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Summary. In the present paper, a theory is developed qualitatively and quantitatively describing the

paradoxical behavior of general non-conservative systems under the action of small dissipative and

gyroscopic forces. The problem is investigated by the approach based on the sensitivity analysis of multiple

eigenvalues. The movement of eigenvalues of the system in the complex plane is analytically described and

interpreted. Approximations of the asymptotic stability domain in the space of the system parameters are

obtained. An explicit asymptotic expression for the critical load as a function of dissipation and gyroscopic

parameters allowing to calculate a jump in the critical load is derived. The classical Ziegler–Herrmann–

Jong pendulum considered as a mechanical application demonstrates the efficiency of the theory.

1 Introduction

In 1952, Ziegler [1] studying the stability of a double pendulum loaded by a follower force came

to the unexpected conclusion that the critical load of the non-conservative system with van-

ishingly small dissipation is considerably lower than in the case when dissipation is completely

absent. The analytical description of this phenomenon called the destabilization paradox was

recognized as one of the main theoretical challenges in the non-conservative stability theory [2].

However, the questions provoked by the destabilization paradox have not yet been answered in

the general form.

To formulate the problem, we consider a linear autonomous non-conservative mechanical

system

M
d2y

dt2
þDðkÞdy

dt
þ AðqÞy ¼ 0; ð1Þ

where y is the vector of generalized coordinates, and M, D, and A are real square matrices of

order m corresponding to the inertial, dissipative and gyroscopic, and non-conservative posi-

tional forces, respectively. It is assumed that the matrix D is a smooth function of the vector of

real parameters k ¼ ðk1; . . . ; kn�1Þ, Dð0Þ ¼ 0, the matrix A smoothly depends on the real load

parameter q � 0, and the matrix M is parametrically independent. The vector k of the

parameters corresponding to the velocity-dependent forces is assumed to be small (kkk � 1).

Seeking a solution to Eq. (1) in the form y ¼ u expðktÞ we get the generalized eigenvalue

problem

Lu ¼ 0; L � k2
Mþ kDðkÞ þ AðqÞ; ð2Þ
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where u is an eigenvector and k is an eigenvalue of the operator Lðk;k; qÞ. A non-conservative

system without dissipative and gyroscopic forces ðk ¼ 0Þ

M
d2y

dt2
þ AðqÞy ¼ 0 ð3Þ

is called the circulatory system [2], [3]. The spectrum of the circulatory system is mirror sym-

metric; i.e., if k is an eigenvalue of the linear operator k2
MþAðqÞ, then �k, k, and �k, where the

bar stands for complex conjugation, are also eigenvalues. Hence, the circulatory system is stable

in the Lyapunov sense if and only if all the eigenvalues k lie on the imaginary axis of the

complex plane and are semisimple. The latter means that the number r of linearly independent

eigenvectors corresponding to an eigenvalue is equal to its algebraic multiplicity l. If r < l then

secular terms proportional to taekt, where a � l� 1, appear in the general solution of Eq. (3)

causing flutter instability (i.e., oscillations with growing amplitude).

Let system (3) be stable for q¼0. When the load parameter q increases and reaches a certain

critical value q¼q0, two simple purely imaginary eigenvalues can collide with the origination of

a double eigenvalue ix0 with only one eigenvector and associated vector forming a so-called

Keldysh chain [4], while other eigenvalues remain simple and purely imaginary. The further

increase in the load causes splitting of the double eigenvalue into a pair of complex-conjugate

eigenvalues, one of them with positive real part, Fig. 1a (flutter). Therefore, the interval

0�q<q0 belongs to the stability domain of system (3), and the critical value q0 defines the

boundary between the stability and flutter instability domains [2], [5].

It turns out [6] that perturbation of a circulatory system by weak dissipative and gyroscopic

forces ðk6¼0Þ destroys the interaction of the eigenvalues: For a certain value of the load

parameter q¼qcrðkÞ, one of the eigenvalues crosses the imaginary axis and then moves into the

right half of the complex plane without origination of a double eigenvalue and its bifurcation,

Fig.1b. Moreover, for k¼�ek, where ek is the fixed vector and ��0 is a small parameter, the

following relation holds:

eqcr � lim
�!0

qcrð�ekÞ � q0: ð4Þ

Inequality (4) shows that in non-conservative systems the critical load can decrease in a dis-

continuous manner when infinitesimally small dissipative and gyroscopic forces are taken into

account. This is considered paradoxical because dissipation is expected to provide stability

rather than instability. The destabilization paradox discovered by Ziegler [1] for a pendulum

with two degrees of freedom and one dissipation parameter, loaded by a follower force, has

attracted much attention in the world literature, see the book by Bolotin [2] and the review

articles [7]–[12].

Bolotin and Herrmann were the first who initiated the systematic study of non-conservative

systems with small dissipation. For a number of specific mechanical systems with two
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Fig. 1. Trajectories of eigenvalues
illustrating the destabilization

paradox
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dissipation parameters k1; k2, Bolotin established that the limit of the critical load eqcr depends

on the choice of the vector ek. In particular, changing the ratio of the parameters k1 and k2 it is

possible to avoid the jump in the critical load and therefore the destabilization effect [2],[13].

Herrmann and Jong [14],[15] studied the limit of the critical load eqcr as a function of the ratio

k1=k2 for the Ziegler pendulum with two dissipation parameters and showed that it attains its

maximum eqcr¼q0 at k1=k2¼4þ 5
ffiffiffi
2
p

. Bolotin [2] and Herrmann and Jong [14] also examined

the trajectories of eigenvalues of undamped and damped specific non-conservative systems on

the complex plane and pointed out that small dissipation generally destroys the interaction of

the eigenvalues. They established the qualitative pictures of the eigenvalue motion, shown in

Fig. 1, and recognized that the change of instability mechanism is at the heart of the desta-

bilization paradox. However, in those pioneering works the destabilizing effect of small dissi-

pation was not placed into the framework of a theory of sufficient generality. Nor was it shown

whether a system with many degrees of freedom can exhibit such behavior.

As a generalization, Nemat-Nasser and Herrmann [16] suggested to consider an m-

degrees-of-freedom non-conservative system (1) with the matrix D¼�eD, where eD is fixed and

��0 is a small parameter. Analyzing the characteristic polynomial of the eigenvalue problem

(2), they established inequality (4) and noted the strong dependence of the critical load

qcrð�Þ on the structure of the matrix eD, but came to the wrong conclusion that qcrð�Þ never
exceeds q0. Using the analogous approach, Bolotin and Zhinzher [6] showed that for the

dissipative forces with the matrix D¼�M (external damping) or D¼�A the critical load

qcrð�Þ�q0. These conclusions were later confirmed by Done [17] and Kounadis [18], and

became widely known in the mechanical literature [8]. However, already Walker [19] using

the direct Lyapunov method found a class of stabilizing configurations for the matrix D,

which includes the results of [6] as a particular case. O’Reilly et al. [20] succeeded in getting

the necessary and sufficient conditions for the 2�2 matrix D¼�eD to be stabilizing in terms

of invariants of the matrices M, D, and A, assuming that the unperturbed system has only

simple purely imaginary eigenvalues. Their contribution was extended to the case of

m-dimensional systems by Gallina [21]. Recently Seyranian and Kirillov [22] generalized the

results of those works, establishing the necessary and sufficient conditions for the m�m

matrix D¼�eD to make the circulatory system (3), which is stable or located on the flutter

boundary, asymptotically stable.

Note that despite the progress in finding the stabilizing matrices D, none of the afore

mentioned papers has answered the question: How evaluate a jump in the critical load caused

by the perturbation D¼�eD with a given matrix eD? An important step to the solution of this

problem was taken by Seyranian and Pedersen [23], and Seyranian [24], who obtained explicit

asymptotic formulae describing the movement of the eigenvalues of the non-conservative

system (1) with small dissipation D¼�eD in the complex plane. They explained the break of the

coupling between the eigenvalues, but did not calculate a jump in the critical load due to

small dissipation because their approximation was not accurate enough. Besides, for the

Ziegler–Herrmann–Jong pendulum with two degrees of freedom and two dissipation param-

eters, Seyranian and Pedersen [25], and Seyranian [26] found the domain in the parameter plane

where the non-conservative system perturbed by small dissipative forces is asymptotically stable

and qcrðkÞ>q0. They established that the domain of asymptotic stability has a singularity at the

point ðk¼0; q¼q0Þ corresponding to the unperturbed circulatory system. Seyranian [26] and

Zhinzher [27] noted that the critical load of the Ziegler pendulum as a function of two dissi-

pative parameters has no limit when dissipation goes to zero. Troger and Zeman [28] were the

first who applied the singularity theory to the study of the Ziegler pendulum. Recently

Mailybaev and Seyranian [29] realized that the paradoxical behavior of the Ziegler pendulum is
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closely connected with the typical singularity of the asymptotic stability domain known as the

Whitney–Cayley umbrella [30]. Hoffmann and Gaul [40] studied the effects of damping on

mode-coupling instability in friction induced oscillations.

Our paper presents a new theory of the destabilization paradox in linear non-conservative

systems of general type with small dissipative and gyroscopic forces. This theory is based on the

bifurcation analysis of multiple eigenvalues of a linear matrix operator with coefficients

smoothly dependent on a spectral parameter and a vector of real parameters, which is done in

Sect. 2 of the paper.

In Sect. 3, explicit asymptotic expressions describing the trajectories of the eigenvalues are

derived for the general non-conservative system (1) with m degrees of freedom. They generalize

and improve the results presented in [23]–[25] and make possible the analytical investigation of

the splitting of the eigenvalue trajectories into independent curves due to a perturbation of the

circulatory system (3) by small dissipative and gyroscopic forces. From the analysis of the

eigenvalue trajectories, an explicit asymptotic expression for the critical load qcrðkÞ as a

function of the vector of dissipative and gyroscopic parameters k is obtained.

In Sect. 4, the properties of the function qcrðkÞ are thoroughly investigated. It is shown that

the critical load has no limit as k!0, although lim
�!0

qcrð�ekÞ exists for almost all direction vectors

ek. An explicit formula approximating the jump in the critical load q0� lim
�!0

qcrð�ekÞ due to small

velocity-dependent forces is found. In the case of two degrees of freedom the jump is expressed

by means of the invariants of the matrices of the system. For the general non-conservative

system (1) with small velocity-dependent forces, explicit approximations of the domains of

asymptotic stability in the space of the parameters k1; . . . ; kn�1; q are found. For a system with

one load parameter and two dissipative and gyroscopic parameters it is shown that the surface

qcrðk1; k2Þ bounding the stabilization domain has the singularity known as the Whitney–Cayley

umbrella. Besides, a simple explicit relation between the parameters k1, k2 necessary for the

stabilization of system (1) is established.

The classical Ziegler–Herrmann–Jong pendulum considered in Sect. 5 as a mechanical

application shows the efficiency of the developed theory, which is in a good qualitative and

quantitative agreement with the known results.

2 Bifurcation of multiple eigenvalues

Since the destabilization paradox is closely related to the splitting of the double eigenvalues, it is

first necessary to study the bifurcation of multiple eigenvalues with a change of parameters. We

consider a generalized eigenvalue problem for a linear matrix operator L whose coefficients

smoothly depend on a complex spectral parameter k and a vector of real parameters p 2 Rn,

Lðk;pÞu ¼ 0: ð5Þ

For a fixed vector p ¼ p0, a value k0 of the spectral parameter, at which there exists a nontrivial

solution u0 of Eq. (5), is called an eigenvalue whereas the vector u0 is called an eigenvector of

the operator L at the eigenvalue k0. The eigenvalues k are found from the characteristic

equation det Lðk;pÞ=0.

Let k0 be a l-fold eigenvalue, which possesses a Keldysh chain of vectors consisting of one

eigenvector u0 and associated vectors u1, . . ., ul�1. Denote L0 ¼ Lðk0;p0Þ. The vectors of the

Keldysh chain satisfy the Eqs. [4]

L0u0 ¼ 0; L0us ¼ �
Xs

r¼1

1

r!

@rL

@kr us�r; s ¼ 1; . . . ; l� 1; ð6Þ
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where partial derivatives are evaluated at k¼k0 and p¼p0. The left Keldysh chain is formed by

the vectors v0; . . . ; vl�1 satisfying the equations

vT
0 L0 ¼ 0; vT

s L0 ¼ �
Xs

r¼1

vT
s�r

1

r!

@rL

@kr ; s ¼ 1; . . . ; l� 1: ð7:1; 2Þ

Multiplying Eq. (6) by the left eigenvector v0 and Eq. (7) by the right eigenvector u0 we get the

orthogonality conditions for the vectors of the right and left Keldysh chains,

Xs

r¼1

1

r!
vT

0

@rL

@kr us�r ¼
Xs

r¼1

1

r!
vT

s�r

@rL

@kr u0 ¼ 0; s ¼ 1; . . . ; l� 1: ð8Þ

The notion of the Keldysh chain is an extension of the Jordan chain to the case of linear

operators [4].

Consider a variation of the vector of parameters

pð�Þ ¼ p0 þ � _pþ �
2

2
€pþ oð�2Þ; � � 0; ð9Þ

where a dot indicates differentiation with respect to the small parameter � and the derivatives

are evaluated at � ¼ 0. Then, Lðk;pð�ÞÞ can be represented in the form

Lðk;pð�ÞÞ ¼
X1

r¼0

ðk�k0Þr

r!

@rL

@kr þ�
@rL1

@kr þ�2 @
rL2

@kr þ oð�2Þ
� �

; ð10Þ

where

@rL1

@kr ¼
Xn

j¼1

@rþ1L

@kr@pj

_pj;
@rL2

@kr ¼
1

2

Xn

j¼1

@rþ1L

@kr@pj

€pj þ
1

2

Xn

j;t¼1

@rþ2L

@kr@pj@pt

_pj _pt; ð11Þ

and all the partial derivatives are evaluated at p ¼ p0, k ¼ k0. For r¼0, formulae (11) give

expressions for the operators L1 and L2.

The perturbed eigenvalue kð�Þ and eigenvector uð�Þ are expressed by means of the Newton-

Puiseux series, see [31],

k ¼ k0 þ k1�
1=l þ k2�

2=l þ . . .þ kl�1�
ðl�1Þ=l þ kl�þ . . . ; ð12Þ

u ¼ u0 þw1�
1=l þw2�

2=l þ . . .þwl�1�
ðl�1Þ=l þwl�þ . . . : ð13Þ

Next, we substitute expansions (10)–(13) into the eigenvalue problem (5) and collect the terms

with the same powers of the small parameter �. Then, the first l relations are

L0wr ¼ �
Xr�1

j¼0

Xr�j

s¼1

1

s!

@sL

@ks

X

jajs¼r�j

ka1
� � � kas

0

@

1

Awj; r ¼ 1; . . . ; l�1; ð14Þ

L0wl ¼ �L1w0 �
Xl�1

j¼0

Xl�j

s¼1

1

s!

@sL

@ks

X

jajs¼l�j

ka1
� � � kas

0

@

1

Awj; jajs ¼ a1þ . . .þas; ð15Þ

where w0 is equal to u0, and the indices a1, . . ., al�1 are positive integers.

Comparison of Eqs. (14) with equations of the Keldysh chain (6) gives the vectors wr in

expansions (13):

wr ¼
Xr

j¼1

uj

X

jajj¼r

ka1
� � � kaj

; r ¼ 1; . . . ; l� 1: ð16Þ
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The vectors wr are determined by Eq. (16) up to the linear combinations

cr;1u0 þ . . .þ cr;r�1ur�1, where cr; j are arbitrary constants. However, without loss of generality

we can assume that all the coefficients cr;j ¼ 0, because otherwise all the terms with these

coefficients will vanish in our further calculations due to the orthogonality conditions (8).

With the use of the vectors (16), we transform Eq. (15) into the form

L0wl ¼ �L1u0 � kl
1

Xl

r¼1

1

r!

@rL

@kr ul�r þ
Xl�1

j¼1

L0uj

X

jajj¼l

ka1
� � � kaj

: ð17Þ

Multiplying Eq. (17) by the left eigenvector v0 and taking into account Eq. (7.1), we get the

coefficient k1 in expansions (12):

kl
1 ¼ �vT

0 L1u0

Xl

r¼1

1

r!
vT

0

@rL

@kr ul�r

 !�1

: ð18Þ

Note that for l ¼ 1 Eqs. (12) and (18) describe the increment of a simple eigenvalue k0 due to

perturbation of the vector of parameters.

Consider in more detail the splitting of a double eigenvalue k0 with the Keldysh chain of

length 2 due to perturbation of the vector of parameters (9). In this case the eigenvalue kð�Þ and
eigenvector uð�Þ are expressed by means of the Newton-Puiseux series (12) and (13) with l ¼ 2.

Substituting these expansions along with Eqs. (10) and (11) into the eigenvalue problem (5) and

collecting the terms with the same powers of �, we get the equations

L0w1 ¼ �k1L0u0; ð19Þ

L0w2¼�k1L0w1�k2L0u0�L1u0�
k2

1

2!
L00u0; ð20Þ

L0w3¼�k1L0w2�k2L0w1�k3L0u0�L1w1�k1L01u0�
k2

1

2!
L00w1�k1k2L00u0�

k3
1

3!
L000u0; ð21Þ

L0w4 ¼ �k3L0w1�k2L0w2�L1w2�k2L01u0�
1

2
k2

2L00u0�k4L0u0�L2u0

� k1ðL0w3 þ k2L00w1 þ L01w1 þ k3L00u0Þ �
k2

1

2!
ðL00w2 þ k2L000u0 þ L001u0Þ

� k3
1

3!
L000w1 �

k4
1

4!
L0000u0;

ð22Þ

where the prime ð0¼ @=@kÞ indicates the partial derivative with respect to the spectral param-

eter. Note that Eq. (19) follows from Eq. (14) with r ¼ 1 and Eq. (20) is a particular case of

Eq. (15) for l ¼ 2. Thus, the coefficient k1 in expansion (12) is given by formula (18) where one

should take l ¼ 2,

k2
1 ¼ �

vT
0 L1u0

vT
0 L0u1 þ 1

2
vT

0 L00u0

: ð23Þ

Formula (23) was derived earlier in [8] and [23] for a matrix polynomial L of degree 2.

From Eq. (19) it follows that w1¼k1u1þcu0, where c is an unknown constant. To get the

coefficient k2, one needs first to substitute the vector w1 in the explicit form into Eqs. (20) and

(21), then multiply Eq. (20) by the left associated vector v1 to find the quantity vT
0 L0w2. Finally,

Eq. (21) is multiplied by the left eigenvector v0, the term vT
0 L0w2 is substituted into

the expression obtained, and taking into account Eqs. (8) and (23), the coefficient k2 is isolated,
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k2 ¼ �
vT

1 L1u0 þ vT
0 L1u1 þ vT

0 L01u0 þ k2
1Q

2vT
0 L0u1 þ vT

0 L00u0

; ð24Þ

Q ¼ vT
1 L0u1 þ

1

2!
ðvT

1 L00u0 þ vT
0 L00u1Þ þ

1

3!
vT

0 L000u0: ð25Þ

If the vectors u0, v0, u1, v1 are chosen so that Q¼0 we can rewrite Eq. (24) in the form

k2 ¼ �
vT

1 L1u0 þ vT
0 L1u1 þ vT

0 L01u0

2vT
0 L0u1 þ vT

0 L00u0

: ð26Þ

Therefore, the double eigenvalue k0 of the linear matrix operator Lðk;pð�ÞÞ splits in the case of

general position according to the formula

kð�Þ ¼ k0 þ k1�
1=2 þ k2�þ oð�Þ; ð27Þ

with the coefficients k1 and k2 from Eqs. (23)–(26).

The case when the coefficient k1 equals zero in Eq. (27) is referred to as degenerate [31] and

should be investigated separately. Substituting k1¼0 into Eqs. (19)–(22) we find

L0w1¼0; L0w2¼�k2L0u0�L1u0; ð28:1; 2Þ

L0w4¼�k3L0w1�k2L0w2�L1w2�k2L01u0�
1

2
k2

2L00u0�k4L0u0�L2u0: ð29Þ

Solving Eqs. (28) yields the vectors w1 and w2:

w1 ¼ bu0; w2 ¼ k2u1 þ cu0 � S0ðL1u0Þ; ð30Þ

where b and c are unknown constants, and S0 is the operator inverse to L0. Next we multiply

Eq. (29) by the left eigenvector v0 and substitute the quantity vT
0 L0w2 obtained from the

multiplication of Eq. (28.2) by the left associated vector v1 into the result. After this trans-

formation we substitute the vectors (30) into Eq. (29). Finally, taking into account Eqs. (8) with

l¼2 and the degeneration condition vT
0 L1u0¼0, we arrive at the quadratic equation serving for

the determination of the coefficient k2 in the degenerate case,

k2
2þk2

vT
1 L1u0þvT

0 L1u1þvT
0 L01u0

vT
0 L0u1þ 1

2 vT
0 L00u0

þ vT
0 L2u0�vT

0 L1S0ðL1u0Þ
vT

0 L0u1þ 1
2 vT

0 L00u0

¼0: ð31Þ

Thus, the double eigenvalue splits in the degenerate case according to the formula

k ¼ k0 þ �k2 þ oð�Þ with the coefficient k2 determined from Eq. (31). Note that the obtained

formulae generalize the results on bifurcation of eigenvalues derived earlier in [25], [29], and

[32]–[35].

3 Effect of small velocity-dependent perturbation on the spectrum

of a circulatory system

Let us now return to the general non-conservative system described by Eq. (1). In the

n-dimensional space of the system parameters k1; . . . ; kn�1; q, consider a point

p0¼ð0; . . . ; 0; q0Þ. Assume that �ix0, x0 > 0, are double eigenvalues with the Keldysh

chains of length l ¼ 2 of the operator Lðk; 0; q0Þ ¼ A0 þ k2
M, where A0 ¼ Aðq0Þ and the

operator Lðk;k; qÞ is defined by Eq. (2). The remaining eigenvalues �ix0;s, x0;s>0,

s¼1; . . . ;m�2, are assumed to be simple. The non-conservative system corresponding to

The destabilization paradox in non-conservative systems 151



k¼0, q¼q0 is a circulatory system described by Eq. (3) and the point p0 belongs to the

boundary between its stability and flutter domains.

The right and left eigenvectors u0, v0 and associated vectors u1, v1 of the double eigenvalue

ix0 satisfy Eqs. (6) and (7). With the use of the relations

L0¼A0�x2
0M;

@L

@k

�
�
�
�

p¼p0
k¼ix0

¼2ix0M;
@2L

@k2

�
�
�
�

p¼p0
k¼ix0

¼ 2M;
@3L

@k3

�
�
�
�

p¼p0
k¼ix0

¼0; ð32Þ

valid for the operator Lðk;k; qÞ defined by Eq. (2), we transform Eqs. (6) and (7) into the

following form:

ðA0 � x2
0MÞu0 ¼ 0; ðA0 � x2

0MÞu1 ¼ �2ix0Mu0; ð33Þ

vT
0 ðA0 � x2

0MÞ ¼ 0; vT
1 ðA0 � x2

0MÞ ¼ �2ix0vT
0 M: ð34Þ

Since the vectors u0, v0 are defined up to arbitrary multipliers and the vectors u1, v1 are defined

up to the terms c1u0, c2v0, respectively, where c1 and c2 are arbitrary constants, we choose the

real vectors u0, v0 and purely imaginary vectors u1, v1 satisfying the normalization and

orthogonality conditions

2ix0vT
0 Mu1 ¼ 1; 2ix0vT

1 Mu1 þ vT
1 Mu0 þ vT

0 Mu1 ¼ 0: ð35Þ

Besides, the left and right eigenvectors satisfy the orthogonality condition vT
0 Mu0¼0 following

from Eq. (8) for l ¼ 2.

Let us study how the stability of system (1) depends on the linear perturbation of the vector

of parameters p¼ðk; qÞ;
pð�Þ ¼ p0 þ � _p; � � 0; ð36Þ

where the dot over a symbol indicates the derivative with respect to � evaluated at � ¼ 0. In the

case of general position the perturbed double eigenvalue is determined by the Newton-Puiseux

series (12) with l ¼ 2,

k ¼ ix0 þ �1=2k1 þ �k2 þ . . . : ð37Þ

Substituting the operator L given by Eq. (2) into Eqs. (11), (23) and (24), and taking into

account the orthogonality and normalization conditions (35) we get the coefficients k1 and k2,

k2
1 ¼ �ix0hf ; _ki �ef _q; 2k2 ¼ �hf�x0h; _ki � ieh _q: ð38:1; 2Þ

In Eqs. (38) the vector _k¼ð _k1; . . . ; _kn�1Þ, the real vectors f , h have the components

fr ¼ vT
0

@D

@kr

u0; ihr ¼ vT
1

@D

@kr

u0 þ vT
0

@D

@kr

u1; r ¼ 1; . . . ;n� 1; ð39:1; 2Þ

the angular brackets denote the inner product of real vectors in Rn�1, and the real scalars ef , eh

are defined by the expressions

ef ¼ vT
0

@A

@q
u0; ieh ¼ vT

1

@A

@q
u0 þ vT

0

@A

@q
u1: ð40Þ

Thus, from Eqs. (36)–(38) we obtain

k ¼ ix0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ix0hf ;ki �ef ðq�q0Þ
q

� 1

2
hf�x0h;ki þ iehðq�q0Þ
� �

þ oðkp�p0kÞ: ð41Þ

Equation (41) describes splitting of the double eigenvalue ix0 with a change of the parameters

k¼ðk1; . . . ; kn�1Þ and q in the case when the radicand is not zero.
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If k ¼ 0 the double eigenvalue splits into a pair of purely imaginary eigenvalues (stability) for
ef ðq� q0Þ > 0. Let us assume that ef < 0. Then the circulatory system (3) is stable for q < q0 and

unstable for q > q0. The case ef ¼ 0 is degenerate and will not be considered.

For a fairly small variation of the parameters k and q the double eigenvalue ix0 splits in

general into two simple complex-conjugate eigenvalues, one of them with positive real part

(flutter instability). However, if hf ;ki¼0 and hh;ki<0, then for q<q0 the radicand in Eq. (41) is

purely imaginary, and for a sufficiently small perturbation of parameters the double eigenvalue

ix0 (as well as �ix0) splits into two simple eigenvalues with negative real parts.

The asymptotic stability of system (1) after perturbation (36) also depends on the behavior of

the remaining 2m� 4 simple purely imaginary eigenvalues �ix0;s. We choose the real right u0;s

and left v0;s eigenvectors of the eigenvalues ix0;s satisfying the normalization conditions

2x0;sv
T
0;sMu0;s ¼ 1: ð42Þ

According to Eqs. (11), (12) and (18) with l¼1 the increments of the eigenvalues �ix0;s due to

change of parameters are determined by the expansions

k¼� ix0;s	iegsðq�q0Þ�x0;shgs;kiþoðkp�p0k2Þ; s ¼ 1; . . . ;m� 2; ð43Þ

where the real scalar egs and the components of the real vector gs are

egs ¼ vT
0;s

@A

@q
u0;s; gs;r ¼ vT

0;s

@D

@kr

u0;s; r ¼ 1; . . . ;n� 1: ð44Þ

The sufficient condition for Reks to be negative is hgs;ki > 0: Therefore, the system (1) is

asymptotically stable for fairly small linear perturbations of the parameters k, q, given by Eq.

(36), if the following conditions are satisfied:

hf ;ki ¼ 0; q < q0; hh;ki < 0; hgs;ki > 0; s ¼ 1; . . . ;m� 2: ð45Þ

The inequalities (45) show that the set of directions leading from the point p0 to the domain of

asymptotic stability has the dimension n�1 in the n-dimensional space of the system param-

eters k1; . . . ; kn�1; q. However, it is known that for the multiparameter families of linear matrix

operators of the general type the dimension of the asymptotic stability domain coincides with

that of the parameter space [30]. Therefore, starting from the point p0 it is possible to reach

other points of the asymptotic stability domain only following the curves which are tangential

to the plane hf ;ki¼0 at p0.

To obtain more accurate information on the geometry of the stability domain in the vicinity

of the point p0¼ð0; . . . ; 0; q0Þ we consider a variation of the vector of parameters along a

smooth curve

pð�Þ ¼
0

q0

" #

þ �
_k

0

" #

þ �
2

2

€k

€q

" #

þ oð�2Þ; ð46Þ

assuming that

hf ; _ki ¼ 0: ð47Þ

The curve (46), (47) is orthogonal to the axis q in the space of the parameters k; q because

_q � 0.

The coefficient k1 in expansion (37) determined by Eq. (38.1) vanishes along the curve (46),

(47). Thus, the double eigenvalue ix0 in this degenerate case splits linearly with respect to �:

k ¼ ix0 þ k2�þ oð�Þ: ð48Þ
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The coefficient k2 is a root of the quadratic equation (31), which for the operator L given by Eq.

(2) and eigen- and associated vectors satisfying conditions (35) takes the form

k2
2 � k2 x0hh; _ki þ 1

2
ef €qþ x2

0hG _k; _ki
� �

þ ix0
1

2
hf ; €ki þ hH _k; _ki

� �

¼ 0: ð49Þ

The real vectors f , h and scalars ef , eh in the coefficients of the polynomial (49) are determined by

Eqs. (39) and (40), the real matrix H has the components

Hrs ¼
1

2
vT

0

@2D

@kr@ks

u0; r; s ¼ 1; . . . ;n� 1; ð50Þ

and the real matrix G is defined by the expression

hG _k; _ki ¼
Xn�1

r¼1

_krv
T
0

@D

@kr

S0

Xn�1

s¼1

_ks

@D

@ks

u0

 !

; ð51Þ

where S0¼ðA0�x2
0M�2ix0v0vT

1 M�2v0vT
0 MÞ�1 is the operator inverse to L0 ¼ A0 � x2

0M [36].

In view of Eqs. (46) and (47), which explicitly specify the curve pð�Þ, and the expansion (48),

Eq. (49) is represented in the form

ðk�ix0Þ2�x0hh;kiðk�ix0Þþef ðq� q0Þþx2
0hGk;kiþix0 hf ;kiþhHk;kið Þ¼0: ð52Þ

Equation (52) describes splitting of the double eigenvalue ix0 due to small perturbation of the

parameters k and q. To investigate this process in detail we substitute k¼RekþiImk into

Eq. (52) and separate real and imaginary parts. Transforming the real and imaginary parts of

Eq. (52) we get the following relations:

ðImk�x0 þ Rekþ a=2Þ2 � ðImk�x0 � Rek� a=2Þ2 ¼ �2d; ð53Þ

Rekþa

2

� �4

þ c�a2

4

� �

Rekþa

2

� �2

¼d2

4
; ð54Þ

Imk�x0ð Þ4� c�a2

4

� �

Imk�x0ð Þ2¼d2

4
; ð55Þ

where

a¼� x0hh;ki; c¼ef ðq�q0Þþx2
0hGk;ki; d¼x0 hf ;kiþhHk;kið Þ: ð56:1� 3Þ

Consider first the case when the system is circulatory (k¼0). Then, according to Eq. (56) the

quantities a¼0, c¼ef ðq� q0Þ, d¼0, and Eqs. (54), (55) take the form

q � q0 : Rek ¼ 0; Imk ¼ x0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ef ðq� q0Þ
q

; ð57Þ

q � q0 : Rek ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ef ðq� q0Þ
q

; Imk ¼ x0: ð58Þ

Equations (57) and (58) show that with an increase in the load parameter q two simple purely

imaginary eigenvalues move along the imaginary axis, collide at q¼q0 and then diverge in the

direction perpendicular to the imaginary axis with the origination of a pair of simple complex-

conjugate eigenvalues (flutter instability). Such a behavior of eigenvalues is known as the strong

interaction and is typical for circulatory systems [5]. The trajectories of eigenvalues of a cir-

culatory system with a change of the parameter q are shown in Figs. 2 and 3 by the fine lines.

If k 6¼0 and d 6¼0, then dissipative and gyroscopic forces destroy the strong interaction of

eigenvalues shifting and splitting their trajectories as shown in Figs. 1 and 2. This qualitative

154 O. N. Kirillov



effect known in the literature only from the numerical analysis of the specific mechanical

examples [2], [8], [10] is described here analytically by Eqs. (53)–(55).

Indeed, for a fixed k 6¼ 0 with a change of the parameter q the eigenvalues move in the

complex plane along the branches of the hyperbola given by Eq. (53). This hyperbola has two

asymptotes Rek¼� a=2 and Imk¼x0 where a is determined by Eq. (56.1). If a > 0, then one of

the two eigenvalues is in the left-hand half of the complex plane while another one passes

through the imaginary axis to the right when q ¼ qcrðkÞ. Thus, a > 0 or equivalently hh;ki<0

is a necessary condition for asymptotic stability.

Equations (54) and (55) describe the real and imaginary parts of eigenvalues k as func-

tions of the parameters q and k. The functions RekðqÞ and ImkðqÞ for k6¼0 are shown in

Fig. 2 by the bold lines. The value of the parameter q at which one of the eigenvalues

crosses the imaginary axis follows from Eq. (54) if we assume there Rek¼0. This yields the

relation ca2¼d2, which after taking into account the explicit expressions for a, c, and d

from Eqs. (56) takes the form

qcrðkÞ ¼ q0 þ
ðhf ;kiþhHk;kiÞ2

ef hh;ki2
� x2

0

ef
hGk;ki: ð59Þ

Thus, both eigenvalues belong to the left-hand half of the complex plane if

q < q0 þ
ðhf ;kiþhHk;kiÞ2

ef hh;ki2
� x2

0

ef
hGk;ki; ð60Þ

hh;ki < 0: ð61Þ

The necessary and sufficient conditions (60), (61) for all the roots of the complex polyno-

mial (52) to have negative real parts can also be obtained with the use of the Bilharz

criterion [37], which is the analogue of the Routh–Hurwitz conditions for complex poly-

nomials.

Note that an equation similar to (53) was obtained by Seyranian and Pedersen [25], [26].

However, according to their approximation the eigenvalue trajectories due to small velocity-

dependent perturbation can only split without shifting (a¼0). Due to that reason Seyranian and

Pedersen did not calculate the critical load qcrðkÞ.
In the case d�x0 hf ;kiþhHk;kið Þ¼0 the strong interaction of the eigenvalues is preserved

with the introduction of small velocity-dependent forces (k6¼0). According to formulae (54) and

(55), which for this case take the form

q � q
 : Rek ¼ x0
hh;ki

2
; Imk ¼ x0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ef ðq� q
Þ
q

; ð62Þ

−a
2

−a
2

q q

q
0

q
cr

0 0 0Rel RelIml

Iml
d>0 d<0

w

w

0

0

Fig. 2. Trajectories of eigenvalues of a circulatory system (fine lines) and the system with small velocity-

dependent forces (bold lines) for d 6¼ 0
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q � q
 : Rek ¼ x0
hh;ki

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ef ðq� q
Þ
q

; Imk ¼ x0; ð63Þ

the complex eigenvalues k with Rek¼� a=2 interact strongly at q¼q
, where

q
 ¼ q0 þ x2
0

hh;ki2 � 4hGk;ki
4ef

: ð64Þ

With the further increase in the parameter q the double eigenvalue k
 ¼ �a=2þ ix0 splits into

two simple complex-conjugate eigenvalues, and one of them crosses the imaginary axis at

q ¼ qcrðkÞ given by Eq. (59), which takes here the form

qcrðkÞ ¼ q0 �
x2

0

ef
hGk;ki: ð65Þ

We can conclude that in the case d¼0 small dissipative and gyroscopic forces just shift the

picture of the strong interaction of eigenvalues off the imaginary axis, as shown in Fig. 3 for

a > 0. As in the previous case (d6¼0) both eigenvalues are in the left-hand half of the complex

plane if conditions (60) and (61) are satisfied simultaneously. If, additionally, hGk;ki>0, then

according to Eq. (65) the critical load is increased in the presence of small velocity-dependent

forces (stabilization).

4 Function of the critical load qcrðkÞ and its properties

Consider the function of the critical load qcrðkÞ in more detail. We restrict our further con-

sideration to the case when

fk : hf ;ki ¼ 0; hh;ki < 0g � fk : hgs;ki > 0; s ¼ 1; . . . ;m�2g; ð66Þ

meaning that all simple eigenvalues �ix0;s move into the left half of the complex plane due to

small perturbation of the system parameters. Thus, stability of system (1) depends only on the

splitting of the double eigenvalues �ix0. Therefore, the surface qcrðk1; . . . ; kn�1Þ approximated

by Eq. (59) under constraint (61) is the boundary of the domain of asymptotic stability

approximated by inequalities (60) and (61).

The function qcrðkÞ given by Eq. (59) consists of rational and polynomial terms. The rational

term has squared linear forms with respect to the vector k both in the numerator and

denominator. Thus, the function qcrðkÞ is singular at the point k ¼ 0, and the critical load as a

function of n� 1 variables has no limit when k ¼ ðk1; . . . ; kn�1Þ tends to zero. This fact was

first established for the critical load of the Ziegler–Herrman–Jong pendulum in [26] and [27] but

it was not known for arbitrary linear non-conservative systems.

−a
2

−a
2

q q

q
0 q

0

q
crq

* q
*

Rel Iml Rel

Iml

0 0 0w

w

0

0

Fig. 3. Trajectories of eigenvalues of a circulatory system (fine lines) and the system with small velocity-

dependent forces (bold lines) for d ¼ 0
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However, the homogeneity property of the numerator and denominator of the rational term

of qcrðkÞ guarantees the existence of lim
�!0

qcrð�ekÞ for any direction ek such that hh; eki 6¼ 0.

Substituting k ¼ �ek into Eq. (59) we find the explicit expression describing approximately a

jump in the critical load due to small dissipative and gyroscopic forces,

Dq � q0 � lim
�!0

qcrð�ekÞ ¼ �
1

ef

hf ; eki2

hh; eki2
: ð67Þ

If hf ; eki¼0, then lim
�!0

qcrð�ekÞ ¼ q0. For the two-dimensional vector k¼ðk1; k2Þ this condition
gives the ratio of the parameters k1 and k2 for which small velocity-dependent forces do not

destabilize a circulatory system as

ki

kj

¼� fj

fi
; i; j ¼ 1; 2; ð68Þ

where f1; f2 are determined by Eq. (39.1). The strong influence of the ratio of the dissipation

parameters on the critical load was first noted in [2] and [6].

In the classical formulation [16]–[27], when the operator of dissipative and gyroscopic forces

has the form kD, where k is a scalar parameter and the matrix D is constant, the equation of

motion of the non-conservative system (1) has the form

d2y

dt2
þ kD

dy

dt
þAðqÞy ¼ 0: ð69Þ

Without loss of generality it is assumed in Eq. (69) that M is the identity matrix. Calculating the

vectors f , h, and the scalar ef by Eqs. (39) and (40) we get from Eq. (67) the explicit expression

for the jump of the critical load in the non-conservative system (69)

Dq ¼ 1

vT
0 A1u0

vT
0 Du0

vT
0 Du1 þ vT

1 Du0

� �2

; ð70Þ

where A1¼dA=dq, and the derivative is evaluated at q¼q0.

In a particular case when system (69) has 2 degrees of freedom, the eigen- and associated

vectors of the double eigenvalue ix0 in Eq. (70) can be expressed in terms of the entries aij,

i; j ¼ 1; 2, of the matrix A0¼Aðq0Þ:

u0¼
1

4a12trA0

2a12

a22�a11

" #

; v0¼
1

2

a11�a22

2a12

" #

;

u1¼
�i

ffiffiffiffiffiffiffiffiffiffiffiffi
2trA0

p

4a12ðtrA0Þ2
�2a12

3a11þa22

" #

; v1¼� i
ffiffiffiffiffiffiffiffiffiffiffiffi

2trA0

p 1

0

" #

; trA0 ¼ 2x2
0; a12 6¼ 0: ð71Þ

Using the vectors given by Eqs. (71) we obtain

vT
0 A1u0 ¼

2trA0A1 � trA0trA1

4trA0
; vT

0 Du0 ¼
2trA0D� trA0trD

4trA0
;

vT
0 Du1 þ vT

1 Du0 ¼ i
2trA0D� 3trA0trD

4ðtrA0Þ2
ffiffiffiffiffiffiffiffiffiffiffiffi

2trA0

p

: ð72Þ

The case a12 ¼ 0 is considered in the same way and yields the same results. Substituting the

quantities (72) into Eq. (70) we find that in the non-conservative system (69) with two degrees

of freedom the jump in the critical load caused by small velocity-dependent forces is approx-

imated by the expression
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Dq � q0 � lim
k!0

qcrðkÞ ¼
�2ðtrA0Þ2

2trA0A1 � trA0trA1

2trA0D� trA0trD

2trA0D�3trA0trD

� �2

; ð73Þ

where A0¼Aðq0Þ, A1¼dA=dqjq¼q0
. According to Eq. (73), Dq ¼ 0 for the matrices D satisfying

the condition trA0D ¼ x2
0trD. This condition was obtained earlier in [39] from the study of the

characteristic polynomial of system (69). Note that expressions (70) and (73) for the jump in the

critical load have not been obtained in the previous works [16]–[27], where the non-conservative

system (69) was studied.

The function qcrðkÞ determined by Eq. (59) under constraints (66) is the boundary between

the asymptotic stability and flutter domains of system (1) with m degrees of freedom in the

n-dimensional space of parameters k; q. Level sets of function (59) are the stability boundaries

in the space of parameters k¼ðk1; . . . ; kn�1Þ. The level set qcr¼q0, where q0 is the critical value

of the parameter q for the unperturbed circulatory system (3), is given by the expression

hf ;ki ¼ �x0hh;ki
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hGk;ki
p

� hHk;ki; hGk;ki > 0: ð74Þ

Consider the case when the vector of dissipation and gyroscopic parameters consists of only

two components k ¼ ðk1; k2Þ. Then, the stability boundary described by the function qcrðk1; k2Þ
is a surface in the 3-dimensional space of the parameters k1; k2; q. Since at the point

p0¼ð0; 0; q0Þ the spectrum of system (1) contains a double purely imaginary eigenvalue with the

Keldysh chain of length 2, then in the case of general position this surface has at p0 a singularity

known as the Whitney–Cayley umbrella [29], [30]. Therefore, in the vicinity of p0 the asymp-

totic stability boundary qcrðk1; k2Þ qualitatively looks as shown in Fig. 4.

To confirm this qualitative conclusion we find the asymptotic formulae for the level curves of

the function qcrðk1; k2Þ in the vicinity of the origin in the plane of parameters k1; k2 for qcr close

to q0. First we get approximations of the level curves for qcr<q0 assuming k1 as a smooth

function of k2 (or vice versa). Substituting into Eq. (59) the expansion ki ¼ bjkj þ oðkjÞ,
j ¼ 1; 2, where bj are unknown constants, and collecting the terms with the same powers of kj,

we get

ki ¼ �
fj � hj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ef ðqcr � q0Þ
q

fi � hi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ef ðqcr � q0Þ
q kj þ oðkjÞ; i; j ¼ 1; 2: ð75Þ

Since ef<0 and qcr<q0, the radicals in Eq. (75) are real quantities. Thus, for qcr<q0 the

asymptotic stability domain in the plane k1; k2 is bounded in the first approximation by the two

different straight lines intersecting at the origin as shown in Fig. 5a. Note that only the part of

k1

k2

q
0

0

q

Asymptotic
stability

Fig. 4. The surface of the function qcrðk1; k2Þ given
by Eq. (59) (the Whitney–Cayley umbrella)
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the surface qcrðk1; k2Þ which belongs to the half-space hh;ki<0 bounds the asymptotic stability

domain.

It follows from Eq. (75) that with the increase in qcr, the angle between the lines bounding the

asymptotic stability domain is decreased, being zero for qcr ¼ q0. In this case the first

approximation (75) gives only the ratio of the parameters k1 and k2 coinciding with Eq. (68).

Substituting into Eq. (74) the expansion ki¼� ðfj=fiÞkjþcjk
2
jþoðk2

j Þ with unknown constants

cj, and collecting the terms with the same powers of kj, we find the second-order approximation

of the level curve at qcr ¼ q0

ki ¼ �
fj

fi
kj �

fTHyf � x0ðhifj � hjfiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fTGyf
q

f 3
i

k2
j þ oðk2

j Þ; i; j ¼ 1; 2; ð76Þ

Hy ¼
H22 �H12

�H21 H11

" #

; Gy ¼
G22 �G12

�G21 G11

" #

;

where the components Hrs, Grs ðr; s ¼ 1; 2Þ of the matrices H and G are determined by Eqs. (50)

and (51). Equation (76) describes two curves tangential to each other at the origin of the plane

of parameters k1; k2, forming a degenerate singularity of the asymptotic stability domain

known as the cusp [26], [30].

In general the line ki¼� ðfj=fiÞkj does not always belong to the cusp. However, in the case

when the matrix DðkÞ is a linear function of parameters this line is always inside of the

asymptotic stability domain (Fig. 5b), because the matrix H, consisting of the second deriva-

tives of the matrix DðkÞ with respect to parameters k1 and k2, is identically zero.

To study the level curves for qcr>q0 we rewrite Eq. (59) as follows:

hf ;kiþhHk;ki ¼ �hh;ki
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ef ðqcr�q0Þ þ x2
0hGk;ki

q

: ð77Þ

If hGk;ki>0, then the real solutions to Eq. (77) describing the level curves for qcr>q0 exist only

if the radicand is positive or, equivalently,

kkk �
ffiffiffiffiffiffiffiffiffiffiffiffi

hk;ki
p

>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ef ðqcr�q0Þ
x2

0hGe; ei

s

> 0; ð78Þ

where e¼k=kkk. Condition (78) means that the level curves qcr>q0 do not pass through the

origin. Moreover, they are moved from the origin at the distance prescribed by the right-hand

side of inequality (78), as shown in Fig. 5c.

k2 k2 k2

k1

k 2
= – (f 1

/f 2
) k 1

k1k1

0 0 0

Asymptotic
stability

q
cr
< q

0
q

cr
= q

0
q

cr
> q

0a b c

Fig. 5. Level curves of the function qcrðk1; k2Þ in the vicinity of the origin; the asymptotic stability
domains are hatched
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Therefore, analyzing the level curves of the function qcrðk1; k2Þ we showed that the

boundary of the asymptotic stability domain described by Eq. (59) has the singularity

Whitney–Cayley umbrella at the point ð0; 0; q0Þ in the system parameters space. Note that in

mechanical applications this singularity was found first on the asymptotic stability boundary

of the Ziegler–Herrmann–Jong pendulum in [25], [26] and [29].

5 The Ziegler–Herrmann–Jong pendulum

As a mechanical example we consider a classical model of non-conservative system introduced

first by Ziegler [1] and then extended by Herrmann and Jong [14]. This is a double pendulum

composed of two rigid weightless bars of equal length l, which carry concentrated masses

m1¼2m, m2¼m. The generalized coordinates u1 and u2 are assumed to be small. A load Q is

applied at the free end and is always parallel to the second bar, as shown in Fig. 6a. At the

hinges, the restoring moments cu1þb1du1=dt and cðu2�u1Þþb2ðdu2=dt�du1=dtÞ are induced.
The oscillations of the pendulum near vertical equilibrium are described by the equations

3ml2
d2u1

dt2
þ ðb1 þ b2Þ

du1

dt
� ðQl� 2cÞu1 þml2

d2u2

dt2
� b2

du2

dt
þ ðQl� cÞu2 ¼ 0;

ml2
d2u1

dt2
� b2

du1

dt
� cu1 þml2

d2u2

dt2
þ b2

du2

dt
þ cu2 ¼ 0; ð79Þ

where t indicates time, b1 and b2 are the damping coefficients and c characterizes the elastic

properties of the hinges [14]. Introducing the dimensionless quantities

q ¼ Ql

c
; k1 ¼

b1
ffiffiffiffiffiffiffiffiffiffi
cml2
p ; k2 ¼

b2
ffiffiffiffiffiffiffiffiffiffi
cml2
p ; s ¼ t

ffiffiffiffiffiffiffiffi
c

ml2

r

;

we get the equation of motion in the form (1) with the matrices

M¼
3 1

1 1

" #

; D¼
k1þk2 �k2

�k2 k2

" #

; A¼
2�q q�1

�1 1

" #

; y¼
u1

u2

" #

: ð80Þ

Calculation of the determinant detðMk2 þDkþ AÞ results in the characteristic equation of the

system

Q
q

m

l

l

2m
j

1

j
2

k2

k1

q
0

0

3

1

5

a b

Fig. 6. The Ziegler–Herrmann–Jong pendulum and its asymptotic stability domain given by Eqs. (83)

and (84)
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2k4 þ ðk1 þ 6k2Þk3 þ ðk1k2 � 2qþ 7Þk2 þ kðk1 þ k2Þ þ 1 ¼ 0: ð81Þ

If the damping is absent ðk1¼k2¼0Þ, then with the use of the Gallina criterion [38] we find from

Eq. (81) that the system is marginally stable for q<q0, where the critical load q0 corresponds to

the double eigenvalues �ix0 with the Keldysh chains of length 2, and

x0 ¼ 2�1=4; q0 ¼
7

2
�

ffiffiffi
2
p
’ 2:09: ð82Þ

The critical value q0 given by Eq. (82) was first obtained by Ziegler [1].

From the Routh-Hurwitz conditions applied to the characteristic polynomial (81) we con-

clude that the damped system is asymptotically stable iff

q < qcrðk1; k2Þ; k1 > �k2; ð83Þ

where the critical load of the damped system is [14]

qcrðk1; k2Þ ¼ q0 �
ð3�2

ffiffiffi
2
p
Þ

2

ðk1�ð4þ5
ffiffiffi
2
p
Þk2Þ2

ðk1þk2Þðk1þ6k2Þ
þ 1

2
k1k2: ð84Þ

From Eqs. (83) and (84) it follows that as q!�1 the domain of asymptotic stability is defined

by the inequalities

k1 > �k2; k1 > �6k2: ð85Þ

The domain of asymptotic stability of the Ziegler–Herrmann–Jong pendulum determined by

inequalities (83) and Eq. (84) is shown in Fig. 6b. Note that this domain was drawn first in the

works [25] and [26].

If we assume k1¼k2 in Eq. (84) and consider a limit of qcrðk2Þ as k2 goes to zero, then we

obtain

eqcr � lim
k2!0

qcrðk2Þ ¼
41

28
’ 1:46 < q0 ¼

7

2
�

ffiffiffi
2
p
’ 2:09: ð86Þ

Inequality (86) established by Ziegler in 1952 shows that the critical load of the pendulum with

the equal damping coefficients decreases in a discontinuous manner due to infinitesimally small

dissipation. This inequality is known as the Ziegler paradox [2], [8].

Now we apply the theory developed in Sects. 3 and 4 to approximate the asymptotic stability

domain. First, we find the right and left Keldysh chains of the double eigenvalue k0¼ix0 at the

load q0 given by Eqs. (82). Solution of Eqs. (33) and (34) yields

u0¼
5
ffiffiffi
2
p
�6

3
ffiffiffi
2
p
þ2

" #

; u1¼8ix0

5
ffiffiffi
2
p
�6

0

" #

;

v0¼
�1

112

ffiffiffi
2
p
þ4

�7

" #

; v1¼
ix0

112

10�8
ffiffiffi
2
p

19
ffiffiffi
2
p
�36

" #

: ð87Þ

The vectors found satisfy the normalization and orthogonality conditions (35). Substituting the

eigen- and associated vectors into Eqs. (39), (40), (50) and (51) we get the real quantity ef ,

vectors f and h, and the matrices G and H:

ef¼� 1

4
; f¼ 1

8

1�
ffiffiffi
2
p

6�
ffiffiffi
2
p

" #

; h¼ �1

8x0

1þ
ffiffiffi
2
p

6þ
ffiffiffi
2
p

" #

; G¼ 1

8

0 2�
ffiffiffi
2
p

2�
ffiffiffi
2
p

14�8
ffiffiffi
2
p

" #

; H�0: ð88Þ

Finally, with the vectors and matrices given by Eqs. (88) the approximation of the function

qcrðk1; k2Þ (59) and inequality (61) take the form
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qcr¼q0�2
ffiffiffi

2
p
ð3� 2

ffiffiffi

2
p
Þ2 ðk1�ð4þ5

ffiffiffi
2
p
Þk2Þ2

ðk1�ð4�5
ffiffiffi
2
p
Þk2Þ2

þ2
ffiffiffi

2
p 7

4
�

ffiffiffi

2
p� �

k2
2þ

1

2
� 1

4

ffiffiffi

2
p� �

k1k2

� �

;

k1>ð4�5
ffiffiffi
2
p
Þk2: ð89Þ

Equation and inequality (89) approximate the asymptotic stability boundary given by Eqs. (83)

and (84) in the vicinity of the point ðk1¼0; k2¼0; q¼q0Þ. The level curves of this boundary on

the plane of the damping parameters k1, k2 given by Eq. (84) and (89) are shown in Fig. 7 by the

solid and dashed lines, respectively. These curves are in fact the sections of the asymptotic

stability boundary, shown in Fig. 6b, by the planes qcr¼const. The left drawing of Fig. 7 shows

that both the exact function qcrðk1; k2Þ and its approximation are symmetrical with respect to

the origin of the damping parameters plane. Inequalities (83) and (89) define which half of the

surface qcrðk1; k2Þ bounds the asymptotic stability domain. One can see from Fig. 7 that

Eq. (89) approximates the exact stability boundary (84) with good accuracy even for large

variations of the parameters k1; k2, and q.

The level curves corresponding to qcr¼q0 can be approximated as well by formula (76).

Indeed, substituting expressions (88) into Eq. (76) and taking into account that

f2

f1
¼ �ð4þ 5

ffiffiffi
2
p
Þ; x0ðh1f2 � h2f1Þ ¼ �

5
ffiffiffi
2
p

32
; fTGyf ¼ f 2

1

5þ 2
ffiffiffi
2
p

4
;

we find

k1 ¼ k2ð4þ 5
ffiffiffi

2
p
Þ � k2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

50ð133þ 94
ffiffiffi

2
p
Þ

q

þ Oðk3
2Þ: ð90Þ

Approximation (90) is shown in Fig. 7 by the dotted lines. One can see that Eq. (89) gives a

more accurate approximation of the level curve for qcr¼q0 than Eq. (90) because the latter

contains only the second order terms with respect to the parameter k2. Note that the asymptotic

expression (90) was derived first in [25] and [26] from the analysis of the Routh–Hurwitz

inequalities for the Ziegler–Herrmann–Jong pendulum. We obtained exactly the same result

analyzing splitting of the double eigenvalue of the non-conservative system with a change of

parameters.

Let us now find how the critical load of the Ziegler–Herrmann–Jong pendulum jumps due to

small damping for various ratios of damping coefficients. Assume k1¼d cos a, k2¼d sin a in

Eqs. (84) and (89) and plot the critical value qcrðdÞ and its approximation as functions of the

k
1=(4-5√ 2 )k

2

k 1
=(4+5√ 2 )k 2

–0.1

–1

0

1 k1

k2

k1

k2

0.1

q
0

q
0q

0
+0.05

q
0
–0.05

q
0
–0.5 q

0
+0.55

4

3

2

1

–0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5

Fig. 7. The level curves of the asymptotic stability boundary qcrðk1; k2Þ: solid lines – exact solution (84),

dashed lines – approximation (89), dotted lines – Eq. (90)
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parameter d for different values of the parameter a, as shown in Fig 8a. Consider a limit of

qcrðd cos a; d sin aÞ as d goes to zero. Then,

eqcrðaÞ ¼ q0 �
ð3�2

ffiffiffi
2
p
Þ

2

ðcos a�ð4þ5
ffiffiffi
2
p
Þ sin aÞ2

ðcos aþ sin aÞðcos aþ6 sin aÞ : ð91Þ

Transforming Eq. (89) the same way we get

eqcrðaÞ ¼ q0�2
ffiffiffi
2
p
ð3�2

ffiffiffi
2
p
Þ2 cos a�ð4þ5

ffiffiffi
2
p
Þ sin a

cos a�ð4�5
ffiffiffi
2
p
Þ sin a

 !2

: ð92Þ

The graphs of function (91) and its approximation (92) are shown in Fig. 8b. One can see

that the limit of the critical load smoothly depends on the direction in the plane of the

damping parameters determined by the angle a and always does not exceed q0: eqcrðaÞ � q0.

Therefore, the limit of the function qcrðk1; k2Þ when k1 and k2 tend to zero is not defined as

was first noted in [26], [27]. The infinitesimally small dissipation usually destabilizes the

circulatory system, and Dq � q0�eqcrðaÞ measures a jump in the critical load for the different

directions a. Equation (92) evaluates the jump with the accuracy up to 1% for the direction

angles p=96�a�p=28, up to 10% for �p=63�a�2p=13, and up to 30% for the angles

�p=30�a�2p=5. For the angle a¼p=2 the error in the evaluation of the jump is less than

40%.

However, for k1¼ð4þ5
ffiffiffi
2
p
Þk2 (corresponding to a ’ 0:09) a small dissipation stabilizes the

pendulum, because in this case the exact equation (91) as well as its approximation (92) take the

form

qcr ¼ q0 þ
k2

2

2
ð4þ 5

ffiffiffi
2
p
Þ: ð93Þ

One can see that qcr is a function of one of the damping parameters and goes to q0 as k2 ! 0.

Both curves given by Eqs. (91) and (92) have a maximum eqcrðamÞ ¼ q0 exactly at the same point

am ¼ arctanð1=ð4þ5
ffiffiffi
2
p
ÞÞ as shown in Fig. 8.

Finally, we obtain the approximate expressions describing the trajectories of the eigenvalues

of the Ziegler–Herrmann–Jong pendulum and compare the approximations with the numerical

solution of the characteristic equation (81). Substituting the vectors and matrices given by Eqs.

(88) into expressions (56), we find

q
cr q

cr

q
0

q
0

2

2

1

1.5
0 1 1

a=0.09

d

0.2
0.3
0.4
0.0
0.5

0 p/2

~

am– 0.09~

a
a b

Fig. 8. The critical load qcrðd cos a; d sin aÞ and its limit as d!0 for the Ziegler–Herrmann–Jong

pendulum: bold lines – exact solutions, fine lines – approximations
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a¼
ffiffiffi
2
p
þ1

8
ðk1�k2ð4�5

ffiffiffi
2
p
ÞÞ; c¼ 1

4
ðq0�qÞ þ x2

0

7

4
�

ffiffiffi
2
p� �

k2
2þ

1

2
� 1

4

ffiffiffi
2
p� �

k1k2

� �

;

d¼x0
1�

ffiffiffi
2
p

8
ðk1�k2ð4þ5

ffiffiffi
2
p
ÞÞ: ð94Þ

The real and imaginary parts of the eigenvalues as functions of parameters are determined by

Eqs. (54) and (55) with the coefficients a, c, and d given by Eqs. (94). The function RekðqÞ is
shown in Fig. 9 for different values of k1 under the assumption that k2¼k1. Since

k1 6¼ð4þ5
ffiffiffi
2
p
Þk2 the small damping destabilizes the pendulum. In this case the eigenvalues move

on the complex plane along the branches of the hyperbola given by Eq. (53), which takes here

the form

ðImk�x0þRekþ
ffiffiffi
2
p
þ1

16
ðk1�k2ð4�5

ffiffiffi
2
p
ÞÞÞ2�ðImk�x0�Rek�

ffiffiffi
2
p
þ1

16
ðk1�k2ð4�5

ffiffiffi
2
p
ÞÞÞ2

¼ x0

ffiffiffi
2
p
�1

4
ðk1�k2ð4þ5

ffiffiffi
2
p
ÞÞ: ð95Þ

The approximations of the eigenvalue trajectories shown in Fig. 9 by the dashed lines give

the right qualitative picture of the behavior of the eigenvalues being in a good agreement

with the exact solutions of the characteristic Eq. (81) for small variations of the parameters.

However, as one can see in Figs. 7–9, the critical load qcrðk1; k2Þ is approximated with a

good accuracy even for the large deviations of the damping parameters.

6 Conclusion

A new theory describing the paradoxical behavior of general linear non-conservative systems

due to small dissipative and gyroscopic forces qualitatively and quantitatively has been pre-

sented. The theory is substantially based on the sensitivity analysis of multiple eigenvalues. The

behavior of eigenvalues of the system in the complex plane is described analytically. Approx-

imations of the stabilization domain in the space of the system parameters are obtained. An

explicit asymptotic expression for the critical load as a function of dissipation and gyroscopic

parameters allowing to calculate a jump in the critical load is derived. The results are of general
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Fig. 9. The trajectories of the eigenvalues of the Herrmann–Jong pendulum given by Eq. (81) (solid

lines) and their approximations by Eqs. (54), (94) and (95) (dashed lines) for k2=k1 ¼ 1
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nature and give a constructive solution to the problem recognized as one of the main theoretical

challenges in the non-conservative stability theory [2].
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