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INTRODUCTION

The fact that there exists a close connection between the classical theory
of spherical harmonics and that of group representations was first established
by E. Cartan and H. Weyl in well known papers; in fact, spherical har-
monics arise in a natural way from a study of functions on G/K, where G is
the orthogonal group in «-space and where K consists of those transforma-
tions in G under which a given vector is invariant. However, it is obvious
that in order to get a theory applying to larger classes of special functions it
is necessary to assume that only K is compact, and to study not only func-
tions on G/K but also functions on G.

The first nontrivial example was given by V. Bargman in 1947; in his
paper [l] on the group G = SL(2, R), Bargman uses a maximal compact sub-
group K of G (K is one-dimensional) and studies functions </>(g) which, for a
given character x of K, satisfy 4>(kgk')=x(k)4>(g)x(k')- In particular, such
functions occur by considering finite- or infinite-dimensional irreducible
representations of G; these representations have coefficients satisfying the
above relation, and from explicit calculations it follows that these functions
can be identified in a simple way with particular hypergeometric functions;
the case where x(&) = 1 leads to Legendre functions of arbitrary index and to
group-theoretical explanations of three important properties of these func-
tions, namely, their differential equation, their representation by integral
formulas, and their functional equation (which is connected with the classical
addition formulas).

At the same time I. Gelfand and M. Naimark were led to study similar
questions by considering irreducible unitary representations of the complex
unimodular group G = SL(n, C)\ if K is a maximal compact subgroup of G,
then it turns out that some of these representations have coefficients cj> satis-
fying <t>(kgk') =(j}(g); these functions have properties entirely similar to those
of the Legendre functions; however, they are not very interesting from the
point of view of the theory of "special" functions because they can be ex-
pressed in closed form in terms of exponential functions (the formulas are
very similar to H. Weyl's for the characters of compact groups).

In 1950 very important results were published without proofs by I. Gel-
fand; in [6] Gelfand considers a (not necessarily compact) Lie group G and
a compact subgroup K of G, and studies functions 0(g) satisfying <j>(kgk')
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= </>(g); those functions which are integrable on G form a normed algebra A
under the convolution product on G ; under the assumption that there exists
on G an anti-involution g—>g such that k~l=k, Gelfand proves that A is
commutative; his "spherical functions" are then defined by the following re-
quirements: they are continuous, positive-definite, invariant under g—>kgk',
and finally the linear form/—*£(/) =ff(g)<j>(g)dg must be a homomorphism of
A onto the complex field. This property is equivalent to the functional equa-
tion

(*) f<j>(kgk"Y)dk = 4>(g)<t>(g'),

and implies that spherical functions correspond to "characters" or to maximal
ideals of the algebra A; Gelfand then applies the general theory of com-
mutative normed algebras to prove a generalization of Bochner's theorem,
namely, that every continuous positive-definite function invariant under
g-^kgk' is the "continuous sum" of a locally compact set of spherical functions
with respect to some positive and bounded measure ; this result can be inter-
preted as a decomposition theorem for unitary representations of G which
contain "sufficiently many" vectors invariant under K, and proves that the
general decomposition theorems due to von Neumann can be considerably
improved in special and important situations: more accurately Gelfand's
result means that the "exceptional null-sets" of the general theory do not
occur under suitable assumptions. On the other hand, Gelfand exhibits dif-
ferential equations for his spherical functions, and these differential equa-
tions of course express that the spherical functions, considered as functions
on G/K, are eigenfunctions for every differential operator invariant under the
motion group of the symmetric Riemann space G/K.

Despite their importance, these results are not general enough, mainly
for the following two reasons: (1) Gelfand studies only unitary representa-
tions of G; (2) he studies only functions which are invariant under g—*kgk'.
It is obvious that not necessarily unitary representations (e.g., finite-dimen-
sional representations) must be taken into consideration, and on the other
hand there is no reason (except for convenience!) to consider only the trivial
representation k—»1 of K. Actually, it is necessary to consider an arbitrary
irreducible representation k—>Uh of K and to study functions 4>(g) =Tr [í>(g) ],
where 3>(g) is an operator on the representation space of k—*Uk and where

(**) Hkgh) = u,Hg)uh

for every k, h^K; this of course was done by Bargman for the hyperbolic
group. Such functions can be obtained in the following special way. Consider
a representation g—>Tg of G on a Banach space § ; denote by b the equiva-
lence class of k—>Uk, and let ¡Q(b) be the set of vectors in £> which, under
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k—*Tk, transform according to b; then §(b) is a closed subspace and there
exists a continuous projection E(b) of § onto §(b). Now assume that £>(b)
is finite-dimensional; then the function

(***) Mi) = Tr [E(b)Tt],
where Tr is the ordinary trace on § (defined at least for operators of finite
rank), is well defined and has a representation by a function satisfying (**).

The general theory of spherical functions consists in studying functions
(***) corresponding to irreducible representations of G. The first general
results were recently announced by Harish-Chandra in [20]; Harish-
Chandra's method applies only to semi-simple Lie groups G, and rests upon
a detailed analysis of algebras of differential operators on G (universal en-
veloping algebra of the Lie algebra of G) and a proof of the fact that every
irreducible representation of G has analytic coefficients (this is necessary in
order to deduce "integral" properties from "infinitesimal" ones). The most
important results announced by Harish-Chandra are about as follows: (1)
every irreducible representation 35 of G contains every irreducible representa-
tion b of K a finite number of times only [and this number w(b, 35) has a
finite upper bound w(b) when 35 varies], so that spherical functions can be
defined; (2) these spherical functions are analytic and determine up to
equivalence the corresponding irreducible representations of G; (3) if b is
one-dimensional, then every spherical function <¡>¡, can be represented by an
integral formula generalizing those of Bargman and Gelfand-Naimark;
similar but less precise results still hold for arbitrary b; (4) every irreducible
representation of G corresponds to an algebraically irreducible representation
of its Lie algebra.

Our purpose in the present paper is to prove that a systematic use of
functional analysis (normed algebras and so on) leads to: (1) elementary
proofs of some of Harish-Chandra's results, in particular the fact that
sup© n(b, 35) <+ oo ; (2) new results; (3) an extension of some of Harish-
Chandra's results to not necessarily semi-simple groups (in particular, to all
euclidean motion groups, which are important because they lead to general-
ized Bessel's functions). The content of our paper is as follows.

In §1 we essentially prove the theorem that

(****) sup w(b, 35) < +  » ;
3)

our method is very simple: we write G=K-N where N is a subgroup which,
for semi-simple G, is solvable and which, for euclidean motion groups, is
abelian and invariant; then we verify that sup n(d, 35) <+ oo when 35 runs
over the set of (not necessarily irreducible) representations of G "induced"
by one-dimensional representations of N (this step of the proof is trivial,
and inspired by Gelfand and Naimark) ; next we prove that these induced
representations are "in sufficiently great number," and finally (****) fol-
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lows by using a theorem due to I. Kaplansky and asserting that, if an asso-
ciative algebra has "sufficiently many" representations whose dimensions do
not exceed a given number n, then every irreducible representation of this
algebra has dimension ^n.

In §2, we use the assumption that ra(b, 35) < + « in order to prove that
every irreducible representation of G is more or less equivalent to the natural
representation of G on A/m, where A is some "group algebra" and where m
is some regular maximal left ideal in A; this fact was known for abelian and
for compact groups only (and in this case is trivial).

In §3 we study spherical functions (under the same assumption as in §2)
from the point of view of their functional properties. The basic result is
equivalent to the following one: let L°(G) be the space of continuous func-
tions with compact carrier on G which are invariant under g-^-kgk-1; L°(G)
is an algebra under convolution product; now let 0 be a continuous function
on G, satisfying <¡>{kgk~l) =<¡>(g), and define <j>(f) =ff(g)<l>(g)dg for every
/GL°(G); then <f> is proportional to a spherical function if and only if: (a) <f>
grows "not too fast" at infinity; (b) there exists a finite-dimensional ir-
reducible representation f—*T¡ of L°(G) such that <f>(f) is proportional to
Tr (Tf) for every f(EL°(G). From this it follows that spherical functions are
very similar to the characters of abelian and compact groups (actually,
these characters are special instances of spherical functions!); in particular,
the spherical function (***) satisfies the functional equation (*) if and only
if b occurs once only in the given representation of G (but we do not know
functional equations for arbitrary spherical functions). Finally we give
integral formulas for spherical functions in the case of euclidean motion
groups.

In §4 we study the differential properties of spherical functions. By using
the classical Bernstein theorem on elliptic operators we first give a very
simple proof of the fact that every irreducible representation of G has
analytic coefficients, from which the analyticity of spherical functions fol-
lows. Now consider the algebra U°(G) of differential operators on G which
commute with all translations g—*kgg', kÇiK, g'GG, and for a given analytic
function (¡> invariant under g—^kgk^1 define <j>{X) = X(j>(e) for every X
£170(G); then <j> is proportional to a spherical function if and only if <j>
grows not too fast at infinity and if X—*j>(X) is proportional to the "char-
acter" of a ^miie-dimensional irreducible representation of U°{G). The anal-
ogy between this result and that of §3 is striking, and actually our proof of
the "infinitesimal" result consists in proving (by Hahn-Banach's theorem in
spaces of "distributions") that it is equivalent to the "integral" one. For
spherical functions satisfying the functional equation (*) the above result
takes on a simpler form, namely, that 4> is an eigenfunction of every X
ÇzU°(G). Finally we give a very simple proof of the fact that irreducible
representations of G lead to algebraically irreducible representations of its Lie
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algebra—this result (which of course is the "infinitesimal" theorem corre-
sponding to the "integral" result of §2) is important because it proves that
the purely algebraic results published by Harish-Chandra in [19] can be
used to study the representations from the integral point of view.

In proving the basic result of §1 we have shown that if G contains a
solvable connected group N, then every finite-dimensional irreducible repre-
sentation of G is contained in a representation induced by some one-dimen-
sional representation of TV. We prove in an appendix that the above remark
can be used in order to get a complete classification of finite-dimensional
representations of the "classical groups"; our method of course does not
lead to new results but is simpler than those of E. Cartan and H. Weyl, and
furthermore is purely integral [H. Weyl's method of characters is purely
integral too—although it rests upon integration formulas which cannot be
proved without using "infinitesimal" arguments—but it applies to compact
and to complex groups only; our method works for all (compact or not,
complex or real) classical groups].

In this paper, we are concerned with representations on arbitrary Banach
spaces ; in a second paper we shall study more closely the unitary representa-
tions on Hilbert spaces, in order to prove that the general decomposition
theorems (see [15 ]) can be stated in much better terms under the assump-
tion that (****) holds. The method consists in considering, for a given ir-
reducible representation b of K, the algebra L°(b) of continuous functions
with compact carrier on G which have the form Tr [</>(g) ] where i> satisfies
(**) for the given b, and in observing: (a) that L°(b) is an algebra with an
involution whose irreducible unitary representations have finite and bounded
dimensions (if b is the one-dimensional representation k—>l, then L0(b) is
identical—up to completion with respect to the Z^-norm—with the algebra
A of Gelfand, which is commutative); (b) that there exists a one-to-one cor-
respondence between the irreducible unitary representation of G in which b
does occur and the irreducible unitary representations of L°(b). By using a
very simple argument explained on p. 79 of [15] the above properties enable
us to throw out of the decomposition theorems all exceptional null sets which
necessarily occur in general groups, to define in a natural way locally compact
"dual objects," and to prove topological uniqueness theorems. In other words,
the basic results of the harmonic analysis on abelian groups can be extended
without any pathological feature to a much larger class of groups, and this is
interesting not only from a theoretical point of view but also because this
class includes practically all groups whose importance is obvious in "classical"
mathematics, namely, the abelian groups, the compact groups, the semi-
simple Lie groups, and the euclidean motion groups. Therefore it may be
hoped that the theory of group representations is now able to provide new
results and new interpretations of known results in the most classical parts
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of analysis; this, in the author's opinion, is the ultimate purpose of this
theory.

Preliminary definitions and results
Throughout this paper we shall denote by G a locally compact unimodular

group and by K a compact subgroup of G. We shall often use the following
notation: if X denotes a group, then x will denote a generic element of X.

We shall denote by M{G) [resp. L(G)] the space of all measures [resp.
continuous functions] with compact carrier on G. The convolution product
of two measures a, ß£E.M(G) will be denoted by aß (so that we omit the *);
see [29] and [13] for the main definitions and results; if eg denotes the meas-
ure on G given by 0—»0(g), ÖG^(G), then it is easy to see that

(1) aß= ffeg.g.,-da(g')dß(g")
—of course, (1) is a "weak" integral. We shall always identify a measure
a£M(X) on K with the measure aÇ:M{G) on G given by 6-+fd(k)da(k) ; by
(1) it is clear that we get an isomorphism of the algebra M(K) into the alge-
bra M(G).

We shall choose once and for all a Haar measure dg on G, and we shall
always identify every (for instance, continuous) function 0(g) with the cor-
responding measure 6(g)dg. In the same way, every continuous function on
K will be identified with a measure on K, hence with a measure on G. It is
known and obvious that L(G) is a two-sided ideal in M(G).

By a representation of G on a Banach space § we shall mean a homo-
morphism g—*Tg of G into the group of nonsingular bounded operators on !q,
with the requirement that, for every a£§, the mapping g-^Taa of G into
§ is (strongly) continuous. For every compact set A CG and every a£E$,
the set of vectors Tga, g£^4, is therefore compact, hence bounded in §; by
well known arguments (Banach-Steinhaus theorem) this proves that the
function

(2) p(g) = \\Tg\\
is bounded on every compact set. It is obvious that p(g) is lower semi-continu-
ous on G, and satisfies

(3) p(g'g") S P{g')p{g")
for every two g', g"ÇzG; such a function will be called a semi-norm on G. If,
for a given semi-norm p and every f€zL(G), we set

(4) ||/||, = f \f(g)\p(g)dg,
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then (3) implies ||/'/"||pá||/'||p-||/"||P; hence the space A„(G) of absolutely
integrable functions with respect to p(g)dg can be considered in a natural
way as a complete normed algebra under the convolution product. Of course,
L{G) is everywhere dense in AP{G)—by the very definition of integrable
functions.

Every representation g-+Ta of G can be extended to a representation
a—¥Ta of M(G), given by

(5) Ta = j Tg-da{g);

if dct(g) =f{g)dg with /£L(G), we shall write T¡ instead of Ta. It is obvious
from (2) that ||j/|| ^||/||P; hence f—>Tf can be extended to the whole of
A„(G). Conversely, let/—>T¡ be a representation of AP(G) on a Banach space
§, and assume that || ?7|| =||/||p lor every fÇzAp(G) ; then the given representa-
tion of AP(G) is generated, by the above process, by a representation of G
on §, provided the set of vectors T¡a [f(EAp(G), a(E§] span the whole of §(J).

Concerning the concept of "irreducibility," we shall use three different
definitions.

Definition 1. Let A be an arbitrary associative algebra over afield Q, and
let x—*Tx be a linear representation of A on an arbitrary vector space § over il;
then the given representation is said to be algebraically irreducible if !q contains
no nontrivial subspace invariant under the Tx.

Definition 2. Let A be an associative algebra over the complex field and
let x—^Tx be a linear representation of A by bounded operators on a Banach
space § ; then the given representation is said to be completely irreducible if every
bounded operator on § is a strong limit (2) of operators Tx.

Definition 3. With the notation of Definition 2, the representation x—>Tx

0) This can be proved in the following way. If f(E.Ap(G) and s£EG, then it is obvious that
e.}CzAp(G) and that ||e,/||pSp(s) 'H/Hp. Furthermore, for every compact neighborhood V of j
in G, denote by gv a positive continuous function on G vanishing outside V and such that
fgv{x)dx = \; then it is clear that gvf converges strongly in AP{G) to es/ for every fÇzAp{G) ;
furthermore we have |]gr|lpSsupi£=y p(t) so that by setting p*(s) = infy sup(gF p(t) ( < + M)
we see that ||gv||p ëp*(s) +f provided V is small enough. Now consider a continuous representa-
tion/—»Tf on a Banach space £>, and assume the set .Ipo of vectors 2^^7¿a» [f>ÇzAp(G) ; a¡G§]
is everywhere dense in §. If h= 2Z?/ia» 's a vector in §o and if i(EG, then by the above re-
mark we see that '^2,Tayfiai = TQrb converges to 2^^es/¡3¿ when V "converges to s," so that
2^í7¡a¡ = 0 implies 2^^í,/¡a» = 0; hence we may define an operator T„ on !¡>o by Ts^T/^i
= / ! J'>jf|.a,:: furthermore if bÇ-£>o. we have seen that T'sfe = lim TQYb so that || T,b\\ =lim ||7¡,Ffo||
áJf-p*(í)||6||; hence T, is continuous so that—since §o is everywhere dense in Ç—we may
extend it to a bounded operator on í¡>; of course s—>Ta is a representation of G (the fact that
5—>T,b is continuous for every b follows from the fact that ej depends continuously on 5 for every
fÇÎAp(G)). It remains to prove that T/=fTa-f(s)ds, which is easy by using the fact that we
have, in AP(G), gf=fesf-g(s)ds (strong integral).

(2) We recall that T converges strongly to To if, for every a(Eí>, Ta converges strongly to
Toa.
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is said to be topologically irreducible if (q contains no nontrivial invariant
closed subspace.

We shall use Definitions 2 and 3 for group representations by considering
the corresponding representations of the algebra L(G).

Concerning the connections between these three kinds of irreducibility,
it is obvious by Burnside's theorem that they are equivalent for finite-dimen-
sional representations. In the general case, it is obvious that complete ir-
reducibility implies topological irreducibility. By the "density theorem of
von Neumann" [27, p. 397; 15, p. 99] it is known that, for unitary representa-
tions on Hubert spaces, topological irreducibility implies (hence is equivalent
to) complete irreducibility(3).

It is obvious that every completely irreducible representation of a com-
mutative algebra or group is one-dimensional; this is still true for topolog-
ically irreducible bounded representations of abelian groups ("bounded"
means: \\TB\\ =1), and the proof of this is by no means trivial—it essentially
uses the spectral theorem of Beurling (see [14]) ; but we do not know whether
this result still holds for arbitrary topologically irreducible representations!
This is the essential reason for which we shall study completely irreducible
representations only. In this connection, the following lemma will be an
essential tool in our proofs (4) :

Lemma 1. Let A be an associative algebra over the complex field, and let n
be a finite integer. Assume that A has sufficiently many linear representations
whose dimensions are ^ n. Then every completely irreducible representation of A
has dimension ^n.

Proof. Denote by Mn the algebra of all «X« matrices; it is known [23]
that there exists a noncommutative polynomial P(xi, • • • , xr) such that:

(Pi): P(Alt • • ■ , ^4r)=0 whenever A\, ■ • • , 4,GM,;
(P2): there exist Au ■ ■ • , i,£M»+i such that P(Ai, • ■ • , Ar)y^0;
(P3) : P(xi, ■ ■ ■ , xr) depends linearly on every x¡.
Since A has a "separating" set of representations whose dimensions are

gw, it is clear that P(xi, • • • , xr)=0 whenever xi, • ■ ■ , xrÇE.A; hence if
x—=>Tx is a completely irreducible representation of A on some Banach
space §, we shall have P{TXV • • • , TXr) =0 identically; let then Au • ■ • , Ar
be arbitrary bounded operators on §; approximating Ai by operators Tx
and using (P3) we get P(Ai, Txv ■ ■ ■ , Tx¡)=0; approximating Ai we then
get P(Ai, At, TH, • • • , Tx) =0, and finally we see that P(AU ■ ■ ■ , Ar) =0;
assume then that & contains an (w+l)-dimensional subspace @, and denote
by A1, • • ■ , Ar arbitrary operators on @; since @ is finite-dimensional, every

(3) This is true more generally for representations x—*Tx on Hubert spaces whenever it is
known that the set of Tx is invariant under T-^>T*.

(4) Special cases of Lemma 1 were published by I. Kaplansky; see for instance [24] for the
case of unitary representations.
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Ai is induced by some bounded operator on §; hence P(Ai, ■ ■ ■ , ^4r)=0,
which contradicts (P2), q.e.d.

The following lemma is due to J. Dieudonné:

Lemma 2. Every algebraically irreducible representation of an algebra A by
bounded operators on a Banach space § is completely irreducible.

Proof. Let M be the set of all endomorphisms of § which commute with
every Tx (the elements of M are not necessarily bounded operators) ; we first
prove that M reduces to scalar operators. In fact, choose a nonvanishing
vector aG§ and for £/£Af define

\\U\\ = inf ||7\||
where x runs over the elements such that Txa = Ua (such x do exist because
the set of vectors Txa is the whole of §). By trivial computations it is im-
mediately seen that M becomes a normed algebra (i.e., || £/+ V\\ ^|[ U\\ +|| V\\,
||X-i/||=|X| -¡¡UW, 11^^11^11^11-11^11); but M is a field (Schur's lemma),
hence reduces to the complex numbers (Gelfand-Mazur's theorem(6)) which
proves our assertion. Now we may apply a theorem due to Jacobson [22]
and asserting that for every endomorphism A of $£> and every finite set of
vectors a\, • • ■ , a„ there exists some x£.A such that Txai =Aai for l^i^n;
this obviously proves Lemma 2 (and even somewhat more!).

1. The main theorem on semi-simple groups
1. The algebras L(b). We consider the given group G and its compact

subgroup K. We shall denote by b an irreducible representation of K; if x
is the character of b in the classical sense, and if w(b) is the dimension of b,
then it is well known ("orthogonality relations") that XX = w(b)_1x (convolu-
tion product). We shall denote by xb the function n(b) x> so that we have the
more easily manageable relation

(6) XbXb = Xb.

Now, since we identify functions on K with measures on G, we may consider
the set L(b) of those fEL(G) which satisfy(6)

(7) Xb/ = fib, = /;
clearly, L(b) is a subalgebra of L{G), and /—»xb/xb is a projection of L(G) onto
L(b).

Now let g-^Tg be a representation of G on a Banach space §, and define

(8) £(b) =       Tk-x»(k)dk;-Î
(6) Observe that Gelfand-Mazur's theorem (whose proof uses Liouville's theorem only)

holds even in noncommutative and noncomplete normed algebras.
(6) Equation (7) is equivalent to fj(kx)xs¡{k)dk=ff(xk)xi,{k)dk=f(x) for every xÇLG.
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by Taß = TaTß and (6) we see that -E(b) is a continuous projection of £> onto
a closed subspace §(b) ; it is easy to see that §(b) is the set of vectors which,
under k^>Tk, transform according to b. (A vector x£§ belongs to §(b) if
and only if the vectors Tkx span a finite-dimensional subspace and if the repre-
sentation k^Tk of K on this subspace decomposes into irreducible repre-
sentations which belong to b.)

If dim §(b)=£-dim (b), we shall say that b is contained p times in the
given representation of G; then the representation k-^>Tk of K on ^j(b) de-
composes into p irreducible representations^), each of which belongs to b.

It is clear that we have

(9) E(b)TfE(b) = T„   where    g = Xb/xb

for every /£L(G); hence f)(b) is invariant under T} whenever /£L(b) and
if we denote by T¡ the operator induced on §(b) by T¡, we get a representa-
tion f-^Tf of L(b) on £>(b). It is important to observe that, for /(EL(b),
7/=0 is equivalent to f/ = 0.

Lemma 3. Assume the representation g-^>Ta of G on Q is completely ir-
reducible; then, for every b, the representation /—>?/ of L(b) on $(b) is com-
pletely irreducible too.

Proof. Let A be a bounded operator on §(b) ; extend it to £> by the condi-
tion that Aa=AE(b)a for every a£§; by our assumption, we can find func-
tions^) fiÇLL{G) such that T/( converges strongly on § to A ; setting
g¿=Xb/tXbi it is clear that gi^L(b) and that T0i converges strongly to A on
§(b), q.e.d.

Remark 1. Similar results hold for algebraically irreducible and for
topologically irreducible representations.

Remark 2. See a special case of Lemma 3 in Gelfand [ó].
Definition 4. Let übe a set of representations of G;Q, is said to be complete

if, for every nonvanishing function /£!<((?), there exists some member T of Q
such that T/^O.

Lemma 4. Let ß be a complete set of representations of G ; for a given b and a
given finite integer p, assume that b is contained at most p times in every mem-
ber of Í2; then b is contained at most p times in every completely irreducible
representation of G.

Proof. We know that, for/G-£<(b), 2/ = 0 is equivalent to T/ = 0; hence
the representations /—»7/ of L(b) associated with the various members of Í2
form a complete set of representations of L(b), whose dimensions are  i=w

(7) Strictly speaking this is true for p < + =o only; in the general case this may be false (if
this were true, then every Banach space would admit of at least one basis: take K = e\).

(8) Notation f¡ does not mean that/,- is a sequence; see N. Bourbaki, Topologie générale,
Chap. I, where the canonical language is explained.
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=pdim (b); hence (Lemma 1) every completely irreducible representation
of L(b) has a dimension ¿n, so that Lemma 4 follows from Lemma 3.

2. Applications to semi-simple Lie groups.

Lemma 5. Let G be a connected semi-simple Lie group with a faithful
(finite-dimensional) representation^); then G has a complete set of finite-di-
mensional irreducible representations.

Proof. Given a representation g—*Tg on a vector space §, we call coeffi-
cient of that representation every function 6(g) =(T„a, a') where a is some
vector in ¿p and a' is some vector in the conjugate space &. Denote by C¡
the set of linear combinations of coefficients of finite-dimensional irre-
ducible representations of G; by the complete reducibility, it is clear that C¡
contains all coefficients of all finite-dimensional representations of G; since
G has a faithful representation, we see that

(10) e(g') = 6(g") for every 6 £ C¡ implies g' = g";

on the other hand, the product of any two coefficients is still a coefficient
(tensor product of representations!), and if 0GC/, we have also 0£C/ (con-
jugate imaginary representations!); by (10) and the Stone-Weierstrass ap-
proximation theorem [2], we thus see that every continuous function on G
can be approximated uniformly on every compact set by members of C¡;
hence if fÇ^L(G) does not vanish, there exists some 0GC/ such that
Jf(g)Q(g)dg5¿0, and since (Tfa, a') =f(T„a, a')f(g)dg, Lemma 5 is proved.

Theorem 1. Let G be a semi-simple connected Lie group with a faithful
representation; for a given b and a given p, assume b is contained at most p
times in every finite-dimensional irreducible representation of G ; then b is con-
tained at most p times in every infinite-dimensional completely irreducible rep-
resentation of G.

Proof. Trivial by Lemmas 4 and 5.

Corollary. Let G = SL(2, C), K = SU(2); then every irreducible represen-
tation of K occurs at most once in every completely irreducible representation of G.

Proof. For every irreducible representation b of K, there exists a (complex
analytic) finite-dimensional irreducible representation 35 of G whose restric-
tion to K is b; in addition, every finite-dimensional irreducible representation
of G is a tensor product 35'®35" (this is true for every complex semi-simple
group) ; hence every such representation reduces on if to a tensor product
b'Ob"; but it is known (Clebsch-Gordan formula; see  [30, p. 115]) that

(9) We recall that, for semi-simple connected groups, the existence of a faithful representa-
tion is equivalent to that of sufficiently many finite-dimensional representations, and implies
that the center of G is finite; see, e.g., Harish-Chandra [18]; we also recall that every complex
semi-simple group has a faithful representation.
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b'®b" decomposes into inequivalenl representations of K, so that the assump-
tion of Theorem 1 is satisfied with p — l, q.e.d.

Of course, the above corollary can be verified by explicit constructions
(at least for unitary representations); see Harish-Chandra [17] and Gelfand-
Naimark [9].

Another corollary of Theorem 1 or Lemma 5 is as follows: let K be a com-
pact subgroup of a connected semi-simple Lie group G; let G0 be the set of g G G
such that Tg = l for every finite-dimensional representation T of G; let &—> Uk
be an irreducible representation of K; then U is contained in some finite-dimen-
sional irreducible representation of G if and only if Uk = 1 for every kÇzKf^Go-
In fact, if we consider G/Go instead of G, we may assume that Ga reduces to
the identity, i.e., that G has sufficiently many representations (which is
equivalent to the existence of a faithful representation); now if £—»£/* were
contained in no finite-dimensional representation of G, then by Lemma 5
we would have L(b)=0, where b denotes k—>Uk, hence we would have
Xb/xb = 0 for every fÇE.L(G), hence also Xbu'Xb = 0 for every aÇzM(G), hence
Xb = 0, which is impossible. The above result is classical for compact G (see
A. Weil's book) ; for semi-simple G it was proved by Harish-Chandra in
[18]. Of course, the semi-simplicity assumption is needed in order to ensure
that k-^>Uk is contained in some irreducible representation of G—which means
that our result extends to arbitrary G with obvious modifications.

Theorem 1 proves that a sufficiently detailed analysis of finite-dimen-
sional representations yields information about infinite-dimensional ones.
We want now to prove that even the study of finite-dimensional representa-
tions is useless.

Lemma 6. Let G be a semi-simple connected Lie group with a faithful repre-
sentation, and let K be a maximal compact subgroup of G; then G contains a con-
nected solvable subgroup N such that G = NK (i.e., every g£G has a unique
representation g = n-k).

Proof. Since G has a faithful representation, its center is finite (see, for
instance, [18]), so that Lemma 6 follows from Lemma 3.12 of Iwasawa's
paper [21].

Remark 3. Although a general proof of Lemma 6 requires the use of
"deep" theorems concerning Lie algebras, it is quite easy and elementary to
verify this lemma for most "classical" groups (unimodular, orthogonal, and
symplectic groups); see [12] for the complex case.

The following definition is obviously inspired by [25]:
Definition 5. Let N be a closed subgroup of G, and let n—>a(n) be a one-

dimensional representation of N; let §" be the vector space of continuous func-
tions 6(g) satisfying 8(ng) =a(n)8(g) ; define a representation g—^T" of G on
§aby
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(ii) Taae(g') = e(g'g);

then g-^T" is called the representation of G induced by a ; the set of these induced
representations is denoted by Qjf.

If G = N-K, then §" can be identified in a natural way with the Banach
space L(K) of continuous functions on K: we have only to associate with
every 0G£>a its restriction to K.

Lemma 7. Let N be a connected solvable subgroup of G; then every finite-
dimensional irreducible representation of G is contained (as a discrete sum-
mand) in some member of Q,n-

Proof. Let g—>U„ be a finite-dimensional irreducible representation of G
on !q; consider the contragredient representation g-^Ug' of G on the dual
space §'; since N is a connected solvable group, the representation n—»£/„' of
N contains a one-dimensional representation of N (Lie's theorem(10)) ; hence
there  exists  a  nonvanishing vector  a'(E$£>'  such   that we   have  relations

(12) U'na' = a(n)-l-a'

for every nÇ.N.
Now associate with every a<E.(Q the continuous function

(13) 6a(g) = (Uga, a');

by (12) it is clear that 9a(ng) =a(n)6a(g), so that a—>0a is a linear (and,
due to the irreducibility, one-to-one) mapping of § onto a finite-dimensional
subspace of the space ¡Q" of the induced representation g—>T"; since we have
obviously

(14) eUt*(g') = e.(g'g),

Lemma 7 is proved.

Theorem 2. Let G be a semi-simple connected Lie group with a faithful
representation and let K be a maximal compact subgroup of G; then every ir-
reducible representation b of K is contained at most dim (b) times in every com-
pletely irreducible representation of G.

Proof. Use the decomposition G = NK of Lemma 6; by Lemmas 5 and 7,
í2jv is a complete set of representations of G ; on the other hand, if we identify
every Sq01 with L(K), then the representation- k—*T% of K reduces to the
"regular" representation of K on L(K) (right translations on L(K)), hence, by
well known theorems, contains b exactly dim (b) times. Hence Theorem 2 fol-
lows from Lemma 4.

Theorem 2 was verified in special cases by Gelfand and Naimark [10; 11;
12], who used also induced representations (but since all representations
constructed by Gelfand and Naimark are just induced representations, it was

(10) See a direct proof in the appendix.
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practically trivial to verify the theorem in that case!) ; general results were
announced by Harish-Chandra in  [20 ] (see mainly Theorem 1 in the third
Harish-Chandra note), but our method is somewhat simpler.

3. The case of complex semi-simple groups.

Theorem 3. Let G be a semi-simple connected complex Lie group and let
K be a maximal compact subgroup of G ; let Y be a maximal abelian subgroup
of K; for a given b, denote by n(b) the smallest integer such that every irreducible
representation of V occurs at most n(b) times in b; then b occurs at most n(b)
times in every completely irreducible representation of G.

Proof. Using a modification of Iwasawa's theorem, it is easy to see that
we can find a solvable subgroup T of G such that Kf^T = T, and such that
every gdzG has at least one (and actually infinitely many!) representation
g=t-k. Consider then a member g—>T" of Or; then ¡Qa can be identified in a
natural way with the subspace of L(K) whose elements satisfy 6(yk)
= a(y)6(k); using simple arguments due to Gelfand and Naimark [ll; 12],
we conclude that

multiplicity of b in g —> T" = multiplicity of y—>a(y) in b;

hence b occurs at most n(b) times in every member of UT; but every complex
semi-simple Lie group has a faithful representation (see [18]), so that Í2r is a
complete set (Lemma 7), and Theorem 3 is proved.

Of course, Theorem 3 is inspired by results due to Gelfand and Naimark.
Observe that Theorem 3 leads to a new proof of the corollary of Theorem

1 : we have only to verify that every "weight" of an irreducible representation
of SU(2) has multiplicity one.

Theorem 3 implies the following result:

Theorem 4. Let K be a compact connected semi-simple Lie group, and let
b, b', b" be any three irreducible representations of K; let n(b) be the maximal
dimension of the various "weight" subspaces of b; then b is contained at most
«(b) times in b'®b".

Proof. Imbed K in the associated "algebraic group" G (see Chevalley
[3]), observe that b'<8)b" is the restriction of some finite-dimensional ir-
reducible representation of G, and apply Theorem 3 to G.

Remark 4. Let K be an arbitrary compact group, and let b, b', and b" be
any three irreducible representations of K; denote by Xb, Xb' and Xb" their
characters in the usual normalization (so that x&(e)=dim (b)). Then the
number of times b occurs in b'<£>b" is given by

N = f xt>(k)Xo,(k)xo"(k)dk;

since |xb(&)| ^Xb(e)=dim (b), we get
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N ^dim(b) f \x»'(k)xf(k)\dk;

but (orthogonality relations) we have

f |Xb<(¿)|2¿¿ =   f \xb"(k)\*dk= 1;

hence iV^dim (b), and we therefore obtain:

Referee's theorem. Let b, b', b" be any three irreducible representations
of an arbitrary compact group K; then b occurs at most dim (b) times in b'Ob".

4. Motion groups.

Theorem 5. Let G be a locally compact group, K a compact subgroup of G;
assume that G = N-K where N is an abelian subgroup of G; then every irre-
ducible representation b of K occurs at most dim (b) times in every completely
irreducible representation of G.

Proof. As in the proof of Theorem 2, we consider the set Ojv of representa-
tions of G induced by one-dimensional representations of N; clearly, Theo-
rem 5 will be proved if we establish that Ün is a complete set. Of course, we
cannot use Lemma 7, so that we have to give a direct proof.

Consider a given /G£(G), and assume that Tf = 0 for every one-dimen-
sional representation n—*a(n) of N; we must prove that/ = 0. In order to
make the situation clear, we shall not use now the assumption that N is
abelian; we shall use only the fact that G = N-K.

Denote by dn the left-invariant Haar measure on N; by the theory of
homogeneous spaces we may assume that

(15) jf(g)dg = fj f(nk)dndk

for every fEL(G). Now if f<EL(G) and 0G£a, we have

Tje(k) = J Tage(k)-f(g)dg = J e(kg)f(g)dg = j e(g)f(k^g)dg

=   f f 6(nk')f(k"nk')dndk' =  f f 8(k')a(n)f(k"nk')dndk'

where we set k" = k~l and where we use the definition of §a: 6(ng) =a(n)6(g).
If 77 = 0, we have therefore

(16) f f(k"nk')a(n)dn = 0
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for any k', k"£iK, since we must have T"0 =0 for every 0£L(K). Now denote
by Z the subgroup of N defined by the condition that a(z) = 1 for every one-
dimensional representation a of N; of course, Z is the topological commutator
group of N, and N/Z is an abelian group; denote by n—*h the natural mapping
of N onto N/Z. Since every one-dimensional representation of N reduces on
Z to the identity, it is clear that: (1) dn is invariant under n—*nz; (2) Z is a
unimodular group; hence we have an integration formula

| f(n)dn =   \  dñ \ f(nz)dz,

so that (16) implies

(17) f a(ñ)dñ f f(k'nzk")dz = 0;

but since ñ—>a(ñ) is an arbitrary character of the abelian group N/Z, this
means that

(18) f f(k'nzk")dz = 0.

Now we use the assumption that N is abelian; then Z — e, so that (18)
reduces to f(k'nk") =0, hence means that/ = 0, and Theorem 5 is proved.

Remark 5. If G = SL(n, C) and if we use (as in the proof of Theorem 3)
the subgroup T with KC\T = T, then it follows from Plancherel's formula on
G that the set of representations in Qt which are unitary [of course, with
respect to the scalar product (f',f")=ff'(k)f"(k)dk on L(G)] is complete.
We can now prove this in a direct way; in fact, g-^T" is unitary if and only if

f | Taß(k) \2dk = f | e(k) \Hk

for every 0£:L(K) satisfying 0(7&) =a(y)0(k); but the above relation means
J\0(kg)\ 2dk=f\0(k)\ 2dk where 6 is extended to G by the requirement that
6(tk) =a(t)6(k), hence is equivalent to the fact that

(19) JJ | e(kg) Yf(g)dkdg = JJ [ e(k) \*f(g)dkdg

for every f(E.L(G) ; but we may use the decomposition G — N-K of Lemma 6
and assume that T = N-T; (19) is then equivalent to

(20) f f f \ e(nk') Yf(k-lnk')dkdk'dn = f f \ W) \2f(g)dk'dg,
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i.e., by 6(nk') =a(n)6(k'), and since 6 is more or less arbitrary in L(K), to

(21) fff(knk') | a(n) \HUn =   f f(g)dg;
but from the integration formula ff(g)dg=fff(nk)dndk it is easy to deduce
that ff(g)dg=fff(kn)ß(n)dkdn, where we set d(n_1) =ß(n)dn; hence (21) im-
plies (k'=e)

(22) f ff(kn) | oi(n) \2dkdn =   \  J f(kn)ß(n)dkdn

and finally we see that g—>77 is unitary if and only if

(23) | a(n) | = ßll2(n),    where    d(n^) = ß(n)dn.

Of course, this is not new; see Gelfand and Naimark [8; 12].
Now to prove that the corresponding induced representations form a com-

plete set we use the same arguments as in the proof of Theorem 5, and instead
of (17) for every a we get (17) for every a. satisfying (23); but this already
implies (18), because the abelian group N/Z has a complete set of bounded
characters; hence if f£zL(G) satisfies Tf = 0 whenever g-^Tg is unitary, then
/satisfies (18), hence satisfies TJ = 0 for arbitrary a, so that/ = 0.

Remark 6. Of course, Theorem 5 is useful mainly in connection with
"motion groups," i.e., in the case where the abelian subgroup N is invariant.
The study of such groups is much easier than that of semi-simple groups, but
it is important to study both classes in order to get a theory of "spherical
functions" including Bessel functions as a special case.

2. Maximal ideals in group algebras
We recall that a left ideal m in an associative algebra A is said to be

regular if there exists some «Ga such that x«=x (mod m) for every xÇ^A;
similar definitions apply to right ideals and to two-sided ideals. We also
recall that every regular left ideal is contained in at least one maximal left
ideal, which is regular; in a complete normed algebra every regular maximal
ideal is closed.

Let G be a locally compact group, p(g) a semi-norm on G, AP(G) the com-
plete normed algebra of absolutely integrable functions with respect to the
measure o(g)dg, and consider a regular maximal left ideal m in ^4P(G) ; since
m is closed it is invariant under left translations, so that we can define in a
natural way a representation g—>Ta of G on the Banach space Ap(G)/nt;
the corresponding representation of AP(G) is obtained by associating with
/GAp(G) the operator which transforms the class (modulo m) of d^Ap(G) into
the class of fd (convolution product); hence this representation of AP(G) is
algebraically irreducible, so that the representation g—+Tg of G is completely
irreducible by Lemma 2; in addition, if we denote by » a right identity
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modulo m and by û the class of u in Ap(G)/m, then it is clear that /£m is
equivalent to 7/tt = 0.

Take conversely a completely irreducible representation g—*Tg of G on
a Banach space !q, and for a given vector u£§ denote by m the set of
f(EAp(G) such that Tfu=0 (of course, we choose p(g) = ||ro||); it is obvious
that m is a closed left ideal in AP(G) ; but it is not known whether tn is a
regular maximal left ideal in A„(G), except of course for abelian and for
compact groups, i.e., for groups whose completely irreducible representations
are finite-dimensional; and actually there are reasons to believe that, in
"general" groups, this conjecture is false. Our purpose in this section is to
prove that, from this point of view, semi-simple Lie groups and motion
groups behave in a relatively normal way. We shall, namely, prove the fol-
lowing theorem:

Theorem 6. Let g-^>Ta be a topologically irreducible representation of a
locally compact group G on a Banach space § ; for a given irreducible representa-
tion b of a given compact subgroup K of G, assume that dim §(b) < + oo ;
then for every nonvanishing vector u£§(b) the set m of f(E.Ap(G) such that
TfU = 0 is a regular maximal left ideal in A„(G).

5. A general lemma. To simplify the terminology, we shall say that an
associative algebra A over the complex field is a group algebra of G if A is
a two-sided module over the ring M(G) of measures with compact carrier
on G; hence for every /£i4 and every «£M(G) we may define af and fa,
and all usual associative rules are satisfied.

In such a group algebra A, we can of course define subalgebras A(b) by
the condition

Xb/=/xb=/-

Lemma 8. Let A be a group algebra of G and let a be a regular maximal left
ideal in A(b) ; let m be the set of f(EA such that

(24) Xbg/xb £ a for every g £ A;

then m is a regular maximal left ideal in A, a = mf>\j4(b), and we have fx»
=f (mod m) for every /£ A.

Proof. The fact that m is a left ideal is obvious; to see that m is regular,
take a right identity w£A(b) modulo a; for arbitrary /, g£A we have
Xt>g(fu—f)xb = hu — h where Ä = xbg/xb£A(b); hence » is a right identity
modulo m. To prove that a = mC\A(b) it is enough (by the maximality of a)
to prove that mi~\A(b) is a nontrivial ideal containing a; but w£m would
imply Xb/wxb£a for every/£^4, hence would imply /m£u for every/£j4(b),
hence would imply that a = A(b); hence m does not contain u, so that it re-
mains to prove that a Cm; but take any /£u; for every g£A we have
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Xbg/xb = XbgXb/Gasincex bgXbGA(b), and this concludes the proof(n) of a = m
AA(b). The fact that /xb—/Gttt for every / follows from Xbg(/xb—/)xb
= Xbg/xbXb —Xbg/xb = 0. Now we can prove that m is maximal. Let n be a left
¡deal containing m and assume n^A, so that «£n; by the maximality of a
we see that nOA(b)=a; but if /Gtt, we have /xb— /GmCn, hence /xbGn,
hence (since tt is a left ideal) Xbg/xbGn for every g, hence xbg/xbGnf^A^) =a;
hence/Gti implies /Gut, and Lemma 7 is entirely proved.

6. Proof of Theorem 6. With the notation of Theorem 6, consider the left
ideal a = mnAp(b) (Ap(b) is the set of/GAP(G) satisfying xb/ = fxb=f; of
course, AP(G) is a group algebra!) and consider the representation f—+T¡ of
Ap(b) on §(b), defined as in no. 1; a is given by Tfu=0; but since g—*Tg is
topologically irreducible, the same is true for the representation /—*•?/ of
Ap(b) (Lemma 3 suitably modified(12)), and since we assume dim §(b) < + «>
we see that/—>7/ is algebraically irreducible; hence a is a regular maximal
left ideal in Ap(b).

Now consider the regular maximal left ideal m' in AP(G) defined by ap-
plying to a the process of Lemma 8; /Girt' means that xbg/xbGa for every g;
but it is clear that, if we set h = xbgfxi>, then Thu = Thu = E(b)TiT}E(b)u
= E(b)TgT/u; hence/£m' means that the invariant subspace of § generated
by TfU is "orthogonal" to §(b) ; but since the given representation of G is
topologically irreducible this invariant subspace either vanishes (and then
fGtti) or is everywhere dense in § (which cannot arise, because this would
imply §(b) =0); hence m = m', and Theorem 6 follows from Lemma 8.

Remark 7. Of course Theorem 6 applies also to L(G) instead of AP(G),
and also to M(G)—more generally, Theorem 6 applies to every group algebra
A provided T¡ can be defined in a reasonable way for every/GA.

7. Consequences of Theorem 6. Let g—=>Tg be a topologically irreducible
representation of G on a Banach space §, and assume that §(b) is finite-
dimensional for every b. Set p(g) =||r„||, and for a given a(E&(b) let §0 be
the set of vectors T¡a, fÇiAp(G). Of course, §o is invariant under the given
representation of G, and the representation /—»7/ of AP(G) on ¡q0 is alge-
braically irreducible.

(") The fact that a = mAX(ii) can be proved in many cases without assuming that a is
maximal. In fact if /GMb), then we have xbgfxt, = X¡>gX¡>/ for every gG-A, so that the ideal
a' = mr*\A(b) is the set of /£A(b) such that gfGo for every gG-^(b); if, for instance, a is not
only a left ideal but a regular two-sided ideal in A(b) and if wG>*(b) is a unit modulo a, then
the above property implies «/Go and since «/—/Get, we see that in this case a' = a; on the other
hand assume that A = AP(G) for some semi-norm p and assume that the regular left ideal a is
closed in Ap(b); by the well known "smoothing method" it can be proved that, for every
/G A>(G),/is a strong limit of functions gf, gÇ.Ap(G) ; if /G-4p(b), we may of course assume that
gG A)W ! hence if /Go'i then / is a strong limit of functions belonging to a, hence belongs to a
since a is closed, so that relation a = m^.4p(b) still holds in this case.

(12) Proof. Let aGí>(b); by the topological irreducibility of /—>7/ we can approximate a
by vectors T/u,f(^_Ap(G) ; since E(b)a = a, we can therefore approximate a by vectors E(b) T/u,
i.e., by vectors E(b)TfE(b)u since E(b)u = u, q.e.d.
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The subspace §o depends neither on a£¿p(b) nor on b. In fact for every
b', E(b')í>o is everywhere dense in §(b') since §0 is everywhere dense in
§; since £>(b') is finite-dimensional, this implies E(b')¡Qo = ¡Q(b'), and since
£>o is obviously invariant under every E(b') we see that §(b')C£>o for every
b'; hence if instead of b and a£^>(b) we consider b' and a'£^>(b'). the new
subspace §0' will be contained in §0, hence will be identical with ^)0 by the
algebraical irreducibility of /—*T¡ on §0-

We thus see that there exists a natural way of restricting the given repre-
sentation to a representation on an everywhere dense subspace §o, in order
to get an algebraically irreducible representation of G (i.e., of AP(G)). Since
£>o is isomorphic with the factor space of AP(G) modulo a closed ideal, we can
consider ¿p0 as a Banach space; in a precise way, to get a norm on §0 such
that §o becomes a complete normed vector space we choose a non vanishing
vector a belonging to some §(b), and for every x£§o we define ||[x|||
= inf ||/||p, where the inf runs over the set of functions f(^Ap(G) such that
x = 7/a. Of course, the new norm depends on a; but by a classical theorem
due to Banach or by direct computation it is obvious that the norms defined
by two vectors a £|)(b) and a'£§(b') are equivalent.

The above results show that, on a semi-simple Lie group with a faithful
representation, every completely irreducible representation contains a well-
defined representation which, extended to the corresponding algebra AP(G),
is algebraically irreducible.

Concerning the structure of the operators Tf, it is important to note the
following result:

Theorem 7. Assume that dim §(b) <+ oo for every b; then every operator
Tf, fÇzAp(G), is completely continuous.

Proof. If xb/=/, we have E(b)Tf = Tf, and since E(b) has a finite rank the
theorem is obvious in that case. Now take an arbitrary f(E.Ap(G); if we de-
note by Lk the left translation /(g) —*/(&_1g) on AP(G) and if we decompose
that representation of K it is obvious that the corresponding projection
operators E(b) are given by /—Oö/; using Péter-Weyl's theorem we thus see
that / is a strong limit of linear combinations of functions xbf; since we have
17/H ^||/||p, this proves that 7/ is a uniform limit of operators of finite rank,

q.e.d.
For representations on Hubert spaces, more precise results were an-

nounced by Harish-Chandra (see third note [20]).
8. The kernel of a representation. Let g—>Tg be a topologically irreducible

representation, and assume that every ¿p(b) is finite-dimensional. The set of
functions f(E.Ap(G) such that 7/ = 0 is of course a closed two-sided ideal;
one might think that it is a maximal two-sided ideal—but this is not true;
for if this were true, then the algebra of operators Tf would be simple, and,
since it contains nonvanishing operators of finite rank (namely the 7/ where
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Xb/=/ for some b), this would prove that every Tf is of finite rank, which is
obviously false.

However, one can prove that the ideal a defined by 7/ = 0 is maximal in
the set of closed two-sided ideals in AP(G). In fact let b be a closed two-sided
ideal containing a, and assume that b^Ap(G). For every b we have a.C\Ap(b)
C b(~\Ap(b) ; but <xC\Ap(b) is the kernel of the finite-dimensional irreducible
representation/—► 7/ of Ap(b) on §(b), hence is a regular maximal two-sided
ideal in Ap(b) so that we have either aPi-A^b) = bC\Ap(b) or bH-A^b) =^4p(b).
Now assume that b contains every Ap(b) ; then we have /xbgXb^£ b for arbi-
trary/, g, h and arbitrary b; but if we assume that the measure g(x)dx con-
verges to e, then /xbgXb^ converges to fxih, and since b is closed, we see that
/Xb^£b; if now h(x)dx converges to e, then by the same argument we get
/Xb£b for arbitrary/£.AP(G) and arbitrary b; but by Péter-Weyl's theorem/
can be approximated in A„(G) by linear combinations of functions fxb, and
we finally see that our assumption implies b=Ap(G).

If b^Ap(G), we have therefore af~\Ap(b) = bC\Ap(b)^Ap(b) for at least
one b. Now take an arbitrary /£b; since b is a two-sided ideal we have

XbgfhxiebnAp(b) =aHAp(b)
for arbitrary g, h(E.Ap(G), which means that

E(b)TgTsThE(b) = 0

for arbitrary g, h^Ap(G); taking a££>(b) and setting b = TfTha we see that
E(b)Tgb = 0 for every g, so that by the topological irreducibility of the given
representation and the fact that E(b)y^0 [which follows from ar\Ap(b)
^^„(b)] we see that b=0; hence Tf maps all vectors 7\a, h(E.Ap(G), a
£§(b), on 0, which proves that 77 = 0. Hence /£b implies /£u, and this
concludes the proof of our assertion.

3. Functional properties of spherical functions
Throughout this section, we assume that G is a locally compact group with

a compact subgroup K such that, for every b, every completely irreducible repre-
sentation of L(b) is finite-dimensional. Hence, for every completely irreducible
representation g—*Tg of G on a Banach space §, the subspaces §(b) are finite-
dimensional, so that we may consider the functions

(25) 4>o(g) = Tr [E(b)Tg]

where Tr is the usual trace, defined at least for operators of finite rank. The
function (25) will be called the spherical function of type b of the given repre-
sentation, and if b occurs p times in that representation, then we shall say
that </>b has height p. Our purpose is to study the connections between spherical
functions and representations of subalgebras of L(G), in order to generalize
the well known theorem to the effect that, if G is an abelian group, then
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every one-dimensional representation of L(G) is given by f-^Jf(g)x(g)dg
where X is a character of G. Observe that abelian groups are included in the
class of groups we are going to study: take G abelian and K reduced to the
identity. Also our theory will include that of characters of compact groups:
take G compact and K reduced to the identity (one could also take G = K).

9. Elementary properties of spherical functions. A first obvious property
of spherical functions is their invariance under K, i.e.,

(26) toikgtr1) = <h(g);

the proof of this can be left to the reader. Another property is

(27) xb</>b = «fox* = <ft> ;

in fact take a measure a^M(G) and denote in a general way by a' the
transform of a under g—>g~l; then we have

«'*>(*) = JMg'g)dcx(g') = J*Tr [E(b)Tg.Tg]da(g'),

i.e.,

(28) a'Ug) = Tr [E(b)TaTg];

taking a = Xb and observing that a' =xb we get the first half of (27) ; the second
half follows from (26) and the first.

A third important property is

(29) j Mgh')xt(k)dk = j 4*(g'kg)xi(k)dk;

in fact we have

J<t>i(gkg')xt>(k)dk = J*Tr [E(b)TgTkTg,]ù(k)dk

= Tr [E(b)TgE(b)Tg,]

and since the last expression is obviously symmetric with respect to g and g'
we get (29).

Another property similar to (29) is that

(31) j 4>i(kgk-Y)dk m j ^(kg'k-^dk

holds for every g, g'E:G. In fact, if we set T^ = fTkTgT^1 ■ dk, then it is clear
that the left-hand side of (31) is identical to Tr [E(b)T^T0']; but it is obvious
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that 75(b) and Tg commute with every Tk so that we can write

Tr [£(b)r°7VJ = Tr [TkE(b)T°aT g,T^} = Tr [EQ>)T°9TkTg.T?]

= J*Tr [E(i>)T0<lTkTtfTT1]ih = Tr [E(b)T0gT°,],

and since every Tg commutes with 7i(b), we see that the left-hand side of
(31) is symmetric with respect to g and g'.

It is important to observe that (31) is equivalent to the fact that

(33) fcpo = 4>of

for every /£L(G) invariant under g—>&g&-1; the proof can be left to the
reader. Of course these /£L(G) invariant under g—^kgk-1 form a subalgebra
L°(G) of L(G), and it is easy to see that (31) is verified not only by the
spherical functions (which in general do not belong to L°(G), because their
carrier is not compact) but also by the functions belonging to the center of
L°(G). Of course when K reduces to the identity, (29) and (31) reduce to
^b(gg') = 4>b(g'g), an obvious property of characters of compact groups.

So far we have not used the fact that the given representation g—+Tg is ir-
reducible, so that functional relations such as (29) do not characterize
spherical functions. But this assumption will be essential in the next sections.

10. Spherical functions of type b and characters of L°(b). In what follows,
we shall denote by L°(G) the set of functions/£L(G) which are invariant
under g—>kgk~x; of course it is a subalgebra of L(G), and the operator

(34) f(g)-*f°(g) = ff(kgk-i)dk

is a projection of L(G) onto L°(G). We shall put

(35) L°(b) n L(b) H L°(G) ;

this is also a subalgebra of L(G), and f—*f° maps L(b) onto L°(b). Observe
that for/£L°(G) relation xb/=/ implies fxb=f (for/ commutes with every
measure ek, hence with xb), so that f—>xbfls a projection of L°(G) onto L°(b).

Of course, for every reasonable group algebra A, subalgebras A° and A°(b)
can be defined in a similar way; we shall use them mainly in the case where
A = M(G) and in the case where A — AP(G) for some semi-norm p. If a is a
measure, then a° can be defined by the following "weak" integral:

'-/■
(36) a° =   I  ekatk-l-dk

Observe that

(37) (a°ß)° = (a/3°)° = a°ßP
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for every a, ß^M(G).
We shall use the following general notation : given a continuous function 0

on G and a measure <x(ElM(G), we put

(38) </>(<*) = a(4>) = j 4>(g)da(g) ;

if da(g) =6(g)dg for some 8(EL(G), then we write <f>(8) or d(<p). On the other
hand, a function </>(g) on G will be said to be quasi-bounded if there exists some
semi-norm p(g) such that

sup   | 4>(g) | /p(g) < + » ;
see

it is obvious that every spherical function is quasi-bounded.

Theorem 8. Let 4> be a quasi-bounded continuous function on G, satisfying
4>(kgk_1) =<p(g) and Xi4>=4>- Then <j> is a spherical function of type b and
height p if and only if there exists a p-dimensional irreducible representation
f^Uf of L°(b) such that

(39) <t>(f)= dim (b)-Tr(U,)

for every f£.L°(b).

This theorem establishes a strong connection between spherical func-
tions of type b and "characters" of the algebra L°(b). We shall prove it in
several steps.

11. Proof of Theorem 8. Necessity of the condition. Consider a spherical
function 4>i(g) =Tr [.Eib)!^] of type b and height p, and consider the repre-
sentation /—>7/ of L(b) on ¡Q(b) ; we know that this representation is irre-
ducible and finite-dimensional.

Lemma 9. The set of operators Tf, /G£°(b), is the commutator of the repre-
sentation k^>Tk of K on ¡Q(b).

It is obvious that f=f° implies TfTk = TkTf. Conversely let A be an
operator on ¡£>(b), and assume A commutes with every 7*; since the repre-
sentation /—>7/ of L(b) is irreducible and finite-dimensional, there exists
(Burnside's theorem) some/G-L(b) such that A = T¡; but

=   f TtATt'-dk =  f TkTfTkl-dk = Tr

by obvious computations, and this proves Lemma 9.
Now, since the representation k—>Tk of K on §(b) decomposes into p

equivalent irreducible representations, it is clear that its commutator is iso-
morphic with the algebra Mv of all pXp matrices; hence, by Lemma 9, we
can construct an isomorphism   T/—*Uf of the algebra of operators  Tf, f
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G£°(b), onto Mp; it is clear that f—*U/ is a ^-dimensional irreducible repre-
sentation of L°(b). On the other hand, it is known that the trace on Mp is
characterized up to a constant factor by the fact that Tr (AB) =Tr (BA);
hence we have Tr (T/)=c-Tr (Uf), and actually c = dim (b) as shown by
taking ff = \; hence

*>(/) = Ui(e) = Tr [£(b)7>] = Tr (7>) = dim (b)-Tr (Uf)
and this establishes the necessity of condition (39).

12. A lemma concerning L(b). To prove the sufficiency of (39) we shall
need a result which asserts that L(b) can be deduced in a very simple way
from L°(b). Actually we shall need it for the similar subalgebras Ap(b) and
A°(b) of AP(G), p an arbitrary semi-norm.

First we prove:

Lemma 10. Let 6 be a function or measure on G, satisfying Xbö=öxb=ö/or
some b, and satisfying (ekdch)0 =0 whenever k, h^K; then 0=0.

Proof. Denote by 33 the vector space spanned by the measures adß where
a, ß are arbitrary measures on K; by the first assumption about d we may
restrict ourselves to measures a and ß satisfying axi=a and Xiß=ß', but the
set of such measures a is a finite-dimensional subspace in M(K) ; therefore,
33 is finite-dimensional. Now define a linear representation (k, h)—*Tk,h of
KXK on 33 by the formula Tk,h<p=ek<peh-i for every <£G33; since Xb«=aXb f°r
every measure a on K (xb is a central function on K), it is clear that Xb<£xb =<P
for every <j>G 33; using the identity x¡>=f€k'Xt>(k)dk (weak integral of measures
on K), we see that

Tk,h-Xb(k)x.b(h)dkdh = 1;

hence, if 33 does not vanish, then the representation k^Tk.k of K on 33 has the
character Xb(&)xb(&); using a well known form of Schur's lemma (see, for
instance, [29, p. 64]) we see that there exists a nonvanishing 0G33 such that
Tk,k4>=<P, i.e., such that <j>° =<p; but from the fact that (ek9eh)° =0 it follows
more generally that (adß)° = 0 for arbitrary measures a, ß on K, hence that
<£G33 implies <t>a=0, which contradicts the assumption that 33^0.

We can now prove our main lemma:

Lemma 11. For every semi-norm p, the linear combinations of translates
under K of functions belonging to A°(d) are everywhere dense in Ap(b).

Proof. Since tkxts = X»^k, it is obvious that Ap(b) is invariant under trans-
lations by elements of K, so that every function ekf, k(EK,/GA°(b), belongs
to Ap(b). To prove that these functions span the whole of Ap(b) we shall use
Hahn-Banach's theorem, so that we have only to prove that if a continuous
linear form/—*6(f) on Ap(b) satisfies 6(ekf) =0 whenever &G-K,/GA°(b), then

//
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6 vanishes. But f—*0(f) can be extended to a continuous linear form on the
whole of AP(G)—because -<4P(b) is obviously a closed subspace of AP(G)—so
that there exists a measurable function 6(g) on G such that 6(f) =Jf(g)6(g)dg
for every/£Ap(b); of course we have a relation \6(g)\ ^M-p(g). Setting 6'
~Xb6xb it is immediately seen that 6(f) =6'(f) for every/£.Ap(b), so that we
may assume that the function 6(g) satisfies Xb6xb—6; then we have

(40) ô(xb/xb) = e(f)
for every/£L(G); now if/£L(G) then (xb/)°=Xb/° belongs to A°p(b) so that
by our assumption about the linear form /—>#(/) we get 6(ekf°) =0 for every
fEiL(G), hence also d(efth) =0 since/0 commutes with ek; setting di = (ekdell)°
we thus see that 6\(f) =0 for every/£L(G), so that 0i = O; applying Lemma
11 we get 0 = 0 as asserted.

Remark 8. We implicitly used the identity

(41) off) = e°(f),
which can be easily proved.

13. Proof of Theorem 8. Sufficiency of the conditions. To prove the con-
ditions stated in Theorem 8 are sufficient, we shall need some more lemmas.

Lemma 12. Let <p be a continuous function satisfying <j>=4>°, Xb4>=4>'< then
the following properties are equivalent:

(a):<A(/g)=<A(g/)/or every f, g£L°(b);
(b) : f'4> =4>f for every/£L°(b).
Proof. Since f'(x)=f(x-1), it is clear that (p(f) =f'<j>(e) =<j>f'(e); hence

(a) is equivalent to g'f'4>(e) =f'g'<p(e) =#'g'(e), i.e., to f'(j>(g) =<A/'(g) for every
/, g£L°(b); but since /'</> and <pf are invariant under both 6—*6° and 6—*xi>6,
it is clear that (a) is equivalent to f'4>(g) =<¡>f'(g) for arbitrary/£L°(b) and
gÇzL(G), hence is equivalent to (b).

Lemma 13. Assume <j> satisfies the assumptions of Theorem 8 and that
10(g) ¡ ^M-p(g) for some semi-norm p; then we havef'<p =<pf for every f(EAp(b),
and the set p o//£j4p(b) such that f'4> = 0 is a regular two-sided ideal in Ap(b);
furthermore, f^.pr\L°(b) if and only if Uf = Q.

Proof. We have <p(fg) =<p(gf) for every/, g£L°(b), so that by Lemma 12
we get f'<p =4>f for every/£L°(b) ; but since 0=0°, we have ek(j>=<t>ek and
therefore the relation

(42) f* = 4>f
is still true i(f = ekh with /z£L°(b); using Lemma 11 and the fact that L°(b)
is everywhere dense in A°(b) [this is due to the fact that L(G) is everywhere
dense in AP(G) and that/—>xb/° is a continuous projection of AP(G) onto A°(b) ]
we conclude that (42) holds for every/£Ap(b). This of course proves that p
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is a two-sided ideal in Ap(b). Now if fE:Lo(b),f'(p=0 is equivalent to <p(fg) =0
for every g G L°(b), or to Tr (U¡UQ) =0, and since the set of U„ is a full matrix
algebra, to Uf = 0. Taking wG£°(b) such that £/u = l we see in a similar
way that u'<f>=<pu' = <p, which implies that the ideal p is regular.

We are now in a position to conclude the proof of Theorem 8. Since p is
regular (and of course differs from Ap(b) if 05^0), we can find a regular
maximal left ideal a in Ap(b) containing p. Consider the corresponding ideal
m in AP(G), given by Lemma 8, and consider the completely irreducible rep-
resentation g^T0 of G on the Banach space ^> = Ap(G)/m. If we denote by
/—>f the natural mapping of AP(G) onto §, then the operators Ta, aÇzM(G),
are obviously given by

(43) TJ = f   where   /' = af;

in particular, the projection operator E(b) on § is given by E(b)f = f with
/'=Xb/; but we know (Lemma 8) that fxa—f (mod m) for every/; hence
£(b)/ = /'with/' = xb/Xb, so that/—>fmaps Ap(b) onto £>(b). Sincect = mnAp(b),
this obviously implies that the representation /—>7/ of Ap(b) on ¡Q(b) is equiva-
lent to the natural representation f—*Vf of Ap(b) on the factor space Ap(b)/a,
which of course is finite-dimensional. If we denote by </>¡> the spherical func-
tion of type b of the representation g-^Tg on §, we have therefore

(44) <M/) = Tr (Vf)
for every/GAp(b).

Since p is a two-sided ideal in a, it is clear that/Gp implies Vf = 0; hence
by the last assertion in Lemma 13 we see that, if /£L°(b), then Z7/ = 0 im-
plies Vf = 0.

Now let q be the height of </>¡>; by the direct part of the proof (no. 11) we
know that there exists a g-dimensional irreducible representation /—»W/ of
L°(b) such that <j>b(f) =dim (b)-Tr (W,) for everyf<EL°(b), and furthermore
that Wf = 0 is equivalent to T/ = 0, or to Vf = 0; hence Z7/ = 0 implies Wf = 0,
and since we are dealing with finite-dimensional irreducible representations
of an associative algebra, we see that these two representations are equivalent.
Hence q=p and

4>(f) - dim (b)-Tr (£7,) = dim (b)-Tr (IF,) = <t>b(f),
which proves that <p=<p¡>.

Corollary of Theorem 8. The following properties are equivalent:
(a): L°(b) is commutative;
(b) : b occurs at most once in every completely irreducible representation of G.

In fact, if (b) holds, then L°(b) has sufficiently many owe-dimensional
representations; conversely, if L°(b) is commutative, then every finite-
dimensional irreducible representation of L°(b) is one-dimensional, so that
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every spherical function of type b is of height one.
It is easy to see that both properties (a) and (b) are equivalent to
(c) : L°(b) is the center of L(b).
First of all, it is clear that (c) implies (a). Now assume that L°(b) is

commutative; then (b) holds, so that, for every completely irreducible repre-
sentation g—^Tg of G on §, the representation k—>Tk of K on §(b) is irre-
ducible; hence Tf reduces to a scalar for every /£L°(b), so that we have
Thf-fh = 0 for every/£L°(b) and every Ä£L(b); hence L°(b) is contained in
the center of L(b). Furthermore, if/ belongs to the center of L(b), then it is
clear that 7/ is a scalar in every completely irreducible representation of G,
hence that T¡ =jTkT/Tt~'1 ■ dk = 7>, which proves that/=/°.

See a special case of the above result in [6].
14. Equivalence of representations. Let g—-> Tg be a completely irreducible

representation of G on § and set p(g) =||7\|| ; we shall say that the given
representation is algebraically irreducible if the corresponding representation
of AP(G) is. As shown in §2 every completely irreducible representation con-
tains an algebraically irreducible representation.

The following result is a generalization of a theorem announced by Harish-
Chandra in his first note [20]:

Theorem 9. Let g—>Te and g-^>Tg be two algebraically irreducible represen-
tations of G such that ||r„|| =[|r„'|| for every gG.G; assume that, for some b,
their spherical functions of type b are proportional and do not vanish; then these
two representations are topologically equivalent.

Proof. By our assumption we have Tr (Tf) = c-Tr (Tf) for every/£L(b) ;
hence the finite-dimensional irreducible representations /—>7/ and f—>Tj of
L(b) are equivalent, so that we can find nonvanishing vectors a£§(b) and
a'£^'(b) such that f/a = 0 is equivalent to 7/'a'=0 (of course, |j and §'
denote the representation spaces). Hence the maximal ideals in: 7/a=0,
and rrt': Tf a' =0 in AP(G), where p(g) =||r„|| = |[7Y |[, are identical (see
Lemma 8), so that each representation is equivalent to the natural represen-
tation of G on Ap(G)/m—and is actually topologically equivalent to that
representation, as follows from Banach's theorem about homomorphisms.

Theorem 9 does not apply to representations which are completely ir-
reducible only; but if two such representations g-^>T„ and g—>7Y on § and §'
have a common spherical function, and satisfy || 7^11 =||7y || for every g,
then the given representations become equivalent if we replace § and §' by
suitably choosen invariant subspaces; this follows in an obvious way from
Theorem 9 and the results of §2, no. 7.

The case of unitary representations is much simpler; if two topologically
irreducible unitary representations have a common spherical function, then
they are unitarily equivalent. This was announced by Harish-Chandra in [20]
and can be proved in a simple way. In fact, consider on L(G) the involution
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/—*/* where/*(g) =/(g_1); clearly L(b) and L°(b) are invariant under this
involution, and if we consider the representation /—>T; of L(b) on the (finite-
dimensional) Hubert space §(b), then we obviously have

fr = (?/)*,
so that we get a unitary representation of L(b) on £>(b) in the sense of the
general theory of unitary representations of algebras with an involution (see,
for instance, [15] and [26]); now it is known and obvious that if two finite-
dimensional unitary irreducible representations of such an algebra are alge-
braically equivalent, then they are unitarily equivalent; hence if we use the
notation in the proof of Theorem 9 we see that from the assumption of
Theorem 9 follows the existence of nonvanishing vectors a£§(b) and
a'G£'(b) such that

(Tfa, a) = (f'fa, a)

for every /£ L(b) ; if we consider the positive-definite functions

6(g) = (Tga, a),        d'(g) = (T'Ba', a),

we have therefore 6(f) =d'(f) for every /GL(b) ; but it is obvious that xb#
= $Xb=0 and the same is true for 6', so that 6 and 8' are identical; since it is
known that if two irreducible unitary representations of a group have a com-
mon "coefficient," then they are unitarily equivalent (see [13]), our assertion
is proved.

Remark 9. Of course, the proof of Theorem 9 requires only the trivial
part of Theorem 8.

15. Functional equation of spherical functions of height one.

Theorem 10. Let 4> be a quasi-bounded continuous function on G; then <j> is
proportional to a spherical function of height one if and only if it satisfies

(45) <Ke) f 4>(kgk~Y)dk = c¡>(g)4>(g')

for arbitrary g, g'GG.

In fact, let <pt> be a spherical function of type b and height one; setting
<p=4>b/dim (b) it follows from Theorem 8 that/—*£(/) is a homomorphism of
L°(b) onto the complex field, i.e.,

(46) 4>(fg) = 4>(f)<Kg)
for /, gG-£-0(b); now take arbitrary /, gG.L(G) and compute 4>(f°g); by
<f>=<p° and Xb0 =</> we have

<K/°g) = 4>((i°g)°) = 4>(f°g°) = <Kxb/Yxb)
= 4>(xbf°xbg°) = mf°)4>(xbg°) = *C0*(g)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1952] A THEORY OF SPHERICAL FUNCTIONS. I 525

[we use the fact that xb/°££°(b)]. Now since every measure with compact
carrier can be approximated in an obvious sense by measures f(x)dx, we see
that (47) more generally implies

(48) <K«°/3) = 0(«)0(j8)
for every two a, j3£M(G) ; taking a=eg, ß=eg' we find at once (45).

Conversely, (45) means that (48) holds if a=eg, ß=eg>; since every
a(E.M(G) can be approximated by linear combinations of such measures, (45)
implies (48) for arbitrary a, /3£M'(G), hence implies that, for every b, f—*t>(f)
is the trace of a one- or null-dimensional representation of L°(b); to prove
that <p is proportional to a spherical function of type b (for some b) it remains
to prove that Xb<P = 4> for some b ; but take b such that Xb<£ ^0 ; since Xb£ M°(G),
we have by (48)

(49) <Mxba) = <j>(xb)<l>(a)

for every aÇ^M(G), i.e., Xb</>=$(xb)<£; since XbXb = Xb, this implies (f>(xb)2
=</>(xb), hence = 1, and Theorem 10 is entirely proved.

Remark 10. A special case of Theorem 10 has been announced by Gelfand
in [6]; Gelfand studies only spherical functions associated with the one-
dimensional representation k—A of K and unitary representations of G. By
Theorem 2, Theorem 10 applies (if G is a semi-simple group with a faithful
representation) to every 4>0 if b is an arbitrary one-dimensional representation
of K; for instance, Theorem 10 applies to all spherical functions on the hyper-
bolic group (group of all real unimodular 2 X2 matrices) because in this case
K is abelian. On the other hand, by the corollary of Theorem 1, Theorem 10
applies also to all spherical functions on the Lorentz group. In SL(n, C)
with m>2, not all spherical functions are of height one; however it follows
from Gelfand-Naimark's results that every irreducible component of the regular
representation of G has a spherical function of height one. In fact if we take the
decomposition G = KT, K(~\T = T, which was used in the proof of Theorem
3, and if g—>7^ is the representation induced by a one-dimensional represen-
tation t—*a(t) of T, then we have

multiplicity of b in g —> Tg = multiplicity of y —> <x(y) in b;

hence if b is the representation of K whose "highest" weight is y—*a(y), we
see that b occurs exactly once in g—»77, which proves our assertion.

Added in proof. The following result has been announced by Naimark
(Doklady vol. 94 (1952) pp. 883-886) : let g^>Tg be any irreducible unitary
representation of SL(n, C); then some irreducible representation of SU(n) is
contained exactly once in g-^Tg.

Remark 11. Consider a semi-norm p; it is clear that the Banach space
dual to AP(G) can be identified with the space LP(G) of measurable functions
6(g) on G satisfying sup,g e 16(g) | /p(g) < + °o, the scalar product of /£ AP(G)
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and 8ÇiLp(G) being given by Jf(g)8(g)dg=8(f). Now for a given b and a
given p denote by GP(b; p) the set of spherical functions of type b and height
p which belong to Lp (G) ; it is easy to deduce from the proof of Theorem 8
that these spherical functions are associated with representations of G on
factor spaces Ap(G)/m, hence can be obtained from representations g-^Tg
satisfying \\Tg\\ ^p(g); since

|0(g)|=|Tr[E(b)ri,]|adim§(b)||r6||,
we see that every 0GGP(b; p) satisfies

| 4>(g) | ^ #-dim(b)-p(g),

so that GP(b; p) is a bounded set in L("G) ; hence the weak closure of GP(b; p)
in LP(G) is weakly compact.

Now consider GP(b; 1); for every <p(EGP(b; 1),/—*£(/) is, up to a constant
factor, a homomorphism of L°(G) into the complex field; hence the same is
true for every weak limit of functions in GP(b; 1) so that such a weak limit
either vanishes or is proportional to some 0GGP(b; 1); actually it is prac-
tically obvious that the proportionality factor is 1, and we see that the weak
closure of GP(b; 1) is obtained by adjoining to GP(b; 1) the function 0.
Since this weak closure is weakly compact, we conclude that GP(b; 1) is
locally compact with respect to the weak topology on L"(G). By using the fact
that/0 is proportional to <p for every f^L°(G) and every (t>ÇLGP(b; 1) it can
be shown that the weak topology actually reduces on GP(b; 1) to the com-
pact-open topology (uniform convergence on every compact set) ; the proof is
identical, up to trivial modifications, with that of the similar property of the
character group of an abelian group.

It is very probable that similar results hold for arbitrary GP(b; p). The
case of spherical functions corresponding to unitary representations of G will
be studied in our second paper.

16. Integral formulas for spherical functions. From the point of view of
practical applications it would be extraordinarily important to get integral
representations of spherical functions, generalizing the well known formulas
for Bessel's and Legendre's functions. Important results were announced by
Harish-Chandra, and so far we are unable to prove (and a fortiori to im-
prove!) these results by using "functional" methods.

Assume that G has a closed subgroup T such that every g has at least one
representation g = k-t, and set KC\T = T. For a given one-dimensional repre-
sentation t—>a(t) of T, consider the induced representation

g->T;
of G; we want to compute the functions

(50) *fa) = Tr [£(b)T-;j
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which are spherical functions if g—*T" is irreducible(1S).
To do this, we recall that the representation space §a of this induced

representation is the set of continuous functions 6(g) such that 6(tg) =a(t)6(g),
and that Tg6(g') =6(g'g). Of course §" can be identified with the set of func-
tions 0£L(i?) such that 6(yk) =a(y)8(k). Now to compute <p" we shall com-
pute for every/£L(G) the number 0f(f) =/0?(g)/(g)¿g = Tr [E(b)Tf]. First
we have

(51) Tje(k) = J e(kg)f(g)dg = J e(g)f(k^g)dg;

let k—*k be the natural mapping of K onto K/T ; by the theory of homogeneous
spaces we have an integration formula

f f(i)dg = f dh f f(th)dt
where dt is a left-invariant measure on T; hence (51) yields

(52) T/8(k) =   f dh f e(th)f(k-Hh)dt =   f dh f' 8(h)f(k-lth)a(t)dt;

but since 6(yh) =a(y)6(h), it is immediately seen that, for every k, the func-
tion j6(h)f(k~Hh)a(t)dt is invariant under h^>yh, so that we may write

(53) Tjd(k) =   f f 6(h)f(k-Hh)a(t)dtdh;

now, to compute E(b)T? we observe that E(b) is given by 6(k)—*Jd(kl)xb(l)dl,
so that we get by standard computations

(54) E(b)Tf8(k) =  f f f 6(h)f(lk-Hh)a(t)xb(l)dldhdl;

in other words, E(b)T" is an integral operator on §a, defined by the kernel

(55) Kf(k, h) = f f f(lk-Hh)a(t)xb(l)dtdl.

(I3) Observe that the irreducibility of g-^Tf is not a necessary condition for the function
4>£ to be spherical (this is due to the fact that the converse of Lemma 3 in §1 is not true) ; for
instance, if b occurs exactly once in g—*T?, then <j>% is a spherical function (for in this case the
operators T?, /££>°(b), commute with the Tk on f)"(b), hence reduce to scalar operators, so
that <t% satisfies the functional equation of spherical functions of type b and height one). In the
general case, it is very probable that every <j% is a finite sum of spherical functions of type b (this
is true at least when g—>7^ is unitary with respect to the scalar product fe(k)$'(k)dk on L(K),
for in this case the representation f—*Tf of L(b) on ^"(b) is unitary, hence is completely de-
composable into a finite sum of irreducible representations).
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To compute the trace of this operator on ¡Q", we first observe that Tf can
be defined, by using the kernel (55), on the whole of L(K); now if we con-
sider on L(K) the operator

P(a):0(£)-> j  6(yk)ä(y)dy,

it is obvious that P(ct) is a projection of L(K) onto §"; on the other hand
we have by (55) the relations

Kf(yk, h) = a(y)-Kj(k, h);        Kf (k, yh) = a(y)-^Kj(k, h)

so that P(a)Tf*=TfP(a)=Tf; hence the trace of T, on £" is identical with
the trace of T" on L(K), so that

fa(j) = f Kf(h, h)dh = f f f f(kh-Hh)a(t)xb(k)dtdkdh
(56)

=   j  i \ f(kth)a(t)xb(kh)dtdkdh.

Since dt is invariant under t—Hy, (56) yields

<fo(f) =   f f \   \ f(ktyh)a(t)a(y)xb(hk)dtdkdhdy
(57)

=   í Í !  I f(kth)a(.i)ä(.y)xb(yhk)dtdkdhdy;

now define a function Xb(g) °n G by the requirement that

(58) Xb(th) = a(t) J  a(y)xb(yh)dy;

it is immediately seen that the second member of (58) depends only on th,
although the representation g=th may be not unique; then (57) leads to

(59) 0b"(/) =  f f f f(kth)xb(thk)dtdkdh,

hence, by using the theory of homogeneous spaces, to

(60) <h(f) = f f f(kg)xZ(gk)dgdk = ff(g)dg J* xb(kgk^)dk;
since 4%(f) =J(pî(g)f(g)dg, we conclude that

(61) fc(«) = j xl(kgk-l)dk
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where Xb is given by (58).
It is probable that in most cases all spherical functions are given by

formulas similar to (61) ; in semi-simple groups, this was announced by
Harish-Chandra for the spherical functions associated with one-dimensional
representations of K; in case G = SL(2, C), K = SU(2) the fact that all
spherical functions associated with the representation k—>1 of K are given
by (61) was also proved in a very interesting way- by Naimark in [26];
Naimark's proof essentially uses the functional equation of these spherical
functions.

When b is the identity representation k—»1 of K, formulas (58) and (61)
take on a simpler form; in fact, if we use the decomposition G = N-K of G
with T = TN, then (58) proves that we must assume a(y) =1 in order that
X? be t^O, and then we get Xb W =«(¿)> i.e., Xb(nk) —a(n); hence (61) leads to

(62) <t>b(g) =   I  a(kg)dk   where    a(nk) = a(n).

This formula can be used in order to study the structure of the algebra L(b).
In fact it is clear that L(b) is the set of functions/£L(G) such that f(kgk')
=/(g) ; since b is a one-dimensional representation of K, we know that L(b)
is a commutative algebra ; furthermore if we set

(63) /(«) = J f(g)<Pb(g)dg,

then we know that/—/(a) is a homomorphism of L(b) onto the complex field,
and also that we get in this way sufficiently many such homomorphisms (be-
cause by Lemmas 5 and 7 we know that the induced representations g—>Tg
of G form a complete set) ; hence (63) establishes an isomorphism between L(b)
and an algebra of functions on the group of characters of N.

Observe that (63) can be computed in the following way. Let Z be the
topological commutator group of N and assume there exists an abelian
closed subgroup A of iVsuch that N=A-Z (which arises in all practical situa-
tions); we have a(8z) =a(5); hence

?(«) = fJf(g)a(kg)dkdg = f f f(k-ig)a(g)dkdg - jf(g)a(g)dg

=   f f f(nk)a(nk)dndk =   f f(n)a(n)dn =   f j f(8z)a(8z)d^(5)dz,

i.e.,

(64) f(a) = f f(ô)a(ô)dp(ô)
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where we set

(65) /(fi) = J f(Sz)dz

and where dß(5) denotes a Haar measure an A.
It is clear that / is a continuous function with compact carrier on A for

every f(ELL(b) ; hence/—>f is a mapping of L(b) onto a subset A of L(A); by
(63) and (64) it is obvious that/—»/is actually an isomorphism of the algebra
L(b) (equipped with the convolution product on G) onto a subalgebra of
L(A) (equipped with the convolution product on A). To prove Harish-
Chandra's theorem, namely that (62) represents all spherical functions of
type b (k—>l) we thus see that we should establish that every homomorphism
of À onto the complex field can be extended to a homomorphism of the whole of
L(A). A proof of this by the methods of functional analysis would be ex-
tremely interesting; it is very probable that such a proof would require a
detailed analysis of A and mainly an "inner" characterization of the functions
f(b) which can be obtained by (65). This is connected with a study of integral
equations (65); if G = SL(2, R), it can be shown that (65) is essentially
equivalent to the classical Abel integral equation, so that it seems that
a study of more general groups would lead to similar integral equations in
several variables. This question is also connected with the explicit form of
Plancherel's theorem for spherical functions; actually if an explicit inver-
sion formula is known for (65), i.e., if we can express/ in terms of/, then by
(64) and the Fourier inversion formula on A we can express / in terms of /
and this is just the Plancherel theorem for functions belonging to L(b) !

A complete answer to these problems will be given elsewhere for
G = SL(2, R). Now we shall study the case of motion groups, which is much
simpler than the case of semi-simple groups. In that case, integral formulas
can be obtained for all spherical functions as we shall prove.

17. The case of motion groups. First of all, for a given b denote by
k-^Uk an irreducible representation of K on a vector space (5, and assume
this representation belongs to b; defining for an arbitrary operator A on ©
the number <r(A) =dim (@) Tr (A) we see that

Xb(k) = a(Uk);

now let/G£°(b); since xb/=/> we have

(66) f(g) = f f(k~ig)xb(k)dk = J o(Uk)f(k-ig)dk;

hence

(67) f(g) = o-lF(g)
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where F is the operator-valued function

(68) F(g)= f U~k1-f(kg)dk;

using the fact that/=/° it is obvious that F satisfies

(69) F(kgh) = UzF^Uh

for arbitrary k, h(E.K. Of course, F is continuous and vanishes outside some
compact set. Now we want to express the convolution product in L°(b) in
terms of the corresponding functions (68) ; if F\ and Fî correspond to func-
tions /i, /2£L°(b), then the function F\F2 corresponding to f\f\ is given by

FiftO») =   f Ut-Mi{hn)dk =   ff U^f1(kng)f2(g-X)dkdg
(70)

"///
Uk -fi(knn'h)f2(h   n    )dkdhdn';

but it follows from the orthogonality relations of characters that

f U"k ■ a(UkA)dk = A

for every operator A on (g; hence

FiF2(n) =  fff' ut-o-iUkF^nn'W^-clU^F^n'^dkdhdn'

=  ff Fx(nn') Uh ■ clU'nF^n'1) ]dhdn'

so that we finally obtain

(71) F1F2(n) =  f Fl(nn')Fi(n'-1)dn'.

Of course this is true even if TV is neither abelian nor invariant.
We shall now use the fact that N is an abelian invariant subgroup.

Denote by L<z(N) the set of all operator-valued functions F(n) which are
continuous and vanish outside some compact set in N; under the convolution
product (71), L<s.(N) is an algebra; furthermore it is clear by (69) that L°(b)
is isomorphic with the subalgebra of those functions F£ Ltg(N) which satisfy

(72) F(knk~1) = UkF^ut.

To find spherical functions of type b, we have to construct all finite-dimen
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sional irreducible representations of L°(b) satisfying obvious continuity con-
ditions. But define

(73) F°(n) =  fUlF(knk~l)Uk-dk

for every F(ELts(N); of course we get a projection of L<¡(N) onto L°(b), with
the properties

(74) (F°G)° = (FG°)° = F°G°;
now let a be a regular maximal left ideal in L°(b), and consider the set tn of
FEL<z(N) such that (GF)°Ç£a for every GEL®(N); it is obvious that m is
a left-ideal, and by using (74) it is easy.to see that every right identity
modulo a is also a right identity modulo trt, so that m is regular; furthermore
we have, by (74), ctCnt so that a = mC\L°(b) by the maximality of a. Now
since m is regular, it is contained in a maximal left ideal; hence we see that
a is the intersection of L°(b) with some regular maximal left ideal in L<s(N);
from this it follows at once that every irreducible representation of L°(b) is
contained in some irreducible representation of L%(N). But L®(N) is iso-
morphic with the tensor product of the algebra of operators on © and the
algebra L(N) of complex-valued continuous functions with compact carrier
on N; using the fact that every "reasonable" irreducible representation of
L(N) is one-dimensional and given by/—>/(a) =Jf(n)a(n)dn, where'«—*>:(«) is
a character of N, we easily see that every irreducible representation of L<&(N)
is given by

(75) F->F(a) =   Ç F(n)a(n)dn.

Therefore, every irreducible representation of L°(b) is contained in a representa-
tion (75), i.e., is obtained as an irreducible component of a representation
(75) restricted to L°(b).

Of course it may happen that (75) is still irreducible on L°(b); in that
case it is quite easy to compute the corresponding spherical function(14).
Actually, this function <p(g) is given (Theorem 8) by

(76) 0(/) = dim (b) Tr [F(a)\ = dim (<g)-Tr [F(a)] = a[F(a)]

for every/GL°(b); using (67) we get

(77) 4>(f) = jf(n)a(n)dn

for every/G^°(b). Now for an arbitrary /G L(G) we have

(") Observe that the integral formulas we are going to prove yield all spherical functions
in case K is abelian (and, even in this case, lead to nontrivial "special" functions).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1952] A THEORY OF SPHERICAL FUNCTIONS. I 533

<t>(f) = <Kxb/°) = Jx.bf(n)a(n)dn
(78) r r r

f(hknh~1)xb(k)a(n)dndkdh ;
"///■

using xb(kh) =Xb(hk) and the fact that dn is invariant under n^hnhr1 we
find at once

(79) 4(f) = j f(g)<i>(g)dg = JJ f(nk)xb(k)a(hnh-i)dndkdh

and, since/£L(G) is arbitrary, we see that

(80) 4>(nk) = xb(k) I a(hnhrx)dh;

of course this is a special case of formulas in the preceding section.
It may happen also that representation (75) is not irreducible on L°(b),

and then the above method breaks down; for instance, if the character a is
invariant under the mappings n—^knk"1, then it is easy to see that the
operators F(a), /£L°(b), commute with the Uk, hence reduce to scalar
operators, so that in this case the representation (75) of L°(b) is not irre-
ducible [but it turns out that (80) is still valid up to a constant factor, due
to the fact that F(ot) is identical, up to a constant factor, with the scalar
operator <r[F(a)]-1, so that (76) is still true]. However, let ^£(5: be a minimal
subspace invariant under the operators F(a), f^L°(b); the representation
f^>F(a) of L°(b) on $■ is irreducible, hence defines a spherical function on
G. To compute this spherical function <f>, we choose an orthonormal basis
(e»)i lá*'ái>i of g, and we get by Theorem 8

(81) <l>(f) = dim (b) • £ (F(a)eu e<) = dim (b) • £ f (F(n)et, et)a(n)dn;

now for arbitrary f£E.L(G) set f' = xbf; then the corresponding function
F'(n) is given [see equation (68) ] by

(82) F'(n) =   f U~k-f'(kn)dk =  f f f U^-f(hlknh~l)xD(l)dkdhdl

so that we get (up to a constant factor)

</>(/) = <Kf) = E f f f f (•*. Ukei)f(hlknh-1)xb(l)a(n)dndkdhdl
(83)

= E f f f f (UhUieu Ukedttknh-^xbWaWdndkdhdl;
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but from xb(0 =<r(Ui) it follows that

Urxb(l

up to a constant factor, so that

<j>(f) = Yl I   I   I   (Uh6i, Uk&i)f(knh   )a(n)dndkdh

(84) = S f f f (uTuhUkei, e>)f(knkXhX)a(n)dndUh

= X  I       I   (Uk Uh Ukei, et)f(nh)a(k   nk)dndkdh

and since/GL(G) is arbitrary, we finally obtain

(85) 4>(nh) =   f 6(khk-1)a(knk-1)dk

where the function 8 is given by

(86) 6(h) = £ (e¿, Ukßi) = X (Uhei, e,-),

i.e., is a sum of coefficients of the irreducible representation b (we recall that
k—>Uk belongs to b).

Of course, if 8 denotes an arbitrary sum of coefficients of b, then (85) does
not necessarily represent a spherical function ; we may only assert that every
spherical function of type b is obtained by an integral formula (85).

Observe that (85) proves that

-/
(87) 4>(n)/<t>(e) =   I  a(knk~l)dk

does not depend on b; formula (87) could be obtained in another way, namely
by using a functional property of spherical functions (which, unfortunately,
works for motion groups only). Let g^Tg be a completely irreducible repre-
sentation of G on a Banach space §; for every n, the operator fTkTnTt~1dk
commutes with the Tk; on the other hand, since knkr1^N and since N is
abelian, this operator commutes with every Tn> too—hence with every Tg—
hence reduces to a scalar:

(88) f TkTntH1-dk = \(n)-U

if we consider the spherical function of type b of the given representation,
0b(g) =Tr [E(b)Tg], we have therefore
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(89) f 4>(gknk X)dk =   f Tr \E(b)TgTkTnTk\dk - \(n)4>(g);

taking g=e we find <p(n) =\(n)<f>(e), and this proves that every spherical func-
tion <t> on G satisfies

(90) <p(e) f <f,(gknk-l)dk = <t>(g)<¡>(n).

Now if we replace <j> by <j>/<p(e), and if we set

(91) <¡>(f) =  f f(n)<p(n)dn;       f(n) =   ff(knk-l)dk

for every/£L(iV), it is obvious that (90) implies

(92) 4>(f%) = 4>(h)4>(U)
for arbitrary/i, f^L(N); hence <f> defines a "character" of the subalgebra
L°(N) ; but by using as above relations (74) it is easy to see that every char-
acter of L°(N) can be extended to a character of L(N), and this leads to (87).

The most classical instance of (87) is obviously given by the Bes sel func-
tion Jo; but other interesting functions can be obtained; for instance consider
in the complex euclidean 3-space N the compact abelian group of rotations
represented by matrices

(e¡*   0      0 \

0      e**   0 ) ;
0      0      e-it-i* I

if we consider the motion group G generated by these rotations and the trans-
lations on N, then we see that the spherical functions are given on N by

(2tt)-2 I  I     exp (axe^-f ßxe~i4,+ yye**+ 8fer'* + tese-**-** + ßze^+^d^dip

where a, ■ ■ ■ , ß are arbitrary complex numbers, so that they can be ex-
pressed in terms of the function

(2t)-2 I   I     exp (i [x • cos <t> + y ■ sin 4> + z ■ cos \p + t ■ sin \¡/

+ «-cos (4> -f- ̂ ) + »-sin (<j> + \f/)]) d<i>d^
f 2r

= (2ir)_1 I      Jo(((x + ucos\p + w-sin ^)2 + (y — usimp + d-cos i/')2)1'2)
J o

•exp (i(z-cos 4> + /-sin \p))d4>
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which cannot be expressed in terms of Bessel's functions (which means that
the author is unable to do it).

This and other similar examples have been studied by J. Delsarte in un-
published papers.

4. Differential properties of spherical functions
18. The algebra D(G). In this section, we assume that G is a connected

Lie group. In addition to functions and measures, we may consider distribu-
tions on G in the sense of L. Schwartz [28]; a distribution a on G is a linear
form a(f) on the space of indefinitely differentiable functions with compact
carrier on G, satisfying certain continuity conditions—see [28]. It is known
that every distribution a has a carrier: it is the smallest closed set SCG
such that a(f)=0 whenever/ vanishes in some neighbourhood of S. If the
carrier of a is a compact set, then a(f) can be defined for arbitrary indefi-
nitely differentiable functions /, without any restriction concerning the car-
rier of /. We shall denote by D(G) the vector space of all distributions with
compact carrier on G ; we have therefore "natural" inclusions

L(G) C M(G) C D(G).

We shall use for distributions the same notation as for measures, namely
aif)=f(a)=ff(g)da(g); this apparently involves some inconvenience (e.g.,
to denote differential operators by integral formulas), but actually these in-
conveniences are advantages, just because we intend to deduce differential
properties from integral ones!

As in euclidean spaces, it is possible to define a convolution product on
D(G) ; if a, ß(E.D(G), then the distribution y =aß is given by

(93) ff(z)dy(z) = jj f(xy)da(x)dß(y)

for every indefinitely differentiable function / on G. Of course D(G) is an
associative algebra under that product. We also note that a convolution
product a\a.2 ■ ■ ■ an can be defined whenever all factors but one have com-
pact carriers, and that the associative rule still holds in this case; see [28,
vol. II, p. 14].

We shall denote by U(G) the set of aÇzD(G) whose carrier reduces to the
identity. Of course, U(G) is a subalgebra of D(G). If we denote by

\Xi, , Xn)

a system of coordinates in a neighbourhood of e, then every aÇzU(G) is a finite
linear combination of the derivatives

QPX+ . . . +Pnf
f-*--(e)

dx^i • ■ • dx%"
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where the pi are arbitrary non-negative integers(16), and conversely. In par-
ticular denote by g the set of linear combinations of the distributions

df
dXi

then it is easy to see that g is isomorphic to the complexification of the Lie
algebra of G, the Jacobi product in g being given by [a, ß] =aß—ßa (convolu-
tion products!). One can deduce from this (L. Schwartz, unpublished) that
U(G) is isomorphic to the universal associative enveloping algebra of g—but
we shall not use this fact.

The elements of the (abstract) algebra U(G) can be represented by dif-
ferential operators on G. In fact, for a given a£D(G) and an indefinitely dif-
ferentiable function / on G, the convolution product af is an indefinitely dif-
ferentiate function (see [28, vol. II, p. 22]), given by

(94) «/(*) = J f(y'ix)da(y);

we shall denote by Xa the operator/—*af; it is clear that Xa commutes with
the right translations on G, and if a£ U(G), we obviously obtain a differential
operator in the classical sense. Conversely, let/—>Xf be a differential operator
commuting with right translations; there exists one and only one distribution
a such that

(95) a(f) = Xf'(e),
and since/—»A/ commutes with right translations, we get Xf = af; of course,
a £ U(G), and finally the algebra U(G) is isomorphic to the algebra of all differen-
tial operators commuting with right translations.

We shall also use for distributions the operations a—Hx' and a—+a°; a'
is the transform of a under x—>x~l, and a° is given by

'"/■
(96) a° =   I  etatk-i-dk

Of course we have

(97) «(/) = /'«(«) = fa'(e) = a'f(e) = af'(e)
for every indefinitely differentiable /; and

(98) a°(f) = af)
under the same assumption.

We shall denote by D°(G) the set of aE:D(G) such that a° =a, and we

(I6) If all pi vanish, then we get the distribution e:/—>/(e), which is the unit element of
U(G).
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shall set U°(G)=D°(G)r\U(G). Of course D°(G) and U°(G) are subalgebras
of D(G) and U(G). We shall use the following property:

Lemma 14. Let f be an analytic function on G, invariant under K; thenf = 0
is equivalent to

f(a) = 0    for every    a G   U°(G).

Proof. Since/ is analytic and since G is connected, it is clear that/ = 0 is
equivalent to/(a;)=0 for every ctÇzU(G); since /=/° and since f(a) =f(a°),
this proves the lemma.

We shall also use a topology on D°(G):
Definition. We say that a variable a(ED°(G) converges to a given «o

Ç^D°(G) if f(a) converges to f(ct0) for every analytic function f satisfying f=f°.
This topology is entirely different from that of L. Schwartz, but is much

more useful than L. Schwartz's for studying analytic functions; this is mainly
due to the following property:

Lemma 15. U°(G) is everywhere dense in D°(G).

Proof. By the Hahn-Banach theorem we have only to prove that if a
continuous linear form a—>/(a) on D°(G) vanishes on U°(G), then it vanishes
on the whole of D°(G); but by the "weak duality" theory (see [4]) such a
linear form is defined by an analytic function on G invariant under K, so
that Lemma 15 follows from Lemma 14.

To conclude these preliminary remarks, we recall some properties of
elliptic differential operators (actually we shall consider only very special
instances of that concept, so that we shall state these properties in the special
situation which we are interested in). Let a(E;U(G) and consider the cor-
responding operator Xaf = af. Assume that, in a given coordinate system
around e, a is given by a relation

a(f) = a-f(e) + £ at-^~ (fi) + £ <*, -^- (e)

where the coefficients a,-/ form a strictly positive-definite matrix. Then it is
easy to see that in every analytic coordinate system around an arbitrary
point of G we have a representation

v- df v- a2/
Xaf(x) = a(x)f(x) + ¿_, a{(x)-(x) + ¿u aa(%)-(*)

dx¡ dXidXj

where the coefficients are analytic and where, for every x, the matrix (a¿y(x))
is strictly positive-definite. Using a classical theorem due to S. Bernstein we
conclude that every indefinitely differentiable function / satisfying a relation

XJ=\f+g,
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where X is a scalar and where g is an analytic function, is itself analytic(16).
This implies that every solution of an equation (Xa—\)nf = 0 is analytic; in
fact, if we assume the theorem is already proved for n — i and if we set
g = (Xa—\)f, then g is analytic since we have (Xa— X)n_1g = 0; and since
/ satisfies Xaf=\-f-\-g we see that/ is itself analytic, so that our assertion is
proved by induction.

We observe that there exist distributions a££/(G) satisfying the above
conditions and a—a°. To prove this it is enough to prove that if a satisfies
the above conditions, then ct° does. But for a given k put y = kxk^1 and define
Pii = dyi/dxj\x=e; then it is clear that the matrix (bif) associated with the
distribution ekaek-i is given by b{j= Eaj><? PviPih i-e., is strictly positive-defi-
nite; since a (continuous) sum of strictly positive-definite matrices is still
strictly positive-definite, our assertion is proved. Finally we get the follow-
ing basic result:

Lemma 16. There exists a distribution aÇzU°(G) such that every function f
satisfying a relation (Xa— X)"/ = 0 is analytic.

19. Analytic vectors in irreducible representations. Let g^>T„ be a repre-
sentation of G on some Banach space £>. We shall denote by §M the set of
finite linear combinations of vectors T¡a, where a is arbitrary in § and
where / is an arbitrary indefinitely differentiable function with compact
carrier on G. This "Gârding subspace" (see [5]) is everywhere dense in ^ and
invariant under the T„. Since the convolution of an indefinitely differentiable
function with compact carrier and an arbitrary distribution is an indefinitely
differentiable function, it is clear that for every a£§00 and every &£§' the
corresponding "coefficient" (T„a, b) is indefinitely differentiable. As proved
by Gârding, we may associate with every a^D(G) a linear operator Ta on
§«,, given by

(99) (Taa, b) = J* (7>, b)da(g), a £ $„ b £ $':

in general Ta is not bounded, but it is easy to see that a—*Ta is a representa-
tion of the algebra D(G) on §M; if a is a function or a measure, Ta reduces of
course on §M to the (already defined) operator Ta, and is bounded.

Lemma 17. Assume that §(b) is finite-dimensional for some b; then for
every a£§(b) and every £>£§' the function (Tga, b) is analytic on G.

Proof. Since ^>œ is invariant under the operators Ta, it is invariant under
the projection operator E(b) ; since §M is everywhere dense in §, E(b)iQx is
everywhere dense in ^>(b), hence is identical with §(b) since dim ¡£>(b) < + =o ;

(16) Of course, "analytic" means: analytic with respect to the real parameters on G, even
when G has a complex structure.
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therefore, we see that §(b)C§<», so that we may apply every Ta, a(ED(G),
to every aG§(b). Now take the distribution a of Lemma 16; since a=a°,
it is clear that Ta commutes with the Tk, so that Ta!Q(b)(Z&(b); since ¡Q(b)
is finite-dimensional, we can find a basis (et) of §(b) such that every e, satis-
fies a relation (Ta— \)"ei = 0; setting 6(g) =(7,9el-, b), 6G£>', we see that 8'
is an eigenfunction of (Xa—X)n, hence is analytic, and this obviously proves
Lemma 17.

In what follows, we shall say that a vector a£§ is analytic if the function
(Tga, b) is analytic for every ÔG-Ê»'; this definition is somewhat weaker than
that of a "well-behaved" vector due to Harish-Chandra; but for vectors be-
longing to §«, the two definitions are practically identical.

Theorem 11. Let g-^>Tg be a topologically irreducible representation of G
on §, and assume that 0 <dim §(b) < + » for some b; then analytic vectors are
everywhere dense in §.

Proof. The set of analytic vectors is an invariant subspace, so that
Theorem 11 follows from Lemma 17.

Corollary. Assume that every irreducible representation of K is contained
a finite number of times only in every completely irreducible representation of G ;
then every spherical function is analytic.

We can now state our main result, which will be proved in the next sec-
tions and is an "infinitesimal" counterpart to Theorem 8 of §3.

Theorem 12. Let <j> be a quasi-bounded analytic function on G, invariant
under K ; then <j> is proportional to a spherical function of height p if and only if
there exists a p-dimensional irreducible representation a—>Ua of U°(G) such that

(100) 0(a) = c-Ti(Ua)

for every a(^U°(G); if<j> is a spherical function of type b, then e=dim (b).

On semi-simple Lie groups, this result was known to Harish-Chandra
(who did not explicitely publish it in his notes) ; Harish-Chandra's method of
proof apparently reduces to constructing more or less explicitly the function
satisfying (100), and in this method the assumption that 0 is quasi-bounded
is not useful; we shall need this assumption in order to be able to use Theo-
rem 8, and also because we do not know whether it can be avoided in not
necessarily semi-simple groups. From the practical point of view, this as-
sumption is not very important; the main problem is to represent spherical
functions (more accurately, solutions of (100)) by integral formulas, and if
this is done, then it is not difficult to verify that these functions correspond to
representations of G on Banach spaces!

20. Proof of Theorem 12. Direct part. Let g—>re be a completely irre-
ducible representation of G on a Banach space §; consider the correspond-
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ing representation a—>Ta of D(G) on the Gârding subspace !qx; we recall that
§M contains every §(b) (of course, we assume that dim §(b) < + °o for every
b). If a£Z5°(G), then every §(b) is invariant under Ta, so that Ta induces on
every &(b) an operator r«(b);of course, a^>Ta(b) isa representation of D°(G)
on §(b). It is clear that every T„(b) commutes with every Tk; since D°(G)
contains L°(G) and since the set of operators Tf(b), /"£L°(G), is the com-
mutator of the representation k^>Tk of K on ¿p(b) (see Lemma 9), we see
that the set of operators Ta(b), a£JD°(G), is the commutator of the representation
k—+Tk of K on §(b). We shall prove a much stronger property:

Lemma 18. The commutator of the representation k—*Tk of K on §(b) is the
set of operators f a(b), a£t/°(G).

Since we are dealing with finite-dimensional sets of operators, we have
only to prove that the set of T„(b), aÇ£U°(G), is everywhere dense in the set
of Ta(b), a£D°(G); hence Lemma 18 will follow from Lemma 15 provided
we can prove that the representation a—>Ta(b) of D°(G) on §(b) is continuous,
which means that for every a£§(b) and every Z>£§'(17) the linear form a
—>0(a) = (Ta(b)a, b) =(Taa, b) =f(Tga, b)da(g) is continuous on D°(G). If we
define 6(g) =(T„a, b), we have 8(a) —f6(g)da(g) =j6°(g)da(g) since a =a° ; hence
our assertion is equivalent to the fact that the function 8°(g) is analytic on G.
But by the proof of Lemma 17 we can write 0=0i + • • • +8q, where every
6i is an eigenfunction of an elliptic operator invariant under K; of course, the
functions 81 are also eigenfunctions of such operators, hence are analytic,
and this concludes the proof of Lemma 18.

We can now prove the necessity of (100). For every aÇzD(G) we have
tf>b(ûO=Tr [E(b)Ta], in particular <&,(«) =Tr [fa(b)] for every a££/°(G);
but by Lemma 18 the set of operators Ta(b), a£r/°(G), is isomorphic with
the algebra of all pXp matrices (where p is the height of the spherical func-
tion (j>b), so that the existence of the representation a—+Ua is proved as in
no. 11.

21. Proof of Theorem 12. Sufficiency of the condition. We now consider a
function <p satisfying the assumptions of Theorem 12; to prove that <p is
proportional to a spherical function, we shall establish that it satisfies the
assumptions of Theorem 8, so that we have to replace the given representa-
tion of U°(G) by a representation of some L°(b). This will be done in several
steps.

Lemma 19. Ua = 0 is equivalent to a'<j> = 0.

Proof. Define 8=a'<p; since/—*a'f is a differential operator with analytic
coefficients, 8 is analytic, and satisfies 8=8° since both a and </> do; hence
(Lemma 14) 0=0 is equivalent to 8(ß) =0 for every ßEU°(G), or to <p(aß)
= 0, or to Tr (UaUß) =0, and since the set of operators Uß is a full matrix

(") $' denotes the Banach space dual to $.
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algebra (Burnside's theorem), Lemma 19 is proved.

Lemma 20. Let 33« be the set of functions a<j>, a^U°(G); then 33« is a p2-
dimensional vector space.

Proof. Obvious by Lemma 19 and the fact that U°(G) is invariant under
a—x*'.

Lemma 21. ß<p and 0/3 are analytic functions for every /3 G 0(G).

Proof. We have 0G33« since U°(G) contains e; now consider the distribu-
tion aÇE.U°(G) of Lemma 16; 33« is invariant under the differential operator
Xa; since 0G33«, we can therefore decompose 0 into a finite sum of eigen-
functions of operators (Xa— X)"; but (associativity of the convolution product
when all factors but one have compact carriers) if 6 is an eigenfunction of
(Xa—~k)n, the same is true for 8ß, whenever /3G-D(G); this of course proves
that 0/3 is analytic; the same proof applies to /30.

Lemma 22. 33« is identical with the set of functions a0, aÇiD°(G), and also
with the set of functions f<p,fÇ.L°(G).

Proof. Denote by SB the space of all continuous functions on G with the
topology of pointwise convergence; SB is a locally convex topological vector
space satisfying Hausdorff's axiom, so that every finite-dimensional subspace
of SB is closed in SB; in particular 33« is closed in SB. Now consider the map-
ping a—>a<f> of D°(G) into SB; this mapping is continuous because if gŒG,
then the linear form a—*a<p(g) =fd(g')da(g') [where 6 = (ega)°<p is analytic
by Lemma 21 and invariant under K~] is continuous on D°(G). Hence (Lemma
15) 33« is everywhere dense in the set of functions a<p, «G-D°(G), which proves
the first part of Lemma 22. To prove the second part we have only to use
similar arguments and to observe that L°(G) is everywhere dense in D°(G),
which is obvious by Hahn-Banach's theorem.

Lemma 23. a0=0a/or every a^D°(G).

Proof. Consider the case where aE:U°(G); for every ß€zU°(G) we have
a<p(ß)=ß'a<p(e)=<p(a'ß)=Tr(Ua'Uß) and in the same way 0a(/3)
= Tr(UßUa>); hence a<p=4>a by Lemma 14. The general case follows from
Lemma 15 and the fact that oxp and 0a depend continuously on aÇiD°(G)
(see the proof of Lemma 22).

Lemma 24. There exists a character x» of K such that xb<¡> =0.

Proof. By Péter-Weyl's theorem, there exists a character x of K such
that x0^O; since x=X°> we have x^D°(G), so that (Lemma 22) there
exists some aÇ:U°(G) such that x0 =ct<p; for every /3GU°(G) we have xß — ßx
(for j3 commutes with every ek, hence with x=Jtk-x(k)dk, too), so that by
using Lemma 23 we get ßa<j> = /3x0 = xß4> = X0ß = «0/3 = a/30 ; hence (Lemma
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19) the operator U a' commutes with every Uß, i.e. reduces to a scalar; this
implies x4> = c<P f°r some number c, and since XX = X we finally obtain x4>=<i>-

Conclusion of the proof. Since xb<f>=4>, we have f'4>=f'xb<t>=g'<l>, where
g = Xb/; hence, by Lemma 22, 23^, is identical with the set of functions
f'4>, /£L°(b); we can therefore associate with every /£L°(b) an oper-
ator Uf by choosing an a£l70(G) such that f'4>= a'<p and by setting Uf=Ua;
although a may be not unique, Ua is unique by Lemma 19. It is clear that
f—*Uf is a linear mapping of L°(b) onto the algebra of all pXp matrices; in
addition from f'<p=a'<p and g'<p=ß'tp it follows by using Lemma 23 that
f'g'(l)=f'4>g' =<x'<Pg' =a'g'</>=a'/3'0, so that/—>{7/ is a representation of L°(b).
Since f'<p=a'(j) implies <f>(f) =f'<p(e) =a'<p(e) =$(a) =c-Tr (Ua)=c-Tr (Uf) we
see that cj> satisfies the assumptions of Theorem 8, so that the proof of Theo-
rem 12 is now complete.

22. Another formulation of Theorem 12. Let A be an associative algebra
over an arbitrary field Í2; let § be a vector space over Í2, and assume we are
given :

(a) a linear representation/—*Z7/ of A on §;
(b) a linear representation /—> Vf of the opposite algebra(18) on §;

then we shall say that {§, U, V\ is a double representation of A if we have

(101) UfV„ = veuf

for arbitrary/, g£A. For the relations existing between the above definition
and the classical theory of characters, see [16].

We shall say that a double representation {§, U, V] is irreducible if the
set of operators Uf, Vg (taken jointly) is irreducible in the usual sense (of
course, for double representations on Banach spaces we should distinguish
between three kinds of irreducibility, but since we shall be concerned with
finite-dimensional double representations such distinctions are useless here).

Now consider on G an indefinitely differentiable function <¡> satisfying
a<t>=<pa for every a£C/°(G), and invariant under K. Let 93$ be the set of
functions a<¡>, a££70(G). Then for every a,££/°(G) we can define on 3%
operators Ua'.8—>ad; Va'-6—^8a; clearly we get a double representation of
U°(G) on 9V

Theorem 13. Let <f> be a quasi-bounded indefinitely differentiable function
on G, invariant under K; then 4> is proportional to a spherical function if and
only if it satisfies the following conditions(n) :

(a) : a<f>=<pa for every a£ U°(G) ;
(b) : the double representation of U°(G) on 93¿ is irreducible and finite-

dimensional.

(ls) This means that we have V/B = VaVf instead of V/„= VfV„.
(19) Condition (a) is equivalent to f<l>(kgk~lg')dk=f<t>(kg'k~1g)dk (under the assumption

that $ is analytic, which is satisfied by spherical functions).
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Proof. The necessity of (a) follows from Lemma 23. To prove the necessity
of (b) we may assume that 0 is analytic and that 0(a) =Tr (Ta) for some ir-
reducible ^-dimensional representation a—>7\, of U°(G); let M be the set of
operators Ta; M is a full matrix algebra and by Lemma 19 there exists a one-
to-one correspondence between M and 33«, namely !Ta*->a'0; it is clear that if
we identify 33« with M, then the double representation of U°(G) on 33« leads
to a double representation on M, constructed in the following way: Ua trans-
forms A EM into AT a', and Va transforms A EM into Ta>A. Therefore, the
subspaces of 33« invariant under both the Ua and the Vß correspond to two-
sided ideals in M, and since M is a simple algebra, the irreducibility of the
double representation {33«, U, V) of U°(G) is established.

Consider conversely a function 0 satisfying the assumptions of Theorem
13. Since 33« is finite-dimensional, we see as in Lemma 21 that 0 is analytic.
Now consider in 33« a minimal subspace SB invariant under the operators
Va, and denote by Ta the operator induced by Va- on SB; clearly a—>Ta is an
irreducible representation of U°(G) on SB; furthermore, since Ua and Vß
commute and since the set of operators Ua Vß is irreducible on 33«, it is easy
to see that Ta=0 implies (hence is equivalent to) Va>=0, hence implies
0a'=0, hence implies 0(a) =0; consequently there exists on the set M of
operators Ta a linear form sp such that 0(a) =sp(Ta) for every aGC7°(G).
Now from a<p=cpa follows in an obvious way that <p(ctß) =0(/3a), so that
sp(TaTß)=sp(TßTa); since M is the algebra of all operators on SB, sp is
proportional to the ordinary trace on M, and we see that 0 satisfies all assump-
tions of Theorem 12; therefore 0 is proportional to a spherical function.

Theorem 14. Let 0 be a quasi-bounded function on G, invariant under K;
then 0 is proportional to a spherical function of height one if and only if 0 is an
eigenfunction of every differential operator f-^af, aEU°(G).

The proof of this theorem is obvious: if 0 is a spherical function of height
p = i, then 33« has dimension p2 = i, so that a<p is proportional to 0 for every
aEU°(G); the converse follows from Theorem 13.

Observe that in the statement of Theorem 14 we did not assume that 0
is analytic, or that 0 is indefinitely differentiable ; in fact, even if we know that
0 is a distribution only, then the fact that 0 satisfies elliptic equations will
imply that 0 is an analytic function*.

Theorem 14 could be proved by using the functional equation of spherical
functions of height one instead of Theorem 13. In fact, consider a 0 satisfying

(102) «0 = \(a)-<t>

for every a£[/°(G), and for a given y EG consider the function

(103) 8(x) =   I  (j>(xkyk-l)dk =   J <t>(kxk'1y)dk;
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we obviously have

(104) ad(x) =   f a<l>(xkyk-l)dk = \(a)6(x)

for every aGt7°(G); comparing (102) and (104) we see that 8(a) is propor-
tional to 0(a) for every aEU°(G), hence for every aEU(G) since both 0
and 8 are invariant under K; but 0 and 8 are analytic functions (they satisfy
elliptic equations); hence 8(x) is proportional to 4>(x), and this implies that 0
satisfies, up to a constant factor, the functional equation of spherical func-
tions of height one.

The following theorem (which was never published although it must be
known to many people!) is a consequence of Theorem 14.

Theorem 15. Let G be a compact connected Lie group, and let xbe a central
function on G, i.e., x(xj) =x(yx)'< then x ** proportional to a character of G if
and only if it is an eigenfunction for every differential operator belonging to the
center of U(G).

In fact, if we apply the general theory by taking K = G, it is obvious that
every spherical function is of height one and reduces to a character of G,
and conversely; hence to prove Theorem 15 we have only to observe that
U°(G) reduces to the center of U(G) and to apply Theorem 14.

Theorem 14 can be used also in the following situation. Let G be a com-
pact connected Lie group and let K be a maximal abelian subgroup of G.
Let g—*Tg be a (finite-dimensional unitary) irreducible representation of G
on a vector space § ; it is well known that there exists at least one character
k—*X(k) of K which is contained exactly once in the given representation of
G (X is the highest weight of the representation) ; let a G§ be a vector belong-
ing to the "weight" X; then the function 8(g) = (Tga, a) is a spherical function
of height one (with respect to the subgroup K). Consequently we get a method
for characterizing these functions by differential equations.

23. Infinitesimal irreducibility of representations. In the preceding sec-
tions, we proved that Theorem 8 has an infinitesimal counterpart. We now
intend to prove a similar result concerning Theorem 6 of §2, namely

Theorem 16. Let G be a connected Lie group, K a connected compact sub-
group of G, g—*Tg a topologically irreducible representation of G on a Banach
space §; assume that §(b) is finite-dimensional for every irreducible representa-
tion b of K, and let §°° be the algebraic direct sum of the various §(b) ; then §°°
is invariant under every Ta, aEU(G), and the representation a—*Ta of U(G)
on §M is algebraically irreducible.

Of course this result was known to Harish-Chandra for semi-simple
groups, but our method works in more general situations. To prove Theorem
16 we shall need some lemmas.
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Lemma 25. For a given vector a£§, assume the vectors Tka span a finite-
dimensional subs pace; then a£§!° and conversely.

Proof. Obvious.
Lemma 26. §°° ¿s invariant under the operators Ta, a£i7(G).

Proof. Take an arbitrary vectora in an arbitrary §(b). For every a£ U(G),

(105) TkTaa = Tad(k)aTka

where we set ad(k)a=ekaek-i; now it is clear that for a given a the distribu-
tions ad(k)a span a finite-dimensional subspace in U(G) ; since the Tka re-
main in the finite-dimensional space ¡Q(b), we conclude that the TkTaa, for a
given a, span a finite-dimensional subspace of §; hence

rQa£ê»

by Lemma 25, and this proves Lemma 26.

Lemma 27. Let a be a nonvanishing vector in |j°°; then the vectors Taa,
aC¡_U(G), are everywhere dense in ÍQ.

Proof. By Hahn-Banach's theorem, we have only to prove that if a
vector ô£§' satisfies (7\«a, b) =0 for every a£Z7(G), then 0 = 0. But if we
set 8(g) = (Taa, b), we know that 8 is analytic on G, and since our assumption
means that 6(a) =0 for every a££/(£)> this implies 8(g) =0; hence 6 = 0 by
the topological irreducibility of the representation g-^Tg of G.

Remark. Of course the above lemma is a special case of a general property
of well-behaved vectors; see Theorem 1 in the first note [20] of Harish-
Chandra.

Lemma 28. Let abe a nonvanishing vector in £>M, and denote by 9B the sub-
space of vectors Taa, a£ 17(G) ; then 93 is invariant under every E(b).

Proof. Let 93 be the finite-dimensional subspace spanned by the vectors
Tka; since K is a connected Lie group, the representation k—*Tk on 93 is gen-
erated by the corresponding representation a^-Ta of U(K) [of course we
may identify U(K) with a subalgebra of i7(G)], so that every Tk is, on 93, a
linear combination of operators Ta, a(E.U(K)(20); using (105) we see that 9B

(20) Let k—*Tk be a finite-dimensional irreducible representation of a connected Lie group
.ÇT on a vector space 33, and consider the corresponding representation a—>Ta of U(K); let
(e;), 1 ¿i S«, be a basis of 33 and (e.) a basis of the dual vector space S3'. Since Tk is an analytic
function of k, every function 6a(k) = (Tkei, e'f) is analytic on K, and it is clear that 0;,(a)
= (Taei, e'j) for every c£ U(K). Now take some KEiCsuch that ¿=exp (a) where a£i/(X) be-
longs to the Lie algebra of K; since the functions 9a are in finite number we see that if k belongs
to a sufficiently small neighborhood of e, then we have (Taylor's formula), for arbitrary i, j,
Sii(k) = ^,ioX^ü(e)/íi! where we set as usual Xaf = af (convolution product) ; this means that
(Ti&i, e'j) = X!'i&o (Tad, e'^/nl, so that Tk= 2Ztóo Tä/n\ (strongly convergent series); since the
set of operators Ta, a£i/(isT), is a finite-dimensional algebra, we see that this algebra contains
Tk whenever k is sufficiently close to e, hence contains every Tt, kÇzK, by the connectedness of
K, q.e.d.
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is invariant under k—>Tk. Since SBC§°° and since the representation k^>Tk
of K on §°° is completely reducible (in the purely algebraic meaning), it is
now obvious that E(b)SB = 3Bn£>(b) for every b.

Proof of Theorem 16. With the notation of Lemma 28 we have to prove
that SB = §°°; but since SB is everywhere dense in §, £(b)SB is everywhere
dense in §(b) for every b; since §(b) is finite-dimensional, this proves that
E(b)SB = §(b); since SB is invariant under E(b), this proves that SBD£>(b),
so that SB = §eo and Theorem 16 is entirely proved.

Remark 12. The representation a—±Ta of U(G) on ¿p°° satisfies the as-
sumptions of Theorem 4 in Harish-Chandra's paper [19], i.e., (a) this repre-
sentation is algebraically irreducible; (b) the representation a—>7\, of U(K)
on §°° is completely reducible (in the algebraic sense) ; (c) if a belongs to the
center Z(G) of U(G), then Ta reduces to a scalar on §°° [in fact, Z(G) is con-
tained in the center of U°(G); since for every b the ring of operators Ta(b),
aEU°(G), is isomorphic to a full matrix algebra, we see that every Ta(b),
aEZ(G), reduces to a scalar c(a, b); but by Schur's lemma applied to the
representation a—>7\, of U(G) on §°° we see that for every number c either
Ta=c-i or Ta — c\ has an inverse; this of course implies that c(a, b) does
not depend on b, q.e.d.]. Therefore, if G is a complex semi-simple group, we
may use the "infinitesimal" results of Harish-Chandra in order to prove
"integral" theorems.

For instance, let g—*Tg and g—*TB' be two irreducible unitary representa-
tions of G on Hubert spaces £> and §', and assume that the corresponding
representation a—>Ta and a—*Ta' of U(G) on §°° and §'°° are algebraically
equivalent; then for every b the representations a-±Ta(b) and a—*fá (b) of
U°(G) on §(b) and £>'(b) are algebraically equivalent too, so that we have
Tr [f„(b)]=Tr [f„'(b)] for every aEU°(G), i.e.,

<t>b(a) = 0b (a)

where 0b and 0£ are the spherical functions of type b of the two representa-
tions; hence (Lemma 14) 0b(g) =0£(g) so that the given two representations
are unitarily equivalent (see no. 13). Now if aEZ(G), put Ta = Ç(a) -l and
call a—>f(a) the infinitesimal character of the representation; then by using
Theorem 4 of [19] we see that if G is a complex semi-simple Lie group, then
there exists (up to unitary equivalence) only a finite number of irreducible
unitary representations of G with a given infinitesimal character and in which a
given b does occur. Of course this result is due to Harish-Chandra; see Theorem
6 in his first note [20].

In the above argument, we asserted that if a-^Ta and a^>Ta' are alge-
braically equivalent representations of U(G), then the representations
a—>f a(b) and a—>f « (b) of U°(G) on §(b) and £>'(b) are equivalent too; this
requires a proof. Let k^>Uk be an irreducible representation of K belonging
to the class b; let a—>Ua be the corresponding representation of U(K), and
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denote by Z(K) the center of U(K); then Ua reduces to a scalar for every
aÇzZ(K), and it is clear that we have in a more precise way

Ua = dim (b)-2-xb(a) ■ 1 = Xb(a) • 1

where Xb(k) is the character of b with the normalization XbM =dim (b)2; of
course a—>Xb(o!) is a homomorphism of Z(K) onto the complex field, the
infinitesimal character of b. It is easy to prove (see [19] and the appendix to
[16]) that b is uniquely defined by its infinitesimal character when K is con-
nected. Now consider the representation a—>Ta of U(K) on ¿p°°; by the above
argument we have Taa=\t,(a) a for every a£§(b) and every a£Z(7i);
conversely assume that 7"aa=Xb(a) -a for some a£§°°; then we have by the
direct property

E Xb.(a)£(b')a = E Xfc(«)£(b')a,
b* b-

and since b?=b' implies Xb^Xv, this obviously implies aCz¡c>(b). In other
words, the vectors in §(b) are characterized by 7"„a=Xb(a)a for every a
ÇiZ(K) ; this obviously proves that if a-^a' is an isomorphism of §°° onto §'°°
transforming every Ta into the corresponding 7V, then a—>a' maps §(b)
onto !ç>'(b), so that this isomorphism transforms Ta(b) into TJ (b) for every a
£ U°(G) as asserted.

Appendix
The classification of finite-dimensional

representations of classical groups
In this appendix we want to discuss a simple method for getting a com-

plete classification of finite-dimensional irreducible representations of the
various "classical groups." This method essentially rests upon the following
principle (see Lemma 7 in §1): let N be a connected solvable subgroup of G;
then every finite-dimensional irreducible representation of G has at least one
coefficient 8 satisfying 8(ng) =a(n)6(g) for some character n—>a(n) of N. Of
course this principle is not new, and the corresponding "infinitesimal" result
has been intensively used by E. Cartan and H. Weyl; but we shall exclu-
sively use "integral" arguments.

In order to simplify the discussion we shall consider the group G = SL(n, R)
of all real unimodular «X» matrices. Our constructions rest upon the exist-
ence in G of solvable subgroups which exist in every (complex or real) semi-
simple Lie group and which have well known interpretations from the infini-
tesimal point of view (Cartan's subalgebras and roots). These subgroups are
important also in the theory of infinite-dimensional irreducible representa-
tions, as shown by Gelfand and Naimark.

1. The Lie theorem. Since this theorem is basic in our discussion, we shall
prove it by integral methods (which of course do not differ from the infini-
tesimal ones!). Let N be a solvable group; we denote by D(N) its commutator
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subgroup (generated by the elements xyx~ly~~l) and we define Di(N)
= D[Di~1(N)]; the fact that N is solvable is equivalent to Dp(N)=e for
some p; the smallest p is the height of N.

Lie's theorem. Let N be a connected topological solvable group; then every
finite-dimensional irreducible representation of N is one-dimensional.

Proof. If N has height one, i.e., if N is abelian, the theorem is obvious
(Schur's lemma). Assume that N has height p and the theorem is already
proved for groups of height p — 1 ; then we may use the theorem for the com-
mutator subgroup(21) Z = D(N) of N. Let then «—>jTn be a finite-dimensional
irreducible representation of A7 on a vector space ©. Since S is finite-dimen-
sional, the representation z—>Tx of Z contains an irreducible representation
of Z, so that we can find a character z-+\(z) and a nonvanishing vector
axG® such that
(1) Tzax = Hz)ax

for every zEZ. Denote by 0 the set of characters X of Z such that (1) has a
nonvanishing solution a*; of course, 0 is a finite set. Now since Z is invariant
in N, for every character X of Z and every «G^Vwe can define a character \n
of Z by
(2) X„(z) - \(n~hn) ;

from (1) follows

(3) TzTna\ = TnTn TxTna\ = \„(z)Tnax;

hence XG0 implies X„G0 for every nEN. Now in the set of all characters of
Z we can define a natural topology: X converges to X' if X(z) converges to
X'(z) for every z; in this topology 0 is a discrete space; on the other hand, it is
clear that, for a given X, X„ depends continuously on nEN; since N is con-
nected, we see that, for every XG0, the set of X„ is a connected and finite set;
hence Xn=X for every XG0 and every nEN.

We therefore see that if XG0, then the set of vectors a\ which satisfy (1)
is invariant under the Tn; since it is a vector subspace of (S and since @ is ir-
reducible under the Tn we conclude that

(4) Tz = \(z) ■ 1

for every zEZ (so that 0 contains one character of Z).
Now take an arbitrary n0EN and choose an eigenvector a0 of w0;

(21) Of course we should prove that the commutator group Z of a connected group N is itself
connected; but this is easy (first, the set of elements xyx^y-1 is the map of NXN under the con-
tinuous mapping (x, y)-+xyx~1y~l of NXN into N; hence this set 5 is connected; now denote
by Sn the set of products x¡ • ■ ■ x„, where every x¡ belongs to 5; by a similar argument we see
that every Sn is connected; since S»C5»+i and since Z is the union of the Sn, we see that Z is
connected).
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(5) 7\,0ao = c-ao;

for every n, we have W(T1m~1wom£Z so that by (4)

(6) TnoTn = X(»o n   n0n)TnTno;

this and (5) prove that for every «£A, 7"„ao is an eigenvector of 7"„0; further-
more the corresponding eigenvalue c■\(ng1n~1non) depends continuously on
n, hence, by the connectedness of N, does not depend on n. Therefore the set
of eigenvectors satisfying (5) for given c and nQ is invariant under Tn; by the
irreducibility, this proves that T„0 reduces to a scalar, and this concludes the
proof of Lie's theorem.

2. Upper and lower weights of a representation of G. We shall consider,
in the group G = SL(n, R), the following subgroups:

the subgroup H of diagonal matrices h = (hi, • • • , hn) ;
the subgroup P of upper triangular matrices p = (pi¡), with

pu = 0    for    i > j;

the subgroup X of matrices x£P such that *»•,== 1, l—i = n;
the subgroup N of lower triangular matrices n = («,-/) with

»<,■ = 0    for    i < j;

the subgroup Y of matrices y£7V such that yu = 1, l=i = n.

It is clear that P (resp. N) is a solvable connected group whose commu-
tator subgroup is X (resp. Y).

Lemma 1. Let gE^G; define go = l and

gn • ■ • gu

gn

1 = i = n,

and assume that gi^O, l^i = n; then g has a unique representation g=y-h-x;
furthermore

(7) hi = gi/gi-i.
We leave the proof to the reader.
Now consider an irreducible representation g—>Tg of G on a finite-dimen-

sional vector space ^> over the field of complex numbers. By Lie's theorem,
there exists at least one character p—>\(p) of P such that

(8) Tpa = \(p)a

for some nonvanishing vector a£§; we shall say that X is the upper weight
of the representation.
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Lemma 2. The upper weight X is unique; the solutions a of (8) form a one-
dimensional subspace of § ; there exists at most one irreducible representation with
a given upper weight.

To prove Lemma 2, consider the contragredient representation of G on
the vector space $£>' dual to §. Using Lie's theorem we see that there exists
a character «—»/¿(re) of N and a nonvanishing vector bE&' such that

(9) >Tnb = ß(n)b;

now consider the coefficient

(10) 6(g) = (Z>, b)

of the given representation; using (8) and (9) and the fact that X(x) =p(y) = 1
(this is due to the fact that X and Y are the commutator subgroups of P and
N) we find at once

(11) d(yhx) = \(h)6(e) = ß(h)6(e);

hence 8(e) =0 would imply 8(g) =0 for an everywhere dense set of g (Lemma
1), hence by the continuity of 8 would prove that b is orthogonal to all
vectors T„a, which is impossible by the irreducibility of the representation
and 05^0; hence 8(e)9¿0, so that (11) proves that \(h)=p(h); hence X is
unique. Furthermore, for a fixed b satisfying (9), relation (11) is equivalent
to the fact that a satisfies (8), for (11) impliesd(gp) =\(p)8(g), i.e., (Tpa, 'Tgb)
= X(¿>) ■ (a, 'Tgb), and since the vectors 'TBb, gEG, span £>', our assertion is
proved. But it is clear by Lemma 1 that the space of functions 8 satisfying
(11) is one-dimensional; since the correspondence between the vector a and
the corresponding function 8 is one-to-one, we see that a is unique up to a
constant factor. Finally, if X is given, then by (11) and Lemma 1 we know a
coefficient of the given representation, so that this irreducible representation
is unique up to equivalence.

Of course, instead of using the upper weight X, we could use the lower
weight, i.e., the character «—>X'(ra) of N such that equation

(12) Tna' = \'(n)a'

has at least one nonvanishing solution a'.
3. Determination of all possible upper weights. Let h—*\(h) be a char-

acter of H. If X is the restriction to H of the upper weight of some irreducible
finite-dimensional representation of G, then by the above results there exists
on G a continuous function 8(g) which satisfies

(13) B(yhx) = \(h)
for arbitrary x, h, y. Setting

(i4) x(*)-i*,r*r---1*-ir-v?
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(we recall that H is isomorphic to i?*-1, where i?* is the multiplicative group
of nonvanishing real numbers) with arbitrary complex parameters
Pit • • • i Pn-i and with e¿ = 0 or 1, we see by (7) that if every g,- is 5¿0, then

(is) íd)-ni*r-*rt=i
where

(16) "l   =   pi  —  pi',  ■   ■   ■   ; Vn-2   =   p„_2  —  Pn-l', Pn-l   =   Pn-1,

(17) r¡i   =   «i   —   €2;  •   •   •   ; îîn-2  =   «n-2   _   «n-1 ! ^n-l  =   in—1-

To determine whether (14) corresponds to a finite-dimensional irreducible
representation of G, we observe that such a representation is not only con-
tinuous but also analytic with respect to the parameters of G, so that (15)
must be an analytic function on G.

Lemma 3. Assume there exists on G an analytic function satisfying (15)
when all g¿ are ¿¿0; then Vi is an even integer satisfying Vi-{-r¡i = 0, í^i^n — 1,
and conversely.

To prove Lemma 3 we first observe that SL(n, R) contains a subgroup
isomorphic with SL(n — 1, R), namely the group of those g(E.G such that
gni = gin = 8in, and a subgroup isomorphic to SL(2, R), namely the group of
matrices

1   0 • • ■ 0   0
0   1 • • • 0   0

0   0 • • • a   b
.0   0•••c    d

so that we see by induction on n that we have to prove Lemma 3 in case
« = 2 only. But if we consider in SL(2, R) the subset of matrices

and if we set v\ = v, 771 = 77, we have to express that there exists on the line R
an analytic function 8(x) such that 8(x) = | x\ '•& for x^O; if we write that
8 has a power series expansion in a neighborhood of x = 0, we find at once the
conditions v = 2p, v-\-v = Q> so that the necessity of the conditions stated in
Lemma 3 is established ; the fact that they are sufficient is obvious.

Lemma 3 yields necessary conditions for (14) to be the upper weight of
a finite-dimensional representation of G. By (17) and the fact that e,=0 or 1,
we see that r/¿ = 1 or 0 or — 1 ; since Vi must be an even integer and since
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fi-\-r¡i must be ïïO, we see that every v, must be =^0; since pn-\=vn-i must
be an even integer, we already see that we may write

(18) Pi = 2pi
where the pi are integers satisfying

(19) Pt è Pt à • • • g pn-i è 0.
Furthermore, by (18), we may write

(20) \(h) = ä? • • ■ hT::l

where

(21) r¿ = pi + e¡,

and since v» + j;i = r,- — r,+i, we see that

(22) ' n à í-í £ • •_• à r„_! S 0;
conversely it is clear that every function (20) where the exponents satisfy
(22) can be written in the form (14) in such a way that the conditions of
Lemma 3 are satisfied.

Lemma 4. Let r\, • • ■ , rn_i be integers satisfying (22); then there exists one
and only one finite-dimensional irreducible representation of G whose upper
weight is the function (20).

To prove Lemma 4, consider the function

(23) e(g) = f[g<
1—1

where vi=ri — r2, ■ ■ ■ , i'„_i = rn_1, and denote by 33 the vector space spanned
by the right translates of 8; define a representation g—>Tg of G on 33 by Tg<p(g')
= <l>(g'g), 0G33. First of all, (23) proves that 8 is a polynomial with respect to
the gij, so that 33 is a set of polynomials whose degree is bounded ; hence 33
is finite-dimensional(22). Furthermore it is clear by the very construction of
6 that

(24) Tp6 = \(p)8

where \(h) is the function (20). Therefore Lemma 4 will be proved if we
establish that the representation g—*Tg is irreducible. But assume that 33
decomposes into the direct sum of two invariant subspaces SBi and SB2, and
denote by 0i and 02 the components of 8 on SBi and ÎB2; by (24) it is obvious

Í22) If G were an arbitrary semi-simple group, this fact probably would require a nontrivial
proof; it is interesting to observe that a similar problem arises in Harish-Chandra's method (see
Lemma 15 in Part I of [19]).
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that every di satisfies Tßi = \(p)8i; on the other hand it is clear that 8 satisfies
8(yg) =8(g), and since right translations preserve this relation, we see that it
holds for every cp£93; in particular we see that every 0,- satisfies 8i(yhx)
= \(h)8i(e); hence by Lemma 1 every 6i is proportional to 8, which of course
proves the irreducibility.

In conclusion, we have obtained a complete classification of all finite-
dimensional irreducible representations of SL(n, R) : every such representa-
tion is characterized by integers r\, • • • , r„_i satisfying (22), and to every
solution of (22) corresponds such a representation, whose upper weight is
given by (20). Of course this result is not new.

4. A remark on SL(n, C). The above method obviously applies to
SL(n, C) (and more generally to all classical groups), and it leads to an
integral formula for the characters of SL(n, C) which seems to be new.

In fact, let g—*Tg be a complex-analytic finite-dimensional irreducible repre-
sentation of G = SL(n, C) on a vector space §. By using as in no. 2 subgroups
H, P, N, X, Y we see that the given representation has a coefficient 6 satisfy-
ing 8(yhx) =\(h) for some character of H; but since we are dealing with
complex-analytic representations, \(h) must be a complex-analytic character
of H, so that \(h) =ÄJ1 • • ■ hr£z\ with integers r¿; using arguments similar to
the proof of Lemmas 3 and 4 we see that fi, • • • , rn^ correspond to a com-
plex-analytic representation of G if and only if r\ = r2 =  ■ ■ ■ =rn^i — 0. Hence

(25) 8(g) = g? ■ ■ • ¿3
where vi = r\ — r2, ■ ■ ■ , p„_i=r„_i are positive integers. Now denote by K a
maximal compact subgroup of G, e.g., the unitary subgroup SU(n). Since
g^Tg is analytic with respect to the complex parameters on G, it is clear
by the unitary trick that k-^Tk is an irreducible representation of K. But it
is known that if k—>Tk is an irreducible representation of a compact group K
on a vector space §, then for every operator A on £> we have

dim($)-   f 7V47V dk = Tr(A)-l;

from this and (25) we conclude: the character x(g) of the given representation of
G is the function

(26) x(g) =dim($)- fd(kgk-i)dk

where the function 8 is given by (25).
The complete calculation of integrals such as (26) is unfortunately a

nontrivial problem—but this problem can be solved by using a method due
to Gelfand and Naimark (see pp. 68-77 of [12] where integrals similar to (26)
arise in connection with spherical functions). The case « = 2 however is an
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exception; setting

(x    y\ /    u    v\
g = [ I ; k = I ),    uü + vv = 1,

\z    t / \ — vw

we find at once (kgk~l)i=ü(ux-\-vz) -\-v(uy-\-vt) ; hence if g is a diagonal matrix:

g = C   I)'
we get

6(g) = (uuh + WÁ-1)*;

setting u = e2™'" cos <p,v= e2riß sin 0, so that dk = sin 0 cos (pdadßdcp, we see that

(X cos2 (¡> + X"1 sin2 0)" sin 0 cos 0¿0
0

up to a constant factor, from which the classical result follows, namely that

X-+1 - X""-1
(27) x(g) =

(v + 1)(X - X-1)

up to a constant factor.
It should be observed that the above method does not directly lead to the

known formulas for the dimensions of the irreducible representations, while
H. Weyl's method does. Actually the dimension of the representation whose
character is (27) is given by

(28) (J |x(¿)|2¿¿)

provided x is normalized by x(e)=l and provided dk is chosen (as done
through this paper) in such a way that Jdk = \. Although (28) can be com-
puted in an elementary way on SU(2), the calculation of such integrals on
SU(n), arbitrary n, requires the integration formulas due to H. Weyl.
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