’=14"€eE ¢ £k |
D+ o@D+ T 2 ol aomxg ).
ik ik oy EE djer 'k

By induction we find that

Xjk(n) = til gt)(n) + m21 éXezE qu)(m)xfk(n—m).

Since qgi) (n) =0 for r > n we have

) = 3 aip)m) =y (),

which proves the uniqueness of the solution (17). o



We have thus seen that a semirecurrent phenomenon gives rise to an MRP with the
sojourn times T —T. 4 (r > 1) concentrated on the set {1,2,...}. The following theorem

shows that this is the only way that a semi—recurrent phenomenon can occur.

Theorem 3. (i) Let {(TJ ), r 20} bean MRP on the state space -2 with the sojourn

time distribution concentrated on {1,2,...}. Denote by
& ={(n,¢) € £ (T,J.) = (n,{) for some r 2 0} (20)

the range of this process and lelf = 1{(11,1?)6.%}' Then Z = {Zrllg, (n,f) e &£} isa
semirecurrent phenomenon.

(ii) Conversely, any semirecurrent phenomenon Z is equivalent to a phenomenon
7' generated in the above manner in the sense that Z and Z have the same {ujk(n)}
sequence.

Proof: (i) We have P{ZOj =1} = P{JO = j}. Let vjk(O) = 5jk and for n>1

v () = Pj{zl’lk =1} =P;{(nk) € 2}

® (21)
= r§1 P{T, =n,J, =k}

For 0=n0§n15n2§...5nr (r>1) we have



P{Z , =2 , =..=17_, =1|Z,. =1}
nlﬁl n2€2 nrﬂr 0j
r (T, )= (n,6)}
=P. N U T J n.. /.
Ji t ’ 1’71
i=1 tizti—l g
= P. U ﬂ {(T t ) = (ni’ei)}
J o= =to<t <<t i=1 Y
T P{(T, J, ) = (n,6)]( )= (b))
- ) I P{T, J, )= (nL)(T, J =, b
0=ty<t, <...gt, i=1 b7 S L | =171-1
T
TP, )= (0.0} (4 =)
=Y P T J. = (n;—. 4. =]
=1 61—-1 ti—ti—-l ti ti—-l i =" 0
= EP{(T 5J )=(n,f)} L P {(T_,J_):(n-——n,é)}
30 ity 11 3t £, gty gty R )
.S P, {T, ., J . )=@-n_.L)}
tr?-tr—l er——l S | vl

B U A U AVAC S Y

This shows that Z is a semirecurrent phenomenon. From

—1
Pj{Tr-!—l =n,J _;=k}= mzl E%E PT; =m, J; = £}-P,{T, = n—m, J. =k}
we obtain the relation
—1
vi(0) = g m) + m§1 E L ajlm)y g nm) (22 1) (22)

where qjk(n) = Pj{T1 =n, J; =k}.
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(ii) Conversely, let Z be a semirecurrent phenomenon with the associated sequence
{ujk(n)’ (nk) e £}. Let {qjk(n)} be the associated semirecurrence time distribution, so
that by Theorem 2, equation (19) holds. Let Z be the semirecurrent phenomenon
constructed as in (i) from the sojourn time distribution {qjk(n)}. Then {vjk(n)} satisfies
(22). Because of the uniqueness of the solution of (16) we find that ij(n) = ujk(n) as

required. o
The following are some illustrative examples.

Example 1 (continuation). For a quasi—Markov chain in discrete time the semirecurrence
times are the hitting times of the set C. Thus if KO = j € C, the process spends one unit
of time in j and T;—1 units outside C before returning to C. This remark is helpful in
understanding the results of section 3 (continuous time). If C = E, then T,=r as. for

all r>20. o

Example 2. Let {(K_,J ),n€ 4 +} be a time—homogeneous Markov chain on the state

space SxE (with S arbitrary). Let a € S (fixed) and assume that K, =a as. Define
Z_,=1;, _ _p for (n,d)e £
ol {K =a, J ={}

On account of the Markov property, Z = {Z 1 K} is a semirecurrent phenomenon. The

semirecurrence times are the successive hitting times of the line K p = & O
Example 3. Let {Xn, neJf +} be a Markov chain on the state space E, and
M_ = max(X,,X;,Xo,...,.X ), n € A

n 0 12

be its maximum functional. Also define

anz 1{Xn=anz} fOI‘ (n,[) € J
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We have P{Z()j =1} =P{X;=j}, andfor 0 =nj<n; <...<n, (r>1), using the

Markov property

Pz, =2 , =.=27_, =1|Z,. =1}
n1€1 n2é’2 nrﬁr 0j
T
=P {Xni_l—%—t €, (0<t<nymny_y), 0= 4}
T
= igl P{Xni__l—i—t s Xni 0t Ili'—ni——l)’ Xniz €i|Xni_1 - gi—l}
T
=0 P{X <X, o Ost<mmn ), X =41Xg=6) (=)
i=1 1 Ti—1 i—1
r }= )
= II P{Z =1|Z =1}=II u (n.—n. .),
O P e 04 4 i=1 Gopf 1o
where
qu(n) =P{X, <X, (0<t<n), X = k[ X, =i}

This shows that Z = {Z n é} is a semirecurrent phenomenon. The semirecurrence times of
this phenomenon are called ascending ladder epochs by Kulkarni and Prabhu [8], who

study the fluctuation theory of the Markov chain. o

Example 4. Let {(S,J ),n€ A4 +} be a Markov random walk (discrete time version of

Markov additive process) on the state space RxE, and
M_ = max(0,5,,5,,...,5 ), n € an

n 172" n

its maximum functional. Denote

an = I{Mn—sn=0, ane} for (n,f) € X
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P{Z =7 =..=17 =1|Z. =1}
niéy gty n.t 0
r
= P 121 {Snl L+ <S : (0<t<n-n, ,), Jni_ ¢}
r
= Pj 121 {Sni_1+t - Sni—l < Sni - Sni——l (0<t < ni“ni—l)’ Jni: gi}
r
= P{S; <8y (0t &mmmy g), 0y =41y =44
=1 1 i—1
1 Pl b (g =1)
= II P{Z =117 =1 =),
=1 ni_-n 1a€1 0’€i~1 0
r ( |
=1 u n.—n
where

ujk(n) =P{S, <8, (0<t<m), I =k[J,=j}

Thus Z ={Z_,} is a semirecurrent phenomenon. We obtain a second such phenomenon
by considering the minimum functional. These two phenomena determine the fluctuation

behavior of the random walk. O

3. A continuous time semiregenerative phenomenon. As before, let E be a countable set

and R, = [0,0). Let J = {J(7), 7> 0} be a time—homogeneous Markov process on the
state space E, all of whose states are stable. Let Ty=0 and T (n>1) the epochs of
successive jumps in J; for convenience we denote J = J (T,) (n20). We define a
sequence of continuous time processes {X 1(11)’ n > 1} and a sequence of random variables

{Xl(lz), n> 1} as follows.
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(i) On {T <7<T 1, d, = =j}, X( )(7') is a subordinator with a unit drift and

Lévy measure ug J)

(ii) Given X(l) X( 2) I (m21), Jg, theincrement Xr(li%(r)—Xr(li%(Tn)
and the pair of random variables (X(_zl_%, J 1) depend only on J .

. 2

(iii) Given J , X g—;—%( T) — I(H-%( ) (T ¢r<T +1) and (X 1(1+%’J ) are

conditionally independent, with respective distribution measures
Hj{s;A} and ’\ijjk{A} (j# k) (23)

for any Borel subset A of R " Here the ij are concentrated on [0,w), while Hj is

concentrated on [0,0]; ’\jk (j # k) are the transition rates of the process. We denote

/\JJ = Zk;&j ’\jk (0 < ’\jj < ). Let
)+ @), (24)

From the above conditions it follows that {(S,J ), n2 0} is an MRP on the state space

R, x E, whose transition distribution measure

+
P{S 1 €A, Tt —kISnzs, anj} = ij{A—s}
is given by
o0 —)\JJS
Jk{A} = (j) e ’\ij {s;dx}F. k{A——x}ds (k #j). (25)

We denote by Ujk{A} the Markov renewal measure associated with this process, so that

Q0
~{Al = . = Kk}.
Updal= = P{S, €A, I, =) (26)
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Let

L' =supT, L=supS (L <L<a) (27)
n>0 n>0

We construct a process (Y,J) = {(Y(7), J(7)), 7> 0} as follows:

(.3} = (8, + X @ -x{ ), 5y for T <<

, (28)
= (L,A) for 72 L,

where A is a point of compactification of the set E. Denoting

N(r) = max{T <7}

we can write

(Y(1J(7)} = {Sy(p) + xlg%)rm(r) —XIEIB_)_*_I(TN(T)), In@ on {T<L} (29)
In view of the assumptions (i)—(iii) above we find that

P{Y(r+7) € A, J(r+7") = k|(Y(s),J(s)), (0<s< 1)}

- P{SN(T+T’) - SN(T) + XlgI%2'+T’)+1(T+T,) ‘X1&%2'+T’)+1(TN(T+T’-))

-XIS%Z)—H(T) + X&I%)r)—%l(TN(r)) €EA-Y(7), J(r+71") =k|Y(7),J(7)}

= P{Sy(p) + XIEI%Z,)_H(T’) _XIEI%;,)H(TN(T,)) € A —Y(0), J(r) = k| J(0)}.

This shows that (Y,J) is a Markov additive process (MAP) on the state space R B Let
f(t,j) be a bounded function on R *E such that for each fixed j, f is continuous and has
a bounded continuous derivative of/dt. Then the infinitesimal geneator ¢ of (Y,J) is

found to be
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oo+
(0065 = G [ (i) = £ o)

+-k§ié_[ﬂt+vJQ-—f@JﬂAﬂg%k{dv} (30)

This shows that the jumps in Y are those in the additive component plus the
Markov—modulated jumps with the distribution measures A ijjk (k #]j).

Let us denote by
2= {(t,0) € R xE: (Y(7),d(7)) = (t,f) for some 7> 0} (31)
the range of this process, and
Zig= 1{(t,£)€52}’ ij(t) = P{Ztk = 1]ZOj = 1}. (32)

An inspection of the sample path of the process shows that we can write the range % as

8

2= U 1R (1) ) (33)

n=0 n+1

where & is the range of the subordinator X( 1) . Let
(1) n+1
X
n+1
(t)=P{te & J =i} 34
p;(t) = P{ X(l)ln i} (34)
n+1
We know that each £ (1) is a regenerative set (Kingman [7], section 4.2) with its
Xn+1
p—function given by (34). We have

A

T 0 —A..S
[pi(t)dt =B [T H{sA}ds=fe I H.s:A)ds (35)
Al o ! 0 J

for any Borel subset A of R " We have then the following.
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Theorem 4. The family Z = {Z ), (t,£) €R +xE} is a standard semiregenerative

phenomenon, for which

t
ij(t) 2 (1;_ Ujk{ds}pk(t—s). (36)
The equality in (36) holds iff L =« a.s.

Proof: We have P{ZOj =1} = P{J0 = j}. The semiregenerative property (1) can be
established exactly as in the proof of Theorem 3(i) using the Markov additive property of
(Y,J). We have

t
Py (t) = Py{(t) € ﬂxgl) «{Igh + Z. L Piis eds =4
- P{(t.k) € R[S, =5,T, =0}

t
= py(t) &y + Zo 1 Q;(ds}P{(t—s.k) € 23y = 4

t

Thus ij(t) satisfies the integral equation

t
ij(t) = hjk(t) + KEEJE é_ ng{dS}ng(t“S)a (37)

with hjk(t) = pj(t) 5jk' We seek a solution ij(t) such that for fixed jk € E, ij is
bounded over finite intervals, and for each t € R . G ik is bounded. The inequality (36)
follows from the fact that the minimal solution of (37) is given by

& t
(EE 6_ Ujg{ds}hgk(t-s) = (j)— Ujk{ds}pk(t—-s).



17

This solution is unique iff L = o (see Cinlar [4], Chapter 10, Section 3). From (36) we

find, in particular, that
ij(t) > pj(t) -1 as t-0+ (jeE) (38)
This shows that Z is a standard phenomenon. o

From the definition of the (Y,J) process it is clear that the lifetime of the

phenomenon Z is given by
sup{t: Z =1 for some {€E} =L <w as. (39)

and the total duration (occupation time) of Z by

L .
Y [Z ,dt>L as. (40)
teE0

In the discrete time case, the representation (18) shows that the Green measure of
the MRP {(T_,J )} has weight ujk(n) at its atom n. In the present situation it can be

proved that

®

[ P{(Y(7),J(7)) € (Ax{k})[J(0) = j}dT = [ Py, (t)dt, (41)
0 A

so that ij(t) is the density of the Green measure of the process (Y,J). We shall not
prove (41) here; more useful to us is the result (36), which relates P jk(t) to an MRP. The

following results follow from (36) in the case L = o. We have then

t
ij(t) = 6_- Ujk{ds}pk(t—s). (42)
We first note the following. Let

N=min{n21:J =k}, ij{A} = Pj{TN+SN € A}. (43)
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Using the relation

t
Ujk{A} = (f) ij{ds}Ukk{A—s} (j#k) (44)
in (42) we can write
t
ij(t) = (f) ij{dS}Pkk(t“S) (j#k); (45)

(cf. Kingman ([7], Theorem 5.3). The regularity properties of P jk(t) and its asymptotic
behaviour follow from (42)—(45).

Theorem 4 shows that the range of the MAP constructed above is a
semiregenerative set. The converse statement is that every semi-regenerative set
corresponds to the range of a Markov subordinator with unit drift. We are able to prove
this only in the case of the Markov chain J having a finite state space (Theorem 7 below).

However, the following examples show that the converse is true in two important cases.

Example 1 (continuation). Let {J.} be the Markov chain of this example, with

T = [0,0). Assume that all of its states are stable and use the notation of this section. Let
Z,p be as defined by (3). We have already observed that Z = { Zip} isa
semiregenerative phenomenon. An inspection of the sample path of J shows that the

semiregenerative set of Z is given by

w

C= U ATy ) * ) (46)

This set is the range of the Markov subordinator (Y,J) = {r,J(r)}. This means that

n+1
transition distribution measure Q ik has density

XISH(T) _x(1 )(Tn) =7—T, (T,<7<T, ;) and ij{o} =1 (k #j), so that the

—A::8
e Wy (). (47)
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Since £ (= [0,T,) we find that
X
1
oo i
pi(t) = P{T, > t|3g =} =e (48)

and

t =y, (t—8)
Py(t) 2] Uy {dste Kk (49)

The equality in (49) holds iff L' = as. 0o

Example 5. This is the continuous time version of Example 3. Let X = {X(t),t > 0} be a

continuous Markov chain on E, all of whose states are stable. Let

M(t) = sup X(s) (50)

0<s<t
L(t) = Lebesgue measure of {t > 0: M(t)—X(t) = 0} n (0,t] (51)
Y(7) = inf{t > 0: L(t) > 7}, J(r) = M(Y(7)). (52)

Prabhu [10] showed that the process (Y,J) = {Y(r), J(7)), 7> 0} is a Markov

subordinator on the state space R 4% E, with the infinitesimal generator £ given by

(A0(60) =G+ T (i) 1061 D) (53)
0—
£ 5] () = £y dv)
k>j 0—
where
el d) = gV} + B a Bl (> (54)
ﬂj(‘j)){dv} = gﬁj q ZB%j{dv} (0<v <) (55)

W (o} = 2 uPelTy = (56)
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A (k #j) are the transition rates of the process X, ¢, is a distribution measure

concentrated at the origin and B%k are given by
Bj (A} =P, {T € A, X(T) =k} (k2j> ) (57)
T = inf{t > 0: X(t) > j}. (58)
We note from (53) that the subordinator Xl(l—}-% is a compound Poisson process with unit

drift.

Now let
¢={(t,£) e T x E: M(t) = X(t) = £}. (59)

Proceeding as in Example 3 we see that ( is a semiregenerative set. An inspection of the
sample path of the process X shows that ( is the range of the Markov subordinator

(Y,J). o

4. Semiregenerative phenomena with finite E. For the semiregenerative phenomenon
constructed in the last section we now suppose that E is a finite set. In this case L = o

a.s. and ij(t) is given by (42). For 6> 0 let
02]
ij(O) = 6 e Py (t)dt, P= (ij(ﬂ)). (60)

We have then the following.

Theorem 5. For the semiregenerative phenomenon arising from the Markov additive

process (Y,J) of section 3, with finite E, we have

pl=Rr (61)
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where R = (Rjk(é’)), with

OO+ “0)(
Rjj(O) =0+ (j)m(l——e )ujj{dx} (62)
Ry (0) = -] ¢ ™uy(dx} (141 (63)
jk 0— jk

where i is a Lévy measure identical with ug?) except that it has an additional weight

)\jj at infinity,
Mjk{A} = ’\ijjk{A} (64)
and we note that

ki:j ij{m+} < ij{“)}- (65)

Proof: We first calculate the transform rj(ﬂ) of pj(t). We have

0 -—S¢(0)
/e HXHj{s;dx} =e 7 (4>0)
0

where

ST %, (0)
gbjj(ﬂ) =0+ 6__(1_8 )“jj {dx}.

From (35) we find that

o 0 —A.-s—s¢..(0)
1(6) =J e otpj(t)dtzfe W gy
0 0

o+
= [0+ [ (= Ppylan) (66)

From (25) we find that
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~ N

o~
ij(O) = é € ij{dt} = )\jkrj(ﬂ)ij( 9) (67)

where I}jk is the transform of ij. Let us denote

T (0 =] ¢ %u, (at 68
Ujk( ) = (f)_.e jk{ |2 (68)
Q= (ij(a)) and U = (ﬁjk(e)). From (42) we find that
P= U(éjkrj(ﬂ))
where it is known from Markov renewal theory that I}‘l = I——Q. Therefore

R =P = (((0))oy) (-Q):

Using (66)—(67) it is easily verified that the elements of the matrix on the right side of this

last relation are given by (62)—(64). The inequality (65) follows from the fact that
Yo AL F R L A = . < pec{ood
ket kE R} B A = Ay < yylek o

We now ask whether semiregenerative phenomena with finite E can arise only in
this manner (their semiregenerative sets corresponding to the range of a Markov additive
process of the type described in section 3). In order to investigate this, we first prove the
following result, which is essentially due to Kingman ([7], Theorem 5.2), who proved it in

the setting of quasi—Markov chains. We shall only indicate the starting point of the proof.

Theorem 6. Let Z be a standard semiregenerative phenomenon with finite E and ij(t)

defined by (9). Denote P asin (60). Then

1_gr (69)
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where R = (Rjk(é’)), with Rjk( f) given by (62)—(64), Ky (j # k) being totally finite

measures on [0,0) and pij 8 Lévy measure on [0,0]. Moreover, the inequality (65) holds.

Proof: For each h>0, Z, = {Z1 0 (n,{) € £} is a semi—recurrent phenomenon, for

which by Theorem 2,

Py (nh) = El a{f)(ab).

This gives

© n_ (r) a
nEO ij(nh)z o+ _% z Ak (nh)z
or

® n ® ® n\r
(= P-k(nh)z =1+ ¥ (X q.k(nh)z )
n=0 r=1 n=1 ]
[¢ ]
=[1-( T qy(ah)") o
n=] J
It turns out that the answer to the question raised above is affirmative. We prove

this below.

Theorem 7. Let Z be a standard semiregenerative phenomenon with finite E. Then 7 is
equivalent to a phenomenon Z constructed as in Theorem 5, in the sense that Z and 7

have the same ij(t).

Proof: We ignore the trivial case where all the measures Hik (j # k) are identically zero.

Then from (65) we find that ujj{oo} > 0. Define the probability measures ij by setting

APl A} = (A} iife) (k€ E, §#K).
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We construct an MAP on the state space R +xE as in section 3, with ”jj and ’\ijjk'
Let Z be the semiregenerative phenomenon obtained from this MAP and ?jk(t) =

P{Z, =1 IZOj = 1}. By Theorem 5 we have
pl=R
where R = (—Rjk(e))’ with Ejk(ﬁ) = Rjk(b’). Thus P = P. Since the ij(t) are

continuous functions, it follows that P jk(t) = P'jk(t), as was required to be shown. o

Example 1 (continuation). For the continuous time Markov chain J with finite state
space E we find from (48) that

_ —1
fj(o) = (0+ )\JJ) )

so that the Lévy measure i is concentrated at « with weight /\jj > 0. Also the ij
are concentrated at zero with weight 1. Equality holds in (49). Theorem 5 gives

R..(0) = .. b ==Aq (k4]
so that

R=Pl=g1-qQ (70)

where Q is the infinitesimal generator matrix of the chain. This is in agreement with the
known result. By Theorem 7, the associated semiregenerative phenomenon is unique upto

equivalence of ij(t). o
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