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Abstract

Takens’ theorem demonstrates that in the absence of noise a multidimen-
sional state space can be reconstructed from a single time series. This theorem
does not treat the effect of noise, however, and so gives no guidance about
practical considerations for reconstructing a good state space. We study the
problem of reconstructing a state space with observational noise, examining the
likelihood for a particular state given a series of noisy observations. We define
a quantity called the distortion, which is proportional to the covariance of the
likelihcod function in a reconstructed state space. This is related to the noise
amplification, which corresponds to the root-mean-square errors for time series
prediction with an ideal model. We prove that in the low noise limit minimizing
the distortion is equivalent to minimizing the noise amplification.

We derive several asymptotic scaling laws for distortion and noise ampli-
fication. They depend on properties of the state space reconstruction, such
as the sampling time and the reconstruction dimension, and properties of the
dynamical system, such as the dimension and Lyapunov exponents. When
the dimension and Lyapunov exponents are sufficiently large these scaling laws
show that, no matter how the state space is reconstructed, there is an explosion
in the noise amplification — from a practical point of view all determinism is
lost, even for short times, so that the time series is effectively a random process.

In the low noise, large data limit we show that the technique of local prin-
cipal value decomposition (PVD) is an optimal method of state space recon-
struction, in the sense that it achieves the minimum distortion in a state space
of-the lowest possible dimension.
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1 Introduction

There are many sitvations in which we observe a time series {z(t))},i = 1,...,N
which we believe to be at least approximately described by a d-dimensional dynamical
system! f.

s(t)= f's(0). (1)
The time series is related to the original dynamical system by
z(t) = h(s(t)). (2)

We call h the measurement function. The observed time series z(t) is D-dimensional,
so that h: RY — RP. We are most interested in dimension-reducing measurement
functions, where D < d, and we will often implicitly assume D = 1,

The state space reconstruction problem is that of recreating states when the only
information available is contained in a time series. A schematic statement of the
problem of reconstructing a state space is given in Figure (1).

State space reconstruction is necessarily the first step that must be taken to an-
alyze a time series in terms of dynamical systems theory. Typically f and h are
both unknown, so that we cannot hope to reconstruct states in their original form.
However, we may be able to construct a state space that is in some sense equivalent
to the original. This state space can be used for qualitative analysis, for example to
construct a phase plot or one dimensional map, or for quantitative statistical charac-
terizations, such as fractal dimension, Lyapunov exponents, or the eigenvalues of fixed
points. We are particularly interested in state space reconstruction as it relates to the
problem of nonlinear time series forecasting, a subject that has received considerable
attention in the last few years [4, 6, 7, 8, 9, 15, 18, 19, 27, 21].

State space reconstruction was introduced into dynamical systems theory indepen-
dently by Packard et al. [20], Ruelle? and Takens [26]. In fact, in time series analysis
this idea is quite old, going back at least as far as the work of Yule in 1927 [28]. The
important new contribution made in dynamical systems theory was the demonstra-
tion that it is possible to preserve geometrical invariants, such as the eigenvalues of
a fixed point, the fractal dimension of an attractor, or the Lyapunov exponents of a
trajectory. This was demonstrated numerically by Packard et al. and was proven by
Takens. A ‘

The basic idea behind state space recoisstruction is that the past and future of a
time series contain information about unobserved state variables that car be used to
define a state at the present time. The past and future information contained in the
time series can be encapsulated in a delay vector ®

z(t) = (z(t+ rmy),. .., 2(t), ., 2t — Tmo)) (3)

'This is one of several possible ways of representing a dynamical system. f!is the map that takes
an initial state 8(0) to a state s(t). The time variable ¢ can be either continuous or discrete. f* is
sometimes called the time-t map of the dynamical system.

*Private communication.

3For convenience we assume that the sampling time is uniform.
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Figure 1: The true dynamical system f, its states s, and the measurement function
h are unobservables, locked in a black box. Values of the time series z separated by
intervals of the lag time  form a delay vector g of dimension m = 1+ m, + m_,
where m,. is the number of values from the future and m.. is the number of values
from the past. ® maps the original d-dimensional state s into the delay vector z. ¥
further maps the delay vecter g into a new state y, of dimension d’ < m.
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The dimension of the delay vector is m = 1 + m_ + m,. The number of samples
taken from the past is m_, and the number from the future is my. If m, = 0 then
tlie reconstruction is predictive; otherwise it is mized. The time separation between
coordinates, 7, is the lag time. '

Takens studied the reconstruction map @, which maps the states of a d-dimensional
dynamical system into m-dimensional delay vectors.

2=0(s) = h(f7* (s)),.. ., h(8)y- ., R(FTTT(3)) (4)

He showed that generically @ is an embedding when m > 2d + 1. An embedding is a
smooth, one-to-one coordinate transformation with a smooth inverse. When @ is an
embedding, ®(R?) is diffeomorphic to R¢.

I[f ® is an embedding then a smooth dynamics F is induced on the space of
reconstructed vectors. ’

Fi(z) = o f4(® ' (a)) (5)

The reconstructed states can be used to estimate F. F' is equivalent to the original
dynamics f, and we can use it for any purpose that we could use the original dynamics,
such as prediction, computation of dimension, fixed points, etc.

Takens’ proof is important because it gives a rigorous justification for state space
reconstruction. However, it gives little guidance on reconstructing state spaces from
real-world, noisy data. For example, the measurements z(t) in the proof are arbitrarily
precise, resulting in arbitrarily precise state:?’"’*‘“’ is makes the specific value of the
lag time 7 arbitrary?, and any reconstruction is as good as any other. However in
practice, the presence of noise in the data blurs states and makes picking a good lag
time critical. Our work “fleshes out” Takens' proof, by examining how states are
affected when conditions such as arbitrary precision are relaxed.

There are several such factors which complicate the reconstruction problem for
real-world data: ‘

1. Observational noise. The measuring instruments are noisy; what we actually
observe is z(t) = #(t) + £(t), where Z(t) is the true value and £(t) is noise.

N

Dynamical noise. External influences perturb s, so that from the point of view
of the system under study the evolution of s is not deterministic. f is thus a
stochasti¢c dynamical system.

3. Estimation error. f and h are both unknown. They can be estimated, but with
a finite amount of data some uncertainty remains.

In real problems noise is always present. When we project a d-dimensional state
onto a D-dimensional measurement with d > D, we throw away information. We can
reconstruct some of this missing information from the past and future measurements.
However, if the uncertainty of the reconstructed state is much higher than that of

4Provided it meets the conditions for genericity.



the individual measurements, then we have amplified the noise; the system is not as
deterministic as it would be if we could observe more information.

State space reconstruction relies on a flow of information from the unobserved
variables of the system to the observed variables. This can be qualitatively illustrated
with the familiar Lorenz equations,

dz

== Wy-2) (6)
dy

il ~rz + 28z —y

de_ 10

i - VT

Assume that we observe z. Since %—f does not depend on z directly, information

about z depends on the flow of information through y; when z changes it causes %%
to change, which causes y and hence ‘-;—f to change. When z = 0, since the only
coupling is through the zz term a large change in z causes only a small change in z.
Equivalently, a small change in = corresponds to a large change in 2. Thus noise in
the determination of z from measurements of z is acutely amplified when = =~ 0.

When noise is present, state space reconstruction becomes a problem in statistical
estimation. The formalism that we develop in this paper makes the notion of noise
amplification more precise, so that the qualitative analysis of the Lorenz equations
in the previous paragraph becomes quantitative. It aiso provides guidance into the
practical problem of reconstructing coordinates so that they minimize noise amplifi-
cation.

Noise amplification depends on three factors:

e The measurement function. One observation may give more information than
another.

¢ The method of reconstruction. A poor state space reconstruction amplifies noise
more than a good state space reconstruction; noise amplification depends on
factors such as m and r.

o The dynamical system. Noise amplification depends on the flow of information
between the individual degrees of freedom, which depends on properties of the
dynamical system such as the dimension and Lyapunov expouents.

In assessing predictability it is important to distinguish between estimation error
and noise amplification. Figure (2) shows a hypothetical comparison of two prediction
problems in the idealized case of a one dimensional state space. The noise amplifica-
tion is related to the “thickness” of the distribution of points. In Figure (2a) the noise
amplification is large, and in Figure (2b) the noise amplification is small. However,
the estimation error in (b) might be larger than that of (a).

Both noise amplification and estimation error cause prediction errors. The esti-
mation error depends on the procedure used to approximate the dynamics. Noise

6
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Figure 2: Two hypothetical scenarios for prediction in a one dimensional state space.
The horizontal axis is the state at time f, and the vertical axis is the state a time
t+ 1 in the future. (a) shows a coordinate system with high noise amplification, while
(b) shows a coordinate system with low noise amplification. This is evident from the
“thickness” of the distribution of points at any given y. However, since the functional
form of (b) is more complicated, with a limited amount of data (b) might result in
larger estimation error than (a).

amplification, however, does not. It sets a limit to predictability that is independent
of the modeling procedure. In the limit of a large number of data points for most
good approximation schemes the estimation error gnzs to zero. The prediction errors
in this limit are given purely by the noise amplification. The noise amplification thus
tells us the prediction errors that remain even with a perfect model.

As we shall show, when the dimension and Lyapunov exponents are sufficiently
large there can be a complete breakdown of predictability, so that even with a perfect
model the time series is unpredictable, even for short times. This is the limit in which
a time series becomes a true random process.

Any approach to state space reconstruction uses the information in delay coordi-
nates as a starting point. For some purposes, such as reducing the dimension, it may
be desirable to make a further coordinate transformation to a new coordinate system
y.

y = ¥(z) (7)

As described in Section 2, examples of such transformations ¥ are differentiation
or the singular value decomposition in PVD. By splitting the reconstruction process
into ® and ¥, we have conveniently labeled the two parts of the problem. The choice
of ¢ determines the form cf the delay coordinates, which are the raw information
we have to work with, while ¥ determines how we use that information. The total
reconstruction map = = W o ® takes the original coordinates s to the reconstructed
coordinates y.

We show here that it is impossible to reduce the noise amplification by transform-
ing delay coordinates by W. The minimum possible noise amplification over all ¥ is
obtained when ¥ = 1 and y = z. However, it is in general possible to compress all
the information in z into a coordinate y with a lower dimension while keeping the
noise amplification the same. This can be desirable for reducing statistical estima-



tion errors, which typically increase with dimension (often exponentially). The local
principal value decomposition technique discussed in Section 6 accomplishes this in
thie minimum possible dimension.

1.1 Approach and overview

The main goal of this paper is to develop a theory which gives insight into practical
problems of state space reconstruction in the typical case in which a times series is
the only available information. In order to get insight into the problem and develop
a theory for its solution we begin by assuming that we know both f and A. In
Sections 3 through 6 we develop an understanding of the effect that f and A have
on the problem. We are currently investigating the implications of these theoretical
results for the case when f and h are unknown, and will report the results in a future
publication.

Throughout this paper we assume that the noise is entirely observational. Treating
dynamical noise is obviously important, but it is outside the scope of this paper.
However, we suspect that many aspects of the framework we have established here
can be used to analyze dynamical noise as well.

In Section 2 we review what is currently known about state space reconstruction.
We begin by discussing methods currently available for state space reconstruction,
such as delay coordinates, derivative coordinates, and principal value decomposition.
\We then review extensions to Takens' theorem, and present an intuitive discussion of
why it is true.

In Section 3 we derive formulas for the likelihood function and compute it for
several examples. We use color graphics to develop intuition and to qualitatively
illustrate what factors are necessary in order to obtain a good state space reconstruc-
tion.

From a practical point of view it is important to have simple criteria for selecting
a reconstruction. The likelihood function gives a complete description of a recon-
struction, but it is too complicated; we need a number, or a set of a few numbers.
In Section 4 we examine several candidates and argue that for this problem criteria
based on the variance are more appropriate than other possibilities, such as mutual
information. We define two quantities based on the variance, the disto~'ion, which
is related to mean-square errors in the state space, and noise amplification, which is
related to errors in time series prediction. We discuss the relationship between distor-
tion and noise amplification, showing that minimizing one is equivalent to minimizing
the other.

In Section 5 we discuss the problem of deciding how much noise amplification to
expect in a given situation. We demonstrate that for a given r noise amplification is
a monotonically non-increasing function of m. We derive the behavior of the noise
amplification as a fun:tion of m, 7, d, and the Lyapunov exponents, testing our con-
clusions on a simple example. We show that for predictive coordinates an explosion
in the noise amplification occurs when the Lyapunov exponents and dimension are
sufficiently large, which causes a transition from behavior that is approximately de-

8
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symbol description

s(t) d-dimensional state at time ¢

I time-t map of dynamical system; s(t) = f*(s(0))

z(t)  D-dimensional value of time series at time ¢. (We often assume D = 1.,)
h measurement function z(t) = h(s(t))

d — D dimensional measurement surface S(t) = {s:z = h(s)}
sampling time t;.; — ¢; ‘
m-dimensional delay vector (z(t + rmy),...,z(t),...,z(¢t — rm.))
reconstructed d’-dimensional coordinate based on g

delay reconstruction map z = ®(s)

map taking delay vector to new coordinate y = ¥(z)

total reconstruction map = = Vo @

noise fluctuation, usually assumed to be Gaussian IID

m-cdimensional vector of noise fluctuations (£(t + rmy.),. ..., &(t),...,E(t —tm.))
true values of z, s in absence of noise ‘

best estimate for s, z, f

probability density function (identified by its arguments)

probability density for x given y

distortion matrix

Trace of &

Ml e B O

—~
(S
~—r

w0 el
W

=
>

>SS
8
<

Table 1: Notation used in this paper.

terministic for short times to behavior that is effectively random over any time scale.
Finally, we use two examples to illustrate several aspects of the behavior of the noise
amplification.

In Section 6 we study the effect of making further coordinate transformations
to delay coordinates. We demonstrate that in the low noise, large data limit, local
principal value decomposition is an optimal state space reconstruction method in
the sense that it minimizes the noise amplification with a coordinate system of the
smallest possible dimension.

1.2 Summary of Notation

The notation we use in this paper is summarized in Table 1.

2 Review of previous work

2.1 Current methods of state space reconstruction

The currently used possibilities for state space reconstruction include delay coordi-
nates, derivative coordinates, and global PCA. Each of these is sometimes done in
conjunction with filtering. As a matter of experience it is quite clear that the method



of reconstruction can make a big difference in the quality of the resulting coordinates,
but in general is not clear which method is the best.

Delay coordinates are currently the most widely used choice. They have the nice
property that the statistical properties of each dimension are the same. They have
the unpleasant property that in order to use them it is necessary to choose the delay
parameter 7. If 7 is too small each coordinate is almost the same, and the trajectories
of the reconstructed space are squeezed along the identity line; if 7 is too large, in
the presence of chaos and noise the dynamics at one time become effectively causally
disconnected from the dynamics at a later time, so that even simple geometric objects
look extremely complicated. Most of the research on the state space reconstruction
problem has centered on the problems of choosiag 7 and m for delay coordinates.
The proposals for doing this include information-theoretic quantities [13, 11, 1], and
others [5]. |

Another method for reconstructing a state space is the method of derivatives,
originally investigated by Packard et al. [20]. The coordinates are derivatives of
successively higher order.

y(t) = x(t) (8)
ya(t) = &

ym(t) = 3"D(1).

2U)(¢) is a numerical approximation to the j** derivative of z(t). As Takens proved,
as long as m is sufficiently large derivatives define an embedding,.

There are many different methods for the numerical computation of derivatives, so
in this sense the method of derivatives actually defines a family of different methods,
depending on the algorithm used. Straightforward methods of numerical differen-
tiation act as a high pass filter, with a response function that is proportional to
frequency. The quality of derivative coordinates in the presence of noise can be con-
siderably improved by using a numerical algorithm that uses low pass filtering to

“balance the response function.

The other method in common use is principal value decomposition, also called prin-
cipal component analysis, factor analysis, or Karhunen-Loeve decomposition, Broom-
head and King originally proposed this for reconstructing a state space for chaotic
dynamical systems [3]. The simplest way to implement their procedure is to com-
pute the covariance matrix Ci; = (z;z;), and then compute its eigenvalues a;. (;
represents the ith coordinate of the delay vector z; (): denotes a time average.) The
eigenvectors of C; define a new coordinate system, which is a rotation of the original
delay coordinate system, The eigenvalues are the average rcot-mean-square projec-
tion of the m-dimensional delay coordinate time series onto the eigenvectors. Ordering
them according to size, the first eigenvector has the maximum possible projection,
the second has the largest possible projection for any fixed vector orthogonal to the
first, and so on.

10



We have recently shown that PVD coordinates are very closely related to (appro-
priately low pass filtered) derivative coordinates [14].

At this point tuere is no clear statement as to which of these methods is superior,
Fraser has presented evidence for situations in which delay coordinates are superior
to PVD {12]. However, we have observed examples where the opposite is true. The
situation at this point is inconclusive, and it is not clear what causes one coordinate
system to be better than another. One of our central motives for defining noise
amplification is to compare different methods of state space reconstruction. This gives
guidance for optimizing the parameters of a particular method, or for comparing two
different methods.

Principal value, derivative, and delay coordinates are related to each other by
linear transformations. However, the transformation from delay coordinates to the
original coordinates is typically nonlinear. As Fraser has demonstrated [12], nonlin-
ear coordinate transformations can be greatly superior. The method of local PVD,
discussed in Section 6 implements a nonlinear coordinate transformation, v-hich gives
it the potential for better performance.

2.2 Takens’ theorem revisited

In order to understand when delay vectors form an embedding, Takens investigated
‘the equation g = ®(s). For a univariate time series (D = 1) this can be regarded
as a set of m simultaneous nonlinear equations in d variables. The transformation
® maps a d-dimensional surface into an m-dimensional space. If the surface ®(s)
contains no self intersections then there is a unique solution for s given any z, and
¢ is an embedding. If @ is sufficiently close to a linear transformation then this may
be possible with m = d. In general, however, for a unique solution we must have
m > d. Generically, when 2d > m a d-dimensionai surface in m dimensions has self
intersections on sets of dimension 24 — m; when 2d < m generically it has no self
intersections at all. The case when d = 2 and m = 3, for example, is shown in Figure
(3); in this case there are typically self intersections along one dimensional curves.
When m = d + 1 the set of self intersections is typically of dimension d - 1, and ¢
is an embedding almost everywhere. As m increases the dimension of the set of self
intersections decreases, until finally when m > 2d there are no self intersections at
all. Thus, m 2 2d + 1 guarantees that ® is an embedding, it is possible that it will
be an embedding with m as small as m = d. See reference [23] for a more complete
discussion.

The reconstruction process can aiso be considered in terms or the constraint that
each measurement causes in the original state space. This gives a more dynamical
point of view, which turns out to be useful for visualization in higher dimensions, and
particularly in the presence of noise.

Let the measurement surface S(t) be the set of possible states that are consistent
with a given measurement z(t), i.e., S(t) = {s(t) : z(t) = h(s(t))}. When h is smooth
S(t) is a surface of dimension d— D. For example, when d = 2 and A is projection onto
the horizontal axis, the measurement surfaces consist of horizontal lines. The ellect

11
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Figure 3: Solutions of the equation £ = ®(s) when d = 2 and m = 3. There are
typically self intersections along curves. For example, the state sq is mapped onto a
self intersection, while s, is not. Except for special values of s like sg, ¢ defines an
embedding.

of a series of measurement. can be understood by transporting them to a common
point in time. The state at that time must lie in their intersection I(t).

s(t) € I(t) = f~™ S(t + rmy)N...ASE)N...Af™St—rm.)  (9)

The intersection I(t) is never empty, since there must be at least one state consistent
with all the measurements. If I(t) does not consist of a single point, ® is not an
embedding. An example for the case when d = 2 and m = 3 is shown in Figure (4).

In most real situations f, k, and consequently ¢ are unknown. Nonetheless, as
long as there is a smooth one-to-one correspondence between the delay coordinate and
the original state we know that there is an embedding, so that the delay coordinate
I an be used in place of the original coordinate s.

3 Geometry of reconstruction with noise

The goal of reconstruction is to assign a state based on a series of measurements. With
noise this task is considerably more difficult because the measurements are uncertain,
and there are many states that are consistent with a given series of measurements.
The probability that a given state occurred can be characterized by a conditional
probability density function® p(s|z). This illustrates how the presence of noise com-

*We use probability density functions rather than measures only because we want to keep the
discussion accessible to the widest audience possible. All of the statements given here can be recast
in more rigorous terms using measures.

12



= x(t) x(t-7) x(t-27)

Figure 4: A dynamical view of reconstruction in terms of the evolution of measurement
surfaces. Suppose that the measurement function h corresponds to projection onto
the horizontal axis, so that h(s) = z. A measurement at time t implies that s
lies somewhere along the light gray vertical line defined by z = z(t). Similarly, a
measurement at time ¢t — 7 implies that it was on the darker line z = z(t — 7), and
a measurement at time ¢ — 27 implies that it was on the darkest line z = z(t — 27).
To see what this implies when they are taken together, each curve can be mapped
forward by f to the same time t. If their intersection is a not single point, then the
reconstruction is net an embedding.

13



Ml

plicates the reconstruction problem: without noise a point is sufficient to characterize
what is learned from a measurement, but with noise this requires a function giving
the probability of all possible states. For chaotic dynamics the properties of »(s|z)
can be a very complicated, as has been demonstrated by Geweke.

In this section we derive several formulas for p(s|z) when h and f are known. We
compute p(s|z) for several examples, to illustrate qualitatively how it depends on gz
and on the properties of the reconstruction problem.

3.1 The likelihood function

We can derive p(s|z) from Bayes' theorem, making use of the fact that p(zl|s) is
relatively simpler. According to the laws relating conditional and joint probability

p(slz)p(z) = p(zls)p(s) (10)

This can be rearranged as
p(slz) o< p(s)p(zls) (11)

The factor p(z|s) on the right is often called the likelihood function, since it represents
the likelihood of a given series of observations. The prior p(s) encapsulates any
information that we had before these observations occurred. If we are studying a
chaotic attractor, for example, and we know its natural measure, then we can take
this as our prior. If we have no prior knowledge, however, then this term can be taken
to be constant. The term on the left represents what we know about s after taking
the observations g into account, and is called the posterior.

When f and h are known we can write down a formula for the likelihood function.
Assume the noise £ is zero mean.

p(zls) = p(z — Z) (12)

where £ 1s the “true” value of z, in the absence of noise. It is related to the state
s by £ = ®(s). If we furthermore assume that the noise is IID (each fluctuation is
statistically Independent, and Identically Distributed with probability p),

i=my

p(zls) = ._H p(a(t +ir) = h(f7(s))) (13)

3.1.1 Gaussian noise

If we assume that p(£) is a Gaussian of variance ¢?, this becomes

f=ms (z(t + i) = &(t +17))?
e — ’ 14
p(zls) = ‘=1:£ 27” exp 5o (14)

If we assume the Euclidean norm, using the definition of ® this can be rewritten as
‘ 1
plzls) = Aexp —s—llz - B(s) (15)
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where A is a normalization constant.

Thus, the probability for z given the true value of s is quite simple: it is an
isotropic Gaussian centered on the true delay vector £ = ®(s). The probability for s
given g, in contrast, is much more complicated; using Bayes theorem (Equation (11))
glves

p(slz) = A'p(s) exp ~55]lz — &(s)]" (16)

where A’ 1s another normalization constant. Although this looks quite similar to
Equation (15), it is actually quite different, as it is interpreted as a function of s
rather than z. Because of the nonlinear function ®, it is not a'Gaussian.

3.1.2 Uniform bounded noise

Another case that is easily ti eated is that of uniform bounded noise,

_ o i <Se
Ple) = { 0 if €] > e D

The effect of a given measurement can be visualized geometrically in terms of
the measurement strip S.(t) = {s : |z(t) — h(s)| < €}. The measurement strip is
the support of p, and is similar to the measurement surface discussed earlier, except
that it is “thickened” by e. Following Equation (13) the likelihood function can be
computed in a manner analogous to Equation (9). The state must lie inside the
intersection of the measurement strips.

s(t) € L(t) = ™+ St +rme) NN S() NN f™S(t—rm.)  (18)

The likelihood function is uniform over the domain defined by I.(t), and zero out-
side this domain. For an invertible dynamical system a simple tool for determining
whether or not a given point s € I,(t) is to test whether it satisfies the condition

T4 (s) € S(t+mm A ASES()A...AfT™=(3) € AS(t —mm_) (19)

3.1.3 Chaotic geometry

We have performed several numerical experiments using the above formulae for like-
lihood functions, in particular for two dimensional dynamical systems such as the
lkeda map. This has allowed us to investigate the effects of varying the number of
measurements, varying the noise level, and the effect of homoclinic tangencies. We
have found the use of color graphics particularly helpful in exploring how these vari-
ous effects interact with each other. We intend tc illustrate these findings in a future
publication.
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4 Criteria for optimality of coordinates

To choose between different reconstructed coordinate systems we must first decide

. what we mean by “best”. Since our primary interest is in prediction, in principle

we could just use each coordinate system to estimate a dynamical system f, and
test to see which coordinate system gives the best predictions. In practice, however,
this is cumbersome, since it is necessary to test many different statistical estimation
procedures as well as many different coordinate systems. The errors would contain
the effects of both estimation error and observational noise, and the result of such an
experiment might give very little theoretical insight. Instead, we are going to begin
by developing a formalism for understanding the effects of observational error alone,
and we defer the problem of estimation error to a later publication.

The presence of noise forces us to think about the time series in probabilistic
terms. The predictive value of a given reconstructed coordinate y is given by the
conditional probability density of a future value of the time series given y.

p(z(T)|y(0)) = probability z(T) given y(0) (20)

p(z(T)|y(0)) tells us what we can predict about #(T") given y(0), assuming a perfect
estimation procedure. This applies to either iterative or direct estimation procedutes
[4, 9]. Any criterion for evaluating the effect of observational noise must be based on

p(z(T)|y(0C)).

4.1 Error measures

To choose between different coordinate systems, we must decide which property of
p(z(T)|y(0)) to optimize. This amounts to deciding what we mean by the “best”
predictions. There are several natural possibilities:

e Mazimum ezxpectation. We can view this as a gaming problem in which we must
bet on the value of z(T"). We naturally want to maximize our expectation, which
we can do by choosing the embedding which gives p(z(T)|y(0)) with the largest
possible maximum value. However, since z(7') is a continuous variable, we can
never predict it exactly, and this is not well defined unless a coarse graining is
specified: Also, this is only optimizes the rate of return with an infinite bank.

o Mutual information.

Let H represent the entropy function H{z) = [p(z) log p(z)dz. We can choose
the coordinate system that maximizes the mutual information I(z,y) = H(z)~
H(z|y), where H(zly) is the entropy associated with the conditional probability
density p(z|y). Note that since H(z) is fixed, this is equivalent to minimizing
the conditional entropy H(z|y). This criterion has the disadvantage that for
continuous variables it may have little to do with prediction error. For example,
a p(z|y) with sharp peaks at different values of  may have a very low entropy
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Figure 5: The conditional probability of s(t) given g(t). Observational noise induces
an uncertainty in the delay vector, here symbolized as a “noise ball”. The noise ball,
in turn, induces a conditional probability density for the true state given the delay
vector. The variance of this density quantifies the quality of the embedding. Note
that a sharp, multimodal density function can have a low entropy but a large variance.

but a high variance®. This makes the mutual information very insensitive to
whether or not a reconstructed coordinate system forms an embedding. Several
authors have looked at various criteria relating to mutual information [25, 13,
11, 12].

¢ Variance. The variance
Var(zly) = [ +*p(z|y)d (21)

is a lower bound on the mean-square prediction error E(z — £)? as follows
(see [22] for details). It can be shown that the mean square prediction error
is minimized by taking the predictor & = E(z|y). The prediction error of
this ideal predictor is then Var(z|y), which is a lower bound for any other
predictor. For continuous variables this is a very natural way to evaluate the
quality of predictions. Furthermore, it is easy to calculate analytically and
estimate numerically. We shall use this measure.

SAt any finite level of resolution, £(T") may be thought of as a “message”, with a corresponding
number of bits, as originally proposed by Shaw [24, 25]. The entropy tells us our uncertainty in
predicting this message. However, it weights the low order bits equally with the high order bits. In
predicting a continuous variable, however, an error in the highest order bit is usually much worse
than one in the lowest order bit. The inability of the entropy to make this distinction makes it a
poor measure of the quality of predictions.

17
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o Other measures, such as mean-absolute error or the geometric mean error have
the advantage that, compared to mean-square error, they do not emphasize
outliers. Our choice of variance as compared to these other measures is primarily
one of convenience.

4.2 Noise amplification

The observational errors have a variance of ¢?. We define the noise amplification at a
given noise level €, o¢, as the ratio of the variance in the future value z(T) given the
present reconstructed coordinate y(0), to the variance of the observational errors.

oT) = <\ Var(z(T)](0)) (22)

The quantity o, has the advantage that it can be estimated directly from a time
series 7, and so can be used as an operational test for the quality of a given set of
coordinates.

The quantity o, depends on both € and p(¢é). We can remove this dependence by
assuming the noise is Gaussian and taking the limit as ¢ — 0. We will call this simply
the noise amplification o.

o(T) = limyo,(T) (22)

This limit may not always exist; in particular, when the state space reconstruction
is not an embedding it will tend to infinity. However we will show in Section 4.4,
that for state space reconstructions that are embeddings the limit exists, and in
the case of Gaussian noise, it depends solely on geometric factors, specifically, the
dynamical system f, the measurement function h, the embedding dimensions m4
and m_, the state y(0), and the prediction time T. In Section 4.6 we will illustrate
how in some situations the limit depends on properties of an underlying attractor,
and the realization of the noise perturbations. At small noise levels, o can be used to
provide an estimate of the “true” noise amplification o,. Geometrically, o, measures
the “thickness” of Figure (2) in the vertical direction at the state z(t) = y(0).

Taking the limit as the noise goes to zero is quite different from simply setting the
noise to zero, as was effectively done Ly Takens [26]. When the noise is set to zero,
all reconstructions that are embeddings are equivalent. In the limit as the noise goes
to zero, however, two embeddings may huve quite different noise amplifications.

If we are interested in a geometric object such as a chaotic attractor that has an
ergodic measure, we can also elimirate the dependence on the state y(0) by taking
an averaging over the values of y(0) with respect to this measure. We will call this
the average noise amplification

(o) = (a’)y(O) (24)

“Disregarding the factor of 1/¢.
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Figure 6: Since the errors in the time series are identically distributed, the probability
density function for noisy delay coordinates is isotropic (top). This induces a non-
isotropic distribution in the original space S (bottom).

4.3 Distortion

The noise amplification has the disadvantage that it depends on the time 7. This
problem can be overcome by defining a quantity I, that is related to noise amplifi-
cation, called the distortion matriz at a given noise level ¢ as follows

1
Ye = Z;Va,r(sly) (25)

" We define a related scalar quantity 6. called the distortion at a given noise level € 8,
by Equation (26).

b = %\/Var(HsH | y) = \/tra.ceEE (26)

Finally, by analogy with Equation (23), we define the e-independent quantities
¥ = limewo L. and 6§ = lim_o &,. The motivation for defining the distortion in this
way comes from considering the geometrical effects of reconstruction. In delay co-
ordinates the probability distribution corresponding to the noise is isotropic. For
example, for Gaussian noise a surface on which the probability density function p(z)
is a constant is an m-dimensional sphere, as shown in Figure (6). Assuming that ¢
is an embedding in a neighborhood of this sphere, in the low noise limit this sphere
will map into a d-dimensional ellipsoid in the original state space 5. The distortion
¥ is a d X d symmetric real matrix, whose eigenvalues are proportional to the squares
of the principal axes of this ellipsoid.

]

8The term “distortion’
[12).

was originally used for another closely related quantity defined by Fraser
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The distortion has two disadvantages when compared with the noise amplifica-
tion. First, it depends on the coordinates used to describe the dynamical system; for
example, rescaling s changes the distortion. Second, it is not observable, and can-
not be computed from a time series alone. Nonetheless, the distortion is a valuable
tool for understanding the behavior of different coordinate reconstructions. This is
because of some theoretical relationships between distortion and noise amplification
which we will describe in Section 4.5. These results tell us that, in order to under-
stand the effect of noise on the embedding process, it should be helpful to examine
how the uncertainty in measurements of the time series translates into uncertainty in
the original state space.

From a practical point of view the distortion may seem less relevant than the
noise amplification. However there are some cases where we may know parametric
forms for f and A, for example from scientific laws, and want to estimate the “hidden
variables” s, or the unknown parameters of f and A from a noisy time series. Note
that unknown parameters are just like dummy hidden variables. This is the problem
in extended Kalman filtering, and has also been considered by Breiden et. al. [2].
Then the distortion matrix is of direct interest in quantifying the uncertainties in the
estimates for the hidden variables. For example, in the Lorenz system, we considered
how accurately it was possible to infer the value of z given values for z.

4.4 Low noise limit

[n the low noise limit, when ® is an embedding the probability density p(s|z) becomes
much simpler. For example, take Equation (15), which assumes Gaussian noise and
a uniform prior. We can rewrite it as

plzls) = Ae~ %P | (27)

where A is a normalization constant and Q(s) = ||z ~ ®(s)||>. The most likely value of
s (the maximum likelihood soiution §) occurs at the maximum value of p(s|x), where
DQ(8) = 0. If ® is an embedding, then there exists a unique maximum for sufficiently
small noise levels. When ¢ is small, p(3|z) is concentrated near its maximum, and it
is possible to get a good approximation for p(s|z) by expanding @ in a Taylor series
about 3. To leading order in s — § this is®

1 ot \

5;_-5(3 -3)'DOIDO(s - 3), (28)
°To differentiate Q, we take advantage of the fact that it is of the form Q@ = v'v, where v =

z — ®(s). Differentiating gives DQ = Dv'v + v! Dv = 2Dv!y, and D2Q = 2[D*vtv + Dv! Dv]. But

v is of order ¢, so0 the dominant term is D*Q(§) = 2D®'D®.

p(slz) = Cexp -




where the derivatives D®' and D® are evaluated at s = §, and C' is a normalization
constant. By inspection, from the definition of the distortion matrix we see that

£ =(DotD®)”". (29)

Note that if @ is an embedding then D® is of full rank, and ¥ is well defined.
The uncertainty in the estimate of s is thus an anisotropic Gaussian centered on
the maximum likelihoud estimate 8. The distortion of this Gaussian is given by the
eigenvalues of £. The larger the eigenvalues of ¥, the more well defined the initial
state.

Since ® is the vector function whose components are ®; = A(f'"), according to
the chain rule the components of the derivative are D®; = DADf'". When the
measurement function A is one dimensional, D® is the m x d matrix

DhDfTm+
D® = Dh . (30)

DhD.me-

Since s is d-dimensional, as long as ® is an embedding D® has d nonzero singular
values. The squares of these singular values are equal to the eigenvalues of .

In control theory D® is called the observability matriz. A system is observable
if the observability matrix has full rank, which is one of the conditions for ® to be
an embedding. Whether D® has full rank evidently depends on detailed properties
of the coupling between variables in f, and on the measurement function h. For
example if the dynamical system f has a representation such that it splits into two
non-interacting subsystems, and the measurement function is a constant (for example
zero) on one of the subsystems, then intuitively one would expect that this subsystem
is unobservabile. Indeed in such an example all the columns of the observability matrix
corresponding to this subsystern are zero, and it is not of full rank. On the other hand
if the measurement function depends on both subsystems, then, by Takens’ theorem,
generically full rank will be attained. We will consider such an example in Section 5.

Finally, we can use Equations (28) and (29) above to derive Equation (31) for
the noise amplification by transforming variables to #(T') = h(fT(s(0))). In the low
noise lim't we can take h and f to be approximately linear, so that a small variation
of #(T). about its mean value #(T) is z(T) — &(T) ~ DhD fT(s(0) — 3(0)). Then,
since s(0) has a Gaussian density with covariance matrix ¥, and covariance matrices
transform under linear transformations L according to ¥ — LE LY, it follows that
&(T) (the noisy future observation) has a Gaussian density with variance

o(T) =1 + DhDfTE(D fT) Dht, (31)

Intuitively this makes sense; the uncertainty in the initial state is first altered by
the derivative of the dynamics, and then projected down onto the time series and

21



Wi

finally convolved with noise. Also it is straightforward to verify that Equation 31 is
invariant with respect to the representation of the underlying state space dynamics
and measurement function.

4.5 Relation between noise amplification and distortion

[n general, when we observe a time series we cannot observe the original coordinates,
and so it is impossible to compute the distortion from the time series. Fraser originally
posed the question of whether or not it is possible to minimize the distortion of a
reconstruction by using only the information available in a time series [12]. We
demonstrate that this is indeed possible in the low noise limit, by demonstrating a
relation between the distortion matrix £ and the noise amplification o(T'), which is
computable from a time series.

Define an ordering on distortion matrices by £; € ¥y if ¥ — Ey is positive semi-
definite'®. Consider the set of all reconstructions y = ¥(g), where ¥ : ™ — R4 and
m and d’ are fixed. Then our result firstly states that if there exists a y* such that
S(y*) € L(y) for all y, then y* will also satisfy or(y*) < or(y) for all y and T !
The converse is also true generically: any reconstruction y/ that minimizes o(T) over
¥ for all T will also minimize ¥. Thus, since o(T") is an observable, in principle it
can be minimized by finding a transformation that gives a simultaneous minimum for
several different times. As we will see in Section 6, this is not as difficult as it might
seerq,

Derivation.

We can use Equation (31) to demonstrate that any reconstruction y* that mini-
mizes the distortion & will also minimize the noise amplification ¢(T') for any time T
as follows. Let y* = ¥*(z). Then v(£(y) — L(y*))v! > 0 for anv d-dimensional vector
v and any reconstruction y. By taking vt = DhDfT, we have o(T,y) — o(T,y*) > 0
forall T.

To demonstrate the converse, we proceed as follows. Let y' = W'z, As will be
shown in Section 6, there exists a transformation y* such that L(y*) < E(y) for
all y. It suffices to show that L(y') = Z(y"). But by definition of y' we know
o(y',T) < o(y*,T) for all T, and by the the first part of the demonstration we
know that o(y',T) 2 o(y",T) for all T. It follows that vk Muvp = 0 for all T,
where v} = DADfT, and M = £(y') — Z(y*) is necessarily a positive semi-definite
matrix. To corplete the demonstration we must show that M = 0. Now transform to
coordinates so that M = diag(m,,..,mq). We obtain a contradiction if one or more
of the m; are non-zero, because suppose (without loss of generality) that m; > 0.
Then vrMvh > my|v{||? > 0, where v}’ denotes the first component of vy in the

new coordinates. Note that there must generically exist a T such that ||v(T”||2 > 0,

198y definition a d x d matrix M is positive semi-definite if v Mv > 0 for all d-dimensional vectors
V.
11n Section 6 we will show that such a y* exists, is generically unique up to invertible coordinate
transformations, and show how to compute it straightforwardly from f and A.
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because a finite subset of the vectors vy make up an observability matrix of the form
D®, which by Takens’ theorem is generically of full rank, so that the vy span R4,

4.6 Nume.ical example: The Lorenz equations

[n this subsection we illustrate the above ideas using the Lorenz equations as an
example.

4.6.1 Low noise limit distortion

[n Section 1 we gave an intuitive sketch of the flow of information between variables
in the Lorenz system, We argued that when z =~ 0, the observations of z tell us
little about 2. The distortion makes this notion precise. To illustrate how the flow
becomes restrictec as r nears zero we numerically compute the distortion along a
typical trajectory of the Lorenz attractor, using five dimensional delay coordinates
with my = 0 and m_ =4, and 7 = 0.01 (by keeping the r small, we guarantee that
all the coordinates in the delay vector may be near zero simultaneously). Since the
measurement function is projection onto the z axis, Dh is the row vector (1,0,0).
The derivative matrix D f~'" of the map associated with the Lorenz equations can be
found by integrating the equations for the differentials, i.e. as is dene in computing
Lyapunov exponents for an ODE. For numerical stability, we are often {orced to inte-
grate forwards along an orbit segment, and we then use singular value decomposition
to invert the resulting matrices. In order to visualize the distortion’s z-dependence,
we plot § against the x coordinate, as shown in Figure (7). The graph is multi-valued,
since § depends on y and z as well as z,

To illustrate the dependence of the distortion on the time lag ™ used, we arbitrar-
ily fix a state s = (--1.8867,—5.1366, 24.7979), and plot 6 against 7. See Figure (8).
We chose three different embedding dimensions as follows. The upper curve is for
my = 0,m_ = 2, and because of the low embedding dimension, there are singulari-
ties. The middle curve is for m4 = 0,m_ = 4, and the singularities have vanished.
Note also that as 7 increases, there is very little advantage in using a higher em-
bedding dimension. Intuitively, this is because the inotion on the Lorenz attractor is
chaotic, and measurements in the far past fail to give new information in the unstable
direction. We will return to this topic in Section 5. Finally, the lower curve is for
a non-predictive embedding with m, = 5,m_ = 4. Significant noise reduction has
been achieved since future coordinates do give information in the unstable direction.

Note that in all three cases, the distortion blows up at r = 0. This is to be
expected, since in this limit, measurements become redundant. In fact a general
result of Section 5 implies that for this example § — =% as + — 0. On the other
hand, for this chaotic example, intuitively we should expect to see the distortion
increasing as 7 increases, due to irrelevancy. However, this is clearly not reflected
in the numerics. In fact, the low noise limit approximation must ultimately break
down as 7 increases, even for small noise levels. This situation may be visualized
in Figure (6). As 7 increases, there will be more and more folds, and the induced

23



8
10 E T T v ‘ T T T T ‘ L S § _Y-'T M A Al A
‘
10 3 -
]
. y
© 10 -
-
0% 3
10\ kot b b
-20 -10 0 10 20

Figure 7: Local variation of the distortion for the Lorenz equations for a typical
trajectory on the Lorenz attractor. The blowup of the distortion along z = 0 is a
vesult of the poor information flow from z to = when z = 0.
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Figure 8: The distortion as a function of  for three different embedding dimensions.
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distribution for p(s|z) will become multimodal, causing an explosion in the distortion
at finite resolution. This effect cannot be obtained by the purely local analysis of
Section 4.4, We return to this problem in Section 4.7. However, the above results
show that it is a very complicated problem to settle on an optimal value for the time
delay 7.

In Section 5 we will consider the dependence of the distortion on the embedding
dimension m in more detail.

4.6.2 Finite noise distortion

In this subsection, we investigate numerically the accuracy of the low noise limit
formulae above for approximating the distortion at finite resolution 6,. A similar
investigation could be done for the noise amplification. Recall that the noise ampli-
fication at finite resolution measures the “thickness” of Figure 2. One could attempt
to measure this thickness directly by a lengthy numerical simulation, and compare
the result to the formula for noise amplification. We will now describe an algorithm
for this idea in the case of distortion which we refer to as a Monte Carlo Simulation.

We use the exact likelihood function p(z|s) of Equation (15), and take the prior
p(s) to be the natural measure p,(s) on the attractor to obtain p(s|z). We assume
that the dynamics has sufficiently nice mixing properties so that Equation (32) holds
for almost all initial conditions sg in the basin of attraction, where ¢ is any smooth
function and At is held fixed at some small value.

[ #lslpils)ds = Jin

Then taking ¢1(s) = ||s||*p g;|s ) and ¢a(s) = s p(z|s), we obtain Equation(33), where
i = expl— iz~ B(F 2 (s0))[*/262).

b = }:wnllf"" (o) /Zw‘ - IIZwtf‘A‘ so) Zw.IP (33)

i=]

85

NZ¢f“ (32)

This is turned into a numerical approximation by truncating after N terms, where
N is varied until satisfactory convergence has been achieved. Note that the smaller ¢
ie taken, the larger NV must be taken for convergence. This approximation is clearly
much more CPU intensive than the analytical formula of Section 4.4 for the low noise
limit 4.

[igure (9) illustrates the results of such a computation for the case of the Lorenz
equations. The two solid lines are plots of é, against 7 for noise levels ¢ = 0.5 and
¢ = 0.25, which represents a signal to noise ratio of about 20 and 40. A predictive
embedding was chosen with my = 0 and m_ = 4, The noisy delay vector gz was gen-
erated from a state corresponding to Figure (8). The dotted line is the corresponding
plot of § against r taken from Figure (8).

We make the following observations about this figure.
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Figure 9: The distortion &, at finite resolution € as a function of 7 for € = 0.5 and
e = 0.25 are plotted in solid lines from a Monte Carlo simulation. The dotted line is
the corresponding plot for the low noise limit of the distortion using the analytical
formula of Section 4.4.

L. The distortion at finite resolution appears to have converged well for a value of
¢ as high as 0.5, for a wide range of values of r.

2. For the range of T over which convergence at finite resolution has been achieved,
§ provides an upper bound for é,. This upper bound is also very sharp over
a wide of values of 7. We believe that the failure of § to bound §, for large
values of T is due to the phenomenon of irrelevancy and biinodality mentioned
in Section 4.6. We also believe that the failure of § to bound §, sharply for all
small values of 7 is due to the that the Monte Carlo simulation for §, is carried
out on a trajectory, effectively including the prior information of being on an
attractor. In our calculation of £, we use a uniform prior, so that we should
only expect § = v/traceX to provide an upper bound on é,.

We have performed other Monte Carlo simulations and the results indicate that
the situation can be more complicated in other examples. Firstly, we performed
simulations with the Ikeda map, and Gaussian noise. We observed that the limit
of 8, as € —» 0 sometimes fails to exist. We believe this is due to the highly fractal
structure of the underlying attractor. This is not a problem at realistic noise
levels for the Lorenz example, because in that case, the fractal structure is only
apparent at an extremely small resolution. Secondly, we performed simulations
for the Lorenz example, but using uniform noise. We observed that the limit
of §, exists, but is dependent on the realization of the noise used to produce
the delay vector . To obtain a well defined limit requires taking an ensemble
average over many realizations of the noise. Fortunately, as demonstrated in
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Section 4.4, this problem does not arise for Gaussian noise.

5 Limits to predictability

For a given noise level the noise amplification tells us how much loss of pre-
dictability occurs purely because of the reconstruction process; it therefore sets
a limit to prediction that is independent of the number of data points or the
modeling technique. The distortion'? (or equivalently, the noise amplification)
depends on the state space reconstruction, for example, on the parameters m,,
m., and 7. It also depends on the properties of the underlying dynamical
system such as the dimension and Lyapunov exponents, and on the measure-
ment function. In this section we show that there are some general scaling laws
that make it possible to estimate the way the distortion will change as these
parameters are varied. These scaling laws set upper bounds to predictability.

To study the dependence on the reconstruction it is sufficient to consider delay
coordinates. As we prove in the Section 6, this is because delay coordinates pro-
vide a lower bound on distortion, in the sense that a coordinate transformation
of delay coordinates cannot reduce the distortion. One fact that is immediately
apparent is that gathering more information can only decrease the distortion.
This follows from an elementary property of conditional probabilities. Suppose
we are given two delay vectors (! and z(® for which z") € z(?, i.e., (¥ is of
higher dimension than z(!), and contains z(!) as a subset. Then

£(s]z?) < B(slz™), (34)

in thie sense of Section 4. Thus, to reduce the distortion the dimension of the
reconstructed space should be as high as possible.

As a practical matter, however, finite data resources usually impose a limit on
the state space dimension. It is therefore important to know which information
is most useful. For uniform lag times this translates into choosing the best
values for 7, my, and m_.. The scaling laws derived in Sections 5.1 and 5.2
provide insight into this question.

Another fact that is intuitively obvious is that when 7 is sufficiently small
successive measurements become almost redundant, in the sense that in the
absence of noise they approach the same value; the difference in their value
is mainly due to measurement noise. In this case images of the measurement
surfaces are roughly parallel in the neighborhood of the true state. Let t,
denote the redundancy time, above which measurement surfaces intersect at a
significant angle. Then we expect that if the window width w = m7 is much

2[n this section we study the distortion rather than the noise amplification because distortion
does not depend on the prediction time. However, from the results of the previous section, the
results will apply to either quantity.
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less than t,, then the distortion will be very large. To avoid this we should
choose w > ¢,. On the other hand, for a chaotic system, let ¢; denote the
irrelevancy time, of order loge/A, where )\ is the largest Lyapunov exponent.
Intuitively, it should be expected that measurements made outside a window

- width w much greater than ¢; will be irrelevant, in the sense that the images of

the measurement surfaces will line up alor.g the unstable direction, and so give
no information in that direction. To avoid this we should choose w < ¢;. In
the case that t; < ¢, one of the above conditions on w must be violated, and
one would expect a very large distortion. In the this section we will investigate
the extent to which the above intuition is born out quantitatively, by deriving
general scaling laws for the distortion, and working out some examples.

5.1 Scaling laws

When m is sufficiently large or 7 is sufficiently small the distortion behaves
according to well defined scaling laws. There are two regimes. One of these
occurs when the window width w = mr is smail, and the other occurs when the
window width is large.

5.1.1 Small window width limit

The scaling is the same whether or not the dynamics is chaotic. The scaling
law is |

mr =0  §=0(m V(mr)"9), (35)

(where “O()” denotes “the order of”). Note that for d > 1 the distortion blows
up in the limit as r — 0, with an exponent that increases with dimension.

Example: The Lorenz equations. In Figure (10) we plot the distortion § as
a function of the embedding dimeusion m, with 7 fixed at 0.005, and s fixed at
the same value as for Figure (8). A predictive and a non predictive embedding
are shown. Observe that for small m, in both cases the scaling goes as m=3/2,
as predicted by Equation (35). At larger m, a different behavior is apparent,
as will be discussed in Section 5.1.2. For another example, see Figure (11) of
Section 7.2.

Derivation. Expand D@ in a Taylor’s series in time around ¢ = (. For conve-
nience assume a predictive embedding, with the first row simply Dh. Then the
rows of D® are of the form

D&y =a® 4 aM(ir) +a®(r)? + ... (36)

where 1 = 0,...,m — 1, labels the row, and the a!’) are fixed d-dimensional row
vectors. For sufficiently small values of r the embedding surfaces are approxi-
mately linear, and there is a unique crossing when m > d. If we truncate the
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Figure 10: The distortion as a function of m. The solid curve is for a predictive
embedding with m, = 0, and the dashed curve is for a nonpredictive embedding with
my =mjf2and m_=m/2 ~ 1.

Taylor series at order d — 2 the matrix cannot be of full rank, since there are
only d — 1 independent vectors a'), Consequently the d** singular value is zero
to order 742, But if we truncate the Taylor series at order d — 1 the matrix
will generically be of full rank at almost all states s because the d d-dimensional
vectors al/) involved in the expansion are typically independent. Therefore the
d** singular value is typically of order (m'r)( “). The dominant eigenvalue of &
is the square of the inverse of the d largest singular values of D®, which implies
the 7 scaling in Equation (35).

The m scaling comes from the law of large numbers. If we fix the window width
(at a small value) and increase m, then the variance decreases as m~! because
of the assumed independence of the measurement errors. These two arguments
taken together give the scaling law of Equation (35).

Remark. In the small window limit, it can also be demonstrated that the
singular vectors of D® converge onto Legendre polynomials for almost all states
3. It was previously shown by us [14] that in the limit of low noise and small
window width, global Broomhead and King coordinates converge onto Legendre
polynomials, with the singular spectrum satisfying similar scaling laws. The
ideas behind the proofs are very similar, with the observability matrix replacing
the covariance matrix C;; defined in Section 2.1.
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5.1.2 Large window width limit.

In the limit as m — oo when the window width is large, there are different
scaling behaviors, depending on whether or not the dynamics is chaotic.

Nonchaotic systems. When 7 is large the measurement surfaces are no longer
nearly parallel. Each mewsurement can be treated as independent, and accord-
ing to the law of large numbers the scaling is

m— o0, 6=0(m Y% (37)

In general it is intuitively clear that this also increases with d, since when d is
large the information in the time series is spread over more coordinates, In the
example in Section 5.2, it is shown that § = /2d%/2m~1/2,

Chaotic systems with predictive coordinates. As described at the be-
ginning of this section, for a chaotic system measurements in the distant past
provide no information about the position along the unstable direction. While
information is provided in the stable direction, this information is at a fine scale
of resolution that is typically below instrumental error. Since the uncertainty of
the position along the unstable manifold is the limiting factor, this information
is irrelevant for prediction.

In the limit of sufficiently large 7 and small ) it is possible to derive a scaling law
for the distortion matrix. This is possible because in this case the eigenvectors
of the distortion matrix line up with the stable and unstable manifolds. The
eigenvalues of the distortion matrix have three different behaviors,

Unstable manifold (); > 0) (38)
m— 00 2 = O(1 - e‘“"d")
Neutral manifold (); = 0) (39)
m— 00 X = O(m™")
Stable manifold (A; < 0) (40)
m — 00 2,‘.‘ = O(e2mz\¢r)

In the above equations we have transformed the distortion matrix ¥ to the
appropriate coordinates. The distortion in the unstable manifold approaches a
constant, while in the neutral manifold it goes to zero as a polynomial, and in
stable manifold it goes to zero exponentially with m. The mean-square error in
a prediction is related to the trace of the distortion, which is dominated by the
largest eigenvalues. As we demonstrate in the derivation below, this approaches
a constant.

Chaotic systems with mixed coordinates. With mixed coordinates the
situation is quite different from that of predictive coordinates, since future in-
formation makes it possible to pinpoint the position along the unstable manifold
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precisely, and all the eigenvalues go to zero as m — oo. The calculation of the
distortion follows closely that for predictive coordinates, except that all the
sums and products must be taken from =7* to “F. The results for the stable
and neutral manifolds remain essentially the same, but the unstable manifold

is now dominated by the contributions from the future terms. We get instead

Unstable manifold (A; > 0) (41)
m=—o00 iz = Oe"tmn)
Neutral manifold (\; =0)
m— oo N = O(m™1)
Stable manifold (A; <0)
m--00 Ly = O(e2m-Am)

The main difference is that all the eigenvalues £;; — 0 as m — oo; the eigenval-
ues for the stable and unstable manifold go to zero exponentially. The neutral
manifold thus provides the leading order contribution to the distortion.

The above relationships are apparent in Figure (10). The relationships are also
not valid when d'r > 19}‘-; when this assumption is violated the behavior is
entirely different, as we discuss in Section 5.2.

The following derivation of Equations (38)-(40) is admittedly rather loose; to
turn these it into a more rigorous statement may involve placing restrictions on
quantities such as the measurement function and the nature of the dynarnical
system. It should probably be ommitted at a first reading.

Derivation of Equations (38)-(40) .

The m-dimensional delay vector z{™ can be broken into a series of lower di-
mensional delay vectors rooted at different times. To derive the scaling we
transport all of them to the same time and examine their joint likelihood
function. Let d' be the minimum dimension for which delay vectors define
a global embedding, and for convenience pick m so that it is an integer mul-
tiple of d’. Let ,z;gd) be the d'-dimensional delay vector rooted at time —jd'r,
ggﬁd') = (e{=jd'T),...,z(=(jd' + d —1)r)). Assume the measurement errors are
Gaussian with variance ¢, and let §§.dl) = ((€(=jd'r),....E(=(jd' + d' - 1)7))
be the vector of d’-dimensional measurement errors rooted at time —j(d’')r. Let
F be the induced d’-dimensional dynamics in delay space. In the limit as ¢ — 0
the v:actor of measurement errors rooted at time —jd'r transported to time 0
s _é_(‘d) = DFj(d')’(gﬁd')). The noise p.d.f. p(ég“')) is an isotropic Gaussian of
variance €?; following a calculation similar to that of Section 4.4, to leading
order in €

2 (d") 1t Ly 2d)
p(§; )=Aexp:2-€-5(§,~ )@j‘éj ) (42)
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where A is a normalization constant, and ©; is a d' x d' dimensional matrix

0, = (DFHT (M) DR ().

Ad' ' . I 2 (d!
Let g;&d) be the noise free delay vector such thai g;g-d') - 214(0) = _{;_E ). The
set {j;gd')},j =0,1,..., 5 contains the same information as the m-dimensional

J(d! , . , ,
delay vector z{™). Furthermore, {§_§ b i =0,1,...,% is a collection of inde-
‘pendent random variables. Following similar reasoning to that of Section 3.1,
the above statements plus Bayes’ theorem (with a uniform prior) imply

p(2(0)|z™) = Ap({£!“}|z"(0)) (43)
: £(d")
= P({éj })
a-1 1 nt '
2(d') -12(d")
= A ,'I;Io exp-éz-?"(gj )@jlg_j ) (44)
-
1 L (d! 1 -1 (d’ !
= Aexpz 2 (& -2(0)'07 (" ~2*(0))
1=0

where A and A’ are normalization constants. The distortion can obtained by
expanding in a Taylor series, as in Section 4.4. Hence we obtain

L=(2 67" (45)

It follows from the definition of the Lyapunov exponents that when d'r is suffi-
ciently large ©; approaches a matrix whose eigenvalues are e2M4'7 . e¥ad'T,
Furthermore, for large d'r the eigenvectors approach limiting values, indepen-
dent of 7. In this case we can evaluate Equation (45) in the basis of eigenvectors,

o~ 1y-1 ! 2j)d’ 1 - eimAT
( ZO (-)j )‘4_'-' = Zh e'- JAia'T = -———'-——"""'1 — 6—2/\|d'1‘ (46)
= )=

When \; > 0 the numerator approaches 1 as m — oo, and by inverting we obtain
Equation (38). When A; < 0 the second term in the numerator dominates and
we obtain Equation (40). When A; = 0 the summation in the previous equation
is no longer valid; however, the sum is clearly of order m, and we obtain Equation

(39).

Note that while z(4(0) is related to s by a coordinate transformation, because
¥ is not invariant under coordinate transformations the distortion is not in
gereral the same. Nonetheless, we expect their scalings properties to be the
same.
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Note also that in this derivation, by taking delay vectors of dimeasion d' we
are assuming that the predictability changes very little over times d'r, ie.,
d't < '%8£, When this assumption breaks down the scaling is radically dxﬁ'erent
as we demonstrate in the example of the next section.

5.2 A solvable example-

In this section we investigate the distortion for an example that is sufficiently
simple that the observability matrix can be calculated explicitly. Consider a
system of d/2 negatively damped harmonic oscillators

d . L . , d
.._‘(Ut\ - (/\c (-U|> <u|> P=1,., = (47)
dt vy / Wy /\,’ Vg 2
The state space dimension d is even. u; and v; are both taken modulo 1, cor-
responding to (piecewise smooth) motion on a torus. A; > 0 are the Lyapunov

exponents; for convenience we will sometimes take A; = A\ = constant. We take
the measurement function to be

;
D Ui (48)

1=1

&lw

We will consider a predictive reconstruction with m, = 0.

This example is admittedly rather contrived. The oscillators are independent,
so measurements only give information about the whole system because the
measurement function involves a combination of all of the degrees of freedom.
In a more typical example the flow of information depends on the coupling of the
unobserved degrees of freedom to the observed degrees of freedom. Nonetheless,
as we shall see, even this very simple example exhibits nontrivial behavior.

This system has the following analytic solution.

ui(t) = u;(0)e™V! cosw;t (49)
vi(t) = vj(O)e"A"sinw,-t

Applying the definition of ® and differentiating, the observability matrix can
be calculated explicitly.

D® 51 = %e"(“”"” cos(i — 1)w;7 (50)
D®;q; = —--Z«e'“'”"” sin(i — 1)w;,

where ¢ ranges from 1 to m and j ranges from 1 to d/2. Note that D@ is
constant throughout the state space.
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Figure 11: The distortion § plotted as a function of the delay coordinate dimension m
with a fixed delay time 7 = 0.01, for the system defined by Equations (47) and (48).
For the solid curves A = | and the system is chaotic, while for the dashed curves
A = 0 and the system is not. Three different dimensions are shown, d = 2,4, and 6.

To compute the distortion we must first evaluate D®'D®. The odd rows and
columns are

4 & ‘
D' D®|yiny 9j-1 = 7 Z e~ HANFNMIT cog kwi T cos kw;T. (51)
k=0

There are similar expressions for the other terms, with sin cos and cos cos instead

of sinsin. The distortion can be obtained from the singular value decomposition
of DDA,

In Figure (11) we plot § as a function of m for several different values of the
dimension and Lypunov exponents.

This illustrates several of the features derived in Section 5.1.

o Small w: For small values of m the window width w is also small. The
chaotic and nonchaotic cases behave approximately the same. As m de-
creases the distortion increases as a power law with the predicted exponent

1/2 —d.

o Large w: For the chaotic case the distortion approaches a constant while
for the nonchaotic case the distortion decreases according to m~!/2, inde-
pendent of the dimension.

Note that, as it must, the distortion decreases monotonically with m.
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[Figure 12; The distortion & plotted as a function of the Lyapunov exponent A for
dimensions d = 2,4,...,20. The curves with the lowest distortion have the lowest
dimensioti. Notlce that there are two scaling reglmes one for low A and another for
higher A. In the high A regime the enormous noise amplification means that even a
small noise level ¢ makes the system behave effectively as a random process. There
is no predictability, even for short times.

The behavior of the plateau at m == co for chaotic systems can be investigated
by taking the limit 7 — 0 in Equation (51) and approximating by an integral,
This gives

2\, +,\

D®'D®|2i-1 2j-1 = {[(/\ 250 4 (witw; )T (i Ay P (wi—w;) ]

(52)
The behavior of the plateau under changes in parameter values is investigated
by using Equation (52) with A; = A = const, and the frequencies uniformly
spaced so that w; = 4,4,..., %. The result 1s shown in Figure (12).

There are two scaling regimes, one for low A, and one for high A. In the low
A regime the motion is effectively predictable and § = O(A!/?). In the high A
limit, however, the distortion appears to diverge at a rate that increases with
dimension, § = Q(A4~'/?), Note that the crossover between the two scaling
limits occurs at a lower value of A when the dimension increases. The scaling
law for the high (respectively low) A limit can be obtained by substituting
mt = O(1/)\) in the small (respectively large) window width scaling law of
Equation (35) (respectively (37)). However, there are some problems with this
argument, as the prefactor of Equation (35) might depend on A and alter the A
scaling behavior. Indeed we have investigated other high dimensional examples,
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and the behavior can be more involved than that described above, though we
often see a crossover effect,

5.3 When a time series becomes a random process

The divergence of the distortion in the high dimension limit seen in the previous
example is particularly significant, because it demonstrates how noise amplifica-
tion causes a system that is sufficiently chaotic and sufficiently high dimensional
to become a random process. With a noise amplification of 108, unless the noise
level € < 1079 (a very rare occurrence), the dynamics is fundamentally unpre-
dictable, to first order in €, even for short times. Note that in the previous
example the distortion exceeds 108 when d > 20 and A > 0.1, In this case
there is simply not enough information in the time series to make the motion
deterministic, on any time scale. We add the caveat that when the distortion is
extremely large, there may be important effects of second order in ¢ which are
beyond the above local analysis.

6 Coordinate transformations

Up until now we have assumed that the reconstructed coordinates are simple
delay coordinates, so that the reconstruction map = = ¢. Delay coordinates
have the advantage of being simple and direct, However, the question arises
of whether we can get better results by transforming to new coordinates. In
general we may want to consider other coordinates y = W(g) where we further
transform the delay coordinates so that the total reconstruction map = = ¥o @,

6.1 Effect on noise amplification

There are two senses in which we might hope to make the coordinates “bet-
ter”: The first is that we might attempt to reduce the noise amplification by
reducing noise, thereby locating the state more precisely. The second is that we
might hope to reduce the dimension of the coordinate system, which reduces
estimation error.

We will first address the question of changing the noise amplification. Two basic
facts are apparent:

o [nvertible coordinate transformations cannot change the noise amplifica-
tion. This is evident from the fact that the conditional probability density
p(z(T)|¥(z(0))) is a function of z(T') alone; ¥(z(0)) is not an argument of
p, but rather a label that identifies this es a particular member of a family
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of different functions. As long as the function ¥ is one-to-one, it leaves the
corresponding function p unchanged.

o Non-invertible coordinate transformations cannot decrease the noise am-
plification. If more than one state g is mapped into the same state ¥ (g),
this generally has the effect of broadening p. This is evident since

pz(Tly)= 3 ple(T)e) (53)
{my=¥(z)}

Summing probability densities either increases the variance or leaves it
unchanged. Hence, the noise amplification either increases or remains the
same.

Thus, we see that we cannot decrease the noise amplification by a change of
coordinates, In order to decrease the noise amplification we must alter the
original information set, by changing ®. For example, we can increase the
dimension of the original delay space. However, from the point of view of noise
amplification a coordinate transformation on the original delay coordinates is
at best neutral.

Changing coordinates can be quite useful, however, for improving the estima-
tion problem. This is particularly true for reducing the dimensionality. The
estimation problem generally becomes exponentially worse as the dimension in-
creases. Thus, we wish to find coordinates that make the dimension as small as
possible while leaving the noise amplification unchanged.

6.2 Local analysis

In the low noise limit, to first order in ¢ the transformation ¥ can be approx-
imated locally by its derivative DW (the constant term plays no role in the
following). An expression for p(s|DW¥(g)) can be derived using a generalization
of the argument of Section 3.3 as follows. Assuming a uniform prior, we have
p(s|DW¥(z)) ox p(D¥(z)ls). But p(D¥(z)|s) = p(DYE), where § = z — ®(s).
Hence we obtzin Eq. 54 by transforming the isotropic Gaussian distribution of
the noise-¢ through the linear map DV,

p(s|D¥(z)) ~ Aexp %(D\Pz_m D¥®(s)) (DYDY~ (D¥gz — DUd(s)) (54)

As before, in the limit that ¢ is small we can expand this in a Taylor’s series.
The arguments parallel those leading to Equation (28), except that @ is replaced
by W o ®. The result is that

1
P(sly) = C exp == (s §)1=Y(s - 3), (55)
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where |

© = (DetDYH DYDY DUD®), (56)
Note that, as expected, a locally invertible coordinate transformation will not
alter the distortion, since (DWD¥H)~! = (DW!)=!D¥~!, In the next section
we show how to minimize ¥ with respect to W,

6.3 Optimal reconstruction

We will now show that it is possible to compress the information contained in
a delay vector g into a smaller number of dimensions, while retaining all the
available relevant information. Local principal value decomposition provides a
way of achieving this,

D® is an m x d matrix which maps variations in the d-dimensional state, §s,
into variations in the delay vector, ég. For m > d, singular value decomposition
expresses D® as the product of three linear transformations, U, W, and V'

Dd=UwWV! (57)

The first of these, V1, is represented by an orthogonal d x d matrix that performs
a rotation onto the principal axes. The second transformation W is represented
by a diagonal d x d matrix that stretches or contracts the principle axes; its
diagonal elements w; are called the singular values of D®. The third transfor-
mation U is represented by a column orthogonal m x d matrix that maps onto
the m-dimensional delay space, so that U'U = 1, the identity in d dimensions.

[nserting this into Equation (56) we get
L = (DoD®) = (vWUIUWVH ™ = vyt (58)
I 1/2
§ = VTrl = \Tr(VW-V) = vTrW-? = {Z w,-"} . (B9)

The eigenvalues of the distortion matrix are the inverse squares of the singular
values, since V' can be viewed as a similarity transformation which diagonalizes
the distortion matrix:

Visy =w-? (60)

The singular values w; describe how well the observations determine the original
state s along each of the principal axes of £. If w; is small, then the observations
are highly uncertain along the corresponding axis. The best coordinates are
obviously those that make w; as large as possible for all i.

Note that the singular values depend only on the way in which we construct
the original delay coordinates (and of course on the dynamical system and the
measurement function). In order to reduce the uncertainty of our coordinates

38



we must gather more information, for example, by increasing the dimension of
the delay space or by choosing a better value of r. The search for an optimal r is
nontrivial, and increasing the dimension of the delay space worsens estimation
error. Ideally, we would like a reconstruction algorithm which incorporates all
the information in a given window in the lowest possible dimension.

Local principal value decomposition coordinates are the best possible coordi-
nates which can be derived from the information set represented by a given
delay embedding, in the sense that they compress all the available information
into the smallest possible dimension, d. We define local PVD coordinates by
introducing a transformation ¥ = Ut from the delay space of dimension m to a
space of dimension d < m which projects onto the d principal axes determined
by singular value decomposition. They are local in the sense that a princi-
pal value decomposition at each point in the delay space produces a different
U. Geometrically, the transformation U' maps noisy delay vectors back onto
the tangent space to the embedded state space ®(R?), and is thus a natural
candidate for an optimal reconstruction.

Although the optimality of PVD coordinates is almost intuitively clear, to make
sure it is understood we give a proof: First, we show that any reconstruction
in fewer than d dimensions has infinite distortion, then we show that the PVD
coordinates have the same distortion as the delay embedding. First, suppose
that the total reconstruction map = maps points from d dimensions to d' < d.
Performing a singular value decomposition on its transpose,

D=t =Uuwv? (61)
yields for the distortion matrix:
L= (UWtUh)! (62)

But this is'a d x d dimensional matrix with at most d’ nonzero singular values,
since W is d’ x d'. The distortion, as above, is the square root of the sum of
sqaares of the inverses of all d singular values, hence it must diverge. Obviously,
we cannot embed the data in fewer than d dimensions with a finite distortion.
Consider instead the map from d to d dimensions defined by = = ¥ o ®, where
¥ = U, The distortion matrix in this case is just:

T (vwuteteuwvh-t = (vwutvuvtuwvt)-! (63)
(Vvwivh-t, (64)

the same as for the delay coordinates themselves. Local PVD coordinates give
us a reconstruction which takes advantage of all the information available in a
high dimensional embedding yet minimizes estimation error by minimizing the
embedding dimension. !*

!30f course, any linear transformation which can be obtained from U! by a rotation will have the
same property.
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7.1 Results

Takens’ theorem establishes that delay coordinates from a dynamical system
are diffeomorphic to the system'’s original coordinates if their dimension is suf-
ficiently large. The particular values of 7 and m are not important when the
data is infinitely precise, as long as m is large enough. However, in the presence
of noise, the quality of an embedding is highly dependent on these parameters.
The distortion and noise amplification quantify the quality of an embedding,
and we give analytical formulae for them in terms of the dynamics and the mea-
surement function in the low noise limit. The scaling laws for these quantities
give fundamental bounds on the predictability of a dynamical system and show
how a deterministic system becomes a random process.

Reconstruction techniques such as PVD always start with delay vectors. But
since the distortion of a delay reconstruction provides a lower bound on the
distortion of any further transformation, the only advantage of such transfor-
mations is dimension reduction. Local PVD is an optimal method of state
space reconstruction, since it retains the distortion of its delay vectors while
projecting them into the lowest possible dimension. ‘

7.2 Open Questions

Although we have developed a theory of state space reconstruction in the pres-
ence of noise, in this paper we have not addressed the practical issues which
arise when constructing nonlinear predictive models from time series. We are
currently conducting numerical experiments in order to find out if our local prin-
cipal value reconstruction technique has advantages over existing techniques for
modeling. However, these experiments are subject to a number of complica-
tions which prevent their inclusion at this date. For example, forecasting error
includes both noise amplification and estimation errors due to finite data sets.
We have found that estimation error often dominates forecast error for quite
reasonable noise levels and data set sizes. Further, estimation error varies with
the reconstruction, making it difficult to distinguish the contribution of either
effect to the overall error. We intend to publish the results of these experiments
and an analysis of the estimation problem in Physica D.

We have also left several theoretical questions unanswered as follows.
We expect that our theory will need to be modified in the case of
dynamical or correlated noise. Also, the example we use to illustrate
the breakdown of predictability as dimension and Lyapunov expo-
nents increase is very special. We intend to explore this phenomenon
for more realistic examples. |
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