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Summary. Slow flow of linearly viscous fluid through a linear isotropic 
thermoelastic matrix is described. The interaction body force is Darcy’s law, 
and the constitutive laws for the partial stresses assume that porosity changes 
of strain order occur and that porosity is a linear function of the partial 
pressures in matrix and fluid. A further dependence on deviatoric matrix 
stress allows a description of dilatancy. The laws are expressed in terms of 
four distinct cornpressibilities and a mixture shear modulus, and various 
strong inequalities between the compressibilities are examined. A consolida- 
tion theory for an incompressible fluid is derived, and the restrictions 
required to recover an uncoupled diffusion equation for the matrix com- 
pression are determined. Convection equations for large temperature 
differences across a horizontal layer are derived, allowing finite fluid 
expansion, and it is shown that the fluid flow equations uncouple from (he 
matrix equilibrium equation in the case of steady flow, but not in the case of 
unsteady flow. 

Introduction 

The flow of fluids through permeable porous media is fundamental to hydrology. 
geothermal systems, oil recovery and soil consolidation. Applied theories range from rigid 
matrix and incompressible fluid (eg.  Bear 1972; Verruijt 1970), through elastic matrix and 
incompressible fluid (e.g. Riot 1941; Lzimbe & Whitman 1969; Schiffman, Chen & Jordan 
1969), to elastic matrix and compressible fluid (e.g. Biot 1955, 1956a, b, 1973; Biot & Willis 
1957; Verruijt 1969; Rice & Cleary 1976). Approximate one- and two-dimensional 
Terzaghi-Rendulic elastic theories of soil consolidation are described by Schiffman (1 976). 
The significance of the elastic deformation of ground water aquifers was noted by Meinzer 
( I  928), and a one-dimensional deformation theory was presented and applied by Jacob 
(1940, 1950). Biot (1941) developed the first three-dimensional theory for an isotropic 
elastic matrix and incompressible fluid, which is the basis for the consolidation applications 
by Schiffman ef al. (1969), and recent numerical treatments by Booker & Small (1975) 
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394 L. W. Modarid 

and Small, Booker & Davis (1976). Verruijt (1969) uses Biot theory for a compressible 
fluid with an effective stress concept t o  discuss flow in an elastic aquifer. 

Compressibilities of soils, clays, aggregates, rocks, vary considerably, so the approxima- 
tions of rigid matrix or incompressible fluid are restricted cases, and theory for a deformable 
matrix and compressible fluid is more widely applicable. Furthermore, with current interest 
in geothermal systems, thermal effects are also important. Here I describe a mixture theory 
for the slow flow of a compressible, linearly viscous fluid through an isotropic thermoelastic 
matrix. The mechanical or stress induced strains in the matrix, and pressure induced com- 
pressions in the fluid, are assumed infinitesimal, but finite thermal expansion of the fluid is 
allowed to include the effects of large temperature differences across geothermal layers. 
Infinitesimal mechanical compression in matrix and fluid are restrictions on the applied 
stress levels, and hence on depth in the Earth. The linear theory can be applied to  
infinitesimal strain fields superposed on a gravity equilibrium field involving finite strain, if 
any induced matrix anisotropy in the new reference configuration can be neglected, but the 
reference densities, at  least, will vary with depth. 

Mixture theory (Truesdell 1965) supposes that the length scale of interest is large 
compared with the size of a representative mixture element containing an abundance of each 
constituent. Here the length scale must be much greater than the mean pore diameter. The 
balance laws are expressed in terms of overlapping velocity (displacement) fields of each 
constituent defined at every mixture point, and the partial densities, partial stresses, partial 
heat fluxes, internal energies and temperatures. Partial density denotes mass of a constituent 
per unit mixture volume, and partial stress denotes traction carried by the constituent per 
unit mixture cross-section. Since a constituent velocity measures a volume flux per unit 
normal cross-section of mixture, it is convenient to introduce the terms partial deformation, 
partial strain, partial rate of strain, etc., for the quantities defined in the usual manner from 
this velocity (displacement) field. In contrast, material properties of a constituent are 
generally prescribed in terms of intrinsic stresses, strains, densities, etc., which are measures 
associated with unit cross-section and unit volume of the constituent. 

In the isothermal, compressible fluid, isotropic elastic matrix theories of Biot ( I  956a, b) 
and Biot & Willis (1957), direct linear relations for the partial matrix stress and fluid 
pressure in terms of the partial matrix strain and fluid dilatation are postulated. A symmetry 
relation on the coefficients, based on an energy argument, leaves four independent mixture 
constants. one of which is a shear modulus. Various mixture tests are described to determine 
the four constants. Rice & Cleary (1976) start with total stress and intrinsic fluid pressure 
(pore pressure) as independent variables and postulate a linear relation for the matrix strain, 
from which, with Biot’s energy result, is deduced an expression for the porosity change. 
Again, four mixture constants occur, and are interpreted and compared with the Biot 
parameters. An analogous thermodynamic treatment is presented by Schiffman (197 1) 
on the assumption of a mixture free energy which is quadratic in the matrix strain and fluid 
dilatation, and reproduces the Biot symmetry relation. 

An alternative approach (Morland 1972) is to incorporate the matrix and fluid material 
properties directly by relating partial and intrinsic stress and partial and intrinsic de- 
formation etc. Here the term intrinsic is used in place of the earlier description, effective, 
since effective stress has different connotations, discussed later in the text. Porosity and 
porosity variation have a central role in these relations, so the partial stress laws require a 
constitutive law for porosity. Whenever the compressibilities of solid and fluid are different, 
the porosity will vary as the matrix and fluid pressures vary, and also as the matrix shear 
stress varies i f  dilatancy - the opening and closing of cracks under shear stress -is 
exhibited. Further, if the thermal expansion properties are different, porosity will vary as 
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Flow through a thennoelastic matrix 395 

the mixture is heated. Here we assume a common temperature T for both constituents, 
since flow times through a mixture element are long compared with heat conduction times. 
Velocity magnitudes are less than 1 cm/s even for well pumping and injection applications. 
The most simple assumption whch includes these effects is that porosity @ is a frame 
indifferent function of the temperature and partial stresses in matrix and fluid. Thus 

where p s ,  pf are the partial pressures in matrix and fluid, and J2, J3 are invariants of the 
matrix deviatoric partial stress 0” +ps l .  Dependence on the viscous stress in the fluid is 
neglected by (l) ,  and dilatancy is excluded if J2, J3 are absent. Hysteresis under shear stress 
cycles would be described by different dependence on J2, J3 during loading and unloading. 

The law (1) and mixture theory (Morland 1972, 1975) is applicable to finite deformation 
and finite porosity variation. Here, analogous to Biot (1956a) theory, attention is restricted 
to infinitesimal matrix strain, fluid compression and relative porosity change, but finite 
thermal expansion of the fluid is allowed and dilatancy is included. With a further postulate 
that porosity is linear in the partial pressures, and depends only on shear stress through the 
quadratic invariant J2, (1) reduces to 

@ = @1 [ 1 - aps + bpf f d ( J 2 ) ] .  (2) 

The parameters a and b have an order of magnitude of a matrix or fluid compressibility so 
that the terms aps,  t p *  have the magnitude of a matrix or fluid compression (infinitesimal), 
and it is supposed that the function d has infinitesimal magnitude. For convenience all 
stresses are measured relative to a uniform isotropic pressure po existing through the mixture 
at temperature To, corresponding to pf = p s  = (1 - @o)po, where Go = G1 (To) is the 
initial porosity and d(0) = 0. #+, a, b, d may be functions of temperature, and in particular 
@, ( T )  - Go measures the porosity change through thermal expansion of the matrix at zero 
stress in matrix and fluid. 

Use of (2) with the mixture theory (Morland 1972, 1975) determines partial stress laws 
incorporating directly the intrinsic moduli and thermal expansion coefficients of the matrix 
material and fluid. The coupling arises through the parameters a and b,  and function d,  
which are shown to be determined by compressibility tests analogous to those of Biot & 
Willis (1957) together with a bi-axial test. In particular, a and b can be expressed in terms of 
the drained and undrained compressibilities, or drained and unjacketed compressibilities, in 
addition to the intrinsic matrix and fluid compressibilities and initial porosity. In the iso- 
thermal, non-dilatant case, there are five mixture constants; for example, a shear modulus 
and four independent compressibilities, but the Biot symmetry relation would impose a 
restriction on the compressibilities, to leave only four mixture constants. Measurement of 
the three independent drained, unjacketed and undrained compressibilities allows the 
symmetry to be tested directly, and further, the determination of an intrinsic solid com- 
pressibility measuring the mean solid compressibility in the matrix structure, which may be 
different from a grain compressibility. 

The mixture theory is completed by the respective mass and momentum balance laws for 
the matrix and fluid, and, in view of the common temperature approximation, a single 
energy balance for the mixture. The interaction body force is deduced from a generalized 
Darcy’s law for deforming matrix and fluid. Orders of magnitudes for practical applications 
are considered to obtain simpler approximate forms of the momentum and energy 
equations. In particular, the inertia terms and viscous fluid shear stress are neglected in 
comparison with the interaction drag, and the viscous stress working is neglected in 
comparison with the heat terms. 
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396 L.  W. Morland 

Consolidation theory for an incompressible fluid is examined, and it is shown that the 
incompressibility approximation alone makes no simplification in the equations, and that an 
uncoupled diffusion equation for the matrix compression is obtained only with further 
strong restrictions on the mixture compressibilities. The effective stress principle and the 
deduction of an effective stress expression is discussed. Finally, approximate equations for 
convection applications are derived. When the pressure induced compressions in matrix 
and fluid are negligible in comparison with the thermal expansion of the fluid, it is shown 
that uncoupling of the matrix and fluid momentum equations occurs for steady convection, 
but not in unsteady convection flows. In the steady case, the conventional reduced form of 
the convection equations is derived without making the unsatisfactory Boussinesq approxi- 
mation. by introducing a vector potential defining a mass flux instead of a volume flux. 

Mixture equations 
Superscripts s and f denote quantities associated with the solid matrix and fluid respectively. 
v s ,  v f  are the overlapping velocity fields of the mixture theory (Truesdell 1965), and us the 
mean matrix infinitesimal displacement field associated with v s ,  that is 

where t denotes time and x is position in a spatial Cartesian coordinate system Oxj 
(i = 1 ,  2,  3). A partial solid strain associated with us, representing the strain measured in the 
porous matrix, is defined by 

and a partial fluid rate of strain tensor associated with vf by 

p s ,  pf  are the partial densities, so the mixture density is 

p = ps -+ pf .  

us,  of are the partial stresses measured in excess of a uniform isotropic pressure po  supposed 
to exist in an undeformed rest state of the mixture at temperature T =  To. E,’, E‘ are the 
internal energies per unit mass of constituent. It is assumed that time-scales of flow are 
sufficiently long for a common temperature T to be attained (in mean) in both constituents 
in a mixture element. A subscript zero will denote quantities evaluated in the initial rest 
state at temperature To. The mass balance laws are 

aPs apf 

a t  at 
- t div (psvs)  = 0, - t div (p fv f )  = 0, (7) 

If p p  denotes the interaction body forces per unit mixture volume acting on the matrix 
and the external body force per unit mass is gravity g, the momentum balances laws are 
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Flow through a thermoelastic matrix 397 

where D,/Dt and Df /Dt  are convective time derivatives associated with velocities g, vf, 
respectively. The mixture energy balance is 

where qs, qf are the partial heat fluxes within each constituent. Later, infinitesimal strains 
in the matrix are neglected in comparison with unity, but finite thermal expansion of the 
fluid is allowed. Interaction couples are excluded so that the partial stress tensors are 
symmetric. 

A raised prefE E will denote quantities intrinsic to a constituent element. The relation 
between partial density p f  and intrinsic density "p' in the fluid is defined simply by the 
volume fraction, porosity @, of fluid in the mixture, and similarly the volume fraction 
1 - 4 for the solid, thus 

pf  = @EPf, p5 = (1 - @)EPS. (1 1) 

It is commonly assumed that @ and 1 - @ are also the mean fluid and solid cross-section 
areas respectively per unit mixture cross-section, so that 

(1 2) , f = @ E U f ,  @"(I -@)A,. E ' s  

This result can also be deduced (Morland 1975) in the absence of body couples by 
interpreting partial and intrinsic stresses as averages over mixture and constituent volumes 
in a representative mixture element. From the relation between intrinsic and partial de- 
formation gradient proposed by Morland (I  972) on the' assumption that intrinsic and partial 
shear deformations are the same, EFf = (@/@0)1'3 F, and the identity D f F / D t  = LF where L 
is the spatial velocity gradient with symmetric part D, it follows that the intrinsic rate of 
strain of the fluid is given by 

In particular, the deviatoric parts of EDf and D' are the same, so for a linearly viscous 
compressible fluid with zero bulk viscosity and a temperature dependent shear viscosity 
P ( n  

Euf +Epf l  =2p(Df - y3 d i v v f l ) .  (14) 

Following Batchelor (1970, p. 20) and assuming Ef = B f ( " p f ,  T )  classical thermo- 
dynamics shows that 

D f E f  "p' D f E p f  D f T  K~ DfEpf  ----_ - c;- --(Cp -C,)-, 
Dt (Epf)2 Dt Dt Qf Dt 

where CL, CE are the specific heats at constant pressure and constant volume respectively, 
K f  is the isothermal compressibility, and c q  the coefficient of thermal expansion. Making the 
approximations K f  = constant, af = (Yf(T),  which are appropriate to water over pressure and 
temperature ranges (1 + 200) x 106gm crn-ls-', 300 -+ 550 K (Keenan et al. 1969, p. 114), 
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398 L. W. Morland 

where pf  = "pfo is the intrinsic density a t  pressure p o ,  temperature To, and 

In view of the low compressibility K f  we assume that the pressure-induced intrinsic com- 
pression - Eef, at  constant temperature, remains infinitesimal; that is, from (1 6), I Eef I << 1 
where 

E f  
P 

Pf 
E f -  E f =  e - K f  p exp(Af) -- 1 

The relations (1 l), (12) with (14), (15), (18) provide constitutive laws for Ef and of once 
a law for 4 is prescribed. Here temperature differences AT = 7' - To are allowed for which 
A f  is not infinitesimal. For example, for water over the range 300-500 K, A f  - 0.3. 

The analogous laws for a linear thermoelastic solid are (Chadwick 1960) 

E $  
P' E s -  E s - -  

Ps 
1 + as(T - To) = - tr(%S) + a s ( T  - T"), - e - K ~ P  

where ps = Epi is the intrinsic density at (p0, To), and "aS is the intrinsic infinitesimal strain. 
G ,  K ,  are the constant isothermal shear modulus and compressibility respectively, a 
is the constant coefficient of thermal expansion. Here I a,(T - To) I e 1 so both I Ees 
I tr ("as)  I e 1 .  From Morland (1972) 

Assuming E s  = I<s(E 12, T ) ,  analogous t o  (1 5) 

where CL, C': are the specific heats a t  constant stress and constant strain respectively. 
It is convenient t o  introduce partial mechanical dilatations es, ef by  

P f  
- es = - t r ( c s )  + CY,(T - T ~ ) ,  

so that 

- ef = exp (Af) - I ,  
P o  

4 - 40 
e - e  -- 

1 - 4 0  
1 s -  s 

and 

pf = p; exp (- A,)  [ I  - ef]. 
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Flow through a thermoelastic matrix 399 

When T =  To, es, e f  are simply the partial dilatations, but even for large ( T  - To) with 
finite thermal expansion of the fluid, since I I$ - $0 I Q $0, 

showing the explicit dependence on the strain-order porosity change (@ - I$o) .  
Assuming a constant mixture thermal conductivity x, then the total heat flux is 

qs t qf = - Xgrad T ,  (3 0 )  

and 

div (qs + qf) = - V'T. 

In practice x is not a simple weighted combination of the solid and fluid conductivities 
A,, Af (e.g. Bear 1972, p. 648; Kamey et al. 1974), and direct measure is required. With 
(15), (23) and (31), and making use of the relations (7), (1 l ) ,  (12), (14), (21), (22), the 
energy balance (1 0) becomes 

aT aT 
(p"; -I- p f C f , )  - t ( p f C f ,  uif t p s c ;  u;) - - 

a t  ax, 

where 

P S K s  DSEps P f K f  D f E p f  E f D f @  E s D S @  + ( J . + p f & . ) - +  p p -. 
' I  axi Dt Dt 

R =- (c; -Ct)- t - (C ,  -c")- ' I  a, Dt a f  D t  

(33) 

If constant temperature is assumed the balance laws (7), (S), (9), relations (3), (4), (5) 
and constitutive relations (28), (29), (2) fully determine the stresses and velocities, and (10) 
merely calculates the necessary energy storage. However, the resulting value of R given by 
(33) may not be identically zero, when (32) implies there are small temperature variations 
in contradiction to the isothermal assumption, and that the present thermodynamic model 
is an approximation. 

For thermal applications with a temperature difference AT, velocity magnitude V ,  and 
maximum mechanical compression e in matrix or fluid, across a length scale h ,  the left- 
hand terms of (32) have magnitudes 

while R has groups with magnitudes 
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400 L. W. Morland 

evaluated for matrix and fluid. For water over the temperature range 298-548 K, 

CL - 4.2 x 107cmZs-2K-1, hf - 6 x 104gm cm sT3K-’ ,  K f  - 0.5 x 10-lOgm-’cmsZ, 

af - (3.2-21) x 10-4K-1, p - (8.7-0.87) x 10-3gm cm-ls-’. (34) 

Values of Ci, X, are of similar magnitude for rocks, K ,  is less and of the same magnitude for 
granites, but will be of greater magnitude for some rocks and aggregates, and for soils. a, is 
typically of smaller magnitude for rocks. For these values the viscous stress working is 
trivially negligible and the porosity variation contribution can be neglected whenever 
AT s 103e2 is trivially satisfied. The pressure-rate contributions can also be neglected when 
aC,AT 9 (C, - C,)e. This is a good approximation for water in the above temperature 
range, but in view of the smaller % may not be acceptable for the matrix in all applications. 
However, for steady flow with the matrix at rest, there is no pressure-rate contribution from 
the matrix. In the subsequent thermal theory, (32) is adopted with the common assumption 

R = O .  (3  5) 
Now consider steady uniform flow in a horizontal x i  direction under uniform, intrinsic, 

fluid pressure gradient, with no gravity or other body force. Assuming that the interaction 
body force is given by Darcy’s law (Bear 1972, p. 159) with the Hubbert potential for a 
compressible fluid, then 

where k (@)  is the permeability of the matrix-fluid system (with dimension length squared) 
and Qi is the specific discharge, namely the volume of fluid discharging per unit time across 
unit cross-section of a mixture surface normal to the x i  direction. By mixture theory 
definitions the mass flux of fluid and mass flux of solid across a surface with unit normal n 
are respectively pfvf .n and psvs . n ,  corresponding to overlapping space fluxes vf .n and 
v” . n respectively, but intrinsic volume fluxes @ v f .  n and (1 - @)v” . n  respectively (mass flux 
divided by intrinsic density). The total volume flux across a fixed surface is therefore 
[@vf t (1 - @)v”] . n. Thus the fluid discharge across a matrix boundary is the total volume 
flux less the space flux of the matrix; that is, 

Applying the momentum equation (9) to this flow, and using (12)1, gives 

which is the generalization of the one-dimensional result given by Garg (1971) to include 
effects of porosity gradient. This result is also derived by Garg et al. (1975) by introducing 
an effective velocity field for each constituent and postulating equality of convective 
derivatives associated with the two velocities. 

+ 10-’2cmz 
(Bear 1972, p. 136), but a mean value k = 10-’cm2 seems typical of reasonably permeable 
media. For k G 10-’cm2 and @ > lo-’, the drag force (38) is significantly greater than the 
intertia terms in (8), (9) provided that h cm 9 Vcm/s, a trivial restriction in practical 
applications, and always much greater than the viscous stress gradient determined by (14). 

Permeability of various porous rocks and aggregates has a wide range 
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Flow through a thermoelastic matrix 40 1 

&SO IpfV@/@ I = 0 Ip favps ,  p f b V p f  J << 1 V p f ,  v p s  1 since Q, b have the magnitudes of com- 
pressibility, and so the momentum balances (8), (9) reduce, to a good approximation, to 

ao;i PP2 - + psgj +- (Uf - US) = 0, 

-- + p g i - -  ( u j - u ; ) = o ,  

ax/ k 

apf f P#J2 f 

axi k 

(39) 

with @ = Go = (To), k(@) = k(G0), and ps = p;, to first order in strain. 

Partial stress laws 

The laws (28), (29) determined the partial stressesd, pf required in the equilibrium balances 
(8), (9) once a constitutive law for @ is prescribed. Adopting the simple model (2) for 
infinitesimal strain order porosity change, functions of temperature G1, a ,  b ,  d(J,) must be 
determined. Uniform heating of a unit mixture volume at zero stress, allowing fluid to drain 
freely in or out, produces a new volume 1 + r r ( E S )  of the same matrix element. Introducing 
a constant coefficient of thermal expansion a,  for these conditions, so tr( eS) = a,(r  - To), 
and eliminating between (20) and (22), shows that 

@,(T)=@o{l +ya,(T--  To)l, (40) 

where 

Measurements of the expansion tr( as) determines a, and hence y in the constitutive law 
(40). It is supposed that y G O(1). If %=cu,, then y = O  and @l(T)f@o. Note that a porosity 
determined from the new solid volume (1 - do) [ 1 + tr(E es)] and matrix volume 1 + tr( t?), 
using (20) and the linearized relation (22), is trivially q0, since ya,(T-To) is a strain-order 
term neglected in comparison with unity. This would also be the conclusion from displace- 
ment solutions to stress-free linear thermoelastic bodies containing holes. Thus a,, and 
hence y, must be determined from thermal response of the matrix, though the simple result 
a, = a, may be exact or a good approximation. 

Next consider isotropic pressure, isothermal, loading of the mixture body from this zero 
stress state and porosity at temperature T .  If 2, ef denote the changes of 2 ,  ef induced 
by the partial pressures p s ,  pf then by (28), (29) 
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402 L .  W. Morlund 

where 

D = K , K f + @ l K , b  + @ l K f a .  (45) 

Now with the neglect of the strain order term y%(T - To), @I = @o, and it is assumed that 
K, ,  K f ,  a ,  b ,  are independent of temperature to this order, so 

where the constant coefficients are given by 

Now apply the total pressure p in a jacketed (free draining) test and an unjacketed test 
in turn, measuring overall compressibilities K ,  6 respectively (Biot & Willis 1957), and then 
in an undrained test measuring an overall compressibility For free drainage 

pf = 0 ,  ps = p = - E S / K .  

In the unjacketed test 

Pf = @op, PS = ( 1  - @o)P, 

2 = E S ,  pf + ps = p = - E S / 6 .  

p = - E S P .  

In the undrained test there is no mass flux of fluid in or out of the mixture body, so 
- 

Any two of (48), (49), (SO) are sufficient t o  determine the parameters a and b. 
Combining (48) and (50) gives 

@oa = (1 - @ 0 ) K  - K,, 

@o(g- K , ) b  = (1 - @o) ( Z K ,  - Z K f  - E K  + K K f ) ,  

(g- K s ) D  = 8(1 - 40)  (K, - K )  (K, - Kf). 

The pressure sharing between matrix and fluid in the undrained test is given by 

6 - K, 

K f  - K, 
pf=7)p, P"(1 -TIP, 7 ) = - .  

Alternatively, combining (48) and (49) gives (Sl), and 

@ i b  = (1 - $0) [(I - @ o h  - 61, 

@OD = (1 - $0) [ @ O K ( K f  - K s )  + K,(K - 611. 
(53) 

In the isothermal case T =  To, Biot (1956a, b), Biot & Willis (1957) and Rice & Cleary 
(1976) use equations analogous to (46) with a symmetry restriction c I 2 =  c21 deduced from 
an assumption that a mixture element has a potential energy. However, since diffusion takes 
place during general loading, a mixture element is not a fixed element of matter. Here 
cI2 = c21 implies 

@ O ( ~ s  - -  K ~ )  (K - g) = (K - K,) (K, - 8) and K,  = 6 ,  (54) 
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Flow through a thermoelastic matrix 403 

reducing the mixture parameters to three independent compressibilities and a shear modulus, 
analogous to the Biot theory. The symmetry restrictions (54) can be tested directly. Here 
four independent compressibilities are assumed, and the consequences of the restriction (54) 
deduced as a special case. 

From (28), a simple shear test on a mixture body determines a mixture shear modulus 

Grn = (1 - @o)Gm (55) 

for all drainage conditions. Now the intrinsic solid shear modulus G and compressibility K ,  

must measure mean response within a representative mixture element of all material other 
than the fluid in interconnected pores, and so will be affected by gas and fluid trapped in 
closed pores, and any other structural features. Thus grain properties may not be appropriate 
interpretations of G and K,, and direct measure of G, and deduction of K ,  from the three 
independent tests (48), (59), (SO), are more valid procedures. Here any shear hysteresis in 
loading-unloading cycles is neglected. Also the connecting pore fluid compressibility K f  

can be influenced by trapped gas. 
If the matrix solid is more compressible than the fluid, the following inequalities are 

expected: 

K f  < 8 <  K ,  < K ,  ( 5 6 )  

but if the fluid is more compressible: 

K, < 8 <  K ,  F <  K f ,  

so in both cases D > 0. 

J2  = 3 / ~  tr {(as t p s  

Choose 

(57) 

and consider a bi-axial loading test on the mixture body with free drainage at uniform 
temperature T,  with principal total compressive stresses pl, p 2 ,  p 3  and additional principal 
compressions - E: ,  - E;, - E;  of the matrix. Let p2  = p3  = 0 and measure the dilatation versus 
p1 relations for loading and unloading, 6 = 6,(pl) and 6 = 6,(pl) respectively where 6 = E: t 
2~:. Opening and closing of cracks in rocks under shear stress, dilatancy, typically exhibits 
hysteresis and non-linearity; that is, distinct non-linear functions 61 and Ou. In both loading 
and unloading the trace of (28) shows that 

which determines the respective functions d at temperature T .  Independent bi-axial loading 
tests will check the consistency of the restriction to a single dilatancy function d(J2) .  

Hence, for non-isothermal general stress loading, assuming the variation of d with 
temperature is negligible, inserting the full expression (2), (40) for @ in (28), (29), gives 

- p S  = c l leS  t c12ef - 

and the deviatoric matrix stress 
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J 2  is calculated from (62) and then (60), (61) give expressions for p f ,  p s  with non-linear 
dependence on the deviatoric matrix strain due to dilatancy. Alternatively, inversion of 
(60), (6 1)  gives non-linear laws for 2, ef in terms of stresses and temperature. 

0, and balance laws (40) and (32), have been used to investi- 
gate vertical oscillatory motions in a horizontal permeable layer due to Earth tides modelled 
as time harmonic perturbations in the gravity force g (Morland 1977a), and also to  investigate 
two-dimensional time harmonic flows due to  Earth tides, in the isothermal case, when the 
permeable layer is connected to a well (Morland 1977b). 

The laws (60)-(62) with d 

Limit cases and consolidation theory 

For the conventional theory of flow through a rigid matrix set d = 0, G = m, K, = 0, 
and then, consistent with (57), let s= K +. 0. Trivially a = b = 0 so q5 

= 0, 
@o, and D = 0, but 

and so p s  is indeterminate and - Kfpf = @oef, or, using (12), (18) and (24), -KfEpfZEef as 
expected. 

In the incompressible fluid limit used in soil consolidation, K f  = 0, af = 0 ,  so ef = ef.  
Let s, K,, K be non-zero and ordered by (56), and consider the non-dilatant case d = 0. 
Now a, h, D are non-zero and 

That is. there is complete coupling between p s ,  pf and 8, cf,  and the partial fluid pressure 
p f  is determined by (46). By ( I  S), (1 1) and (24) the zero intrinsic fluid dilatation is given by 

0 = GEef = Go(ef - aps + bp f  t 7% [T - T o ] ) ,  (65) 

which is identically zero with the coefficients (64), so neither is e f  zero nor explicitly related 
to eS by the fluid incompressibility condition. In fact, by (65), ef E 0 if @ Go which is not a 
reasonable conclusion for an incompressible fluid and compressible matrix. The 
consolidation equations used by Schiffman et al. (1969), Booker & Small (1975) and Small 
et al. (1976) have no partial stress dependence on a partial fluid dilatation ef,  and in the 
latter papers the mass balance equation is consistent with the solid and fluid balances (7) 
only if ef = 0.  

Another feature of the consolidation theories referenced above is an initial condition 
assumption that no matrix compression occurs when a load is applied instantaneously 
(because fluid requires a finite time to  drain). That is, the undrained compressibility 8 = 0. 
This is compatible with the approximation 8 < K noted by Biot (1941) from tests on 
completely saturated clays. With this strong inequality, (64) implies (cll,  c12) = O( 1 / ~ ~ ) ,  
(c?~ ,  c2 t )  = O(K/~K,) ,  and hence 8 p f  = O ( K ~ ’ ) ;  that is. ( p f  1 s Ips 1. However, inverting (60), 
(61) in the isothermal, non-ddatant, case gives 
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which shows that ef = O(es). With the earlier interpretation of K ,  it is possible that 
K ,  = O ( K ) ,  but also there is the possibility K ,  e K ,  is compatible with the theories mentioned 
above which show no dependence on K,. In the latter case (66) reduces to 

so that p s ,  pf are not separately determined by eS,  ef, but again ef = O(E’). In fact, for a low 
porosity matrix, ef dominates 2. Thus, an approximation ef = 0 appears to have no validity. 

In an isothermal consolidation theory for incompressible fluid with F f 0 or 
8 = O(K,  # 0) all cij are non-zero, and the general equations apply. Let the stresses, strains, 
etc. denote values in excess of an equilibrium solution for the gravity force and zero 
(atmospheric pressure) traction on the surface, which will also depend on imposed lateral 
constraints. The mass balance laws are 

so that 

(69) f a 
at 

div v = - (ef - e’) where v = v - vs. 

The momentum balance equations become 

where (71) is the mixture balance. Equations (68),, (70), (71) are seven equations for the 
seven variables us, vf, ef,  since us determines 8, vs by (68)l. The divergence of (71) and the 
divergence of (70) combined with (69) give 

(c,1 + c21 + 4/3 G,)V2€S + (c,2 f i 2 2 ) V 2 E f  = 0 ,  (72) 

BY (72), 

Ef = [ € S  t w, v 2 w  = 0, 

where is a constant and w an arbitrary harmonic function, and (73) becomes 

(74) 

A result analogous to (74) for pf instead of ef is derived by Verruijt (1969). The consolida- 
tion equation (8a) of Schiffman et el. (1969) relates &?/at to V2cs which follows from (75) 
only if w 0 (or if ef 2 0). No simplification in form follows for the case e K ,  = O ( K ) .  

Consider the approximation 

K f = O ,  8 <  K ,  < K ,  (76) 
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for which the relations (67) hold. Eliminating ef and p s  by (67) gives the momentum and 
mass balance equations 

is the consolidation coefficient, giving an uncoupled diffusion equation for e S .  (77), (78) are 
the equations given by Schiffman et al. (1969) if their permeability is k/& and if s can be 
neglected in comparison with K ~ .  That is, under the stronger restrictions 

(79) 
- 

K f = O ,  6 < K, < K .  

Only for the approximation (76) does the uncoupled law (78) arise, and less restricted 
compressibilities Kf, K,, s, K require the full equations. While this restriction may be 
appropriate to saturated clays, it is not likely to be generally applicable to aquifers in porous 
rocks and aggregates. Verruijt’s (1969) equations are based on an assumption that an 
effective matrix stress depends only on the partial matrix strain, so no explicit dependence 
on the partial fluid dilatation is exhibited. Rice & Cleary (1976) achieve a diffusion equation 
by taking vf instead of vf - vs in Darcy’s law. 

For steady flow with the matrix necessarily at rest, d = 0, v = v f ,  and 

div vf = 0, curl vf = 0; vf = VQ, V2Q = 0 ,  (80) 

P 4); 
pf +- =constant, 

k 

so harmonic R determines vf and pf.  Now (70) expresses Vef in terms of VE‘ and Q and 
(7  1) becomes 

to determine us. With the restriction to 0x1x2 plane flow and plane strain or plane stress in 
the matrix, the matrix equilibrium is satisfied by introducing a plane biharmonic stress 
function $, 

V ~ J /  = 0 :  (83) 

such that 

In the non-isothermal case the thermal expansion terms are expressed in terms of a given 
harmonic temperature field. 
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Effective stress 

The term intrinsic stress has been introduced here in place of the description effective 
stress used by Morland (1972), to avoid confusion with the Terzaghi effective stress principle 
and extensions of this concept (e.g. Schiffman 1970) which define the effective (matrix) 
stress as the stress dependent only on the matrix (partial) strain. This is written in the form 

a=  a + a y 1 ,  

where the intrinsic fluid pressure “p‘ is termed pore pressure, and a is the soil-water inter- 
action coefficient. Sliiffman (1 970) proposes 4 Q o! Q 1 where the limit o! = 4 gives a= ns, 
the partial matrix stress, and the limit a = I is the original Terzaghi postulate. The effective 
stress principle is adopted by Verruijt (1969) and Rice & Cleary (1976) to formulate partial 
stress laws, but effective stress does not arise directly in the balance laws. 

Nur & Byerlee (1971) discuss proposed expressions for a,  and by constructing a solution 
for a mixture body under confining (total) pressure P, and pore pressure P p ,  conclude that 

a =  1 - K , / K .  (86) 

The load is applied in two stages. First both confining pressure and pore pressure are raised 
to Pp, allowing the necessary fluid diffusion, producing a matrix compression e l ,  then an 
additional confining pressure P, - Pp, is applied retaining the pore pressure at Pp. At the end 
of stage 1, the intrinsic pressure in the solid is P p ,  and so by (20), (22), if is the new 
porosity, 

41 - 4 0  e ,  = Kspp - ~ 

1 - 4 0  
(87) 

Stage 2 is a free drainage loading, with the fluid reservoir at pressure Pp, and so the 
additional matrix compression is 

eZ=K(Pc - P p ) .  (88) 

O=KP, - ( K  - - 6 ) P p ,  = K ( p )  (89) 

( p ) = P c  - a P p ,  c Y =  1 ~ 6/K.  (90) 

Hence, evaluating 4, by (2), (51), and (53),, the total compression is 

where 

Thus the result (86) is obtained only if = @,,, equivalent t o  the unjacketed compressibility 
6 = K , ,  wluch follows if the Biot symmetry restriction holds. This was also deduced by Garg 
& Nur (1973) on the basis of the Morland (1972) ?heory in conjunction with the symmetry 
relation. 

Nur & Byerlee point out that the Terzaghi postulate a =  1 is justified if K~ < K ,  here 
replaced by 6 < K ,  but also that o! - 0 is feasible in low porosity aggregates if K ,  approaches 
K , here 6 approaches K .  

Convection equations 

In geothermal systems with large temperature differences across permeable horizontal layers, 
buoyancy-driven convection flows may be significant. Classical treatments use the porous 
media equations for a rigid matrix, so now the interaction with a deforming thermoelastic 
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matrix is examined. Let the stresses, strains and displacements denote values in excess of an 
equilibrium field under gravity and the imposed temperature increase AT downwards across 
the layer, with equilibrium quantities denoted by a raised *. Define 

0 = ( T  - T*)/AT, where V 2  T*(x )  = 0 ,  

then it is supposed that 

l e i *  I 

in convection flows, and terms of order 0 compared with unity are neglected. 
By (7) and (24) the mass balances become 

where ps,  pf are actual partial densities and the energy balance (32) with (35) becomes 

a e  ae aT* 
(pscc", + pfc;) - + (pfc; U; + pSc;  u;) - t - AT = Xv2e. 

at i, axi I 1 (94) 

By definition VT*/AT is order ( l /h )  where h is the layer thickness, so using (92) the VO 
term is neglected in the linear theory. Also 1-1 may be evaluated at T* (expansions of v ( T )  
and af(T) about T* in powers of 0 for water show that leading coefficients are order unity 
when 300 K Q T G 5 5 5  K) and the matrix momentum balance (39), becomes 

However, the fluid convection is driven by buoyancy arising from the density decrease 
P' - pf.  BY (261, 

pf - pf*  = - pfo exp { -A f (T*)}  {af(T*)ATO + ef - ef*},  (96) 

to first order in 8 ,  neglecting ef compared with unity, and ( 3 9 ) ~  gives 

Now ef - e' = O ( ~ f p ~ )  and pf = 0 {(pf - ,o')hgj by (97), so ef - ~ er = 0 CpfoghKfaf ATO} = 
O(efafATO) which is strain order and negligible compared with afAT0. Thus (97) becomes 

cl('r*>@: f 

p i g i  exp ( - A f ( T * ) }  af(T*)ATO - (Uj - u;)  = 0.  aPf 
axi k 

For unsteady flow with vs # 0, (93), (94), (95), (98) with the laws (60), (61), (62) are 
a coupled system for 6, us, vf, ps ,  pf,  and the matrix motion influences the convection flow. 
However, for steady flow with v' 0, the fluid laws are 

div (pfvf) = 0, Cfppfuf - AT = xV28, 
aT* ax, I (99) 
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and (98) with 9 = 0; that is, five equations for 8, p', v', independent of p s ,  us except 
through the law for p * .  But the curl of (98) gives (assuming p i ,  Go, k are uniform) 

(-Af(T*)} crf(T*)8g + 

in which pf is absent. Thus (99) and (100) are complete equations for the steady fluid 
convection. 

Introducing a vector potential + by 

pfvf = curl + (101) 

satisfies (99)1 identically and the energy balance becomes 

X A T  
(curl+).  VT* =- v28. 

c fp 
+is the generalization of a two-dimensional stream function JI defining a mass flux instead 
of volume flux in plane flow, which leads to linear equations (loo), (102) for 8 ,  +without 
a Boussinesq approximation pf = pk. This formulation was used by Morland, Zebib & Kassoy 
(1977) to investigate the effects of temperature dependent p(T) ,  q ( T )  on the onset of 
steady plane convection in a horizontal layer. 
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