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SUMMARY

Stationary accretion in the inner region of the disk is possible only for one
definite value of the viscosity:

A linear stability theory is constructed for stationary disk accretion on to
black holes. The inner region of the disk, where radiation pressure dominates,
is unstable against small perturbations. Growing short wave perturbations
take the form of travelling concentric waves. For long wavelengths there are
two branches of growing standing waves. The growth rate of one branch
decreases rapidly with increasing wavelength; its asymptotic behaviour was
found previously by Lightman & Eardley. The growth rate of the other
branch increases to a constant limit as wavelength increases; this branch is
the thermal instability of disk accretion.

The above instabilities can explain the observed variability of radiation
from binary X-ray sources, galactic nuclei and quasars, assuming these
objects really do contain accreting black holes.

I. THE GENERAL PICTURE

Accretion of matter with significant angular momentum on to black holes is
accompanied by the formation of disks of accreting material. Disks should arise
around both black holes of stellar origin in binary systems and supermassive black
holes possibly found in galactic nuclei and quasars. The structure and radiation
of stationary disks, the theory of which was constructed in the works of Lynden-
Bell (1969), Shakura (1973), Shakura & Sunyaev (1973) and Pringle & Rees
(1973),T is determined by three parameters: the mass of the black hole M, the
accretion rate M (or the total disk luminosity L = {Mc2, where { is the efficiency

* Translated from the Russian by R. L. Znajek.
T Relativistic effects were calculated in the survey by Novikov & Thorne (1973), and
also in papers by Page & Thorne (1974) and Cunningham (1975), and a thesis by Polnarev

(1975).
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of energy generation) and the parameter a, characterizing the level of turbulence
and/or chaotic small-scale magnetic fields:

‘IJtlt B2
.
vsH ~ 4mpvg?

(r.1)

Here v; and v are respectively the turbulent and thermal velocities of the matter,
B2/8x is the energy density of the chaotic magnetic field, pvs2/2 is the thermal
energy density of the matter in the disk, /; is the turbulent mixing length and H is
the half thickness of the disk.

The luminosity of an accreting X-ray source is apparently bounded by a quan-
tity of the order of the Eddington luminosity

Le = 1-3% 10838 (]%) ergs~!

obtained by equating gravitational and radiation-pressure forces on plasma near
the inner edge of the disk. If matter flows through the outer boundary at a rate
substantially above M., the maximum allowed by the Eddington limit, then gas
should flow away perpendicularly from the inner region of the disk under the
action of the radiation pressure (Shakura & Sunyaev 1973 (referred to below as
S5S)). In the following we shall be mainly concerned with disk accretion for
M < M = LefLc2.

At luminosities close to the Eddington limit, L/L¢ 2 g%(Mo/aM)V/8, the disk
consists of three distinct regions. There is the inner zone A, in which radiation
pressure is greater than gas pressure and free electron scattering dominates over
processes of true radiation absorption. This region emits the dominant part of the
energy radiated by the disk, and Compton processes determine the appearance of
the observed radiation spectrum. Further away from the hole is zone B, where
plasma pressure is greater than radiation pressure, but free electron scattering still
dominates radiation transfer. Beyond zone B there may exist a coldest region C
where true absorption processes dominate the opacity.

One can show (see Section IIT) that physical quantities in zone A can be
elegantly expressed using the universal constants mp, ¢, or and Ry = 2GM|c2.
It also follows, from the equations of motion and the condition of energy balance
(setting the energy emitted per unit area of the disk O~ at any radius equal to the
rate of energy-generation in the disk Q%), that stationary disk accretion in zone A
can only occur when the viscosity takes one definite value '

=4

Ne = 6 O—T—c. (I . 2)
This quantity does not depend on the actual form of the viscous forces (turbulent
or magnetic), distance from the black hole, luminosity or other parameters of the
accretion process. The viscosity given in (1.2) substantially exceeds the maximum
possible viscosity for a fully ionized gas and for radiation. Any difference between
the quantity (1.2) and the value of the viscosity in the inner zone has to be attri-
buted to a difference between Q+ and O~ and the violation of stationarity. The

problem of the stability of stationary disk accretion naturally arises.
Rees, Pacholczyk & Pringle (1973), and subsequently Lightman & Eardley
(1974), raised the question of the stability of disk accretion. Lightman & Eardley
(1974), and also Lightman (1974a, b) investigated the stability of a dynamic

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z ¥snBny 0z uo 159NB AQ 61120 L/E L9/E/S . L/RIOIHE/SEIUW/ WO dNO DIWSpEoE//:SARY WOl POPEOjUMOQ


http://adsabs.harvard.edu/abs/1976MNRAS.175..613S

FI976WNRAS 175- “613S!

No. 3, 1976 A theory of the instability of disk accretion 615

equation for disk accretion and came to the conclusion that stationary accretion is
unstable in zone A and stable in zones B and C. This fundamentally important and
correct result was, however, derived from assumptions that were not completely
correct: the dynamic equation relates two most important quantities—the surface
density of matter in the disk U and its half-thickness H, and cannot by itself
answer the question of the stability of stationary flow. A second equation connecting
U and H is required. Lightman & Eardley simplified the problem by using the
relation between U and H that occurs in stationary flow. But this relation is a
consequence of the equality O+ = O-, which also implies the unlikely equality
between the viscosity in the disk and its critical value ne = % (mp/orc). In general
the viscosity might not be ¢ and O+ # O-, and also it is necessary to include work
done against pressure as the disk expands and contracts, and the mechanical transfer
of energy by viscous stresses between regions of the disk at different radii.

Below we shall present the supplementary thermal equation relating U and H
when the equalities O+ = O~ and n = 7 are not satisfied. It is derived from the
law of energy conservation and allows a correct analysis of the stability of stationary
accretion disks with respect to radial perturbations to be carried out.

Using the non-stationary equations of disk accretion (see below) the axially-
symmetric problem was considered and it was assumed that the characteristic
radial length scale of the perturbations, A, satisfied the condition Ho< A < R where
2H, is the thickness of the disk at any given radius (quantities with the suffix zero
refer to the unperturbed stationary disk), and that terms of order (Ho/R)? and
Hy?/RA were negligible when compared with terms of order (Ho/A)2. 'The dynamic
and thermal equations derived in this manner form a closed system of equations;
analysis of their solutions demonstrated the existence of two branches of perturba-
tions that grow with time (see Fig. 1).

The time-dependent equations of disk accretion and their analysis were presented
by us in a short note (Sunyaev & Shakura 1975). Recently we received a preprint
by Shibasaki & Hochi (1975), which also demonstrates the possibility of thermal
instability connected with the inequality O+ # O~.

Perturbation types and their growth rates

In the limit of dominant radiation pressure (Bo = pr/(pr+pg) = 1) perturba-
tions with length scales satisfying 2Ho < A < 4H) take the form of concentric rings
moving across the surface of the disk. Their growth-rate Q varies from Q = o at
A = 2Hj to Q ~ aw[10 at A = 4Hj (w is the angular velocity of the disk at a
given radius).

For wavelengths A > 4H, there are two branches of growing perturbations,
which take the form of standing waves. For the lower branch (see Fig. 1) the growth-
rate drops with increasing wavelengths, and in the limit A> Ho the amplitude of
the viscosity perturbations 7;/no is only a small fraction of the amplitude of the
surface density perturbations U3/Up and height perturbations Hi/Ho. Thus the
equality O+ = Q- is only valid on this branch for long wavelengths, and the
solution turns out to be the instability discovered by Lightman & Eardley (1974).
But the growth-rate of this branch is small: Q & aw(Ho/A)?2. One is more interested
in the other branch of standing waves, where growth-rate increases with increasing
wavelength, and in the limit A > Hy tends to the value Q ~ o-2aw. On this branch
when A> Hy the amplitude of the surface-density perturbations U1/Up is small
in comparison with perturbations in the disk’s thickness H1/Ho, viscosity and other
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F1G. 1. Dependence of the instability growth rate on wavelength when radiation pressure
dominates, Bo>$. For o< disk accretion is stable. Broken lines denote travelling waves,
continuous lines denote standing waves. Upper branches correspond to thermal instabilities
and lower branches to dynamic instabilities. The long wavelength limit of the lower branches
is the instability discovered by Lightman & Eardley.

physical quantities. The growth of these perturbations is due to a thermal instability;
the equality O+ = O~ does not hold on this branch.

If the importance of radiation pressure is reduced, i.e. with smaller Bo, the
maximum value of the growth-rate of the thermal instability falls, the wavelength
at which growing perturbations are just possible increases, and in the limit Bo— £,
we have Qo0 and Ay —> 0. (Recall that for By = 1 the wavelength of the
smallest non-diminishing perturbation is equal to the thickness of the disk
(Amin = 2Hj).) Both branches of the solution then become the line Q = o.

For Bo<2 we only have branches with negative Q, i.e. small perturbations will
decay in a region where plasma pressure dominates. Thus the boundary between
the stable and unstable zones of the disk is given by Bo = 2. :

The linear stability theory presented here does not take account of boundary
conditions. We shall accept its conclusions when a large number of wavelengths
can fit into a region whose size is characteristic of changes in the physical quantities
Bo, w, etc., of the unperturbed solution (i.e. when its size is of order R). Perturba-
tions with A ~ R are described by more complicated equations. Their growth
necessitates a continual increase in mass-flow M across the boundary of the stable
and unstable zones. However, because of the stability of the solution in the outer
zone from where the matter is flowing, M remains fixed and equal to My, thus
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favouring stability. The constancy of My prevents the growth of perturbations on
very large length scales, which would completely wreck the disk structure of the
accretion. On the other hand small perturbations of length scale A<R do not
destroy the disk, but give rise to quasi-periodic temporal fluctuations in density,
thickness, energy-generation and consequently in the emergent radiation flux. The
spectral composition of the radiation will also vary.

Non-linear regime

An individual mode of growing standing perturbations consists of alternating
nodes and antinodes. At a node the importance of radiation pressure diminishes,
and when 8 = 2 is reached, the instability stabilizes there. At an antinode, where
B — 1, the growth of H relative to Hy enables additional energy to be radiated
through the sides of the ring; this increases O~ and of course stabilizes the situation.
But the main factor hindering the growth of the perturbation at antinodes appears
to be the cessation of mass flow M into these regions because of the stabilization
of the accretion rate in the nodes. On the other hand an antinode with wavelength A
might break up into smaller perturbations, and the latter in their turn into perturba-
tions on even smaller scales, right up to A ~ 2H. In a non-linear regime the anti-
nodes determine the accretion rate into regions of smaller radius, i.e. the accretion
rate M (R, t) and luminosity in the inner region change with time.

Evidently, near the boundary separating the stable and unstable zones, where
Bo = £, long-wave perturbations grow slowly, and determine the rate at which
matter flows into the inner region of the disk. The flow proceeds in ‘ batches’,
and the instability time scale at the outer zone, i.e. the formation time of these
regions ¢t ~ 1/Q(Ra) ~ (Ra/Hp)?(1/aw(R4)) is the longest time-scale for perturba-
tions of disk accretion. Because the time required for growth to non-linearity at the
outer boundary is approximately constant, the formation time of separate blocks is
more or less constant as well. This could be the cause of the quasiperiodicity
of the observed flux for long time scales. At smaller radii the quantities w and By
are bigger, and so the growth of perturbations is also bigger. The smallest fluctua-
tion time ¢ ~ 1/Q(Ro) ~ 1/aw(Rp) is associated with the region near the inner
edge of the disk. Thus the examined instability should cause fluctuations in the
luminosity of the disk, the amplitudeof the rapid fluctuations being modulated by the
slower ones, and a fluctuation spectrum should show variations on all time scales
from a minimum to a maximum. As M) is fixed at the outer edge of the disk,
averaging over times ¢ > fmax should always give the same value for the luminosity
of the disk in all wave bands.

Azimuthal perturbations

The thermal instability should undoubtedly have azimuthal as well as radial
modes, with roughly equal growth rates. For perturbations of long wavelength,
the azimuthal modes should lead to the appearance of a spiral structure. For small
length scales the joint action of azimuthal and radial modes should cause hills and
hollows to appear on the surface of the disk. Energy generation would be maximum
at the hills, i.e. they should be observed as hot spots on the disk surface. As a result
of the Doppler effect the rotation of hot spots around the black hole should lead to
quasi-periodic variations in luminosity with the orbital period T = 27/w (Sunyaev

1973).
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Spectral changes

It has already been remarked in SS that when the total luminosity of the disk
is close to the Eddington limit and o ~ 1, Compton processes in the region of
greatest energy generation produce hard X-rays. The derived spectrum closely
resembles the observed spectrum of Cyg X-1. If, however, the luminosity is several
times smaller than the Eddington limit, hard X-rays are absent during stationary
accretion. Instability in the radiation pressure zone leads to the appearance of a
hard X-ray tail at substantially smaller luminosities, but not smaller than
L|L¢= g5 (My/aM)V8, The point about the latter limit is that there the un stable
region where B> $ disappears. The instability of the accretion produces regions
(in the antinodes) where M grows relative to its mean value, and can reach the
critical value. This implies an increase in the local rate of energy generation, and
a rise in the electron temperature. Compton processes harden the spectrum, giving
it a characteristic hard tail. Meanwhile in the regions with high plasma density and
relatively low temperature (the nodes), bremmstrahlung processes generate a
large number of low-frequency photons. These diffuse into the regions of high
energy generation (the antinodes) where it is difficult for new photons to be created;
there they are Comptonized and help in removing energy from the high-temperature
regions.

It should be said that the typical spectrum of an accretion disk, derived in S5,
can be approximated by a sum of several power-law spectra. Thus if observers say
that in this or that narrow part of the spectrum the observations are consistent with
a power law, one cannot, on that basis alone, deduce that the radiation from any
particular object is non-thermal. As hard radiation comes from the most perturbed
region, it should vary strongly with time. Softer radiation, emitted by the outer
regions where the instability grows slowly or is completely suppressed, should
fluctuate less.

Black holes in binary systems

Up to the present time all the properties of Cyg X-1 indicate that it is the most
plausible black hole candidate. The variability of its luminosity is naturally ex-
plained by the model proposed here. In the spring of 1971 observations by UHURU
revealed a sharp transition in the distribution of energy radiated by the source.
In the 1-6 keV range the energy flux fell by nearly a factor of 10, and there appeared
simultaneously a high energy tail in the X-ray range hv> 10 keV.

The overall X-ray luminosity did not change, or perhaps it even increased
slightly. Analysis of the observations has shown that the X-ray flux fluctuates on
time scales from about 10s down to a few milliseconds. The amplitude of the
millisecond variations is greater at higher energies. On averaging over more than
10 s, it was found that the fluctuations were smoothed out in all parts of the energy
spectrum. The source was observed in this condition for several years. In the
spring of 1975 observations from the X-ray satellites Ariel and ANS and the
space station Salyut-4 showed a reversal: the 1-6 keV X-ray flux increased by about
a factor of 1o, while the flux at around 8 keV stayed practically unchanged. Un-
fortunately there is no data on the hard part of the spectrum. It is natural to associate
these transitions with the appearance and disappearance of the unstable zone in
an accretion disk around a black hole in Cyg X-1. The X-ray luminosity of Cyg X-1,
Lx ~ (0-6-1-0) x 1038 erg s~1, is close to the value above which the instability
appears, assuming the mass of the hole to be ~ 10 M. When L/L¢<1/50, a large
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part of the energy is radiated in the 1—6 keV region, and hard quanta are absent.
But if the luminosity is increased to slightly above the value L ~ Lc[50, the disk
becomes unstable in the region of maximum energy generation. M becomes
variable, and where M is close to the critical value, hard X-rays are generated,
while the 1-6 keV flux falls because of Compton processes. Thus when the
luminosity is close to Le/50 a small change in the accretion rate M can cause a
substantial redistribution of the energy radiated by the disk. Another mechanism
capable of influencing the spectral composition of the radiation is any variation of
the parameter « in the accreting matter. It would seem natural for turbulence to
be more easily generated in the unstable region of the disk, and for the parameter «
to grow there.

Supermasstve black holes

The first model of disk accretion on to supermassive black holes was proposed
by Lynden-Bell (1969) with the aim of explaining the observational appearances
of galactic nuclei. It was then successfully developed by Lynden-Bell & Rees
(1971), and others.

Like the theory of stationary disk accretion, the theory of its instability can be
applied to black holes with very different masses. However, when we change over
to supermassive objects, the observational appearance of disk accretion is com-
pletely different from when the black holes are of stellar origin.

(1) When the mass of the black hole is increased the Eddington limit grows
linearly: L. ~ 1038 (M/M,) erg s, and black holes with M ~ 108 or 109 M
can through accretion radiate at 1046 or 1047 erg s~1.

(2) The gravitational radius Ry and the radius of the last stable circular orbit
(3Rg for the Schwarzschild metric and Rg/2 for the extreme Kerr metric), which
corresponds to the inner edge of the disk, are both proportional to M. Thus the
area of the region which radiates most of the energy is effectively proportional to
M2, and the flux of energy radiated per unit area Q ~ L/R? ~ M1, If the disk
surface radiated like a black body, then the radiation temperature, given by the
Stefan—Boltzmann law Q = bTes?, would vary like M~1/4, The transition from an
X-ray source with M ~ 10 My to M ~ 10% M, with L/L; ~ o'1-1 remaining
unchanged is accompanied by the temperature dropping by a factor of 100 to
~ 105 K and energy being mostly radiated in the ultraviolet.

(3) Temporal variation. The instability of disk accretion discovered here gives a
minimum time for radiation fluctuations of fmin & 27/wmax X 274/ RB/GM ~ M,
proportional to the mass of the black hole. If in the source Cyg X-1 (L ~ 1038 erg
s~1, M ~ 10 M) variations are observed over times ranging from several milli-
seconds to tens of seconds, then for consistency with the model of disk accretion
on to supermassive black holes (L ~ 1046 ergs™1, M ~ 10% M) one expects to
observe variability in quasars over times ranging from a few days to many years.

Observations by Lyutiy and others (see Lyutiy & Pronik 1975) show the presence
of quasi-regular and chaotic variability in the nuclei of the Seyfert galaxies NGC
4151, 1275 and the quasar 3C 273. Evidently these objects possess quasiperiodic
phenomena of the same type as those observed in the X-ray source Cyg X-1. They
only differ in the mass of the black holes, and consequently in the types of radiation
and the variability time scales. If our model is correct, then by using a similarity
transformation many observed properties of disk accretion on to black holes in
binary systems can be transferred to quasars and galactic nuclei.
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2. DYNAMICS OF DISK ACCRETION

We shall use cylindrical polar coordinates (R, ¢, 2) such that the z-axis is
perpendicular to the plane of the disk, the latter being the plane 2 = o.
To a first approximation matter in the disk flows along circular Keplerian

orbits with velocity L
vy = wR=~/%. (2.1)

The Keplerian rotation law (2.1) is not that of a rigid body as dw/0R # o, and so
frictional forces between neighbouring layers, which are assumed to be much
smaller than the centrifugal force v4%/R and the gravitational force —GM/R?,
should redistribute angular momentum. Consequently a radial velocity com-
ponent vy <o, will appear in the disk.

A useful variable for describing the disk is the surface density

U(R) = 2 f " (R, 3) d. (2.2)

Here H(R) is the half-thickness of the disk at any given radius, while p(R, 2) is
the volume density.

We shall consider a ring in the disk of width 3R, between radii R and R+6R.
The mass of this ring is M = 27UR SR and the angular momentum is

8K = 27UvyR2 SR.
(a) Equation of continuity
The temporal variation in the mass M of a ring of width SR is given by the

difference 27 (8/0R)(UvrR) 6R between the rates at which matter flows in and out
of the ring, because of the equation of continuity

oU _ 1 2 (UneR) = oM (2.3)
= R R = oo 3

Here and below M(R, ¢) is the mass crossmg a cylindrical surface in unit time (the
local accretion rate).

(b) Equation of momentum transfer

The variation in angular momentum 8K is given by differences in the transfer
of momentum due to radial motions (9/0R)(UvyR?vy) R and frictional forces
(0/0R)(Wr4R2) 8R and is described by the equation

0 0
= (U R?) = —— (UvyRov: + Wi,R?) (2.4)
where '
H
Wr¢ = Zf wl*¢ dz
0

is the viscous stress acting across an element 2HR d¢ of a cylindrical surface of
radius R. 2rWr¢R2 is the torque due to viscous forces acting between one layer of
matter and another.

Using the cont1nu1ty equation (2. 3) and ignoring deviations from the Keplerian
rotation law ( 0vy/0t = R (Ow|0t) = o (see Appendlx)) we obtain from (2.4)

MR _ o 2 (WiegR2), (2.5)
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It is clear from this equation that the direction of overall mass-flow (the sign of M)
is given by the dependence of W;;R? on radius.

(c) Energy dissipation in the disk
The variation of the total kinetic and potential energies

0 w?R? GM) SR

3—tZ7TUR( . R

in the ring is determined by the differences between the rates of flow of these
energies into and out of the ring

6R —— 2nUwv:R

(w2R2 GM )
3R ’

R
and also by the difference in work being done by viscous stresses at the sides of the
ring 8R (0/0R) 2nWr4wR?2 and irreversible energy losses into heat due to friction

and differential rotation dR2wWyyR2 (0w/0R). Putting everything together, we
obtain the equation

w?R2 GM 0 w?R2 GM
2R (%) = “5&(”’*’*( 2 ‘T))

(WwwR Y+ WesR2 22 (2.6)

3R

This equation does not include work done by pressure forces nor the kinetic
energy of the radial motion, which in this case are smaller by a factor of order
o H/R)? than the rate at which energy is dissipated into heat. The full energy equa-
tion can be found in Lynden-Bell & Pringle (1974). Using the continuity equation
(2.3), expression (2.6) can be simplified. The energy dissipation into heat in a
‘ unit column ’ is twice as great as the rate at which energy is radiated away per
unit surface area (the disk has two sides):

_ Mw? 1

oF = “%W“‘R aR 87 2R OR

7 (WegoR2). (2.7)

During radial motion half the liberated potential energy goes into increasing the
kinetic energy, and the other half (corresponding to the first term on the right-hand
side of (2.7)) should go into heat and mechanical energy. As well as transferring
angular momentum, viscous stresses transfer mechanical energy. This process
explains the second term on the right of (2.7). We are assuming that energy dissi-
pated into heat is radiated on the spot, and not transported radially.

(2.7) can be derived from the momentum equation (2. 5) by multiplying it by w.
Similarly, multiplying (2.4) by w gives (2.6).

(d) Hydrostatic equilibrium along the z-direction

If motions in the disk along the z-direction are subsonic, then the disk is in
hydrostatic equilibrium (see Appendix). In the direction perpendicular to the plane
of the disk the gas and radiation pressure gradient is balanced by the component
of the gravitational attraction of the central body normal to the disk (the self-
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gravitation of the disk being negligibly small):

g‘—z= —p%]gz= — pw2z, (2.8)
Here and elsewhere the disk is assumed to be thin, H < R.

The disk has a definite structure along the z-direction, but from now on we
shall only be using physical quantities averaged over z. While averaging we shall
assume that the volume density p at any given radius does not vary with z, i.e. the
disk is homogeneous. (In SS it was shown that the disk was homogeneous when
radiation dominated the pressure.) Integrating (2.8), we find

2(2) = pe [1—(5)2] (2-9)

where pe = 4pw2H? is the central pressure of the disk. The average pressure p is
then

" 2
= %fo p(2) dz = %pe = tpw?H? = Ue H (2.10)
We introduce an averaged sound speed
Vs = ?\7}‘—; (2. II)

using the relation p = pvs?. For a thin disk H/R<1 this can only be true if
vs<wR = vy(R), i.e. pressure forces in the disk (1/p) (dp/2R)~(GM/R?) (H|R)2
are smaller by a factor of about (H/R)? than the gravitational and centrifugal
forces.
(e) Viscous stresses

In general the viscous stress Wy is determined by the dynamical viscosity 7:

2
Wrs = —2q9HR 5;"_2, (2.12)

which for the Keplerian law w = 4/GM/R3 gives
Wr¢ = 377Hw.

In SS it was shown that neither molecular nor radiant viscosity can play an im-
portant role in accretion disks; momentum is transferred by turbulence and by
small-scale chaotic magnetic fields. In this case

n = $puil (2.13)

where v is the turbulent or Alfvén velocity and / is the turbulent mixing length
or the length scale of the magnetic field (for more detail see Lynden-Bell (1969)
and SS). It is normally assumed that vy Svs and [y SH.

It is convenient to introduce the parameter

_ vh, B
‘vsH 47TP'USZ

(2.14)
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which describes the excitation level of the turbulence and the importance of the
chaotic magnetic fields. Then

7 = LapvgH = —ﬁ—psz =%

33 6V/3

and for viscous stresses with a Keplerian rotation law we have

UwH (2.15)

Wiy = 3mHo = %éanzﬂz = 1/3apH. (2.16)

We remark that in SS and in later work by others viscous stresses were given by the
formula Wry = 20pH = aUvs2. These equations are identical apart from the
numerical factor 4/3/2, which for the accuracy we require can be assumed to be
unity. From now on we shall use Wr,=2apH. (Comparison with Sunyaev and
Shakura (1975), where we used Wyy, = 4/30pH, shows that the results obtained
are practically unchanged.)

3. PROPERTIES OF STATIONARY ACCRETION

For stationary accretion 0/t = o and the dynamic equations integrate easily,
resulting in a system of algebraic equations. From the continuity equation (2.3)
it follows that the accretion rate M = —2nUzR = const. does not depend on
radius, i.e. it is one of the more important quantities characterizing the accretion.

Integrating the momentum equation, we find

— MwR? + 20 Wi yR% = Cy (3.1)

and using Wry = 20pH we obtain

—Msz—l—i;I «Uw2H2R2 = (.

(a) Boundary conditions

With decreasing radius the angular velocity of matter in the accretion disk
increases, while the angular momentum decreases. Surplus momentum is removed
by viscous stresses. Keplerian orbits outside a Schwarzschild black hole exist
only for R>3Rg, while for R<3Rg particles make many revolutions along an
unwinding spiral and fall into the black hole. For R > 3R, radial motion is associated
only with the outward loss of angular momentum. For R < 3Ry it could happen
purely as a consequence of general relativity, and with constant angular momentum.
Outward transfer of angular momentum as a result of viscous stresses would
increase the radial velocity.

The equations of motion of test particles with given angular momentum and
energy in the field of a Schwarzschild black hole are well known (Zel’dovich &
Novikov 1971). Using /3 Rgc for the angular momentumand 4/8¢2 = (1 —0-057)c2
for the total energy, which are appropriate for the last stable Keplerian orbit
R = 3Ry, it is easy to estimate the number of revolutions #» = ¢/(wAl/2) a test
particle would make in travelling from R = 3Rg(1 —A) to Ry, where A<1. The
smaller the momentum and energy of the particle, the smaller the number of revolu-
tions it makes. Thus the removal of momentum and energy by viscous stresses
speeds up the radial motion of the particles. It leads to a rapid break-up of the disk
structure. The zone of the disk with R < 3Ry is shown to be narrow. At the boundary
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of this zone viscous stresses cease to affect noticeably the particle trajectories, and
so we can put Wrs = o. As this zone is narrow, energy transfer from R<3Rg
can be ignored and for simplicity we can put Wy4 = 0 at R = 3Rg. Substitution
of this boundary condition into (3.1) gives us

oy @ _ RO 1/2
Wr¢ = MO;; [I (ﬁ‘) ] (3'2)

where Ry is the radius of the inner edge of the disk, equal to the radius of the last
stable circular orbit around the black hole, the radius of the star or the effective
radius of its magnetosphere. Formal use of the condition Wy4(Ro) = o leads to
several physical parameters of the disk tending to infinity. The above discussion
shows that those infinities are fictional. Thus the inner boundary condition deter-
mines the constant in the momentum equation. The outer condition gives the
accretion rate M.

(b) Thermal balance in the disk
Substituting expression (3.2) for Wy, into (2.7), we find the energy emission

rate for the disk
. 1/2
0 = 3 Mu? [1—(%9) ] (3.3)

Thus, as Lynden-Bell first remarked, for stationary accretion far away from
the inner boundary the radiation flux is three times greater than the difference
between the fluxes of gravitational and kinetic energy. This increase results from
work done by frictional forces. '

Near Ry, however, the dissipation rate falls rapidly and Q(Rg) = o. The total
luminosity of the disk

L=y4r| ORAR
Ry

is found to be

GM _
Ry
i.e. the total luminosity is equal to the accretion rate Mo multiplied by the binding
energy for the last stable circular orbit. It is a remarkable property of stationary disk
accretion that the total luminosity is independent of the form of the dissipative
forces. However, the quantity W, does determine the surface density, internal
temperature, optical thickness = and consequently the spectral distribution of the
emitted radiation.

Using Wr, = 2apH we obtain yet another useful expression:

alUw3H?2

L = Mo(3) {Moc?,

2
0" = —WWyR o = R (g2) = gHar = T gy
From (3.3) and (3.4) it follows in particular that |
' M Ro\1/2
= - (3)") G-5

Radiation carries away the thermal energy. If the disk is optically thick, because of
electron scattering or true absorption, the radiation flux Q- is connected with the
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radiation density e, at the centre of the disk by the relation
_d4at_4mea
= "3, U (3.6)

where o is the effective cross-section.
For stationary accretion equality of O+ and O~ gives an additional relation for
determining the averaged physical quantities in the disk.

(c) Fundamental equations of stationary disk accretion
Equations (2.1-2.16, 3.1-3.6) form a system of algebraic equations:

1/2
Kepler’s law = (% )
Continuity equation M = —272UnR
. 1/2
Momentum equation M [1— (%) ] = 27Wry
2
Hydrostatic equation along the 3-direction p = Uaé H
Expression for viscous stresses Wi = 20pH
Energy production by friction Ot = lWr¢R 3R
Removal of energy by radiation o- =%«
3 0o U
) Uk(Te + Tl) 2
f stat
Equation of state p= 2 Hm, 9 €r

(Here we take into account that the mean pressure is less than the central pressure
by a factor of one and a half, p = 2/3p..)

Opacity law o = or+op = op+ Hﬁq/z
(using Thompson scattering and free—free absorption).

Relation between electron temperature and radiation energy density (in the
simplest case ¢ = aTe?).

Relation between electron and proton temperature. Here we shall assume
Te. = Ti. (However, see Eardley, Lightman & Shapiro (1975) where the case
Te # Tiis considered.)

Solving this system, it is easy to find the radial dependence of the physical
quantities, having set the accretion rate M, the mass of the object M, the parameter
« and the accretion efficiency { (or the inner radius of the disk Ry = 3Ry).

The disk consists of three zones:
(A) The inner zone; pr> pg, o> o1,
(B) The intermediate zone; pg> pr, oT> o1ty
(C) The outer zone; pg> pr, o1t> 0T,

The parameters of the disk in these zones were derived in SS. Zone A is of most
interest to us. In particular, it generates most of the energy when accretion 1s
nearly critical. Below we obtain the disk’s parameters in this zone.

40
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(d) Dimensionless variables

It is natural to use the following dimensionless variables: mass of the object
m = M|M, radius r = R/Ry and accretion rate # = M/M.. The luminosity of
the accretion disk is related to the accretion rate by L = {M.2, where the dimension-
less factor { is the binding energy at the inner edge of the disk Ro. In Newtonian
theory £ = $(GM/Roc?) = }(Rg/Ro) where Ry = 2GM]c? ~ 3m km is the gravita-
tional radius of the centre of attraction. For relativistic objects this formula is an
approximation. For the Schwarzschild metric the radius of the last stable circular
orbit is Rg = 3R and the approximation gives { = 0-083 instead of the precise
value { = o-057. For the limiting Kerr metric, when the moments of rotation of
the black hole and the disk are aligned, Ry = iR, and { = o'5 instead of the
precise value { = o-42.

"The accuracy of the approximate formula is sufficient for our calculations and
below we shall sometimes use it. It is convenient to introduce the parameters
I = Ro[3Rgand s = (1—7"1/2). Then { = 1/12/ and w = ¢/\/6RoI1/2r3/2,

The critical accretion rate

Mcr - Lc _ ZﬂmpCRg — 87TmpCR£)

- ~ 2 -8 -1
% for p ~ 38x108m Myyr

is intimately connected with the limiting Eddington luminosity

minpcGM _ 27mpc?Rgc
L, =4 = P8~ 13x10%8m erg sl
or ot

at which radiation pressure on the electrons fy = Log/47R% in a fully ionized
medium is equal to the attractive force fg = GMmy/R2 on the protons towards

the gravitational centre. In dimensionless form many of the expressions become
simple.

(€) Stationary solution in the inner zone

Solving the system of equations (3, c), we find

Extremal
position Extremal value
H|R = 3r-lms max = 9/4 47i[9
3 2 my r3/2[1/2 : L2 i
U—4.A/3 p—— rmin = 16/9 40 —-gem
_opU o 81172
2)3/2 r  r8/2]1/2 15/1/2 6 112
e = (g orRy wit® "M g wsxaot
3 mpc? r=3/2
€p = - —_— — —
2 O'TRO all/2
vr[vy = 3oumsr—2 Tmax = 25/16 025 ot
3
0= ST el -
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Note that whenever a, m2<1 and 7> 1 the conditions H<R, r <7, which were
used in deriving the equations are satisfied. The transfer of mechanical energy
within the disk strongly influences its structure. We remarked previously (SS) that
the greatest energy generation took place not at the inner edge, but at r = 49/36.
All other fundamental disk parameters have similar extremes (maxima or minima).
This is why we have included here the extremal radii and values as well as the
exact expressions themselves.

It is interesting that all the fundamental disk parameters are simply expressed
in terms of the universal constants mp, o and ¢ and also Rg and the dimensionless
quantities 7, s, o, 7z, I. Assuming that local thermodynamic equilibrium holds in
the disk at the boundary between zones A and B, Te = Tt = (er/a)l/4 and it is
easy to locate the boundary by equating the plasma and radiation pressures.
Equating

pr(raB) = e/3 and  pg(raB) = 2nkT
we have

AB —— o)

From this it follows that a region where radiation pressure dominates exists only if
Mm>mAB ~ % (am)~1/8 [5/16,
We point out the weak dependence of 5B on a.

(f) Value of the viscosity

In models of stationary disk accretion it is assumed that the energy production
rate O+ = n2Hw? is equal to the rate of energy loss from the disk surface Q.
Using the formulas for stationary accretion it is easy to express 7 in each region in
terms of the variable 7 and the parameters m, m and «. The equality O+ = Q-
enables 1 = %(r, m, o, ) to be found. '

The most interesting situation is in the inner zone, where p;>pe. In this
zone

€r = 3PC = %p = ﬁUwZH’

Equating with O = 27w2H we find that
= ggg@ ~ 3-5x 1010 ergscm3,
T

Thus the value of the viscosity at which stationary accretion is possible in the
interior zone of the disk zs independent of all parameters of the accretion and is
expressed as a product of universal constants. We point out that no assumptions
concerning the viscosity went into deriving its equality to this constant. The
function y = (7, m, «, ) in zone B of the disk is

7 ~ 1013(aam)L/10(rizs) ¥/5 7=21/20  erg s cm™3,
Analogously the value of 7 in zone C of the disk is

7 =~ 2 X 1013(am)/10(ss)17/20 y=9/8  erg s cm3.
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For comparison the viscosity of a fully-ionized gas in zone A is
N1 X 4% 105(om)"V2(ms) r=9/4  erg s cm3,

which is smaller by 5 orders of magnitude than the value of the turbulent or
magnetic viscosity necessary for stationary accretion.
The radiant viscosity in zone A is also of interest:

T Isomee 5 or 1L
The maximum value of the radiant viscosity is 102(mpe/or)(m2/l) at v = 16/9.
Equating with the viscosity 5 = &(mpc/or) necessary for the maintenance of
stationary disk accretion in the inner zone, we see that for all acceptable values of
the paramcter [} the role of radiant viscosity can be ignored. This was shown
previously in SS.

4. STABILITY THEORY FOR STATIONARY DISK ACCRETION

We shall impose on the solution for stationary disk accretion perturbations of
wavelength A, satisfying H<A<R. We shall confine ourselves to axially sym-
metric (0/0¢ = o) perturbations independent of 2, (9/0z = o). The latter means
that at any given radius the disk expands or contracts in the z-direction preserving
the uniform distribution of its density. The perturbing motions are assumed to be
considerably subsonic. As is shown in the Appendix, ignoring terms of order
(H/R)2 and H2/RA, the disk satisfies the condition of hydrostatic equilibrium:

P(R,t) = 30X R).U(R, t).H(R, t). (4.1)
(a) Dynamic equation

For perturbations of the above form one can show (see Appendix) that the
Keplerian rotation law is fulfilled with considerable accuracy:

02 = wlRE G}é”[ 140 (H2)+0 (g:)] (4.2)

This means that the momentum equation (2.5) holds even in the non-stationary
problem. Combining it with the continuity equation and substituting into it
expression (2.16) for viscous stress, we get

oU a 0 1
e T 2K 2
2 _ 2R R R aR Uw?H?. (4-3)

We linearize equation (4.3), substituting into it a perturbation solution of the
form

U = Ug(R)[1+4]
H = Ho(R)[1 +4]

where Ug(R) and Ho(R) are the stationary solutions and #< 1, k< 1. For perturba-
tions of wavelength Ho <A < R we shall only keep terms of order (Ho/A)?, ignoring
terms of order (Ho/R)2 and Ho%/RA. After linearization (4.3) becomes

ou _ awHy? 02
Fri _2—0—3—1‘72(11-!—211). (4.4)

[
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Of course the single equation (4.4) relating the functions # and /4 is insufficient for
investigating the stability of stationary disk accretion. A supplementary equation
relating # and £ is required.

In the well-known papers by Lightman & Eardley (1974) and Lightman (1974),
where the question of the stability of disk accretion on to black holes of stellar
mass was first posed, use was made of a relation between « and & derived from the
condition O+ = O~. In the inner zone of the disk this condition is equivalent to
assuming the equality of the viscosity to the fixed value y = #(mpc/or) which is
not generally the case.

(b) Thermal equation and its linearization

We will obtain the second equation for # and / from the law of conservation of
energy

U wr + g

Here the first term on the right describes the change in internal energy £ = €/p
of a gram of matter as a result of work done by pressure forces, while the second
and third terms are respectively frictional heating and radiative cooling. Using
dldt = 0/0t + vy (9]0r)+v4 (0] 02) We integrate (4.5) with respect to z (having first
multiplied by p dz), assuming uniformity of the expansion or contraction of the
disk along the z-axis:

at eH+p ﬁH— ;“e‘é% (e+p) vl-H_R+vr£—2pH+Q+—Q—. (4.6)
Expressions (3.4) for Ot and (3.6) for O~ are of course correct for non-stationary
accretion.

The total thermal energy density is connected with the pressure by the relation
€ = (1 + B) p where B = pr/(pr+ pg) describes the contribution of radiation to the
total pressure. Using (4.1) we get

¢ = }(1+B) UHw? (4.7)

Using the relations derived above we rewrite the thermal equation (4.6) so that the
only unknown quantities are U and H:

10 0H 20 0 5+38 0
. 2¢,2 27~ oo T2 O H2,, 22
43t( +B)1]Hw+6UHw e 3R3R - HwaRUHw

UH 2w 2+4 UH 2% — ””p  pHo?.

(4.8)

We linearize (4.8), keeping only terms of order (Hp/A)2. Note that in the general
case one has to include variations in 8. We have

Uk [(e\V4 ¢ U k P\ 1/4
p=petpr= 4 (E) +7 = v(ﬁ#) +6p (4-9)

ZHmp 5 —Eﬁmp a

68R

Linearizing equation (4.1) gives

ﬂ = 7 = u+h (4.10)

Po
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and after linearizing (4.9) using (4.10) we have
Br_ 1—Fo 1—Bo
o= —4u+ 4h)= h— JIT
Bo ~ 13py 3T Aut4R) r13p 7Y (4-11)

where By is the proportion of radiation pressure in the unperturbed flow. Finally,
linearizing (4.8), we obtain

oh 0 02
(8+5180—3p02) T 3(4Bo%+3Bo+1) 5? = $(9Bo*+18B0 + 5) awH? 2R (u+2h)

+6aw[(x+Bo) u+(sPo—3) h]. (4.12)

It should be remarked that before linearization the thermal equation was of order
(Ho/R)? relative to the equation of motion (4.4). However, the cancellation of
Uow?Ho? during linearization equalized the orders of the equations. When lineariz-
ing (4.8) we ignored the second term on the right, which is smaller than the other
terms by Hy2/RA.

‘Thus (4.4) and (4.12) are the two fundamental equations of non-stationary
disk accretion. The independent variables are u(R, t) and A(R, t). Through them
are expressed all the fundamental properties of non-stationary accretion: in
particular M (r, £). We shall look for solutions to (4.4) and (4.12) of the form
u = exp (Qf) w(R), h = exp (Qf) A(R). It is convenient to choose as an unknown
function the quantity ¢ = u+24 = exp (£2¢) (R), which represents the perturba-
tion of the viscous forces between neighbouring layers. We then obtain for the
radial part )(R) the equation

A(Bo) Q—6baw(5Bo—3) ,  2aw 0%
B arsls-380 Y = 3 10 R 419

where A(Bo) = 8+ 5180— 13802, B(Bo) = 3(4+23B0— 3B0?).

(c) Perturbation types and conditions for their growth

When investigating the propagation of waves of length A<R we shall ignore
radial changes in By and w. Substituting into (4.13) a solution of the form

b = sin (R/A) we find a dispersion relation which can be conveniently written in
the form

A6 () + [0 (22) 5 589 (2 +5-380 (%) =0 G

Solution curves for this equation for Q> o are plotted on Fig. 1 for various values
of the parameter B> $. In the short-wave region the perturbations take the form
of concentric waves running along the disk, as (4.14) then gives complex values for
the growth-rate Q. It is interesting that the smallest possible wavelength for which
the real part of the growth-rate is positive is always greater than the disk-thickness
2Hy. This result is not obtained if one only uses equations (4.4) and the condition
Ot = O~ (In the theory of Lightman & Eardley Q grows without bound as A is
decreased.) Beginning at some value A* depending on B, the equation has two
positive roots Q>o. These solutions correspond to growing modes of standing
waves and have different physical interpretations. For the lower branch in the lon
wavelength limit the growth-rate diminishes: Q ~ $[(5—3B0)/(5B0—3)] (Ho/A)2ae
and asymptotically this solution tends to the instability discovered by Lightman &
Eardley (1974).
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Equation (4.12) connects the perturbations # and 4:
(8+51Bo=3607) o) o (4B + 3P0+ 1) ()

_ —(9ﬁ02+18ﬁo+s)( )(u+2h)+[(r+ﬁo)u+(sﬁo DA (4.15)

Using (4.14) and (4.15) it can be shown that for the lower branch at long
wavelengths # = —#£, i.e. the perturbed viscosity n1/n0 = #+#% ~ o. This means
that only in the limiting case of long wavelengths do perturbations grow such that
the energy-generation equals the energy-loss: O+ = Q.

There is another instability branch, whose growth rate grows with increasing
wavelength, tending to Q ~ o-2aw when By ~ 1. From (4.14) and (4.15) we find
that on this branch, in the limit, the perturbation of the surface density becomes
small compared to the perturbation of the viscous forces, disk thickness and other
quantities: # — o as A - W. This branch is caused by a thermal instability of disk
accretion in the zone where radiation pressure dominates.

The perturbations of all physical quantities are uniquely determined by the
perturbations % and k. (For example, O11/Qo* = u+2h = ¢, Q17/00~ = h, etc.

From the momentum equation (2.5) we have

7= 47 2 - 47 0 22 R2
M R 3R WigsR 30R 2R UH2w?R (4.16)
and for the relative perturbation of the accretion rate
Mljgf ) _ = (u+2h)+ zsR (u+ 2h) = y+2sR a;’é (4.17)
0

For H< A <R the second term on the right of (4.17) is greater than the first.
This means that the perturbations M1/M, grow at the same rate Q as ¢, but with
an amplitude greater by a factor Rs/A:

% o [ ”R] (u+2h). (4.18)

The big change in M;/Mj is not associated with increased energy production, but
with increased vy and transfer of mechanical energy along the disk. With decreasing
Bo the value of Qmax falls and that of Qmin grows, so that as Bo— £, Qmax — 0.
This means that the external regions, where gas pressure dominates, are stable.

The analysis that has been performed does not use boundary conditions and is
valid when a large number of waves can be fitted into distances of order R, i.e.
A[R<L1. It is qualitatively clear that perturbations with A ~ R cannot grow
because of the stability of the solution for the outer zone, where the matter flows
from. 'The constancy of My prevents the growth of large-scale perturbations, which
would destroy the disk structure of the accretion.

It has to be pointed out that the numerical estimates of the growth rates and
characteristic wavelengths of the perturbations depend on the method of averaging
along the z-direction of the equations of motion, and in particular of the thermal
equation. But as the analysis has shown, the qualitative picture does not change,
and the boundary between the stable and unstable zones is always found at 8o = 2.
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APPENDIX

We write Euler’s equations for axially-symmetric motion in cylindrical polar
coordinates:

0vr Oy v¢2 _ _QM I ap

% "R R TR ,iR (A1)
8‘U¢ 3_7)¢ 'Ur‘vqs _ __I_ i 2
N - T U (A.2)
0Vq v,  GM 10p
TR T TR (&-3)

All components of the viscous stress tensor, except Wiy, are small and are not
included in (A.1-3). We shall show that for perturbations with wavelength
H<A<R, the perturbation of the toroidal velocity component v,1/v,1 is small
compared with the perturbations of other quantities. Using for the stationary
solution the approximate equations vr >~ avgo(H/R)2 and vsg ~ vg9(H/R) we obtain
from (A.1) two branches with growth rates Q; v;1/v40 ~ o2(Ho/R)2 vr1/vro for
one, and vy1/v450 ~ o«®(Ho/R)* vr1fvro for the other. The smallness of the changes
in angular velocity allows the possibility of ignoring the first term in equation
(A.2): dvy/dt = o.

In the main text of the paper we used only the right-hand side of (A.3)—the
condition of hydrostatic equilibrium in the z-direction. Direct substitution of the
perturbed solution into (A.3) makes it easy to verify that the terms on the left are
smaller by a factor a2(Ho/R)2 than those on the right.
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