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Abstract

Takens' theorem demonstrates that in the absence of noise a multidimen-

sional state space can be reconstructed from a single time series. This theorem

does not treat the effect of noise, however, and so gives no guidance about

practical considerations for reconstructing a good state space. We study the

problem of reconstructing a s*_atesp_e with observational noise, examining the

likelihood for a particular state given a series of noisy observations. We define

a quantity called the distortion, which is proportional to the covariance of the

likelihood function iaa reconstructed state space. This is related to the noise

amplification, which corresponds to the root-mean-square errors for time series

prediction with an ideal model. We prove that in the low noise limit minimizing

the distortion is equivalent to minimizing the noise amplification.

We derive several asymptotic scaling laws for distortion and noise ampli-

fication. They depend on properties of the state space reconstruction, such

as the sampling time and the reconstruction dimension, and properties of the

dynamical system_ such as the dimension a_ld Lyapunov exponents. When

the dimension and Lyapunov exponents are sufficiently large these scaling laws

show that, no matter how the state space is reconstructed, there is an explosion

in the noise amplification - from a practical point of view ali determinism is

lost, even for short times, so that the time series is effectively a random process.

In the low noise, large data limit we show that the technique of local prin-

cipal value decomposition (PVD) is an optimal method of state space recon-

struction, in the sense that it achieves the minimum distortion in a state space

of-the lowest possible dimension.
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1 Introduction

There are many situations in which we observe a time series {x(ti)},i = 1,...,N

which webelieve to be at least approximately described by a d-dimensional dynamical

system 1 f.

s(t).= f's(O). (1)

The time series is related to the original dynamical system by

z(t)=h(s(t)). (2)

We call h the measurement function. The observed time series x(t) is D-dimensional,

so that h : ._d _ _o. We are most interested in dimension-reducing measurement

functions, where D < d, and we will often implicitly assume D = 1.

The state space reconstruction problem is that of recreating states when the only

information available is contained in a time series. A schematic statement of the

problem of reconstructing a state space is given in Figure (1).

State space reconstruction is necessarily the first step that must be taken to an-

alyze a time series in terms of dynamical systems theory. Typically f and h are

both unknown, so that we cannot hope to reconstruct states in their original form.

However, we may be able to construct a state space that is in some sense equivalent

to the original. This state space can be used for qualitative analysis, for example to

construct a phase plot or one dimensional map, or for quantitative statistical charac-

terizations, such as fractal dimension, Lyapunov exponents, or the eigenvalues of fixed

points. We are particularly interested in state space reconstruction as it relates to the

problem of nonlinear time series forecasting, a subject that has received considerable

attention in the last few years [4, 6, 7, 8, 9, 15, 18, 19, 27, 21].

State space reconstruction waz introduced into dynamical systems theory indepen-

dently by Packard et al. [20], Ruelle 2 and Takens [26]. In fact, in time series analysis

this idea is quite old, going back at least as far as the work of Yule in 1927 [28]. The

important new contribution made in dynamical systems theory was the demonstra-

tion that it is possible to preserve geometrical invariants, such as the eigenvalues of

a fixed point, the fractal dimension of an attractor, or the Lyapunov exponents of a

trajectory. This was demonstrated numerically by Packard et al. and was proven by

Takens.

X he basic idea behind state space reconstruction is that the past and future of a

time series contain information about unobserved state variables that car. be used to

define a state at the present time. The past and future information contained in the

time series can be encapsulated in a delay vector 3

= + ,-m+),... ,z(t- (a)

1This is one of several possible ways of representing a dynamical system, ft is the map that takes

an initial state s(0) to a state s(t). The time variable t can be either continuous or discrete, fs is

sometimes called the time-t map of the dynamical system.
"Private communication.

3For convenience we assume that the sampling time is uniform.
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Figure 1" The true dynamical system f, its states s, and the measurement function

h are unobservables, locked in a black box. Values of the time series z separated by

intervals of the lag time r form ,_ delay vector _: of dimensioa m = 1 + m+ + m_,

where m+ is the number of values from the future and m_ is the number of values

from the past. _ maps the original d-dimensional state s into the delay vector _:.

further maps the delay vector x into a new state y, of dimension d' < m.



The dimension of the delay vector is m = 1 + m_ + m+. The number of samples

taken from the past is m_, and thenumber from the future is m+. If rh+ = 0 then

the reconstruction is predictive; otherwise it is mixed. The time separation between

coordinatesi r, is the lag time.

Takens studied the reconstruction map ¢, which maps the states of a d-dimensional

dynamical system into m-dimensional delay vectors.

I. = O(s)-- h(ffm+(s)),... ,h(s),...,h(f-*_-(s)) (4)

He showed that generically ¢ is an embedding when m _ 2d + 1. An embedding is a

smooth, one-to'one coordinate transformation with a smooth inverse. When ¢ is an

embedding, O(_d) is diffeomorphic to _.

[f _ is an embedding then a smooth dynamics F is induced on the space of

reconstructed vectors.

F'(_) = Cf'(_-_(x)) (5)

The reconstructed states can be used to estimate F. F is equivalent to the original

dynamics f, and we can use it for a.ny purpose that we could use the original dynarxfics,

such as prediction, computation of dimension, fixed points, etc.

Takens' proof is important because it gives a rigorous justification for state space

L'econstruction. However, it gives little guidance on reconstructing state spaces from

real-world, noisy data,. For example, the measurements x(t) in the proof are arbitrarily

pt'eclse,' resulting in arbitrarily precise state_ii!_is.__,,_:_ makes .the specific value of the
lag time r arbitrary 4, and any reconstruction is as good as any other. However in

practice, the presence of noise in the data blurs states and makes picking a good lag

time critica,l. Our work "fleshes out" Takens' proof, by examining how states are

affected when conditions such as arbitrary precision are relaxed.

There are several such factors which complicate the reconstruction problem for

real-world data:

1. Observational noise. The measuring instruments are noisy; what we actually

observe is x(t) = _(t) + _(t), where _(t)is the true value and _(t) is noise.

2. Dynamical noise. External influences perturb s, so that from the point of view

of the system under study the evolution of s is not deterministic, f is thus a

stochastic, dynamical system.

3. Estimation error, f and h are both unknown. They can be estimated, but with

a finite amount, of data. some uncertainty remains.

In real problems noise is always present. When we project a d-dimensional state

onto a D-dimensional measurement with d > D, we throw away information. We can

reconstruct some of this missing information from the past and future measurements.

However, if the uncertainty of the reconstructed state is much higher than that of

4Provided it meets the conditions for genericity.



the individual measurements, then we have amplified the noise; the system is not as
deterministic as it would be if we could observe more information.

State space reconstruction relies on a fl_w of information from the unobserved

variables of the system to the observed variables. This can be qualitatively illustrated

with the familiar Lorenz equations,

dz

d-i = 10( - (6)
dy

d-'[ = -zz + 28z- y

dz i0

d-7 = xv--5"

Assume that we observe x. Since d_ does not depend on z directly, information

about z depends on the flow of information through y; when , changes it causes _~ dt

to change, which causes y and hence -_ to change. When z ,_ 0, since the only

coupling is through the zz term a large change in z causes only a small change in x.

Equivalently, a small change in x corresponds to a large change in z. Thus noise in

the determination of z from measurements of x is acutely amplified when x _ 0.

When noise is present, state space reconstruction becomes a problem in statistical

estimation. The formalism that we develop in this paper makes the notion of noise

amplification more precise, so that the qualitative analysis of the Lorenz equations

in the previous paragraph becomes q, lantitative, it also provides guidance into the

practical problem of reconstructing coordinates so that they minimize noise amplifi-
cation.

Noise amplification depends on three factors:

. The measurement function. One observation may give more information than
another.

. The method of reconstruction. A poor state space reconstruction amplifies noise

more than a good state space reconstruction; noise amplification depends on

factors such as ra and r.

o The dynamical system. Noise amplification depends on the flow of information

between *_heindividual degrees of freedom, which depends on properties of the

dynamical system such as the dimension and Lyapunov exponents.

In assessing predictability it is important to distinguish between estimation error

and noise amplification. Figure (2) shows a hypothetical comparison of two prediction

problems in the idealized case oi' a one dimensional state space. The noise amplifica-

tion is related to the "thickness" of the distribution of points. In Figure (2a) the noise

amplification is large, and in Figure (2b) the noise amplification is small. However,

the estimation error in (b) might be larger than that of (a).

Both noise amplification and estimation error cause prediction errors. The esti-

mation error depends on the procedure used to approximate the dynamics. Noise
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Figure 2' Two hypothetical scenarios for prediction in a one dimensional state space.

The horizontal axis is the state at time t, and the vertical axis is the state a time

t + 1 in the future. (a) shows a coordinate system with high noise amplification, while

(b) shows a coordinate system with low noise amplification. This is evident from the

"thickness" of the distribution of points at any given y. However, since the functional

form of (b) is more complicated, with a limited amount of data (b) might result in

larger estimation error than (a).

amplification, however, does not. It sets a limit to predictability that is independent

of the modeling procedure. In the limit of a large number of data points for most

good approximation schemes the estimation error £nes to zero. The prediction errors

in this limit are given purely by the noise amplification. The noise amplification thus

tells us the prediction errors that remain even with a perfect model.

As we shall show, when the dimension and Lyapunov exponents are sufficiently

large there can be a complete breakdown of predictability, so that even with a perfect

model the time series is unpredictable, even for short times. This is the limit in which

a time series becomes a true random process.

Any approach to state space reconstruction uses the information in delay coordi-

,lares as a starting point. For some purposes, such as reducing the dimension, it may

be desirable to make a further coordinate transformation to a new coordinate system

y.

y = _(_) (7)

As described in Section 2, examples of such transformations _ are differentiation

or the singular value decomposition in PVD. By splitting the reconstruction process

into (I)and _, we have conveniently labeled the two parts of the problem. The choice

of (I) determines the form cf the delay coordinates, which are the raw information

we have to work with, while q_ determines how we use that information. The total

reconstruction map _- = _ o (I)takes the original coordinates s to the reconstructed

coordinates y.

We show here that it is impossible to reduce the noise amplification by transform-

ing delay coordinates by _. The minimum possible noise amplification over ali _IJis

obtained when _ = 1 and y = x. However, it is in general possible to compress all

the information in x into a coordinate y with a lower dimension while keeping the

noise amplification the same. This can be desirable for reducing statistical estirna-



t ion errors, which typically increase with dimension (often exponentially). The local

p['incipal value decomposition technique discussed in Section 6 accomplishes this in

tile minimum possible dimension.
i

1.1 Approach and overview

The main goal of this paper is to develop a theory which gives insight into practical

l)t'oblerns of state space reconstruction in the typical case in which a times series is

the only available information. In order to get insight into the problem and develop

a theory for its solution we begin by assuming that we know both f and h. Irl

Sections 3 through 6 we develop an understanding of tile effect that f and h have

on the problem. We are currently investigating the implications of these theoretical

results for the case when f and h are unknown, and will report the results in a future

publication.

Throughout this paper we assume that the noise is entirely observational. Treating

dynamical noise is obviously important, but it is outside the scope of this paper.

However, we suspect that many aspects of the framework we have established here

can be used to analyze dynamical noise as weil.

In Section 2 we review what is currently known about state space reconst_ruction.

\Va begin by discussing methods currently available for state space reconstruction,

such as delay coordinates, derivative coordinates, and principal value decomposition.

\Ve then review extensions to Takens' theorem, and present an intuitive discussion of

why it is true.

In Section 3 we derive formulas for the likelihood function and compute it for

several examples. We use color graphics to develop intuition and to qualitatively

illustrate what factors are necessary in order to obtain a good state space reconstruc-

tion.

From a practical point, of view it is important, to have simple criteria for selecting

a reconstruction. The likelihood function gives a complete description of a recon-

struction, but it is too complicated; we need a number, or a set of a few number's.

In Section 4 we examine several candidates and argue that for this problem criteria

based on the variance are more appropriate than other possibilities, such as mutual

information. We define two quantities based on the variance, the disto _' _n, which

is related to mean-square errors in the state space, and noise amplification, which is

related to erro{s in time series prediction. We discuss the relationship between dlstor-

tion and noise amplification, showing that minimizing one is equivalent to minimizing

t,he other.

In Section 5 we discuss the problem of deciding how much noise amplification to

expect in a given situation. We demonstrate that [or a given 7"noise amplification is

a monotonically non-increasing function of m. We derive the behavior of the noise

amplification as a function of m, r, d, and the Lyapunov exponents, testing our con-

clusions on a simple example. We show that for predictive coordinates an explosion

in the noise amplification occurs when the Lyapunov exponents and dimension are

sufficiently large, which causes a transition from behavior that is approximately de-

8
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symbol description

s(t) d-dimensional state at time t

f' time-t map of dynamical system; s(t)= ff(s(O))

z(t) D-dimensional value of time series at time t. (We often assume D = 1.)

h measurement function x(t)= h(s(t))

S(t) d- D dimensional measurement surface S(t)= {s'x = h(s)}

r sampling time ti+t -tl

,.T m-dimensional delay vector (x(t + fm+),..., x(t),..., x(t - rra_))

y reconstructed £-dimensional coordinate based on x

delay reconstruction map _ = _(s)

map taking delay vector to new coordinate y = _(x.)

- total reconstruction map --. = _I/o

_(t) noise fluctuation, usually assumed to be Gaussian IID

¢ m-dimensional vector of noise fluctuations (_(t + rra+) _(t), _(t - rra_))

_, _ true values of x., _ in absence of noise

_, ,_, ] best estimate for s, x, f

p probability density function (identified by its arguments)

p(xly ) probability density for x given y
E distortion matrix

Trace of

Table 1: Notation used in this paper.

terministic for short times to behavior that is effectively random over any time scale.

Finally, we use two examples to illustrate several aspects of the behavior of the noise

amplification.

In Section 6 we study the effect of making further coordinate transformations

to delay coordinates. We demonstrate that in the low noise, large data limit, local

principal value decomposition is an optimal state space reconstruction method in

the sense that it minimizes the noise amplification with a coordinate system of the

smallest possible dimension.

1.2 Summary of Notation

The notation we use in this paper is summarized in Table 1.

2 Review of previous work

2.1 Current methods of state space reconstruction

The currently used possibilities for state space reconstruction include delay coordi-

nates, derivative coordinates, and global PCA. Each of these is sometimes done in

conjunction with filtering. As a matter of experience it is quite clear that the method
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of reconstruction can make a big difference in the quality of the resulting coordinates,

but in genera! is not clear which method is the best.

Delay coordinates are currently the most widely used choice. They have the nice

propertythat the statistical properties of each dimension are the same. They have

the unpleasant property that in order to use them it is necessary to choose the delay

parameter r. If r is too small each coordinate is almost the same, and the trajectories

of the reconstructed space are squeezed along the identity line; if r is too large, in

the presence of chaos and noise the dynamics at one time become effectively causally

disconnected from the dynamics at a later time, so that even simple geometric objects

look extremely complicated. Most of the research on the state space reconstruction

problem has centered on the problems of choosing r and m for delay coordinates.

The proposals for doing this include information-theoretic quantities [13, 11, 1], and

others[5].
Another method for reconstructing a state space is the method of derivatives,

originally investigated by Packard et al. [20]. The coordinates are derivatives of

successively higher order.

y,(t) = (s)

y (t) =

:_:(J)(t)is a numerical approximation to the jth derivative of z(t). As Takens proved,

as long as m is sufficiently large derivatives define an embedding.

There are many different methods for the numerical computation of derivatives, so

in this sense the method of derivatives actually defines a family of different methods,

depending on the algorithm used. Straightforward methods of numerical differen-

tiation act as a high pass filter, with a response function that is proportional to

frequency. The quality of derivative coordinates in the presence of noise can be con-

siderably improved by using a numerical algorithm that uses low pass filtering to

balance the response function.

The other method in common use is principal value decomposition, also called prin-

cipal component analysis, factor analysis, or Karhunen-Loeve decomposition. Broom-

head and Kin$ originally proposed this for reconstructing a state space for chaotic

dynamical systems [3]. The simplest way to implement their procedure is to com-

pute the covariance matrix C_j = (zixj)t, and then compute its eigenvalues ai. (z;

represents the ith coordinate of the delay vector _.; ()t denotes a time average.) The

eigenvectors of Cii define a new coordinate 3ystem, which is a rotation of the original

delay coordinate system. The eigenvalues are the average root-mean-square projec-

tion of the m-dimensional delay coordinate time series onto rh,' eigenvectors. Ordering

them according to size, the first eigenvector has the maximum possible projection,

the second has the largest possible projection for any fixed vector orthogonal to the

first, and so on.

10



We have recently shown that PVD coordinates are very closely related to (appro-

priately low .pass filtered) derivative coordinates[14].

At this point t',lere is no clear statement as to which of these methods is superior.

Fraser has presented evidence fo/"situations in which delay coordinates are superior

to PVD [12]. However, we have observed examples where the opposite is true. The

situation at this point is inconclusive, and it is not clear what causes one coordinate

system to be better than another. One of our central motives for defining noise

amplification is to compare different methods of state space reconstruction. This gives

guidance for optimizing the parameters of a particular method, or for comparing two
different methods.

Principal value, derivative, and delay coordinates are related to each other by

linear transformations. However, the transformation from delay coordinates to the

original coordinates is typically nonlinear. As Fraser has demonstrated [12], nonlin-

ear coordinate transformations can be greatly superior, The method of local PVD,

discussed in Section 6 implements a nonlinear coordinate transformation, _'hich gives

it the potential for better performance.

2.2 Takens' theorem revisited

In order to understand when delay vectors form an embedding, Takens investigated

the equation z = ¢(s). For a univariate time series (D = 1) this can be regarded

as a set of m simultaneous nonlinear equations in d variables. The transformation

maps a d-dimensional surface into an m-dimensional space. If the surface ¢(_)

contains no self intersections then there is a unique solution for s given any z, and

is an embedding. If ¢ is sufficiently close to a linear transformation then this may

be possible with m = d. In general, however, for a unique solution we must have

m > d. Generically, when 2d > m a d-dimensional surface in m dimensions has self

intersections on sets of dimension ?4- m; when 2d < m generically it has no self

intersections at all. The case when d = 2 and m = 3, for example, is shown in Figure

(3); in this case there are typically self intersections along one dimensional curves.

When m = d + 1 the set of self intersections is typically of dimension d- 1, and

is an embedding almost everywhere. As m increases the dimension of the set of self

intersections decreases, until finally when m > 2d there are no self intersections at

all. Thus, m .>_2d + I guarantees that ¢ is an embedding, it is possible that it will

be an embedding with m as small as m = d. See reference [23] for a more complete
discussion.

The reconstruction process can also be considered in terms ot the constraint that

each measurement causes in the original state space. This gives a more dynamical

point of view, which turns out to be useful for visualization in higher dimensions, and

particularly in the presence of noise.

Let the measurement surface S(t) be the set of possible states that are consistent

with a given measurement x(t), i.e., S(t) = {s(t) ' x(t) = h(s(t))}. When h is smooth

S(t) is a surface of dimension d- D. For example, when d = 2 and h is projection onto

the horizontal axis, the measurement surfaces consist of horizontal lines. The effect

11
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Figure 3: Solutions of the equation x = _(s) when d = 2 and m = 3. There are

typically self intersections along curves. For example, the state So is mapped onto a

self intersection, while s_ is not. Except for special values of s like so, • defines an

embedding.

of a series of measurement_ can be understood by transporting them to a common

point in time. The state at that time must lie in their intersection I(t).

s(t) E [(t)=f-_'n+S(t+rm+)N...NS(t)f'l..._f_m-S(t-rm_) (9)

The intersection I(t) is never empty, since there must be at least one state consistent

with ali the measurements. If I(t) does not consist of a single point, _ is not an

embedding. An example for the case when d = 2 and m = 3 is shown in Figure (4).

In mo_t real situations f, h, and consequently _ are unknown. Nonetheless, as

long as there is a smooth one-to-one correspondence between the delay coordinate and

the original state we know that there is an embedding, so that the delay coordinate

x ,:a_nbe us_ iu place of the original coordinate s.

3 Geometry of reconstruction with noise

The goal of reconstruction is to assign a state based on a series of measurements. With

noise this ta._k is considerably more difficult because the measurements are uncertain,

and there are many states that are consistent with a given series of measurements.

The probability that a given state occurred can be characterized by a conditional

probability density function _ p(sl,r,.). This illustrates how the presence of noise com-

'_We use probability density functions rather than measures only because we want to keep the

discussion accessible to the widest audience possible. Ali of the statements given here can be recast

in more rigorous terms using measures.

12



f2

X j"

x = x(t) x(t-x) x(t-2z)

Figure 4: A dynamical view of reconstruction in terms of the evolution of measurement

surfaces. Suppose that the measurement function h corresponds to projection onto

the horizontal axis, so that h(s) = z. A measurement at time t implies that s

lies somewhere along the light gray vertical line defined by z = x(t). Similarly, a

measurement at time t - r implies that it was on the darker line x = x(t - r), and

a measuremeat at time t- 2r implies that it was on the darkest line x = x(t - 2r).

To see what this implies when they are taken together, each curve can be mapped

forward by f to the same time t. If their intersection is a not single point, then the

reconstruction js rae_ an embedding.

I3



plicates the reconstruction problem: without noise a point is sufficient to characterize

what is learned from a measurement, but with noise this requires a function giving

the probability of all possible states. For chaotic dynamics the properties of p(sl_ )

can be avery complicated, as has been demonstrated by Geweke.

In this section we derive several formulas for p(sl_ ) when h and f are known. We

compute p(s[_.) for several examples, to illustrate qualitatively how it depends on x

and on the properties of the reconstruction problem.

3.1 The likelihood function

We can derive p(s[x) from Bayes' theorem, making use of the fact that p(_[s) is

relatively simpler. According to the laws relating conditional and joint probability

p(_I_)p(_)= v(_l_)p(_) (10)

This can be rearranged as

v(_l_)_ p(_)p(_l_) (11)

The factor p(mls)on the right is often caned the likelihood function, since it represents

the likelihood of a given series of observations. The prior p(s) encapsulates any

information that we had before these observations occurred. If we are studying a

chaotic attractor, for example, and we know its natural measure, then we can take

this as our prior. If we have no prior knowledge, however, then this term can be taken

to be constant. The term on tile left represents what we know about s after taking

the observations z. into account, and is called the posterior.

When f and h are known we can write down a formula for the likelihood function.

Assume the noise _ is zero mean.

v(zl_)=p(_- _,) (12)

where _ is the "true" value of _, in the absence of noise. It is related to the state

s by _, = _(s). If we furthermore assume that the noise is IID (each fluctuation is

statistically Independent, and Identically Distributed with probability p),

i=m+

P(XlS) = H p(x(t + lr)- h(f'i(s))) (13)
i'- --m_

3.1.1 Gaussian noise

If we assume that p(_) is a Gaussian of variance d, this becomes

'="_+ 1 (_(t+ i_-)- _(t+ i_))_
p(x[s) = rx _2_e exp - ' (14)i=-rn_ 2e2

If we assunm the Euclidean norm, using the definition of _ this can be rewritten as

1

p(z.[s) = A exp --:-_-_-d[[_ - _(s)[[ 2 (15)
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where .4 is a normalization constant.

Thus, the probability for x given the true value of s is quite simple: it is an

isotropic Gaussian centered on the true delay vector _ = ft(s). The probability for s

given :..v.,ha contrast, is much more complicated; using Bayes theorem (Equation (11))
giw:s

1

p(s _) = A'p(s) exp -_--/e2iIz.- ¢(s)[[ 2 (16)

where A' is another normalization constant. Although this looks quite similar to

Equation (15), it is actually quite different, as it is interpreted as a function of s

rather than $.. Because of the nonlinear function 4, it is not a Gaussian.

3.1.2 Uniform bounded noise

Another case that is easily t_eated is that of uniform bounded noise,

{ _, ifl_l<eP(_) = O, if > e.
(17)

The effect of a given measurement can be visualized geometrically in terms of

the measurement strip S_(t) = {s : Ix(t)- h(s)l < e}. The measurement strip is

the support of p, and is similar to the measurement surface discussed earlier, except

that it is "thickened" by e. Following Equation (13) the likelihood function can be

computed in a manner analogous to Equation (9). The state must lie inside the

intersection of the measurement strips.

s(t) E I_(t) = f-_"+S_(t + rm+)n...nS_(t)N...N f_-S_(t- rra_) (IS)

The likelihood function is uniform over the domain defined by I_(t), and zero out-

side this domain. For an invertible dynamical system a simple tool for determining

whether or not a given point s E I_(t) is to test whether it satisfies the condition

f''+(s) E S_(t + fm+)A...A s E S_(t) A .../_ f-'_-(s) E AS_(t- rra_) (19)

3.1.3 Chaotic geometry

We have performed several numerical experiments using the above formulae for like-

lihood functions, in particular for two dimensional dynamical systems such as the

[keda map. This has allowed us to investigate the effects of varying the number of

measurements, varying the noise level, and the effect of homoclinic tangencies. We

have found the use of color graphics particularly helpful in exploring how these vari-

ous effects interact with each other. We intend t_ illustrate these findings in a future

publication.
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4 Criteria for optimality of coordinates

To choose between different reconstructed coordinate systems we must first decide

what wemean by "best". Since our primary interest is in prediction, in principle
we could just use each coordinate system to estimate a dynamical system f, and

test to see which coordinate system gives the best predictions. In practice, however,

this is cumbersome, since it is necessary to test many different statistical estimation

procedures as well as many different coordinate systems. The errors would contain

t,he effects of both estimation error and observational noise, and the result of such an

experiment might give very little theoretical insight. Instead, we are going io begin

by developing a formalism for understanding the effects of observational error alone,

and we defer the problem of estimation error to a later publication.

The presence of noise forces us to think about the time series in probabilistic

terms. The predictive value of a given reconstructed coordinate y is given by the

conditional probability density of a future value of the time series given y.

p(x(T)ly(O)) = probability z(T) given y(O) (20)

p(x(T)Jy(0)) tells us what we can predict about x(T) given y(0), assuming a perfect

estimation procedure. This applies to either iterative or direct estimation procedures

[4, 9]. Any criterion for evaluating the effect of observational noise must be based on

p(x(T)Iy(O)).

4.1 Error measures

To choose between different coordinate systems, we must decide which property of

p(x(T)ly(O)) to optimize. This amounts to deciding what we mean by the "best"

predictions. There are several natural possibilities:

• Mazimum ezpectation. We can view this as a gaming problem in which we must

bet on the value of z(T). We naturally want to maximize our expectation, which

we can do by choosing the embedding which gives p(x(T)ly(O)) with the largest

possible maximum value. However, since x(T) is a continuous variable, we can

never predict it exactly, and this is not well defined unless a coarse graining is

specified_ Also, this is only optimizes the rate of return with an infinite bank.

• Mutual information.

Let H represent the entropy function H(x) = lp(x)logp(x)d:c. We can choose

the coordinate system that maximizes the mutual information I(x, y) = H(x) -

H(xly), where H(zly) is the entropy associated with the conditional probability

density p(xJy). Note that since H(x) is fixed, this is equivalent to minimizing

the conditional entropy H(zly). This criterion has the disadvantage that for

continuous variables it may have little to do with prediction error. For example,

a p(zly ) with sharp peaks at different values of z may have a very low entropy
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Figure 5: .The conditional probability 4 s(t) given x(t). Observational noise induces

an uncertainty in the delay vector, here symbolized as a "noise ball". The noise ball,

in turn, induces a conditional probability density for the true stage given the delay

vector. The variance of this density quantifies the quality of the embedding, Note

that a sharp, multimodal density function can have a low entropy but a large variance.

but a high variance 6. This makes the mutual information very insensitive to

whether or not a reconstructed coordinate system forms an embedding. Several

authors have looked at various criteria relating to mutual information [25, 13,

121.

• Variance. The variance

V,r( ly)= f z_ p( zly)dz (21)

is a lower bound on the mean-square prediction error E(z - _.)2 as follows

(see [22] for details). It can be shown that the mean square prediction error

is minimized by taking the predictor _: = E(xiy ). The prediction error of

this ideal predictor is then Var(xiy), which is a lower bound for any other

predictor. For continuous variables this is a very natural way to evaluate the

quality of predictions. Furthermore, it is easy to calculate analytically and

estimate numerically. We shall use this measure.

6At any finite levelof resolution, x(T) may be thought of as a "message",with a corresponding
number of bits, as originally proposed by Shaw [24, 25]. The entropy tells us our uncertainty in
predicting this message, ttowever, it weightsthe low order bits equally with the high order bits. In
predicting a continuous variable, however,an error in the highest order bit is usually much worse
than one in the lowestorder bit. The inability of the entropy to make this distinction makes it a

poor measureof the quality of predictions.
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• Other measures, such as mean-absolute error or the geometric mean error have

the advantage that, compared to mean-square error, they do not emphasize

outliers. Our choice of variance as compared to these other measures is primarily

one of convenience.

4.2 Noise amplification

The observational errors have a variance of e2. We define the noise amplification at a

given noise level e:,cr_,as the ratio of the variance in the future value x(T) given the

present reconstructed coordinate y(0), to the variance of the observational errors.

1
_/Var(x(T)Iy(O)) (22)=

The quantity cr_ has the advantage that it can be estimated directly from a time

series r, and so can be used as an operational test for the quality of a given set of
coordinates.

The quantity credepends on both e and p(_). We can remove this dependence by

assuming the noise is Gaussian and taking tile limit as e --, 0. We will call this simply

the noise amplification a.

a(T) = lima,(T) (23)
_-'*0

This limit may not always exist; in particular, when the state space reconstruction

is not an embedding it will tend to infinity. However we will show in Section 4.4,

that for state space reconstructions that are embeddings the limit exists, and in

the case of Gaussian noise, it depends solely on geometric factors, specifically, the

dynamical system f, the measuremeut function h, the embedding dimensions m+

and m_, the state y(0), and the prediction time T. In Section 4.6 we will illustrate

l_ow in some situations the limit depends on properties of an underlying attractor,

and the realization of the noise perturbations. At small noise levels, a can be used to

provide an estimate of the "true" noise amplification ac. Geometrically, ac measures

the "thickness" of Figure (2) in the vertical direction at the state x(t) = y(O).

Taking the limit as the noise goes to zero is quite different from simply setting the

noise to z_ro, as was effectively done by Takens [26]. When the noise is set to zero,

ali reconstructions that are embeddings are equivalent. In the limit as the noise goes

to zero, however, two embeddings may h_ve quite different noise amplifications.

If we are interested in a geometric object such as a chaotic attractor that has an

ergodic measure, we can also elimieate the dependence on the state y(0) by taking

an averaging over the values of y(0) with respect to this measure. We will call this

the average noise amplification

7Disregardingthe factor of 1/e.
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 !ii!i!ii
Figure 6: Since the errors in the time series are identically distributed, the probability

density function for noisy delay coordinates is isotropic (top). This induces a non-
i_otropic distribution in the original space S (bottom).

4.3 Distortion

The noise amplification has the disadvantage that it depends on the time T. This
problem can be overcome by defining a quantity E_ that is related to noise amplifi-
cation, called the distortion matrix at a given noise level _ as follows

E, - _Var(sly) (25)

We define a related scalar quantity 6_called the distortion at a given noise level e s.

by Equation (26),

= lily) = _ (26)

Finally, by analogy with Equation (23), we define the e-independent quantities
= lim__o E_ and 6 = lim_,o 6_. The motivation for defining the distortion in this

way come_ from considering the geometrical effects of reconstruction. In delay co-
ordinates the probability distribution corresponding to the noise is isotropic. For

example, fbr Gaussian noise a surface on which the probability density function p(z)
is a constant is an m-dimensional sphere, as shown in Figure (6). Assuming that @

is _n embedding in a neighborhood of this sphere, in the low noise limit this sphere
will map into a d-dimensional ellipsoid in the original state space S. The distortion

is a d x d symmetric real mat_ix, whose eigenvalues are proportional to the squares

of the principal axes of this ellipsoid.

STheterm "distortion"wasoriginallyusedfor anothercloselyrelatedquantitydefinedby Fraser
[12].
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The distortion has two disadvantages when compared with the noise amplifica-

tion. First, it depends on the coordinates used to describe the dynamical system; for

example, rescaling s changes the distortion. Second, it is not observable, and can-

tlot, be computed from a time series alone. Nonetheless, the distortion is a valuable

tool for understanding the behavior of different coordinate reconstructions. This is

because of some theoretical relationships between distortion and noise amplification

which we will describe in Section 4.5. These results tell us that, in order to under-

stand the effect of noise on the embedding process, it should be helpful to examine

how the uncertainty in measurements of the time series translates into uncertainty in

the original state space.

F_'om a practical point of view _he distortion may seem less relevant than the

noise amplification. However there are some cases where we may know parametric

forms for f and h, for example from scientific laws, and want to estimate the "hidden

variables" s, or the unknown parameters of f and h from a noisy time series. Note

that unknown parameters are just like dummy hidden variables. This is the problem

in extended Kalman filtering, and has also been considered by Breiden et. al. [2].

Then the distortion matrix is of direct interest in quantifying the uncertainties in the

estimates for the hidden variables. For example, in the Lorenz system, we considered

how accurately it was possible to infer the value of z given values for x.

4.4 Low noise limit

In the low noise limit, when _ is an embedding the probability density p(sl_ ) becomes

much simpler. For example, take Equation (15), which assumes Gaussian noise and

_t uniform prior We can rewrite it as

p(;;.Is) = Ae-_ (27)

,vh rA nor,  htio,', = lira- =. mo tlikay of
s (the maximum likelihood solution _) occurs at the maximum value of p(s _), where

DQ(_) = O. If • is an embedding, then there exists a unique maximum for sufficiently

sm,_ll noise levels. When e is small, p(a[_) is concentrated near its maximum, and it

is possible to get a good appro×imation for p(s[,_) by expanding Q in a Taylor series

about _. To leading order in s - _ this is9

1

p(s _.z)_. C exp -_-(s - _)tD_tD_(s - _), (28)

9To differentiate Q, we take advantage of the fact that it is of the form Q = vtv, where v =
.c - cl_(s).Differentiatinggives DQ = Dvtv + vt Dv = 2Dr?v, and D2Q = 2[D_'vtv+ Dvt Dv]. But
v is of order e, so the dominant term is D2Q(_) = 2DebtD,_.
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where the derivatives DO t and DO are evaluated at s = _, and C is a normalization

constant. By inspection, from the definition of thc distortion matrix we see that

E = (DOIDO) -t, (29)

Note that if O is an embedding then DO is of full rank, and E is well defined.

The uncertainty in the estimate of s is thus an anisotropic Gaussian centered on

the maximum likelihoud estimate 3. The distortion of this Gaussian is given by the

eigenvalues of E. The larger the eigenvalues of E, the more well defined the initial
state.

Since 0 is the vector function whose components are Oi = h(fi_), according to

the chain rule the components of the derivative are DOi = DhDf i_, When the

measurement function h is one dimensional, DO is the m x d matrix

D h Dff "_+

= Dh . (30)

DhDf

Since s is d-dimensional, as long as 0 is an embedding DO has d nonzero singular

values. The squares of these singular values are equal to the eigenvalues of E.

In control theory DO is called the observability matrix. A system is observable

if the observability matrix has full rank, which is one of the conditions for 0 to be

_tn embedding. Whether DO ha_ full rank evidently depends on detailed properties

of the coupling between variables in f, and on the measurement function h. For

example if the ,'tynamical system f has a representation such that it splits into two

non-interacting _'ubsystems, and the measurement function is a constant (for example

zero) on one of _he subsystems, then intuitively one would expect that this subsystem

is unobservable. Indeed in such an example all the columns of the observability matrix

corresponding to this subsystem are zero, and it is not of full rank. On the other hand

if the measurement function depends on both subsystems, then, by Takens' theorem,

generically full rank will be attained. We will consider such an example in Section 5.

Finally, we can use Equations (28) and (29) above to derive Equation (31) for

the noise ampl.ification by transforming variables to _(T) = h(fT(s(O))). In the low

noise lim't we can take h and f to be approximately linear, so that a small variation

of _(T)about its mean value _:(T) is x(T)- ?r(T) ._ DhDfT(s(O)- _(0)). 'Fhen,

since s(0) has a Gaussian density with covariance matrix _, and covariance matrices

transform under linear transformations L according to E _ LEL t, it follows that

z(T) (the noisy future observation) has a Gaussian density with variance

ct(T) = 1 + DhDfTE(DfT)tDh t. (31)

Intuitively this makes sense; the uncertainty in the initial state is first altered by

the derivative of the dynamics, and then projected down onto the time series and
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finally convolved with noise. Also it is straightforward to verify that Equation 31 is

invariant with respect to the representation of the underlying state space dynamics
and measurement function.

4_5 Relation between noise amplification and distortion

In general, when we observe a time series we cannot observe the original coordinates,

and so it is impossible to compute the distortion from the time series. Fraser originally

posed the question of whether or not it is possible to minimize the distortion of a

reconstruction by using only the information available in a time series [12]. We

demonstrate that this is indeed possible in the low noise linfit, by demonstrating a

relation between the distortion matrix X] and the noise amplification ct(T), which is

computable from a time series.

Define an ordering on distortion matrices by E1 < _2 if E2 - 21 is positive semi-

definite 1°, Consider the set of ali reconstructions y = q(x.), where q : _'* ---,_d' ,_nd

rn and d_ are fixed. Then our result firstly states that if there exists a y" such that

Z(y') < E(y) for ali y, then y* will also satisfy aT(y') <_aT(y) for ali y and T. lt

The converse is also true generically: any reconstruction yt that minimizes ct(T) over

for all T will also minimize _. Thus, since ct(T) is an observable, in principle it

can be minimized by finding a transformation that gives a simultaneous minimum for

several different times. As we will see in Section 6, this is not as difficult as it might
seem.

Derivation.

We can use Equation (31) to demonstrate that any reconstruction y" that mini-

mizes the distortion [_ will also rrfinimize the noise amplification a(T) for any time T

as follows. Let y* = _*(x). Then v()2(y)- _(y°))v t > 0 for am' d-dimensional vector

v and any reconstruction y. By taking v t = DhDf T, we have a(T,y) -a(T,y °) > 0
for all T.

To demonstrate the converse, we proceed a_ follows. Let y' = _IJ'x. As will be

shown in Section 6, there exists a transformation y* such that P_(y°) _<..£(y)for

all y. It suffices to show that E(y') = P,(y'). But by definition of y' we know

a(y',T) <_ a(y*,T) for ali T, and by the the first part of the demonstration we

ct " T. VtTMVT for ali T,know that a(y',T) >. (y ,T) for all It follows that = 0

where VtT= DhDf T, and M = P.(y')- E(y')is necessarily a positive semi-definite

matrix. To corflplete the demonstration we must show that M = 0. Now transform to

coordinates so that M = diag(ml,..,md). We obtain a contradiction if one or more

of the mi are non-zero, because _uppose (without loss of generality) that ml > 0.

Then vTMvtT _ roll V(T1)II2 > 0, where v(_) denotes the first component of vr in the

new coordinates. Note that there must generically exist a T such that IlV(T_)ll2 > 0,

1°Bydefinitiona d x d matrix M is positivesemi-definiteifvtMv > 0 tbr ali d-dimensionalvectors
1),

11InSection 6 wewillshow that such a y' exists, is geneticallyunique up to invertible coordinate
transformations, and show howto compute it straightforwardly from f and h.
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because a finite subset of the vectors VT make up an observability matrix of the form

Dci), which by Takens' theorem is generically of full rank, so that the VT span Rd.

4,6 Numerical example: The Lorenz equations

[n this subsection we illustrate the above ideas using the Lorenz equations as an

example.

4.6.1 Low noise limit distortion

In Section 1 we gave an intuitive sketch of the flow of information between variables

in the Lorenz system. We argued that when z _ 0, the observations of z tell us

little about z. The distortion makes this notion precise. To illustrate how the flow

becomes restricte_ as z nears zero we numerically compute the distortion along a

typical trajectory of the Lorenz attractor, using five dimensional delay coordinates

with m+ = 0 and ;.n_ = 4, and r = 0,01 (by keeping the r small, we guarantee that

all the coordinates in the delay vector may be near zero simultaneously). Since the

measurement function is projection onto the z axis, Dh is the row vector (1,0,0).

The derivative matrix Df -_ of the map associated with the Lorenz equations can be

founcl by integrating the equations for the differentials, i.e. as is done in computing

Lyapunov exponents for an ODE. For numerical stability, we are often forced to inte-

grate forwards along an orbit segment, and we then use singular value decomposition

to invert the resulting matrices. In order to visualize the distortion's z-dependence,

we plot 6 against the z coordinate, as shown in Figure (7). The graph is multi-valued,

since 6 depends on y and z as well as x.

To illustrat, e the dependence of the distortion on the time lag r used, we arbitrar-

ily fix a state s = (--1.8867,-5.1366,24.7979), and plot 6 against r. See Figure (8).

We chose three different embedding dimensions as follows. The upper curve is for

m+ = 0, m_ = 2, and because of the low embedding dimension, there are singulari-

ties, The middle curve is for m+ = 0, m_ = 4, and the singularities have vanished.

Note also that as r increases, there is very little advantage in using a higher em-

bedding dimension. Intuitively, this is because the i.notion on the Lorenz attractor is

chaotic, and measurements in the far past fail to give new information in the unstable

direction. We will return to this topic in Section 5. Finally, the lower curve is for

non-predictive embedding with m+ = 5, m_ = 4. Significant noise reduction has

been achieved since future coordinates do give information in the unstable direction.

Note that in ali three cases, the distortion blows up at r --- 0. This is to be

expected, since in this limit, measurements become redundant.. In fact a general

L'esult of Section 5 implies that for this example t_ --, r -_ as r _ 0. On the other

hand, for this chaotic example, intuitively we should expect to see the distortion

increasing as r increases, due to irrelevancy. However, this is clearly not reflected

in the numerics. In fact, the low noise limit approximation must ultimately break

down as r incre_es, even for small noise levels. This situation may be visualized

in Figure (6). As r increases, there will be more and more folds, and the induced
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Figure 7: Local variation of the distortion for the Lorenz equations for a typical

t,rajectory on the Lorenz attractor, The blowup of the distortion along x = 0 is a

esult of the poor information flow from z to x when x = 0.
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Figure 8: The distortion as a function of r for three different embedding dimensions.
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distribution for p(.s[_) will become multimodal, causing an explosion in the distortion

at, finite resolution. This effect cannot be obtained by the purely local analysis of

Section 4,4, We return to this problem in Section 4.7. However, the above results

sho_, that it is a very complicated problem to settle on an optimal value for the time :_,_delay r, !;,i,,

In Section 5 we will consider the dependence of the distortion on the embedding _":J:'
dimension rn in more detail. _'J

,
r

4,6.2 Finite noise distortion

In this subsection, we investigate numerically the accuracy of the low noise limit

formulae above for approximating the distortion at finite resolution _. A similar

investigation could be done for the noise amplification. Recall that the noise ampli-

fication at finite resolution measures the "thickness" of Figure 2. One could attempt

to measure this thickness directly by a lengthy numerical simulation, and compare _

tile result to the formula for noise amplification. We will now describe an algorithm

for this idea in the case of distortion which we refer to as a Monte Carlo Simulation.

\Ve use the exact likelihood function p(_ s) of Equation (15), and take the prior

p(s) to be the natural measure p,,(s) on the attractor to obtain p(slx, ), We assume

that the dynamics has sufficiently nice mixing properties so that Eque,tion (32) holds

for almost all initial conditions So in the basin of a_,traction: where ¢ is any smooth
function and At is held fixed at some small value.

N

[ ¢(s)pL,(a)ds = lim
1

N--oo "N Z ¢(fi':"(s°)) (32) :_d i=l

Then taking ¢l(a) = [s [2p(_ls) and ¢2(s)= s p(t.ls), we obtain Equation(g3), where

wi _ exp(- az- gP(fiAt(So))[ 2/2e2).

CO OO (2,0

2 2 2= (52w,llf''(,o)l / F.,w,)-II w,i (an)
i=l i----1 i=al i=l

=

This is turned into a numerical approximation by truncating after N terms, where

N is varied until satisfactory convergence has been achieved. Note that the smaller e

is taken, the larger N must be taken for convergence. This a,pproximation is clearly

much more CPU intensive than the analytical formula of Section 4.4 for the low noise
limit 6,

2

Pigure (9) illustrates the results of such a computation for the case of the Lorenz

equations. The two solid lines are plots of 6_ against r for noise levels e = 0,5 and

e = 0.25, which represents a signal to noise ratio of abou_ 20 and 40. A predictive

embedding was chosen with m+ = 0 and m_ = 4, The noisy delay vector z was gen-

erated from a state corresponding to Figure (8). The dotted line is the corresponding

plot of 6 against r taken from Figure (8).

We make the following observations about this figure.
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Figure 9: The distortion 5, at finite resolution e as a function of r for e = 0.5 and

= 0.25 are plotted in solid lines from a Monte Carlo simulation. The dotted line is

the corresponding plot for the low noise limit of the distortion using the analytical
formula of Section 4.4.

t. The distortion at finite resolution appears to have converged well for a value of

e as high as 0.5, for a wide range of values of r.

"2. For the range of r over which convergence at finite resolution has been achieved,

6 provides an upper bound for 8,. This upper bound is also very sharp over

a wide of values of r. We believe that the failure of 6 to bound di, for large

values of r is due to the phenomenon of irrelevancy and bimodality mentioned

in Section 4.6. We al_o believe that the failure of dito bound di,sharply for ali

small values of r is due to the that the Monte Carlo simulation for 8, is carried

out on a trajectory, effec.t_vely including the prior information of being on an

attractor. In our calculation of E, we use a uniform prior, so that we should

only expect di= ,_e"E to provide an upper bound on di,.

We have performed other Monte Carlo simulations and the results indicate that

the situation can be more complicated in other examples. Firstly, we performed

simulations with the Ikeda map_ and Gaussian noise. We observed that the limit

orS, as e ---, Osometimes fails to exist. We believe this is due to the highly fractal

structure of the underlying attractor. This is not a problem at realistic noise

levels for the Lorenz example, because in that case, the fractal structure is only

apparent at an extremely small resolution. Secondly, we performed simulations

for the Lorenz example, but using uniform noise. We observed that the limit

of di, exists, but is dependent on the realization of the noise used to produce

the delay vector t. To obtain a well defined limit requires taking an ensemble

average over many realizations of the noise. Fortunately, as demonstrated in
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Section 4.4, this problem does not arise for Gaussian noise.

5 Limits to predictability

For a given noise level the noise amplification tells us how much loss of pre-

dictability occurs purely because of the reconstruction process; it therefore sets

a limit to prediction that is independent of the number of data points or the

modeling technique. The distortion 12 (or equivalently, the noise amplification)

depends on the state space reconstruction, for example, on the parameters m+,

m_, and r. It also depends on the properties of the underlying dynamical

system such as the dimension and Lyapunov exponents, and on the measure-

ment function. In this section we show that there are some general scaling laws

that make it possible to estimate the way the distortion will change as these

parameters are varied. These scaling laws set upper bounds to predictability.

To study the dependence on tile reconstruction it is sufficient to consider delay

coordinates. As we prove in the Section 6, this is because delay coordinates pro-

vide a lower bound on distortion, in the sense that a coordinate transformation

of delay coordinates cannot reduce the distortion. One fact that is immediately

appar,:nt is that gathering more info."mation can only decrease the distortion.

This follows from an elementary property of conditional probabilities. Suppose

we are given two delay vectors _(_) and _.z(2) for which x (_) C _.z(2), i.e., x (2) is of

higher dimension than x_.(1), and contains x_.(1) as a subset. Then

E(.stx (2)) _<E(._I_(')), (34)

in the sense of Section 4. Thus, to reduce the distortion the dimension of the

reconstructed space should be as high as possible.

As a practical matter, however, finite data resources usually impose a limit on

the state space dimension. It is therefore important to knew which information

is most useful. For uniform lag times this translates into choosing tile best

values for r, m+, and m_. The scaling laws derived in Sections 5.1 and 5.2

provide insight into this question.

Another'fact that is intuitively obvious is that when r is sufficiently small

successive measurements become almost redundant, in the sense that in the

absence of noise they approach the same value; the difference in their value

is mainly due to measurement noise. In this case images of the measurement

surfaces are roughly parallel in the neighborhood of the true state. Let tr

denote the t_dundancy time, above which measurement surfaces intersect at a

significant angle. Then we expect that if the window width w = mr is much

1-'In this section we study the distortion rather than the noise amplification because distortion

does not depend on the prediction time. However, from the results of the previous section, the

results will apply to either quantity.
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less than t_, then the distortion will be very large. To avoid this we should

choose w > tr. On the other hand, for a chaotic system, let tj denote the

irrelevancy time, Of order log e/A, where A is the largest Lyapunov exponent.

Intuitively, it should be expected that measurements made outside a window

width w much greater than tj will be irrelevant, in the sense that the images of

the measurement surfaces will line up alor,g the unstable direction, and so give

no information in that direction. To avoid this we should choose w < t_. In

the case that tj < tr, one of the above conditions on w must be violated, and

one would expect a very large distortion. In the this section we will investigate

the extent to which the above intuition is born out quantitatively, by deriving

general scaling laws for the distortion, and working out some examples.

5.1 Scaling laws

When m is sufficiently large or r is sufficiently small the distortion behaves

according to well defined scaling laws. There are two regimes. One of these

occurs when the window width w = mr is small, and the other occurs when the

window width is large.

5.1.1 Small window width limit

The scaling is the same whether or not the dynamics is chaotic. The scaling
law is

-, o =

(where "O()" denotes "the order of"). Note that for d > 1 the distortion blows

up in the limit as r --, 0, with an exponent that increases with dimension.

Example: The Lorenz equations. In Figure (10) we plot the distortion 3 as

a function of the embedding dimeasion m, with r fixed at 0.005, and s fixed at

the same value as for Figure (8). A predictive and a non predictive embedding

are shown. Observe that for small m, ill both cases the scaling goes as m -3/2,

as predicted by Equation (35). At larger m, a different behavior is apparent,

as will be discussed in Section 5.1.2. For another example, see Figure (11) of
Section 5".2.

Derivation. Expand DC in a Taylor's series in time around t = 0. For conve-

nience assume a predictive embedding, with the first row simply Dh. Then the
rows of DC are of the form

D_i+l =: a(°) + a(1)(ir) + a(2)(ir) 2 +... (36)

where i = 0,..., rn- 1, labels the row, and the a(j) are fixed d-dimensional row

vectors. For sufficiently small values of r the embedding surfaces are approxi-

mately linear, and there is a unique crossing when m > d. If we truncate the
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Figure 10: The distortion as a function of m. The solid curve is for a predictive

embedding with m+ = O,and the dashed curve is for a nonpredictive embedding with

m+ = m/2 and m_ = m/2 - i.

Taylor series at order d- 2 the matrix cannot be of full rank, since there are

only d- 1 independent vectors a(j). Consequently the d*hsingular value is zero

to order r d-2. But if we truncate the Taylor series at order d- 1 the matrix

will generically be of full rank at almost ali states s because the d d-dimensional

vectors a {j} involved in the expansion are typically independent. Therefore the

dth singular value is typically of order (mr) Cd-l). The dominant eigenvalue of E

is the square of the inverse of the d largest singular values of Dtb, which implies

the r scaling in Equation (35).

The m scaling comes from the law of large numbers. If we fix the window width

(at a small value) and increase m, then the variance decreases as m "'1 because

of the assumed independence of the measurement errors. These two arguments

taken together give the scaling law of Equation (35).

Remark. In the small window limit, it can also be demonstrated that the

singular vectors of D_ converge onto Legendre polynomials for almost ali states

s. It was previously shown by us [14] that in the limit of low noise and small

window width, global Broomhead and King coordinates converge onto Legendre

polynomials, with the singular spectrum satisfying similar scaling laws. The

ideas behind the proofs are very similar, with the observability matrix replacing

the covariance matrix Cii defined in Section 2.1.
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5.1.2 Large window width limit.

In the limit as m ---, oo when the window width is large, there are different

scaling behaviors, depending on whether or not the dynamics is chaotic.

Nonchaotic systems. When r is large the measurement surfaces are no longer

nearly parallel. Each meusurement can be treated as independent, and accord-

ing to the law of large numbers the scaling is

m _ ox), 5 = O(m, l/2) (37)

In general it is intuitively clear that this also increases with d, since when d is

large the information in the time series is spread over mor e coordinates. In the

example in Section 5.2, it is shown that 5 = v/2,d3/2m-1/2.

Chaotic systems with predictive coordinates. As described at the be-

ginning of this section, for a chaotic system measurements in the distant past

provide no information about the position along the unstable direction. While

information is provided in the stable direction, this information is at a fine scale

of resolution that is typically below instrumental error. Since the uncertainty of

the position along the unstable manifold is the limiting factor, this information

is irrelevant for prediction.

In the limit of sufficiently large r and small ,_it is possible to derive a scaling law

for the distortion matrix. This is possible because in this case the eigenvectors

of the distortion matrix line up with the stable and unstable manifolds. The

eigenvalues of the distortion matrix have three different behaviors,

Unstable manifold (Ai > 0) (38)

m --+cc E. = O(1 - e-2_'d'_)

Neutral manifold (Ai = 0) (39)

m --. oo E. = O(m-_)

Stable manifold (_ < 0) (40)

m _ oo E. = O(e2m_'_)

In the above equations we have transformed the distortion matrix E to the

appropriate coordinates. The distortion in the unstable manifold approaches a

constant, while in the neutral manifold it goes to zero as a polynomial, and in

stable manifold it goes to zero exponentially with m. The mean-square error in

a prediction is related to the trace of the distortion, which is dominated by the

largest eigenvalues. As we demonstrate in the derivation below, this approaches
a constant.

Chaotic systems with mixed coordinates. With mixed coordinates the

situation is quite different from that of predictive coordinates, since future in-

formation makes it possible to pinpoint the position along the unstable manifold

3O
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precisely, and ali the eigenvalues go to zero as m _ oo. The calculation of tile

distortion follows closely that for predictive coordinates, except that ali the

sums and products must be taken from _,e to 7"'Tn-The results for the stable
and neutral manifolds remain essentially tile same, but the unstable manifold

is now dominated by the contributions from the future terms, We get instead

Unstable manifold (Ai > O) (41)

m _ oo _. = O(e-2"+'_'')

Neutral manifold (A_= O)

rn _ _ _. = O(m-1)

,Stable manifold (Ai < O)

m - , oo _. = O(e2''-:''')

Tile main difference is that ali the eigenvalues E;_ _ 0 as m _ oo; the eigenval-

ues for the stable and unstable manifold go to zero exponentially, The neutral

manifold thus provides the leading order contribution to the distortion,

Tile above relationships are apparent in Figure (10), The relationships are also

not valid when d_r >> _,_; when this assumption is violated the behavior is
entirely different, as we discuss in Section 5.2.

The following derivation of Equations (38)-,(40) is admittedly rather loose; to

turn these it into a more rigorous statement may involve placing restrictions on

quantities such as tile measurement function and the nature of the dynamical

system. It should probably be ommitted at a first reading.

Derivation of Equations (38)-(40) .

The m-dimensional delay vector z (m) can be broken into a series of lower di-

mensional delay vectors rooted at different times. To derive the scaling we

transport all of them to the same time and examine their joint likelihood

function. Let dI be the minimum dimension for which delay vectors define

a global embedding, and for convenience pick rn so that it is an integer mul-

tiple of dt. Let zl fr') be the dr-dimensional delay vector rooted at time -jdtr,

_:(d')= (z'(-jd'r) z(-(jd' +d'- 1)r)). Assume the measurement errors are

Gaussian with variance e2, and let _d') = ((_(-jd'r),...,_(-(jd'+ d'- 1)r))

be the vector of d_-dimensional measurement errors rooted at time -j(d')r. Let

F be the induced di-dimensional dynamics in delay space. In the limit as e _ 0

the vector of measurement errors rooted at time -jd% transported to time 0

,(a') = D gj(d,),(_d,))" The noise p.d.f, p(_a'))is an isotropic Gaussian ofis __j
variance e.2; following a calculation similar to that of Section 4.4, to leading
order in e

I ( ,,(d'))te)__(d'l )
P(_(/')) = Aexp 9_'e2,£j j a../ (42)
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where ,4 is a normalization constant, and Oj is a d' x d' dimensional matrix

O_ = (DFia"(xl/')))tDF j_''(c,3(a')_,.

_("')- _(_')(0)= _(d,)Let ,(a') be the noise free delay vector such that a,j Tiledi _,j .
, ,(a') m

set i_j ),J = 0, 1,..., d-;contains the same information as the m-dimensional

delay vector _('_). Furthermore, ""i )' j = 0, 1,..., _; is a collection of inde-
pendent random variables. Following similar reasoning to that of Section 3.1,

the above statements plus Bayes' theorem (with a uniform prior) imply

p(_x(a')(0) x_('')) = Ap({i/')} l(a')(0)) (43)

.(a'),)= p((_.__,

_-' -LI(_(x)_to-',(a')) (,[4)
= A' rI exP2e 2_:,.j , j .,j

j=O

1 _-l

= A'_xp_ _ (_/)-i_')(o))*o;'(_f)-i_')(o))
j=o

where A and A' are normalization constants. The distortion can obtained by

expanding in a Taylor series, as in Section 4.4. Hence we obtain

-1

s = (E o7') (45)
j=O

It follows from the definition of the Lyapunov exponents that when £r is suffi-

ciently large Oi approaches a matrix whose eigenvalues are e:J'\_a'_,..., e_j_a'd'r.

Furthermore, for large d% the eigenvectors approach limiting values, indepen-

dent ofj. In this case we can evaluate Equation (45) in the basis of eigenvectors.

j=0 j=0 = i - e-2A'd'' (46)

When A_> 0 the numerator approaches 1 as rn --. oo, and by inverting we obtain

Equation (38). When A_< 0 the second term in the numerator dominates and

we obtain Equation (40). When A_= 0 the summation in the previous equation

is no longer valid; however, the sum is clearly of order m, and we obtain Equation

(39).

Note that while ,T,,(a')(0)is related to s by a coordinate transformation, because
is not invariant under coordinate transformations the distortion is not in

geperal the same. Nonetheless, we expect their scalings properties to be the
same.
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Note also that in this derivation, by taking delay vectors of dimension d' we

are ._ssuming that the predictability changes very little over times dfr, i.e.,

d'r << l°-_x_. When this assumption breaks down the scaling is radically different,
as we demonstrate in the example of the next section.

5.2 A solvable example

In this section we investigate the distortion for an example that is sufficiently

simple that the observability matrix car, be calculated explicitly. Consider a

system of d/2 negatively damped harmonic oscillators

d_ vii _i hi vi ..,_. (47)

The state space dimension d is even. ui and vi are both taken modulo 1, cor-

responding to (piecewise _mooth) motion on a torus. Ai > 0 are the Lyapunov

exponents; for convenience we will sometimes take Ai = ,\ = constant. We take
the measurement function to be

tl

2/:h = _ u_ (,',S)
i=l

We will consider a predictive reconstruction with m+ = 0.

This example is admittedly rather contrived. The oscillators are independent,

so measurements only give information about the whole system because the

measurement function involves a combination of ali of the degrees of freedom.

In a more typical example the flow of information depends on the coupling of the

unobserved degrees of freedom to the observed degrees of freedom. Nonetheless,

as we shall see, even this very simple example exhibits nontrivial behavior.

This system has the following analytic solution.

_,j(t) = _j(o)_-_,' co_t (49)
vi(t) = vj(O)e -_'' sincojt

Applying the definition of _ and differentiating, the observability matrix can

be calculated explicitly.

2 e-(i-xIa,_ cos(/- 1)wit (50)

D_i,2j = -d e-ti-1)A'r sin(/- 1)wjr,

where/ ranges from 1 to m and j ranges from 1 to d/2. Note that D_ is

constant throughout tile state space.
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Figure 11: The distortion 6 plotted as a function of the delay coordinate dimension m

with a fixed delay time r = 0,01, for the system defined by Equations (47) and (48).

For the solid curves A = 1 and the system is chaotic, while for tile dashed curves

.\ = 0 and the system is not. Three different dimensions are shown, d = 2, 4, and 6,

To compute the distortion we must first evaluate DO tDO. The odd rows and

columns are

4 "_

D@tD'_I2_-_ 2j-_ = _ _ e-_(A'+'\')" cosk_rcoskwjr. (51)
k=O

There are similar expressions tbr the other terms, with sin cos and cos cos instead

of sin sin. The distortion can be obtained from the singular value decomposition
of D@tD_,,

In Figure (11) we plot 6 as a function of m for several different values of the

dimension and. Lypunov exponents.

This illustrates several of the features derived in Section 5,1,

• Small w: For small values of m the window width w is also small, The

chaotic and nonchaotic cases behave approximately the same. As m de-

creases the distortion increases as a power law with the predicted exponent

• Large w: For the chaotic case the distortion approaches a constant while

for the nonchaotic case the distortion decreases according to m -1/2, inde-

pendent of the dimension.

Note that, as it must, the distortion decreases monotonically with m.
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Figure 12: The distortion _ plotted as a function of the Lyapunov exponent ,_ for

dimensions d = 2, 4,..., 20. The curves with the lowest distortion have the lowest

dimensiori. Notice that there are two scaling regimes, one for low ,\ and another for

l_igher )_. In the high _ regime the enormous noise amplification means that even a

small noise level e makes the system behave effectively as a random process. There

is l_opredictability, even for short times.

The behavior of the plateau at m = c_ for chaotic systems can be investigated

by taking the limit r _ 0 in Equation (51) and approximating by an integral.

This gives

2(,_, + ,kj){[(A_+,kj)2+(w,+wj)2l_,+[(,\i+Aj)2+(_zi_wj)_]_l}D_tD_l'_i-1 2y-I,_ rd 2
(,s2)

The behavior of the plateau under changes in parameter values is investigated

by using Equation (52) with hl = A - const, and the frequencies uniformly

spaced so that wi = _ ] _ The result is shown in Figure (12), )'''_ d °

There are two scaling regimes, one for low ,k, and one for high /k. In the low

,\ regime the motion is effectively predictable and * = O()_1/2). In the high )_

limit, however, the distortion appears to diverge at a rate that increases with

dimension, * = O(,Xd-l/2). Note that the crossover between the two scaling

limits occurs at a lower value of ,k when the dimension increases. The scaling

law for the high (respectively low) )_ limit can be obtained by substituting

mr = 0(1/,\) in the small (respectively large) window width scaling law of

Equation (35) (respectively (37)).However, there are some problems with this

argument, as the prefactor of Equation (35) might depend on ,k and alter the ,_

scaling behavior. Indeed we have investigated other high dimensional examples,
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rind the behavior can be more involved than thst described above, though we
often see a crossover effect,

5.3 When a time series becomes a random process

The divergence of the distortion in the high dimension limit seen in the previous

example is particularly significant, beca.use it demonstrates how noise amplifica-

tion causes a system that is sufficiently chaotic and stlfficlently high dimensional

to become a random process. With a noise amplification of 10B, unless tile noise

level e < 10-° (a very rare occurrence), the dynamics is fundamentally unp,'e-

dictable, to first order in e, even for short times, Note that in the previous

example the distortion excoeds 10e when d > 20 and A > 0.1. In this case

there is simply not enough information in the time series to make the motion

deterministic, on any time scale. We add the caveat that when the distortion is

extremely large, there may be important effects of second order in e which are
beyond the above local analysis.

6 Coordinate transformations

Up until now we have assumed that the reconstructed coordinates are simple

delay coordinates, so that the reconstruction map E = (I). Delay coordinates

have the advantage of being simple and direct. However, the question arises

of whether we can get better results by transforming to new coordinates. In

general we may want to consider other coordinates y = *(x) where we further

transform the delay coordinates so that the total reconstruction map E = _IJo (I).

6.1 Effect on noise amplification

There are two senses in which we might hope to make the coordinates "bet-

ter"'. The first is that we might attempt to reduce the noise amplification by

reducing noise, thereby locating the state more precisely. The second is that we

might hope to reduce the dimension of the coordinate system, which reduces
estimation error.

We will first address the question of changing the noise amplification. Two basic

facts are apparent:

o Invertible coordinate transformations cannot change the noise amplifica-

tion. This is evident from the fact that the conditional probability density

p(x(T)l_(x(O)) ) is a function of x(T) alone; _(_.(0))is not an argument of

p, but rather a label that identifies this e.s a particular member of a fa_nily
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of different functions, As long as the function _ is one-to-one, it leaves the

corresponding function p unchanged,

• Non-invertible coordinate transformations cannot decrease the noise arr_.

plification. If more than one state ._ is mapped into the same state @(_),

this generally ha_ the effect of broadening p. This is evident since

p(z(T)ly) = _ p(z(Z)[_) (53)

Summing probability densities either increases the variance or leaves it

unchanged, Hence, the noise amplification either increases or remains the
same.

Thus, we see that we cannot decrease the noise amplification by a change of

coordinates, In order to decrease the noise amplification we must alter the

original information set, by changing @. For example, we can increase the

dimension of the original delay space. However, from the point of view of noise

amplification a coordinate transformation on the original delay coordinates is
at best neutral.

Changing coordinates can be quite useful, however, for improving the e_tima-

tion problem. This is particularly true for reducing the dimensionality. The

estimation problem generally becomes exponentially worse as the dimension in-

creases. Thus, we wish to find coordinates that make the dimension as small as

possible while le_wing the noise amplification unchanged.

6.2 Local analysis

In the low noise limit, to first order in e the transformation _ can be _pprox-

imated locally by its derivative Dtl/ (the constant term plays no role in the

following). An expression for p(_ID_(_)) can be derived using a generalization

of the argument of Section 3.3 as follows. Assuming a uniform prior, we have

p(slD_(_)) cx p(Dt_(z)ls ), But p(DtP(_)l_ ) = p(D@0, where ( = _- _(s).

Hence we obt_in Eq. 54 by transforming the isotropic Gaussian distribution of

the noise-_ through the linear map D_.

-1 (D__ D_(_))t *p(alD_(z)) _ Aexp_ (D@D_t) - (D@z- D@@(s)) (54)

As before, in the limit that e is small we can expand this in a Taylor's series,

The arguments parallel those leading to Equation (28), except, that _ is replaced

by _ o _. The result is that

1
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where

E = (DCtDt_*(D_iD*t)-tD*.D¢)-t, (56)

Note that, as expected, a locally invertible coordinate transformation will not

alter the distortion, since (D_D_t) -t = (D_t)-tD_P -x, In the next section

we show how to minimize E withrespect to _,

6.3 Optimal reconstruction

We will now show that it is possible to compress the information contained in

a delay vector _ into a smaller number of dimensions, while retaining ali the

available relevant information. Local principal value decomposition provides a

way of achieving this.

DO is an m × d matrix which maps variations in the d-dimensional state, as,

into variations in the delay vector, 52. For m > d, singular value decomposition

expresses DO as the product of three linear transformations, U, W, and Vr:

DO = UWV t (57)

The first of these, V*, is represented by an orthogonal d x d matrix that performs

a rotation onto the principal axes. The second transformation W is represented

by a diagonal d x d matrix that stretches or contracts the principle axes; its

diagonal elements w_ are called the singular values of DO. The third transfor-

mation U is represented by a column orthogonal m x d matrix that maps onto

the m-dimensional delay space, so that UtU = 1, the identity in d dimensions.

Inserting this into Equation (56) we get

E = (DOtD_) -t = (VWUtUWVt) -_ = VW-2V t (58)

_ _ _- _/rr(l/W-_l/t)- VTrW-2= , w/-2 , (59)

The eigenvalues of the distortion matrix are the inverse squares of the singular

values, since V can be viewed as a similarity transformation which diagonalizes

the distortion matrix:

VtEV = W -a (60)

The singular values wi describe how well the observations determine the original

state s along each of the principal axes of E. If w_ is small, then the observations

are highly uncertain along the corresponding axis. The best coordinates are

obviously those that make w_ as large as possible for all i.

Note that the singular values depend only on the way in which we construct

the original delay coordinates (and of course on the dynamical system and the

measurement function). In order to reduce the uncertainty of our coordinates
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we must gather more information, for example, by increasing the dimension of

the delay space or by choosing a better value of r. The search for an optimal r is

nontrivial, and increasing the dimension oi" the delay space worsens estimation

error. Ideally, we would like a reconstruction algorithm which incorporates ali

the information in a given window in the lowest possible dimension.

Local principal value decomposition coordinates are the best possible coordi-

nates which can be derived from the information set represented by a given

delay embedding, in the sense that they compress all the available information

into the smallest possible dimension, d. We define local PVD coordinates by

introducing a transformation _ = U t from the delay space of dimension m to a

space of dimension d < m which projects onto the d principal axes determined

by singular value decomposition. They are local in the sense that a princi-

pal value decomposition at each point in the delay space produces a different

U. Geometrically, the transformation Ut maps noisy delay vectors back onto

the tangent space to the embedded state space ¢(_d), and is thus a natural

candidate for an optimal reconstruction.

Although the optimality of PVD coordinates is almost intuitively clear, to make

sure it is understood we give a proof'. First, we show that any reconstruction

in fewer than d dimensions has infinite distortion, then we show that the PVD

coordinates have the same distortion as the delay embedding. First, suppose

that the total reconstruction map E maps points from d dimensions to d' < d.

Performing a singular value decomposition on its transpose,

D-Zt = UWV t (61 )

yields for the distortion matrix:

E =(UW-2Ut) -1 (62)

But this is a d × d dimensional matrix with at most d' nonzero singular values,

since W is dS× d_. The distortion, as above, is the square root of the sum of

sqaares of the inverses of all d singular values, hence it must diverge. Obviously,
we cannot embed the data in fewer than d dimensions with a finite distortion.

Consider instead the map from d to d dimensions defined by E = _ o ¢, where

¢_= Ut..The distortion matrix in this case is just:

= (VWUt_t_UWVt) -_ = (VWUtUUtUWVt) -_ (63)

= (VW2Vt) -', (64)

the same as for the delay coordinates themselves. Local PVD coordinates give

us a reconstruction which takes advantage of ali the information available in a

high dimensional embedding yet minimizes estimation error by minimizing the

embedding dimension. 13

13Of course, any linear transformation which can be obtained from U t by a rotation will have the

same property.
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7" Conclusion

7.1 Results

Takens'theoremestablishesthatdelaycoordinatesfroma dynamicalsystem

arediffeomorphictothesystem'soriginalcoordinatesiftheirdimensionissub

ficientlylarge.The particularvaluesofr and m arenot importantwhen the

dataisinfinitelyprecise,aslongasm islargeenough.However,inthepresence

ofnoise,thequalityofan embeddingishighlydependenton theseparameters.

The distortionand noiseamplificationquantifythequalityofan embedding,

and we give analytical fornmlae for them in terms of the dynamics and the mea-

surement function in the low noise limit. The scaling laws for these quantities

give fundamental bounds on the predictability of a dynamical system and show

_ how a deterministic system becomes a random process.

I: Reconstruction techniques such as PVD always start with delay vectors. But

_ since the distortion of a delay reconstruction provides a lower bound on the

distc_rtion of any further transformation, the only advantage of such transfor-

mations is dimension reduction. Local PVD is an optimal method of state

space reconstruction, since it retains the distortion of its delay vectors while

" projecting them into the lowest possible dimension.

7.2 Open Questions

. Although we have developed a theory of state space reconstruction in the pres-

ence of noise, in this paper we have not addressed the practical issues which

arise when constructing nonlinear predictive models from time series. We are

currently conducting numerical experiments in order to find out if our local prin-

" cipal value reconstruction technique has advantages over existing techniques for

modeling. However, these experiments are subject to a number of complica-

tions which prevent their inclusion at this date. For example, forecasting error

includes both noise amplification and estimation errors due to finite data sets.

We have found that estimation error often dominates forecast error for quite

reasonable noi_ levels and data set sizes. Further, estimation error varies with

the reconstruction, making it difficult to distinguish the contribution of either

effect to the overall error. We intend to publish the results of these experiments

and an analysis of the estimation problem in Physica D.

_Ve have alsoleftseveraltheoreticalquestionsunanswered as follows.

= We expect that our theory will need to be modified in the case of

= dynamical or correlatednoise.Also,the example we use to illustrate

the breakdown of predictabilityas dimension and Lyapunov expo-

nents increaseisvery special.We intendto explorethisphenomenon

formore realisticexamples°
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