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Abstract

Step-indexed models provide approximations to a class of domain
equations and can prove type safety, partial correctness, and pro-
gram equivalence; however, a common misconception is that they
are inapplicable to liveness problems. We disprove this by apply-
ing step-indexing to develop the first Hoare logic of total correct-
ness for a language with function pointers and semantic assertions.
In fact, from a liveness perspective, our logic is stronger: we verify
explicit time resource bounds. We apply our logic to examples con-
taining nontrivial “higher-order” uses of function pointers and we
prove soundness with respect to a standard operational semantics.
Our core technique is very compact and may be applicable to other
liveness problems. Our results are machine checked in Coq.

Categories and Subject Descriptors D.3.1 [PROGRAMMING
LANGUAGES]: Formal Definitions and Theory — Semantics;
F.3.1 [LOGICS AND MEANINGS OF PROGRAMS]: Specifying
and Verifying and Reasoning about Programs — Logics of pro-
grams; F.4.1 [MATHEMATICAL LOGIC AND FORMAL LAN-
GUAGES]: Mathematical Logic — Mechanical theorem proving

General Terms Languages, Theory, Verification

Keywords Step-indexed models, Termination

1. Introduction

In the last ten years, a technique called “step indexing” has built
semantic models for a wide variety of complex program logics
[HDA10, §2]. Step-indexed models approximate a class of con-
travariant domain equations while supporting impredicative poly-
morphism and contravariant equirecursion. Some power is lost dur-
ing the approximation, but the consequences are unclear.

Most applications of step-indexing to date have been to prob-
lems of safety—“nothing bad ever happens”—e.g., partial cor-
rectness. A widely-held belief among those familiar with step-
indexed models has been that one cost of the approximation is that
step-indexed models are inapplicable to problems of liveness—
“something good eventually happens”—e.g., total correctness.

Our major result is to demonstrate that this widely-held belief is
wrong by applying step-indexed models to program termination.
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We define a minimal language with two distinctive features:
function pointers and semantic assertions. Semantic assertions are
program commands that assert the truth of a formula in logic at
a program point. Although at run time semantic assertions are
equivalent to skip, they are useful during static analysis (e.g.,
[BCD+05]). Semantic assertions may seem benign, but their in-
clusion in a language with function pointers leads to the kind of
unpleasant contravariant circularity associated with step-indexing.

We design a Hoare logic of total correctness for our Halting
Assert Language (HAL). In fact our logic is stronger: it verifies an
explicit upper bound on the number of function calls, making it a
logic of resource bounds. Since the only source of nontermination
in HAL is recursion through function pointers, termination is a
direct consequence of an upper bound on the number of calls.

We focus on a program logic for a language containing the com-
bination of function pointers and semantic assertions both because
there is a natural liveness problem (program termination) and be-
cause it forms a minimal set of program features which exhibits
the semantic modeling problems for which step-indexing is well
suited. Other domains containing a similar contravariant circularity
in their semantic models (e.g., concurrency with first-class locks)
are often quite complex in ways unrelated to the circularity. There-
fore, HAL is a test bed for semantic techniques that we believe will
be applicable in richer settings in the future.

However, our logic for HAL is novel in its own right, since we
are not aware of any logic of total correctness for a setting that in-
cludes the kind of contravariant circularity present in HAL. Indeed,
logics of resource bounds for languages containing function point-
ers are quite rare, even without semantic assertions.

Our Hoare logic is able to reason about programs that exhibit
nontrivial use of function pointers including mutually recursive
function groups and higher-order functions. Each recursive group
is verified as a whole and combined into proofs of whole-program
termination, which makes the logic compositional. Higher-order
functions are verified independently of the context in which they
will be used, and we are able to apply such functions to themselves
without trouble (e.g., map of map).

Contributions.

• We design a language with two complex features: function
pointers and semantic assertions embedded in syntax.

• We develop a series of Hoare axioms that can verify the total
correctness of programs written in this language.

• We apply the logic to some example programs.

• We build a semantic model for the Hoare judgment and prove
the logic sound with respect to the model. We prove that a pro-
gram verified in the logic actually terminates with the expected
postcondition and connect to a standard operational semantics.

• Our results are machine checked in Coq and available at:

http : //msl.cs.princeton.edu/termination/
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χ(τ ) ≡ x := ℓ load constant ℓ into x
| x3 := (x1, x2) allocate a fresh pair

| x2 := x1.1 project first component

| x2 := x1.2 project second component

| χ1(τ ) ; χ2(τ ) sequence two commands

| ifnil x then χ1(τ ) test if x = 0 and branch

else χ2(τ )

| call x call function pointer x

| return return from function

| assert (P : τ ) semantic assertion

φ(τ ) ≡ label ⇀ χ(τ ) parametrized program

Figure 1. Parameterized commands and programs

variable x ≡ Î
label ℓ ≡ Î
value v ≡ label + (value × value)
store ρ ≡ variable ⇀ value

measure t ≡ store ⇀ Î
predicate P ≈ (program× store)→ T see §6.1
command c ≡ χ(predicate)
stack s ≡ list command
program Ψ ≡ label ⇀ command = φ(predicate)

Figure 2. Basic semantic definitions

⊤, ⊥ constants for truth and falsehood
P ∧Q, P ∨Q conjunction and disjunction
P ⇒ Q, ¬P implication and negation
∀a : τ, ∃a : τ impredicative quantification

µX. P equirecursive predicate

x ⇓ v variable x evaluates to value v
[x← v]P P will hold if x is updated to v
closed(P ) P holds on all stores

P ⊢ Q entailment
〈|t|〉 measure t evaluated on the current store

funptr ℓ t
[

P
] [

Q
]

ℓ is a pointer to a terminating function
with termination measure t,
precondition P, and postcondition Q

Figure 3. A variety of predicates (assertions in our Hoare logic)

2. An Introduction to HAL

Here we define the syntax and basic semantic definitions for HAL,
and present the core assertions used in our Hoare rules.

We present definitions for commands and programs in Figure
1. Our syntax is parameterized over the type of assertions τ . Most
of our commands are unexciting: load a constant into a program
variable, create (allocate) a fresh pair, project the first and second
components of a pair, sequence two commands, and test if a vari-
able contains the constant 0 and branch accordingly. Note that the
subcommands for sequences and branches are parameterized over
the same type variable τ . Our call instruction is noteworthy be-
cause x is a variable instead of a constant function label—i.e., x
is a function pointer. Our functions do not take explicit arguments;
instead, a programmer must establish an ad-hoc calling convention
using the store. Our return command is standard. The unusual
command is the semantic assertion assert; here P has the type
of the argument τ . We define a parameterized program φ(τ ) as a
partial function from code labels to parameterized commands.

We give the basic semantic definitions for HAL in Figure 2. We
use natural numbers for program variables (for readability we use
ri instead of just i for concrete program variables in our examples).
We also use natural numbers for code labels (addresses). We define
values as trees having labels as leaves. A store (a.k.a. register
bank) is a partial function from variables to values. A measure is
a partial function from stores to natural numbers; we will prove
termination by requiring measures to decrease during function
calls. A predicate is (essentially) a function from pairs of program
and store to truth values T (Prop in Coq). A command is a
specialization of a parametrized command χ with predicate; a
stack is a list of commands. A program is a partial function from
labels to commands—i.e., program = φ(predicate).

Notice that the metatypes predicate, command, and program
contain a contravariant cycle. The real semantic definition for
predicate, which is similar in flavor to what is given here but with
the pleasing addition of being sound, is the subject of §6.1.

We give a variety of predicates in Figure 3. We have constants
(⊤, ⊥) and the standard logical connectives (∧, ∨, ⇒, ¬). Of
note is that our quantification (∀, ∃) is impredicative—that is, the
metavariable τ ranges over all of the types in our metalogic (τ :
Type in Coq), including of course the type predicate itself. We
provide equirecursive µ to describe recursive program invariants.

The assertion x ⇓ v means that the variable x evaluates to
value v in the current store. We write [x ← v]P to mean that
the predicate P will be true if the current store is updated so that
variable x maps to value v; [x ← v] is therefore a kind of modal
operator—the modality of store update. We define another modal
operator, closed(P ), meaning P holds on all stores.

We write P ⊢ Q for predicate entailment. We also introduce a
notational convenience for reasoning about measures in the context
of a predicate. Since a predicate is more-or-less a function taking
(among other things) a store ρ as an argument, and since a measure

t is a partial function from stores to Î, it is straightforward to eval-
uate t(ρ) and then compare the result against other naturals with the
usual operators =, <, etc. To indicate this kind of evaluation and
comparison, we will write e.g., “〈|t|〉 < n”—that is, evaluate t with
the current store and require that the result be less than n. When
t(ρ) is not defined, terms containing 〈|t|〉 are equivalent to ⊥.

The assertion of particular interest to the present work is the ter-
minating function pointer assertion “funptr ℓ t

[

P
] [

Q
]

”, wherein
ℓ is a function address, t is a termination measure, P is a precondi-
tion, and Q is a postcondition. When funptr ℓ t

[

P
] [

Q
]

holds:

1. The program has code c at address ℓ (recall that programs are
partial functions from code labels to commands); this is exactly
why we want predicates to take programs as an argument.

2. When c is called with an initial store ρ, if t(ρ) is defined, then c
makes at most t(ρ) function calls before returning to its caller.

3. The precondition P and postcondition Q are actually functions
from some shared type A to predicate, i.e., P = λa : A. (. . .)
and Q = λa : A. (. . .). The function pointer assertion is

actually of form “funptr ℓ A t
[

P
] [

Q
]

” but the type variable
A has been elided to simplify the presentation.

4. If t(ρ) is defined, then for all a, if the assertion P(a) holds prior
to executing c, then the assertion Q(a) will hold when c returns.
The parameter a is thus used to relate pre- and postconditions
to each other over the function call. If functions had explicit
arguments and return values, a would relate these too.

The datum a which is shared between pre- and postconditions al-
lows us to specify precice function specifications without requiring
auxiliary state. Stated another way, a is the auxilary state, but is
presented in a way that does not affect the operational semantics.
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n ≤ n′ Γ′ ∧ R ⊢ R′ Γ′ ∧ P ′ ⊢ P

Γ′ ⊢ Γ Γ′ ∧Q ⊢ Q′ Γ, R ⊢n {P} c {Q}

Γ′, R′ ⊢n′ {P ′} c {Q′}
Hweaken

Γ ∧ P ⊢ Q

Γ, R ⊢0 {P} assert Q {P}
Hassert

Γ, R ⊢0 {[x← ℓ]Q} x := ℓ {Q}
Hlabel

P ≡ x1 ⇓ v0 ∧ x2 ⇓ v1 ∧ [x3 ← (v0, v1)]Q

Γ, R ⊢0 {P} x3 := (x1, x2) {Q}
Hcons

P ≡ x1 ⇓ (v1, v2) ∧ [x2 ← v1]Q

Γ, R ⊢0 {P} x2 := x1.1 {Q}
Hfetch1

P ≡ x1 ⇓ (v1, v2) ∧ [x2 ← v2]Q

Γ, R ⊢0 {P} x2 := x1.2 {Q}
Hfetch2

Γ, R ⊢n {P} c1 {Q}
Γ, R ⊢n′ {Q} c2 {S}

Γ, R ⊢n+n′ {P} c1 ; c2 {S}
Hseq

Γ, R ⊢n {P1} c1 {Q} Γ, R ⊢n {P2} c2 {Q}

P ≡ (x ⇓ 0 ∧ P1) ∨ (x ⇓ (v1, v2) ∧ P2)

Γ, R ⊢n {P} ifnil x then c1 else c2 {Q}
Hif

Γ, R ⊢0 {R} return {⊥}
Hreturn

P ≡

{

x ⇓ ℓ ∧ funptr ℓ t
[

Pℓ

] [

Qℓ

]

∧

〈|t|〉 = n ∧ Pℓ(a) ∧ closed(Qℓ(a)⇒ Q)

Γ, R ⊢n+1 {P} call x {Q}
Hcall

Figure 4. Hoare rules

3. Total Correctness for HAL

Our program logic is divided into two parts. We provide a set of
Hoare rules in §3.1 for verifying commands in HAL A second set
of rules, in §3.2, show how to use the verification of a function’s
body to show that the function satisfies its specification, and can
thus be called by other functions.

3.1 Hoare Rules

Our Hoare judgment is a six-place relation written as follows:

Γ, R ⊢n {P} c {Q}

Here P , Q, and R are predicates (assertions), Γ is a closed
predicate that only looks at programs, n is a natural number and
c is a command. We defer the formal semantic model until §7, but
the informal meaning is straightforward. P , c, and Q are the stan-

dard precondition, instruction, and postcondition tripe common in
Hoare logics. The return assertion R is the postcondition of the
current function; R must hold before the function can return.
We collect assertions about function pointers in Γ. Finally, start-
ing from precondition P , n is an upper bound on the number of
function calls c will execute before it terminates.

We present the Hoare rules for total correctness in Figure 4. In
fact, the rules are mostly unsurprising. The weakening/consequence
rule Hweaken allows covariance in the preconditions (P , P ′) and
contravariance in the postconditions (Q, Q′) and return conditions
(R,R′). The function assertions (Γ, Γ′) are related covariantly and
incorporated in the other entailments in the most general way. We
allow the upper bound on the number of function calls (n,n′) to
increase during weakening since the bound is not strict.

Although semantic assertions caused significant headaches in
the semantic model due to the contravariance outlined in §2, the
Hassert rule is pleasingly direct. We simply ensure that the precon-
dition P (including the function assertions in Γ) entails the asser-
tion Q. Since the assert command does not make any function
calls, we can use n = 0 for the upper bound.

The four rules Hlabel, Hcons, Hfetch1, and Hfetch2 are the
standard weakest precondition forms for local variable updates
for constants, fresh pairs, and first/second projections respectively.
Since these rules do not make any function calls n = 0.

The sequence rule Hseq and conditional rule Hif look standard.
The only point of interest in Hseq is that the upper bounds on the
subcommands c1 and c2 are summed for the sequence. In the Hif
rule, we require that both c1 and c2 share the same bound n, which
is then used for the conditional. If the natural bounds differ, one
increases the lower bound of the lower via weakening.

The rule for function return Hreturn requires that the precondi-
tion match the return assertion. After a function returns the re-
mainder of the function is not executed, so we provide the postcon-
dition ⊥. Since return does not make any function calls n = 0.

The most important rule is Hcall, for verifying a function
pointer call. The precondition P has five conjuncts. First, the vari-
able x must point to a code label ℓ. Second, ℓ must be a function
pointer to some code with termination measure t, function precon-
dition Pℓ, and function postcondition Qℓ. Third, the termination
measure t must be defined on the current store, and evaluate to
some n. That is, starting from the current store, the function ℓ will
make no more then n function calls before returning. Fourth, the
function precondition Pℓ must hold when applied to some a. Fi-
nally, we require that the function postcondition Qℓ, when applied
to the same a, implies the postcondition Q in all stores. It is insuf-
ficient to assert that Qℓ(a)⇒ Q in the current store (i.e., the store
before the function call); we must know that the implication will
still hold after the function call is completed.

The metavariable a is chosen to relate the function pre- and
postconditions to each other over the call. Consider the pair

Pℓ ≡ λ(x, v). (r0 ⇓ 4) ∧
(

(x 6= r0)⇒ x ⇓ v
)

Qℓ ≡ λ(x, v). (r0 ⇓ 8) ∧
(

(x 6= r0)⇒ x ⇓ v
)

If the caller needs to be sure that the invariant r15 ⇓ (16, (23, 42))
is preserved over the function then he sets a = (r15, (16, (23, 42))).

The key point of the HCall rule is that if we satisfy P then we
can verify a function pointer call with a bound of n+ 1 calls.

Precondition generator. Our update rules are stated in weakest-
precondition style and our predicates include general quantifica-
tion. Thus, we can easily define (see Coq development) a precon-
dition generator pg that computes P from R, n, c, and Q such that

If (Γ ∧ P ) ⊢ pg(R,n, c,Q) then Γ, R ⊢n {P} c {Q}

We use such a generator to cut down on the tedium of mechanically
verifying the example programs presented in §4.
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Ψ : ⊤
Vstart

Ψ : Γ ∀a, n.
(

(

Γ ∧ funptr ℓ t
[

λa′. P(a′) ∧ 〈|t|〉 < n
] [

Q
])

, Q(a) ⊢n {P(a) ∧ 〈|t|〉 = n} Ψ(ℓ) {⊥}
)

Ψ : (Γ ∧ funptr ℓ t
[

P
] [

Q
]

)
Vsimple

Γ′(b, n) ≡ ∀(ℓ, t,P,Q) ∈ Φ(b). funptr ℓ t
[

λa. P(a) ∧ 〈|t|〉 < n
] [

Q
]

Ψ : Γ ∀b. ∀(ℓ, t,P,Q) ∈ Φ(b).
(

∀a, n.
(

(Γ ∧ Γ′(b, n)), Q(a) ⊢n {P(a) ∧ 〈|t|〉 = n} Ψ(ℓ) {⊥}
)

)

Ψ : (Γ ∧ ∀b. ∀(ℓ, t,P,Q) ∈ Φ(b). funptr ℓ t
[

P
] [

Q
]

)
Vfull

Figure 5. Single and mutually-recursive function verification

3.2 Function Verification

The whole-function verification rules given in Figure 5 form the
heart of our program logic. Although the symbol count is daunting,
the core idea is natural and we will cover the details one at a time.

Functions are normally verified one at a time, although mutually
recursive function groups are verified as a set. One begins with
rule Vstart, which says that program Ψ has specification ⊤ (i.e.,
that none of the functions in Ψ have been verified to terminate).
The Vsimple and Vfull rules verify the addition of terminating
function specifications into the context Γ. Vsimple is sufficient
to handle simple recursive functions that take non-polymorphic
function pointers as arguments. Vfull handles mutually-recursive
function groups and polymorphic function pointers; Vsimple is just
a special case of Vfull. After verifying the first function/group, one
continues with the next function/group with another application of
Vsimple/Vfull until all of Ψ has been verified.

The Vsimple rule starts with the assumption that the program
Ψ has been proved to have specification Γ; the goal is to add the
specification for the function at ℓ using termination measure t,
precondition P, and postcondition Q. The main requirement is the
second premise. We must verify, using the H-rules, that for any n
and a, the function body Ψ(ℓ) meets the specification

. . . , Q(a) ⊢n {P(a) ∧ 〈|t|〉 = n} Ψ(ℓ) {⊥}

That is, starting from a state that satisfies the precondition P(a) and
in which the termination measure t evaluates to n, the function will
return in a state satisfying Q(a) after having made no more than
n function calls. We use ⊥ as the postcondition of the Hoare tuple
since the function is not allowed to “fall off the bottom”. The key to
doing recursive functions is how we set up the function specifica-
tions: we verify Ψ(ℓ) using the previously-verified function speci-
fications in Γ as well as a modified specification for ℓ itself:

funptr ℓ t
[

λa′. P(a′) ∧ 〈|t|〉 < n
] [

Q
]

That is, the function body Ψ(ℓ) is allowed to contain a recursive
call as long as the termination measure decreases.

The Vfull rule is more general, and correspondingly, more com-
plex. It generalizes the Vsimple rule in two orthogonal ways. First,
Vfull is able to verify a mutually-recursive set of functions. Second,
Vfull is able to verify function specifications where the specifica-
tions take parameters. The universally-quantified variable b in the
Vfull rule represents the specification parameters; b can range over
an arbitrary type chosen by the verifier. The variable Φ appearing in
the Vfull rule represents a finite set of function specifications, i.e.,
a set of tuples with a label, a termination measure and a pre- and
postcondition. The specifications inΦ represent the set of mutually-
recursive functions we are going to verify. The quantification over
Φ(b) in the premise of the rule means that we will have to con-
struct a Hoare derivation for each function body represented in Φ.

Correspondingly, the quantification in the conclusion means that
subsequent verifications may rely on each of the specifications in
Φ. In other words, the Vfull rule establishes the specifications of a
set of mutually-recursive functions simultaneously.

Note that Φ takes an argument; thus the function specifications

can depend on the parameter b.1 In the premise of the Vfull rule,
the value b is bound once and the same b is used to construct
the recursive assumptions as is used to construct the verification
obligations. In other words, the value of the parameter, b, is a
constant throughout the recursion. Contrast this with the value a
which connects pre- and postconditions, which is allowed to vary
at each recursive call. An interesting case occurs when b is allowed
to range over function specifications. In this case, the specifications
in Φ take on a higher-order flavor. We shall see several examples
using this power in the following section.

4. Examples of Verified Programming in HAL

Although HAL is Turing complete, it lacks many features enabling
abstraction and ease-of-use. The simplicity of our examples does
not indicate a theoretical limitation, but is rather a practical conse-
quence of programming in such an impoverished language.

Example 1: unary addition. Here we examine a simple recursive
function which “adds” two lists representing natural numbers in
unary notation. The basic idea of this function is that there are two
unary-encoded naturals (lists terminated by the 0 label) in registers
r1 and r2. Cons cells are stripped from r1 and added to r2 until
there are no cells left in r1, at which point the function returns.

To state the specification of this function, we need a predicate
listnat which relates natural numbers to their unary encoding. See
Figure 6. Essentially, the number of nested cons cells captures the
intended natural number.

Using the listnat predicate we can define the pre- and postcon-
ditions of the addition function, which are parametrized by the pair
of numbers to be added, as well as the termination measure. Note
that we allow termination measures to be partial functions; we use
that power here because addt is only defined when the value in r1
properly encodes some natural number.

Line 1 of the addition function simply asserts the precondition
of the function. Line 2 tests if the value in register r1 is nil (the 0
label). If so, the function returns; otherwise, we perform one unit
of work, which involves shifting one cons cell from r1 to r2. Note
lines 7 and 8, where we load the constant label 1 into r0 and jump
to it; this sequence is typical of “static” function calls. The code is
loaded at label 1, so this is the recursive call.

The addition function is a simple self-recursive function, so we
can to verify it according to its specification using the Vsimple

1 This may be quite a strong dependency; even the type of a which connects
the pre- and postconditions can depend on the value of b.
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Fig. 6a: Encoding naturals Fig. 6b: Pre- and postcondition; termination measure Fig. 6c: Code cadd, loaded at label 1

listnat(0, 0)
listnat(n, v)→

listnat(n+ 1, (0, v))

Number Encoding

0 0
1 (0, 0)
2 (0, (0, 0))
3 (0, (0, (0, 0)))

addP(n,m) ≡ ∃v1 v2. r1 ⇓ v1 ∧ r2 ⇓ v2 ∧

listnat(n, v1) ∧ listnat(m,v2)

addQ(n,m) ≡ ∃v2. r2 ⇓ v2 ∧ listnat(n+m, v2)

addt(ρ) ≡ the unique n s.t. ∃v1. ρ(r1) = v1 ∧

listnat(n, v1)

1 assert (∃n m. addP(n,m)) ;
2 ifnil r1 then return;
3 else

4 r3 := r1.1 ;
5 r1 := r1.2 ;
6 r2 := (r3, r2) ;
7 r0 := 1 ; // address of cadd
8 call r0 ;
9 return ;

Fig. 6d: Verification obligation for unary addition (using Vsimple)
∀n1, m1, n.
(

Γ, (∃v2. r2⇓v2 ∧ listnat(n1+m1, v2)) ⊢n {∃v1 v2. r1⇓v1 ∧ r2⇓v2 ∧ listnat(n, v1) ∧ listnat(m, v2) ∧ 〈|addt|〉 = n} cadd {⊥}
)

Γ ≡ funptr 1 addt
[

λn2 m2. addP(n2,m2) ∧ 〈|addt|〉 < n
] [

addQ
]

Figure 6. Example 1: unary addition.

rule. The proof obligation that is generated by Vsimple (after some
minor simplifications) is shown in Figure 6. It is straightforward to
use the rules of the logic to fulfill this proof obligation. We use the
precondition generator from §3.1 to ease the burden somewhat.

Here we sketch the verification proof. The base case occurs
when r1 contains the nil value. In this case n1 = 0 and the
postcondition follows immediately. In the recursive case, lines 4–6
do the interesting work of shifting a single cons cell, and moves
from a state satisfying addP(n1 + 1, m1) to a state satisfying
addP(n1,m1 + 1). The recursive call (lines 7–8) thus has its
precondition satisfied, and the termination measure (which tracks
n1) has decreased. The final proof obligation is then to show that
addQ(n1,m1 + 1) implies addQ(n1 + 1, m1).

Example 2: apply. While the code for the “apply” function is
dead simple, the specification is rather subtle. The “apply” function
makes essential use of function pointers and thus has a higher-
order specification. The basic idea is that one packages together
a function label with some additional arguments using a cons cell
in register r0. Apply unpacks the cons cell and calls the contained
function using with the enclosed arguments. We toss in a higher-
order assert just before the call for fun.

In order to give a reasonable specification for this function and
other higher-order operations, we identify a convenient calling con-
vention. We call functions that adhere to our calling convention
“standard” functions. Register r0 is used for passing function argu-
ments and results. Registers r1–r4 are callee-saves registers (whose
values must be preserved over the call) and all other registers are
caller-saves. In addition, we require the precondition, postcondi-
tion, and termination measure, for standard functions, to be defined
only on the argument/return value (the value in r0). We say a func-
tion satisfies stdfun(ℓ, t, P,Q) (where t, P and Q are defined over
a single value rather than an entire store) if ℓ is a standard function
in the sense just defined. The stdfun predicate can be defined in
terms of funptr in a straightforward way.

In the specification for apply (Figure 7) t, P and Q are the
parameters of the specification; they describe the function that
will be called. When it comes time to verify the apply function,
we will use the Vfull rule and b will range over tuples (t, P,Q).
This way we can specify and prove correct the apply function
in complete isolation, without requiring any static assumptions
about the functions it will be passed. In some later verification,
the specification of apply can be instantiated with any function
specification that the verifier knows about. In particular, apply can
be applied to itself! This would not be a recursive call, in the
traditional sense, but is rather a dynamic higher-order call.

Termination remains assured because the way the specifications
get “stacked” on top of each other. This stacking of function speci-
fications, in general, creates a tree-like structure where the leaves of
the tree must be first-order functions (whose specifications do not
depend on the specifications of other functions). The whole thing
hangs together because there is no way to create a cycle in the tree
of function specifications, and thus no way to introduce new, po-
tentially nonterminating, recursion patterns. See the formal devel-
opment for an example of such “stacked” function applications.

Example 3: map. Our final example is the map function, which
applies some operation to every element in a list. “Map” exhibits
both the higher-order nature of “apply” and also has an interesting
recursive structure of its own. In HAL, even this simple function
requires more than 20 lines of code and its specification is tedious
(due mostly to the details of the calling convention), so here we
will merely give the program text and sketch the main ideas of its
verification. So that the map function will be a “standard” function,
we break it into two pieces: a worker and a wrapper. The worker
is the interesting recursive function and the wrapper merely takes
care of the details of saving and restoring registers.

For the map worker, the list to be mapped over is stored in r3,
and the label for the “standard” function to be applied to each list
element is in r2. r1 plays the role of a data stack, and r0 is used
to exchange arguments and results with the function being called.
Since the function in r2 is standard, we can rely on the values of r1–
r4 being unchanged across function calls. The termination measure
for this function is essentially a sum, ranging over all the elements
in the list, of the termination measure of the mapped function.

The overall pre/post specification for map is built using the
specification of the mapped function. Basically, the precondition
for map asserts that the values in the list to be mapped associate
pairwise with data values ai according to the mapped function’s
precondition, and that the given function pointer is actually a stan-
dard function with the given specification. Likewise, the postcondi-
tion asserts that the returned list associates pairwise with the same
data ai according to the mapped function’s postcondition.

Because we carefully arranged the map wrapper function to be
a “standard” function, and because we verified map with a higher-
order specification it is possible to use map, itself, as a function
to map over a list! Imagine that we have set up an initial state
consisting of a list in register r0 such that each element of the
list is a cons cell containing the label constant 5 (the map wrapper
function!) in the first component and the second, another cons cell
containing a pair of some other function to map over the list in the
next component. Then, if we call map with the apply function, we
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Fig. 7a: “standard” functions Fig. 7b: code capp for apply with abbreviated Hoare triples

csregs(v1, v2, v3, v4) ≡ (r1 ⇓ v1) ∧

(r2 ⇓ v2) ∧ (r3 ⇓ v3) ∧ (r4 ⇓ v4)

stdfun(ℓ, tℓ, Pℓ, Qℓ) ≡ funptr ℓ
(

λρ. tℓ(ρ(r0))
)

[

λ(v1, v2, v3, v4, a). (r0⇓v0) ∧ Pℓ(a)(v0) ∧

csregs(v1, v2, v3, v4)
]

[

λ(v1, v2, v3, v4, a). (r0⇓v0) ∧ Qℓ(a)(v0) ∧

csregs(v1, v2, v3, v4)
]

applyP(a)(v) ≡

∃ℓ v2. v=(ℓ, v2) ∧ stdfun(ℓ, t, P, Q) ∧ P (a)(v2)

applyQ(a)(v) ≡ Q(a)(v)

applyt(v) ≡ t(v) + 1

R ≡ {r0 ⇓ v′ ∧Q(a)(v′)}

⊢0 {r0 ⇓ (ℓ, v) ∧ P (a)(v)∧ t(v)+1 = n ∧ stdfun(ℓ, t, P,Q)}

1 r5 := r0.0 ;

⊢0 {r0 ⇓ (ℓ, v) ∧ r5 ⇓ ℓ∧
P (a)(v) ∧ t(v) + 1 = n ∧ stdfun(ℓ, t, P,Q)}

2 r0 := r0.1 ;

⊢0 {(r0 ⇓ v) ∧ (r5 ⇓ ℓ) ∧ P (a)(v) ∧ (t(v) + 1 = n) ∧ stdfun(ℓ, t, P,Q)}

3 assert
(

∃ℓ′, t′, P ′, Q′. (r5 ⇓ ℓ′) ∧ stdfun(ℓ′, t′, P ′, Q′)
)

;

⊢0 {(r0 ⇓ v) ∧ (r5 ⇓ ℓ) ∧ P (a)(v) ∧ (t(v) + 1 = n) ∧ stdfun(ℓ, t, P,Q)}
4 call r5 ;

⊢n {r0 ⇓ v′ ∧Q(a)(v′)}

5 return ;

⊢n {⊥}

Fig. 7c: Verification obligation for apply (using Vfull)
∀(t, P,Q) (v1, v2, v3, v4, a) n.

(

⊤, (∃v′0. Q(a)(v′0) ∧ r0 ⇓ v′0 ∧ csregs(v1, v2, v3, v4)) ⊢n

{∃ℓ v0. stdfun(ℓ, t, P,Q) ∧ P (a)(v0) ∧ r0 ⇓ (ℓ, v0) ∧ csregs(v1, v2, v3, v4) ∧ t(v0) + 1 = n} capp {⊥}
)

Figure 7. Example 2: apply

1 ifnil r3
2 then

3 r0 := 0 ; return ; // base case, return “nil”
4 else

5 r0 := r3.1 ; // get the head of the list
6 call r2 ; // call the mapped function
7 r1 := (r0, r1) ; // push the mapped value
8 r3 := r3.2 ; // pop the head of the list
9 r5 := 4 ; // recursive “map” call

10 call r5 ;
11 r5 := r1.1 ; // add the new list head
12 r0 := (r5, r0) ;
13 r1 := r1.2 ; // pop the stack
14 return ;

Figure 8. Listing for map worker (at label 4)

1 r1 := (r2, r1) ; // push registers r2 and r3
2 r1 := (r3, r1) ;
3 r2 := v0.0 ; // load the function pointers into r2
4 r3 := v0.1 ; // load list argument into r3
5 r5 := 4 ; // call map worker
6 call r5 ;
7 r3 := r1.0 ; // restore r3
8 r1 := r1.1 ;
9 r2 := r1.0 ; // restore r2

10 r1 := r1.1 ;
11 return ;

Figure 9. Listing for map wrapper (at label 5)

get the effect of mapping map over each component sublist. We can
use the apply function to build a kind of poor man’s closure system
which allows us to perform arbitrarily nested map operations.

With a little effort, one could build a real closure system along
similar lines by defining a function call convention specifically for
the purpose. The logic has the necessary ingredients of higher-order
specifications and impredicative quantification.

5. Erased Operational Semantics for HAL

We are ready to present the operational semantics for HAL. In
this section we give HAL an erased semantics—that is, a seman-
tics that does not depend on the complicated semantic model for
predicates. Our erased semantics demonstrates that HAL has a rea-
sonable, conventional, and fully-computable operational semantics.
We state our end-to-end theorem in terms of our erased semantics
to avoid ambiguity over the meaning of what we have proved.

In §7.1 we will give HAL an unerased semantics that will
depend on the model for predicates and will be considerably less
standard. In fact, it will not be computable! We will prove an
erasure theorem giving the relationship between the two semantics.

The erased step relation for HAL
E
7→ takes five arguments:

Ψ ⊢ (ρ, s)
E
7→ (ρ′, s′)

As in §2, we have a program Ψ; stores ρ, ρ′; and stacks s, s′.
The erased step relation is defined as the least relation satisfying
the rules given in Figure 10. The machine steps by executing the
command c at the head of the stack; the tail contains the function
return points. The command c must be a sequence c1 ; c2. The step
rule applicable depend primarily on the command c1. If the head
of the stack s is not a sequence then the machine is stuck. This
helps ensure that we do not “fall off the bottom” of a function—we
must execute a return instruction before we reach the end. In the
rule Ecall, we append a special instruction, assert ⊥, to the end
of the called function’s code to ensure that if the last instruction is
a return then it will execute as expected.2

The individual rules in the erased step relation are entirely
conventional—indeed, that is the point. We say that a command
c is straightline if the step relation always continues with the
next instruction in the sequence. There are four rules that handle
the simple straightline commands: Elabel, Econs, Efetch1, and
Efetch2. All four modify the store ρ in the expected ways: loading
a constant (i.e., the code label ℓ) into a variable x (Elabel); storing

2 One alternative is to add a second rule (Ereturn2) for return to handle
the special case when there is no following instruction in the sequence.
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Ψ ⊢ (ρ, (x := ℓ ; c) :: s)
E
7→ ([x← ℓ]ρ, c :: s)

Elabel
ρ(x1) = v1 ρ(x2) = v2

Ψ ⊢ (ρ, (x3 := (x1, x2) ; c) :: s)
E
7→ ([x3 ← (v1, v2)]ρ, c :: s)

Econs

ρ(x1) = (v1, v2)

Ψ ⊢ (ρ, (x2 := x1.1 ; c) :: s)
E
7→ ([x2 ← v1]ρ, c :: s)

Efetch1
ρ(x1) = (v1, v2)

Ψ ⊢ (ρ, (x2 := x1.2 ; c) :: s)
E
7→ ([x2 ← v2]ρ, c :: s)

Efetch2

Ψ ⊢ (ρ, (assert P ; c) :: s)
E
7→ (ρ, c :: s)

Eassert
ρ(x) = 0

Ψ ⊢ (ρ, (ifnil x then c1 else c2 ; c) :: s)
E
7→ (ρ, (c1 ; c) :: s)

Eif1

Ψ ⊢ (ρ, ((c1 ; c2) ; c3) :: s)
E
7→ (ρ, (c1 ; (c2 ; c3)) :: s)

Eseq
ρ(x) = (v1, v2)

Ψ ⊢ (ρ, (ifnil x then c1 else c2 ; c) :: s)
E
7→ (ρ, (c2 ; c) :: s)

Eif2

Ψ ⊢ (ρ, (return ; c) :: s)
E
7→ (ρ, s)

Ereturn
ρ(x) = ℓ Ψ(ℓ) = c′

Ψ ⊢ (ρ, (call x ; c) :: s)
E
7→ (ρ, (c′ ; assert ⊥) :: c :: s)

Ecall

Figure 10. Erased Operational Semantics

the new pair (v1, v2) into variable x3 (Econs); and projecting the
first and second components, respectively, of the pair (v1, v2) into
variable x2 (Efetch1 and Efetch2). We write ρ(x) to reference the
value ρ associated with x, and [x ← v]ρ to mean the fresh store
derived from ρ by updating variable x to contain the value v.

The “complicated” straightline command assert is a nop in
the erased semantics; it does nothing at all. This a feature, not a bug.
It means our erased semantics is entirely standard and computable.
The unerased semantics in §7.1 “checks” assertions as it steps.

There are three control-flow rules not involving call/return.
The sequence rule (Eseq) is a bookeeping rule that simply reasso-
ciates “;”. The two branch rules (Eif1 and Eif2) test whether the
variable x is equal to 0 or is equal to some pair (v1, v2). If it is 0
(Eif1), the machine steps to c1; otherwise (Eif2), it steps to c2. If

the value of x is some label other than 0, the machine is stuck.3

The final two rules both involve functions. The rule for returning
from a function (Ereturn) simply pops the head of the stack s. The
call rule (Ecall) is slightly more complicated. Here, we look up the
label ℓ stored in variable x, and use the program Ψ to extract the
function body c′. We suspend the remainder of the current function
c by pushing it onto the stack, and put the new function body c′ on
top, with an appended assert ⊥ as explained above.

We write the reflexive, transitive closure of
E
7→ as

E
7→∗. We say

that a configuration (Ψ, ρ, s) halts in the erased semantics when:

haltsE (Ψ, ρ, s) ≡ ∃ρ′. Ψ ⊢ (ρ, s)
E
7→∗ (ρ′, nil) (1)

That is, a configuration will halt in the erased semantics if it will
eventually return from the top-level function (s′ = nil). Pro-
grams verified in our logic will halt by this definition on our erased
semantics. We give the formal statement and proof of this sound-
ness theorem in §7. Informally, the soundness theorem says if:

1. We have used our H- and V-rules to verify Ψ : Γ

2. Γ includes a function at location ℓ with function body c, termi-
nation measure t, precondition P, and postcondition Q

3. Termination measure t is defined on some initial state

4. Precondition P(a) holds on that state for some a

Then the configuration whose code is simply c :: nil will eventu-
ally halt in a configuration satisfying the postcondition Q(a).

Until we have given the semantic model for predicates in §6.1
we are unable to state this soundness theorem in full generality

3 The motivation is that it is easy to distinguish 0 from a valid data pointer,
but not easy to distinguish a data pointer from an arbitrary function pointer.

since we have not formally explained what “a state satisfying P ”
means. However, we can state a weaker version now:

Theorem 1 (Total Correctness, Full Erasure). Suppose Ψ : Γ and
Γ ⊢ funptr ℓ t

[

λa. ⊤
] [

λa. ⊤
]

. Let ρ be any store such that t(ρ)
is defined. Then haltsE (Ψ, ρ,Ψ(ℓ)). Proved in §7.3.

Observation. Since the rules in Figure 10 do not do anything with
the argument to the assert statement, the erased semantics does
not care at which (nonempty) type τ the commands χ(τ ) and pro-
gram φ(τ ) are instantiated. A reader concerned about our semantic
model is encouraged to substitute predicate with unit and ⊥ with
the unit value. One obtains a program and a proof that the program
halts according to an operational semantics which contains none of
the complexities of our semantic model for predicates.

6. Resolving the Circularity in predicates

The remaining task for this paper is to show how our axiomatic
semantics for HAL from §3 connects to our erased operational
semantics for HAL from §5. That is, we need to provide a semantic
model for our logic and then prove that model sound with respect
to our operational semantics. We divide the modeling task into two
parts. In this section we resolve the circularity in the definition of
predicate from Figure 2—that is, for the assertions of our Hoare
tuples. In §7 we will build a model for the program logic itself.

6.1 Using Indirection Theory to Stratify Through Syntax

The pseudomodel of predicates in Figure 2 fits into a pattern:

K ≈ F ((K ×O)→ T ) (2)

In this pattern, F is a covariant functor, O is some kind of “flat
data”, and K is an object one wishes to model. Unfortunately, a
cardinality argument shows that there are no solutions in set theory
to pseudoequation (2), so we will content ourselves with building
an approximate model using indirection theory [HDA10]. In our
case, F is the parameterized program φ from Figure 1 and O is just
store. Indirection theory “ties the knot” and defines K such that:

K ≡ [ADH10, knot hered.v]

sq program Ψ̌ ≡ K
state σ ≡ sq program× store
predicate P ≡ {P : state→ T | hereditary(P )}

(3)

The construction of the knot K is similar to the one given in
[HDA10, §8] but we have enhanced it so that all predicates in-
side the knot are hereditary, a technical property detailed in §6.2.
A squashed program sq program is simply a knot; a state is a pair
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of a sq program and a store. A predicate is a hereditary function
from states to truth values T . We write σ |= P instead of P (σ)
when we wish to emphasize that we are thinking of P as an asser-
tion as opposed to a function. What is missing is the relationship
between squashed and unsquashed programs. We cannot have an
isomorphism or we run into cardinality problems; instead, we get:

sq program � Î× program.

Here X � Y means that the “small” type X and the “big” type Y
are related by a section/retraction pair witnessed by two functions:

squash : (Î× program)→ sq program

unsquash : sq program→ (Î× program)
(4)

The power of indirection theory is that there is a very simple
(indeed, categorical) pair of axioms relating squash and unsquash:

squash(unsquash(Ψ̌)) = Ψ̌
unsquash(squash(n,Ψ)) = (n, prog approx

n
(Ψ))

(5)

That is, squash◦unsquash is the identity function, and unsquash◦
squash is a kind of approximation function. The prog approx

n
(Ψ)

function transforms Ψ by locating all of the assert(P ) state-
ments and replacing them with assert(approx

n
(P )). The core

of the approximation is handled by the approx
n
(P ) function:

|Ψ̌| ≡ (unsquash(Ψ̌)).1

approx
n
(P ) ≡ λ(Ψ̌, ρ).

{

P (Ψ̌, ρ) |Ψ̌| < n

⊥ |Ψ̌| ≥ n

(6)

First we define the level of a squashed program Ψ̌, written |Ψ̌|,
as the first projection of Ψ̌’s unsquashing. When a predicate is
approximated to level n, its behavior on programs of level strictly
less than n is unchanged; on programs of level greater than or equal
to n it now returns the constant ⊥. The approx function is exactly
where step-indexed models get both their power (a sound construc-
tion) and weakness (a loss of information during approximation).

6.2 Consequences of Approximation

What is the cost of throwing away information during approxima-
tion? Ten years after step-indexed models were introduced, the an-
swer is still unclear. Considerable experience has led to an ad-hoc
understanding among practitioners of step-indexing of what might
be termed microcosts—that is, small modifications to the “intu-
itive” definitions to accommodate the approximation. A large body
of previous work has focused on managing and minimizing these
microcosts, e.g., via a Gödel-Löb logic of approximation [Ric10].

The fundamental microcost comes from the fact that the approx
n

function throws away all behavior on squashed programs of greater
than or equal to level n. Let P be a predicate contained in (the

unsquashing of) a squashed program Ψ̌ of level n. A consequence
of equations (5) is that P has been approximated to level n—i.e.,

P = approx
n
(P )

Given this equality, what happens if we apply P to a state contain-

ing Ψ̌? A quick examination of equation (6) demonstrates that the
result must be ⊥. A predicate cannot say anything meaningful
about the squashed program whence it came. Instead, we will

do the next best thing: make Ψ̌ a little simpler. We say that Ψ̌ (or

σ) is approximated to Ψ̌′ (or σ′), written Ψ̌ Ψ̌′, when

Ψ̌ Ψ̌′ ≡ let (n,Ψ) = unsquash(Ψ̌) in

(n > 1) ∧ (Ψ̌′ = squash(n− 1,Ψ))

(Ψ̌, ρ) (Ψ̌′, ρ′) ≡ (ρ = ρ′) ∧ (Ψ̌ Ψ̌′)

(7)

That is, we unsquash Ψ̌ and then re-squash it to one level lower.
Of course, we can only do this when we are not at level 0 to begin

σ |= ⊤ ≡ ⊤

σ |= ⊥ ≡ ⊥

σ |= P ∧Q ≡ (σ |= P ) ∧ (σ |= Q)

σ |= P ∨Q ≡ (σ |= P ) ∨ (σ |= Q)

σ |= P ⇒ Q ≡ ∀σ′. (σ  ∗ σ′)→

(σ′ |= P )→ (σ′ |= Q)

¬P ≡ P ⇒ ⊥

σ |= ∀x : τ. P (x) ≡ ∀x : τ. σ |= P (x)

σ |= ∃x : τ. P (x) ≡ ∃x : τ. σ |= P (x)

σ |= µX. P ≡ [ADH10, predicates rec.v]

(Ψ̌, ρ) |= x ⇓ v ≡ ρ(x) = v

(Ψ̌, ρ) |= [x← v]P ≡ (Ψ̌, [x← v]ρ) |= P

(Ψ̌, ρ) |= closed P ≡ ∀ρ′. (Ψ̌, ρ′) |= P

P ⊢ Q ≡ ∀σ. (σ |= P )→ (σ |= Q)

(Ψ̌, ρ) |= 〈|t|〉 < n ≡ t(ρ) < n (etc. for 〈|t|〉 = n)

σ |= funptr ℓ t
[

P
] [

Q
]

≡ model given in §7

σ |= ⊲P ≡ ∀σ′. (σ  + σ′)→ (σ′ |= P )

Figure 11. Semantics of Assertions

with! Since |Ψ̌′| = n − 1 < n, P will be able to judge states

containing Ψ̌′. Every time we pull a predicate out of a squashed

program Ψ̌, we will approximate Ψ̌ to Ψ̌′ before we use P .
This repeated approximation leads to a second microcost. Sup-

pose σ |= P and σ  σ′. We want P to be hereditary—i.e., stable
(or monotonic) as σ is approximated—so that σ′ |= P :

hereditary(P ) ≡ ∀σ. (σ |= P)→ (σ ∗ σ′)→ (σ′ |=P ) (8)

We write  ∗ and  + to mean the reflexive and irreflexive tran-
sitive closures, respectively, of . Unfortunately, not all functions

from state to T are hereditary, such as Pbad(Ψ̌, ρ) ≡ |Ψ̌| > 5.
The Pbad function will be true only while the level of the program
is greater than 5; since approximating the state decreases that level,
eventually this function will produce only the constant ⊥.

In our setting, we only consider predicates that are hereditary.
Whenever we give the semantics of a predicate (except for Pbad!),
we have proved (in Coq) that the definition is hereditary. For most
definitions this is not a big deal; however on occasion there can be
a significant amount of work that needs to be done. The benefit of
only allowing hereditary predicates is that once the definitions are
done they are easier to use in the core soundness proofs.

A central question is how these kinds of microcosts become
macrocosts—that is, what are the fundamental limitations of step
indexing techniques? For some time, it was thought that step-
indexed models could not be applied to problems of liveness; how-
ever, the present work proves otherwise. The practical limitations
of step-indexed models remain unknown.

6.3 Semantic Models for Key Assertions

In Figure 11 we give the semantic models for the predicates first
presented in Figure 3. The first nine are the basic logical operators,
largely defined by lifting to the metalevel as in [HDA10, §6]. With
the notable exception of implication we use the same symbols for
both the object level and the metalevel, trusting in the context to dis-
ambiguate. Importantly, these operators preserve hereditariness—if
P and Q are hereditary, then so are P ∧Q, P ⇒ Q, etc.

The first four operators (⊤, ⊥, ∧, and ∨) are entirely as ex-
pected. The story is more complicated with implication since

8 2010/11/2



object-level implication ⇒ is not a straightforward lift of meta-
level implication →. Instead, we define object-level implication
P ⇒ Q in an intuitionistic style over the relation ∗; this ensures
that the result is hereditary. Although the context always dictates
which level is intended, we distinguish the two symbols to empha-
size the additional semantics. Those verifying programs with our
logic need not be concerned with this detail: all of our object-level
operators have the standard introduction/elimination rules and so
behave as expected. Logical negation ¬P is equivalent to P ⇒ ⊥.

We define our quantifiers via a straightforward lift to the met-
alevel quantifiers. The ability to define natural, impredicative quan-
tifiers is a major strength of step-indexed models. The definition
of our (contravariant-supporting) equirecursive operator µ is some-
what complicated. Since we do not use µ in our examples or proofs
we elide it here; interested readers should consult the mechaniza-
tion or the similar construction in Appel et al. [AMRV07, §5].

The second group of three predicates relate to the store. Eval-
uating the variable x to a value v is done exactly as might be ex-
pected using the store ρ. The store update modality [x ← v]P
holds on some state (Ψ̌, ρ) if the underlying predicate P would
hold on the related state where the store ρ has been updated so
that x now maps to v. Finally, the modality of closure closed(P )
holds on some state (Ψ̌, ρ) when P is true given any ρ′.

Entailment P ⊢ Q is simply universally quantified metaimpli-
cation. In Figure 11 we model a clause that uses the notation 〈|t|〉;
other clauses are similar (e.g., (Ψ̌, ρ) |= 〈|t|〉=n ≡ t(ρ)=n).

We define the modality of approximation ⊲ using the irreflex-
ive closure +. If ⊲P holds on some state σ, then P holds on all
strictly more approximate σ′; P need not hold on σ itself. Recall
from §3 that the approximation modality is not used in the state-
ment of the H- or V-rules. It is only used within the soundness
proof itself; those verifying programs using our logic never see it.

7. A Step-indexed Model for Total Correctness

We have now defined our model for predicates and most the op-
erators of our assertion logic. We have three remaining modeling
tasks: the terminating function pointer assertion, the Hoare judg-
ment, and the program verification judgment.

7.1 Operational Semantics

Here we give HAL a second, unerased, semantics used as the basis
for our soundness proof. An erasure theorem will show that the new
semantics is a conservative approximation to the old one from §5.

The unerased step relation
U
7→ takes six arguments:

(Ψ̌, ρ, s)
U
7→ (Ψ̌′, ρ′, s′)

As before, ρ and s stand for local variables and stacks. Unlike
the erased semantics, the unerased semantics takes its program
in squashed form, and the program is actually modified as it is
running. This modification occurs only in a very controlled way.

The unerased semantics is nearly identical to the erased seman-
tics already presented in Figure 10. Only two rules require signifi-
cant modification; these appear in Figure 12. All the other rules are

identical to their erased counterparts, except that the program Ψ̌ is
passed through unchanged, e.g., the rule for loading a label is:

(Ψ̌, ρ, (x := ℓ ; c) :: s)
U
7→ (Ψ̌, [x← ℓ]ρ, c :: s)

Slabel

All the rules except Ecall and Eassert are modified in the same way.

halts(Ψ̌, ρ, s) ≡ ∃Ψ̌′, ρ′, s′. (Ψ̌, ρ, s)
U
7→∗ (Ψ̌′, ρ′, s′) ∧

s′ = nil

(Ψ̌, ρ) |= haltsn s ≡ |Ψ̌| ≥ n→ halts(Ψ̌, ρ, s)

guardsn P s ≡ P ⇒ haltsn s

Figure 13. Halting and guarding

In the unerased rule Sassert, assert statements are actually
“checked” in the precondition of the step rule. Thus, an unerased
program will get stuck if a false assertion is encountered. This
simple change renders the semantics uncomputable, in the sense
that no algorithm can determine if an arbitrary statement in higher-
order logic holds. A program verified with our Hassert rule will
know that the assertion holds and so will not get stuck.

The other major change involves the rule for function calls. In
the unerased rule, we must unsquash the program to get out the
instruction sequence for the called function. At function calls, we
also take the opportunity to further approximate the program; this
has the effect of decreasing the level of the program by 1 and
approximates all the assertions appearing in it.

We must do this approximation so that assertions in the text of
the function body will be able to judge the program. Recall from
§6.2 that an approximated predicate (such as one in the function we
are about to jump to) can only judge worlds of strictly smaller level.
If we did not approximate the program at this point, any assertions
in the function body would fail, foiling our desired soundness

result. This means that the level of the program Ψ̌ is an upper bound
on the number of calls the program can make before getting stuck.
The oft-maligned indexes of step-indexed models have a practical
utility as witnesses to the number of allowed function calls.

7.2 Function Pointers, Hoare tuples, and Verification

Soundness of a logic of total correctness (w.r.t. its operational
semantics) means that whenever a function in a verified program
is run in an initial state satisfying its precondition, it will halt in
a state satisfying its postcondition. Our soundness proof follows
the program outlined by Appel and Blazy [AB07] which involves:
building a semantic model for assertions; defining the meaning of
judgments; proving the inference rules of the logic as lemmas; and
showing that the judgment semantics implies the desired theorem.

The first step we have already discussed in §6; it involves using
indirection theory to build a model of program syntax capable of
containing semantic assertions.

Judgment Definitions. Appel and Blazy build their semantic
Hoare triple using the more basic notion of guarding. They say
that a predicate “guards” a program stack if, whenever a memory
state satisfies the predicate, that stack is safe to run (i.e., will not
go wrong). We follow a similar pattern, but use a guards predi-
cate which enforces termination rather than safety. We say that a
predicate P guards a stack s at level n if, whenever the memory
state satisfies P and provided that the program level is at least n,
running the stack will eventually terminate. See Figure 13. Notice
that there is a clever trick being played here with the definition of
haltsn. Halting is not normally a predicate which can be hereditary.
As one ages a program, it is able to run for fewer steps and thus
might not terminate before it exhausts its level. We work around
this issue by saying that a program must only terminate if it has at
least level n. As one ages a program, it will eventually cause haltsn
to be true vacuously (when its level falls below n).

Figure 12. Unerased Operational Semantics

(Ψ̌, ρ) |= P

(Ψ̌, ρ, (assert P ; c) :: s)
U
7→ (Ψ̌, ρ, c :: s)

Sassert
ρ(x) = ℓ unsquash(Ψ̌) = (n,Ψ) Ψ(ℓ) = c′ Ψ̌ Ψ̌′

(Ψ̌, ρ, (call x ; c) :: s)
U
7→ (Ψ̌′, ρ, (c′ ; assert ⊥) :: c :: s)

Scall
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We use guards in the terminating function pointer assertion:

Ψ̌ |= funptr ℓ t
[

P
] [

Q
]

≡
∃c. let (nΨ,Ψ) = unsquash(Ψ̌) in Ψ(ℓ) = c ∧
∀s Ψ̌′ n′ a. Ψ̌ + Ψ̌′ →

(∀ ρ. (Ψ̌′, ρ) |= guardsn′ Q(a) s)→
(∀ ρ n. t(ρ) = n→
(Ψ̌′, ρ) |= guardsn+n′ P(a) ((c ; assert ⊥) :: s))

(9)

Here, ℓ is a program label, t is a termination measure (a partial

function from stores to Î), and P and Q are functions from some
type A to assertions. This definition is given in a continuation-
oriented style. Whenever we have a stack s which terminates in
n steps when Q(x) is satisfied, then we know that running the
function body of ℓ will terminate in n + n′ steps whenever P(x)
is satisfied, and where n′ is determined by the measure. Thus,
funptr captures the specification of a terminating function. Note the

premise Ψ̌ +Ψ̌′; this is one of the microcosts discussed in §6.2.

Ψ̌′ must be strictly more approximate than Ψ̌ because stepping over
a call instruction ages the program.

Next we give semantic meaning to the Hoare judgement.

Γ, R ⊢n {P} c {Q} ≡
∀Ψ̌ n′ k s.
Ψ̌ |= Γ →
(∀ ρ. (Ψ̌, ρ) |= guards

n′ R s)→
(∀ ρ. (Ψ̌, ρ) |= guards

n′ Q (k :: s))→
(∀ ρ. (Ψ̌, ρ) |= guards

n+n′ P ((c ; k) :: s))

(10)

Both the funptr predicate and the Hoare judgment have a similar
flavor: assume the postcondition(s) guard the program continuation
point(s) and demonstrate that the precondition guards the extended
continuation. Naturally, this is no accident. These two definitions
interact in interesting ways, as we shall see below. First, funptr
appears as a premise of the Hcall rule and directly provides the
required guards fact to satisfy the Hoare judgment. Secondly, The
Vfull rule shows how we can use the Hoare judgment to establish
funptr facts for concrete function definitions.

The final definition we need is that of program verification.

Ψ̌′ |= approxedof(Ψ̌) ≡ Ψ̌ ∗ Ψ̌′

Ψ : Γ ≡ ∀n. approxedof(squash (n,Ψ)) ∧ ⊲Γ ⊢ Γ
(11)

What this definition means is that we can prove Γ provided that we
assume the program under consideration is some squashed version
of Ψ and ⊲Γ (i.e., approximately Γ). The assumption ⊲Γ plays the
role of an induction hypothesis and is what allows us to verify

recursive functions. The approxedof(Ψ̌) predicate means that the

current program is approximated from Ψ̌.

Hoare rules. Now that we have finished our major semantic def-
initions, we are prepared to prove the rules of the Hoare logic as
lemmas. For all of the rules aside from Hcall, the proofs are quite
straightforward. One simply uses available premises in an obvious
way; only simple manipulations of the definitions are required.

The case for Hcall is more interesting. One of the premises of
the Hoare judgment, after unfolding the definition of guards, is that

|Ψ̌| ≥ n+ 1 (recall that the n+ 1 comes from the subscript on the

Hcall rule). This is sufficient to know that there is some Ψ̌′ such
that Ψ̌  Ψ̌′. At this point our task is to unpack the definition of
funptr (available from the precondition of the Hcall rule) and use
it to complete our proof. The first conjunct of funptr tells us that
there is some instruction c which implements the function ℓ; this
will be the instruction on top of the stack following the call. The
second conjunct of funptr will ultimately allow us to discharge our
termination obligation. However, we must first fulfill its premises.

The first premise Ψ̌  + Ψ̌′ is easy given Ψ̌  Ψ̌′. The second,

∀ρ. (Ψ̌′, ρ) |= guards
n′ Qℓ(a) (k :: s)), follows from the

premise of the Hoare judgment ∀ρ. (Ψ̌, ρ) |= guards
n′ Q (k :: s)

and the premise from the Hcall rule closed(Qℓ(a)⇒ Q). The final
premise, t(ρ) = n, is given directly by the corresponding premise
of the Hcall rule, 〈|t|〉 = n. After all this, we have demonstrated

that (Ψ̌′, ρ) |= guards
n+n′ Pℓ(a) (c ; assert ⊥ :: k :: s),

which is sufficient to show the termination of (call x ; k) :: s,
the program state just before the call.

Verification Rules. The proofs for all the Hoare rules are actually
pretty simple. They come down to little more than manipulations of
the definitions. The “magic,” such as it is, all happens in the proof
of the function verification rule, Vfull. This rule allows one to take
Hoare derivations for function bodies and conclude that the corre-
sponding funptr facts hold on a program containing those function
bodies. The main idea is that one supplies Φ, a list containing the
precondition, postcondition and termination measure for a group
of (potentially) mutually-recursive functions. Then, for each func-
tion in Φ, one must prove a Hoare derivation of a specific form.
The assumptions one is allowed to make are taken from Γ, which
contains functions already verified, and from Φ, which allows re-
cursive calls. However, the preconditions in Φ are altered to add
a conjunct which strengthens the preconditions by requiring the
termination measure to decrease. The return postcondition is, nat-
urally, the postcondition of the function. The precondition is the
ordinary function precondition together with the assumption that
the termination measure for the initial state is n; this is what con-
nects the strengthened preconditions of the recursive assumptions
with the initial state. The linear postcondition is ⊥, which requires
the function body to return rather than “falling of the end.” Finally,
the Hoare derivation is required to bound the number of function
calls by n. This connects the termination measures of the function
specifications to their intended semantic meanings.

Whenever one is able to provide such a Hoare derivation for
each function in Φ, then one can conclude that each function ref-
erenced in Φ actually respects its contract, and the corresponding
funptr facts can be conjoined with Γ in the conclusion of the rule.

The soundness proof for the rule is a little delicate, but the main
idea is straightforward; the proof goes by (complete) induction
on the value of the termination measure. The Hoare derivation is
used to complete the argument, using the induction hypothesis to
discharge the premises in the definition of the Hoare judgment.

Vsimple, which verifies single recursive functions whose spec-
ifications take no parameters, follows as a special case of Vfull.

Total correctness. The final part of the soundness proof worth
discussing is a result that connects the results we obtain using our
definitions to a more traditional notion of total correctness.

Theorem 2 (Total Correctness). Suppose Ψ : Γ, and Γ ⊢
funptr ℓ t

[

P
] [

Q
]

. Then for all stores ρ such that t(ρ) = n,

and (squash(n,Ψ), ρ) satisfies P(a) (for some a), executing the
function body Ψ(ℓ) will terminate in a state satisfying Q(a).

Proof. From Ψ : Γ we obtain (squash(n,Ψ), ρ) |= Γ via
(what amounts to) complete induction on n. We thus obtain
(squash(n,Ψ), ρ) |= funptr ℓ t

[

P
] [

Q
]

.
Now we need to unwind the definition of funptr and use it to

establish the eventual goal. We must build some “continuation”
stack which will terminate when run with some ρ satisfying Q(a).
This quite easy; we can simply chose the empty stack, i.e. the safely
halted state! However, it is more convenient to choose the stack:

(assert Q(a) ; return ; assert ⊥) :: nil

which asserts the postcondition and immediately returns to the
empty stack. This stack is guarded by Q(a) with 0 function calls.
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Maps.v 436 finite maps
FuncListMachine.v 259 §2, §6, and §7.1
lemmas.v 487 utility lemmas
hoare total.v 826 §3 and §7.2
erase.v 166 §5 and §7.3
wp.v 175 precondition generator
prgrams.v 915 §4

total 3,264

Figure 14. Coq files (including whitespace and comments)

Further, any stack with this sequence at its base represents a com-
putation which, if it halts at all, will halt in a state satisfying Q(a).

But we know that the program will halt because P(a) guards the
function body with the above stack appended. We must only show
that the level of the program is large enough (i.e., ≥ n). However,
we have arranged for this to be the case by squashing Ψ to level n.

Thus the program must halt in a state satisfying Q(a).

7.3 Erasure

We have presented two operational semantics, and proved sound-
ness of our logic with respect to the unerased semantics. All that
remains to substantiate our claims is to show that the erased seman-
tics and the unerased semantics correspond in the expected way.

What we erase in the translation between the two systems is
the embedded assertions and the operational rule which governs
them. For simplicity, we retain the assert syntactic form, but make
the instruction a nop. Instead of erasing asserts, we replace every
predicate in the program with a dummy value (e.g., the unit value).

First we show that whenever it is possible to take an unerased
step, then it is possible to take a corresponding erased step.

Lemma 1 (Single-step erasure). Suppose a program steps in

the unserased semantics: (squash(n,Ψ), ρ, s)
U
7→ (Ψ̌′, ρ′, s′);

then a corresponding step can be taken in the erased semantics

erase(Ψ) ⊢ (ρ, map eraseInstr s)
E
7→ (ρ′, map eraseInstr s′),

and Ψ̌′ = squash(n′,Ψ) for some n′.

Proof. By cases on the unerased semantics rules.
Using the single-step lemma, we can show that an unerased

halting run has a corresponding erased halting run.

Lemma 2 (Halting erasure). Suppose halts(squash(n,Ψ), ρ, s).
Then haltsE (erase(Ψ), ρ,map eraseInstr s).

Proof. By induction on the number of steps taken.
These two lemmas together with theorem 2 imply theorem 1.

8. Implementation

All the constructions and proofs presented in this paper have been
machine checked in Coq. The soundness proof uses the Mecha-
nized Semantic Library, a mechanized semantic toolkit used in a
number of different projects [ADH10]. We match our presenta-
tion to the proof development in this paper in Figure 14. Mecha-
nized proofs are often extremely long. The core of the development,
hoare total.v, is amazingly short at only 826 lines. Here we
we provide the central semantic models from §7.2; state and prove
all ten H-rules from §3.1 and all three V-rules from §3.2 using those
models; and prove the total correctness theorem.

The entire proof development may be found online at:

http : //msl.cs.princeton.edu/termination/

9. Limitations and Extensions

In order to highlight the interaction of function pointers and se-
mantic assertions, we have pared down HAL to the bare minimum.

Naturally, this means we do not consider many other interesting
language features such as looping constructs, heap manipulations,
lexical variable scopes, or procedure parameters.

Our program logic is somehow simultaneously a bit too weak
and a bit too strong. It is too weak in the sense that the upper bound
need not be tight, and we make no claims on the lower bound. In
addition, it would be very nice if we could relate the precondition to
the upper bound so that we could verify, e.g., that a program ran in
quadratic time. Our logic is too strong in the sense that the burden
of constructing an explicit termination measure may be onerous for
someone only concerned with termination. It would be better if one
could provide a well-founded relation for each function, hiding the
explicit bounds and termination measures under existential binders.

Finally, we have not investigated the completeness of our logic,
but have only argued that the logic is complete enough to verify
interesting programs. Future work may investigate completeness
and determine what modifications may be required to achieve it.

10. Related work

Applications of step-indexing and its alternatives. Step-indexing
has been used to prove results in type safety [Ahm04], soundness
of program logics [HAZ08], and program equivalence [ADR09,
DNRB10]. Indirection theory [HDA10] provides clean axioms for
step-indexed models. Domain theory is the classic tool for building
semantic models [GHK+03]. The price one pays for working in do-
main theory is the substantial mathematical theory which underlies
the discipline. Birkedal et al. have a general result which indicates
that indirection theory can be constructed using general techniques
in certain categories of ultrametric spaces [BRS+].

Predicates in syntax. Semantic assertions often used in program
analysis settings such as BoogiePL [BCD+05]. Semantic assertions
are one example of a larger class of bookkeeping instructions that
embed formulas into program syntax, such as the makelock in-
struction used in concurrent C minor [Hob08].

List machine. HAL is based on the list machine of Appel, Leroy,
and Dockins. [ADL10] The list machine was designed to be as sim-
ple as possible, while still being minimally interesting from a pro-
gramming language metatheory and verification standpoint. Com-
pared to the original list machine language, we have added label
values (function pointers) and replaced the jump-based control flow
system with if/then/else and call/return.

Program logics. Floyd-Hoare logics of total correctness have a
venerable lineage going back to the seminal papers by the authors
whence we derive the name. [Flo67, Hoa69] Procedures have been
long studied in the context of program logics, [Apt81, Old84]
but function pointers and higher-order functions have been largely
neglected. Schwinghammer et al.’s recent work on “nested” Hoare
triples [SBRY09] combines features of separation logic [Rey02]
with the ability to reason about “stored code,” which behaves quite
similar to function pointers. It is a logic of partial correctness.

The work of Honda et al. seems nearest to our own in terms of
logical power. [HY04] They provide a logic of total correctness for
call-by-value PCF (a λ-calculus with references). The soundness
proof goes by a reduction to the π-calculus equipped with a process
logic in the rely/guarantee style. [Hon04] Honda et al. do not
consider embedded semantic assertions. In later work Honda et al.
consider the issue of completeness in this logic. [HBY06]

Aspinall et al. have developed a sound and complete program
logic for Grail, a Java subset, which reasons about both correctness
and resources. [ABH+07] Although their system includes a form
of virtual method invocation, it is not immediately clear if their
formalism allows higher-order behaviors.
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Termination checkers. Logics of total correctness provide both
that a program satisfies its specification and that it terminates. Par-
tial correctness only provides that a program satisfies its specifi-
cation. Dually, termination checkers focus on showing termination
without necessarily demonstrating correctness.

Popular methods for achieving this goal involve discovering ter-
mination arguments in the form of ranking functions [CS01] or dis-
junctive termination arguments [PR04]. Practical tools exists for
both user-guided [GTSkF04] and fully automatic [CPR06] synthe-
sis and verification of termination arguments.

11. Conclusion

We have presented a simple language with embedded semantic
assertions and functions pointers, together with a logic of total
correctness. We have proved our logic sound with respect to a
standard operational semantics using step-indexing (in the form
of indirection theory), thereby refuting the widely-held belief that
step-indexing techniques are not applicable to liveness problems.
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