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The thermodynamic quantities of the Ising model are analyzed near Tc, using the asymptot
ic distribution function g(O, t) of zeros for the partition function on a unit circle in the plane 
of the complex magnetic field. The distribution function is derived as g(O, t) =t>.f(Ojt>.+"~), 
assuming that the susceptibility behaves like x0+~~t-'Y near Tc where t=T/Tc-·1. It is shown that 
there are two types of the situation: type I, in which a critical angle Oc(t) exists such that 
g(O, t) =0 for O<IOI.:S:Oc, and type II, in which there is no critical angle. The critical indices are 
related to one another, using the above g(O, t). 

The relation between the magnetic equation of state M =M(h, t) and the distribution 
function is given as follows: g(O, t) = (1/2n)Re M(iO, t), where h=2mHjkT. g(O, t) for an 
exactly soluble model near Tc is given by the equation 02~t3 +a1t2g2 +a2tg 4 +a3g 6 (ai>O). 
This is a good example for the general theory. 

§ 1., Introduction 

This paper is concerned with the singularities of the thennodynamic quanti
ties near the transition points in spin systems, especially 'in the Ising model. 
On this problem, there are several works, such as the present author's semi
phenomenological theory1

) and conjecture,2
) Widom's homogeneity assertion,s) 

Domb and Hunter's conjecture,4
) Kadanoff's scaling laws5

) and Patashinsky and 
Pokrovsky's dimensional analysis.6

) Kouvel and RodbelF) have studied the magnetic 
equation of state (1· 2) or (1· 3) experimentally. 

Anyway, in order to explain the sinf~ularities of susceptibilities, spontaneous 
magnetizations, specific heats, etc., the following form of the free energy has 
been proposed : 

(1·1) 

where t = T/Tc -1 ; (see Eq. (27) in a previous paper by the present author1
)). 

· The magnetic equation of state IS given in the following, 

(1·2) 

where 
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1226 M. Suzuki 

J'=J/2 and fm(x)=-2xfs'(x2
). 

If we invert the above equation (1 · 2) we obtain 

M=tJ'- 7 cpm(h/tJ') and h=2mH/kT. (1·3) 

Equation (1 · 3) has been derived above the transition point Tc. Now, we 
assume that the equation of state (1· 3) can be continued analytically beyond 
Tc. Then, the spontaneous magnetization is given by 

(1·4) 

where (;Jm (x) is such a branch of the solution for Eq. (1· 2), as vanishes at 
x = 0 above Tc and does not vanish at x = 0 below Tc. Therefore, the index 
f3 is given by 

/3 =J' -r. 
Above the transition point, the magnetization becomes 

MrJhr 7 (;Jm
1 (h/tJ'). 

Consequently, the susceptibility is, above Tc, 

Next, the specific heat behaves itself as follows, from Eq. (1 ·1), 

c rJ~2F_(t)_rJ tJ-"t-2 "-' ra . 
ot2 

Then, we obtain the following relation 

a=2+r-L1. 

(1· 5) 

(1· 6) 

(1·7) 

(1·8) 

Thus, we can discuss the relations among the critical indices a, {3 and r, 1n 
terms of the free energy (1 ·1) or the magnetic equation of state (1· 3). 

In § 2, starting from the theorem of Lee and Yang in the Ising model, it 
is shown that the same relations among the critical indices can be dE i"ived, in 
terms of an asymptotic distribution function. This theory has already been 
partly reported2

) and then Abe has generalized its treatrnent. 8
) l-fe;·e, it should 

be noted that the distribution function of the following form r:an be derived 
without assuming the existence of a critical angle f}c (t); 

(1·9) 

or inverting this, we obtain 

(1·10) 

In § 3, we discuss the relations between the magnetic equation of state and 
the distribution function. It is pointed out that Eqs. (1· 3) and (1·10) are 
equivalent each other. 
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A Theory of the Second Order Phase Transitions 1227 

In § 4, the distribution function 9 (0, t) for an exactly soluble model is 
calculated concretely near the transition point, which is shown to be such a 
type of distribution functions as discussed in § 2, and which has such a critical 
angle as Oc (t) r-..~t312 • 

§ 2. The critical behavior of the Ising model and the 
distribution function of zeros 

(i) Distribution function of zeros and thennodynamic quantities 

The Ising model is represented by the following Hamiltonian, 

.!il= -J~SiS1 -mH~Si, and Si= ±1. (2 ·1) 

The partitiOn function of the system is written as a polynomial of the fugacity 
z 1n the following way, 

ZN (K, h) = Tr exp (-- {3$-L) == Tr exp ( .l(L; sisj + -~~-L; si) 
N 

= [exp (h/2)] N ~ akzTc, (2 ·2) 
k=O 

where z=e-h, h =2mH/kT, and aN-k=a1c. The theorem of Lee and.Yang9
) indicates 

that the zeros of the partition function lie on the unit circle in the fugacity 
plane. Therefore, the free energy for. infinite N. is represented, in terms of 
the distribution function of zeros,9

) neglecting a constant term JNP (NP : 
number of pairs) , 

__ f.~= lim]-__ log ZN= "!_ll-I + lim-l ~log (z -ei0rc) 
!?-T N->00 N kT N->00 N k 

2,.-

= -T!f + ~ g (0) log(-%:--- ei0
) dO 

0 

,.. 

= mH + ( g(O)log(-%:2 --2z cos 0+1)dO, 
kT J 

0 

where g (0, t) satisfies the following condition of normalization, 

,.. 

~g(e, t)de=1· 
0 

(2·3) 

Furthermore, we can rewrite the free energy in the following convenient form, 

... 
- F/kT= ~ g (0, t) log 2 (cosh h- cos 0) dO, (2 ·4) 

0 
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1228 ]1.1. Suzuki 

where t= (T-Te)/Tc, and h=2mH/kT. As far as the neighborhood of the 
transition point and a weak external field are concerned, the integral in the 
region of small f) and h becomes important, so that we can write as follows, 

7r 

-FjkT~\ g(f}, t)log(02 +h2)df}. (2. 5) 
0 

The magnetization is obtained from Eq. (2 ·4): 

7r 

M =2m~ sinh h ( --- g_ (~~_!]~- df} 
· J cosh h - cos 0 

0 

(2 ·6) 

The spontaneous magnetization is expressed in terms of g (0, t) as follows, 

7r 

Ms =lim 4mh (_g(O, __ t) df} 
1HO J f}2 + h2 

0 

7r 

= 4m ~no (f)) g (0, t) df} 
0 

= 2nmg (0, t). 

Consequently, the susceptibility above Tc is given by the equation 

7C 

~ (8m2/kT) ~ _!/_(~~ t)_ df}, 
0 

and below the Curie point, we obtain from Eqs. (2 · 6) and (2 · 7) 

Xo- =lim{M(H) -Ms} /H 
H->0 

(2 ·7) 

(2·8) 

(2·9) 

(2. 9') 
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A Theory of the Second Order Phase Transitions 1229 

The specific heat is obtained near Tc from the equation 

(2 ·10) 

(ii) Plausible distribution function of zeros 

In the previous paper2
\ we have shown tbat the singularities near the transi

tion point can be explained in terms of the following asymptotic distribution 
function for small () and t, 

g((J, t) =a(0'~-bt8)'\ g(O, t) =0, for O<Oc(t), and Oc"---'t81", (2·11) 

where r; is a positive even integer, and 8 a positive odd integer. Namely, if 
we define the critical indices in the following way 

Xo+ rvr"t, Xo- rv JtJ-"~', Msrv itJfl, Mc"'-'H118
, 

(2 ·12) 

then, from Eqs. (2·6), (2·7), (2·8), (2·9'), (2·10) and (2·11), the six indices 
are related one another by two independent parameters 8/!J and e/C as follows 
(Appendix A): 

r=r'=8(1/r;-IC), {3=s!C, 

a= a'= 2-8 (1/r; +!C) and o = 1/r;IC = (8/r;) /(siC). (2 ·13) 

These results satisfy the following relations 

a+2f3+r=2 (2 ·14) 

and 

a+ {3 (1 + o) = 2 . (2 ·15) 

Now, the plausible distribution function (2 .. 11) may be also written in the 
form 

(2 ·16) 

Even if we generalize it in the following form, under the condition of integer 
8, 

(2 ·17) 

the critical· behavior is the same as in the case of Eq. (2 ·16). In fact, the 
d~stribution function of the molecular field theory or its equivalent exactly soluble 
model is of the form given by substituting r; = 2, 8 = 3 and IC = 1/6 in Eq. (2 ·17), 
as shown in § 4. 

Extending the plausible distribution function to Eq. (2 ·17), we notice that 
there are two .types of the situation. 
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( i ) g (8, f) 

1\;f. Suzuki 

_1_ 
27T 

0 - 8 7T Fig. 1. Schematic distribution function in 
type I to explain phase transitions. 

(i) T==, (ii) T>Tc, (iii) T=Tc, 
(iv) T<Tc and (v) T=O. 

Fig. 2. Schematic distribution function in 
type II. (i) T>Tc, (ii) T=Tc and 
(iii) T<Tc. 

<Type I) There exists a critical angle 6c (t) in the case a 0=i=O. In this case, 
Eqs. (2 ·16) and (2 ·17) are essentially the same, and putting g = 0, we obtain 
the critical angle, for t>O, 

(2 ·18) 

This situation is illustrated schematically in Fig. 1. 

<Type II) There exists no critical angle in the case a0 = 0, because the value 
g = 0 corresponds to that e = 0. This situation is shown schematically in Fig. 2. 

(iii) General type of distribution function 

In the above paragraph, we have discussed two types of distribution func
tions. In any case, the range of g (6, t) is 

(2 ·19) 

This is expected to hold in general from the condition of continuity for g (6, t). 
Let us investigate a general type of distribution function, using the above property 
(2 ·19) and assuming that the susceptibility has the following singularity, 

Xo+ rvr 7 for t>O. (2 ·20) 

Then, we can equate asymptotically in the following way, 

gm 

( ~'Crl_2gdg rvr7 for o<e<n. 
J 62 (g, t) ' 

(2. 21) 

If we make a change of variable 

g = t),y (!- is a proper positive constant), 

we find that 

(2 ·22) 
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A Theory of the Second Order Phase Transitions 1231 

As the upper limit of the integral can be replaced by infinity near Tc, we obtain 
OJ 

) [ 8~~~::::;~~'] ydy ~constant. (2 ·23) 

The sufficient condition for the susceptibility to have the singularity of Eq. (2. 20) 
is that, for a proper value of )., 

()' (t?.,y, t) t 7 +2 ?.. 
. ------- -- - = (jj (y). 

()
2 (t?.,y, t) 

If we return to the former variable 

fl=t?.,y' 

we find the following. differential equation 

The solution is given by 

where 

_a_~_i[!,_!_)__ = rr-2'1.()2@ (g It-,.). 
ag 

P'(x) =- [ ~ dJ(x)dx]-· 1
• 

(2 ·24) 

(2 ·25) 

(2 ·26) 

In the case ?Jf (O) :f-:0, the following critical· angle IS derived, by putting g = 0 

in Eq. (2·26): 

(2 ·27) 

This is the case of type I. For 7JI (0) === 0, the case of type II is obtained. If 
we invert Eq. (2 ·26), the distribution function becomes of the form 

(2. 28) 

In the case of type I, this is written in the following way, usmg the critical 

angle Be in Eq. (2·27), 

(2 ·29) 

which agrees with the form derived by Abe.8
> 

It is clear that Eqs. (2 ·11) and (2 ·17) yield simple examples of the general 

form (2 · 26) or (2 · 28), taking that ). ==etC, and that ). + r = e/r;. 
Now, if we assume that the function (2 · 28) can be continued analytically 

below Tc, the critical indices are expressed as follows, from Eqs. (2 · 6), (2 · 7), 

(2·8), (2·9') and (2·10), 

a=a'=2-2tl-r, /3=)., 

r' = r and a= c;,. + r) I;,. . (2 ·30) 
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1232 Jl.1. Suzuki 

Consequently, the relations (2 -14) and (2·15) hold. 
In the case of type II, the distribution· function of the form (2 · 28) can be 

derived more simply (Appendix B). Here, it should be emphasized that the 
distribution function (2 · 28) has been derived without assuming the existence 
of a critical angle. 

§ 3. The relation between the magnetic 
equation of state and g (0, t) 

(i) General relation Let us assume that the magnetic equation of state 
IS giVen by 

Jl.1 = CfJlfi (h, t) and h = 2mH/kT. (3 ·1) 

Then, what relation exists between the distribution function and the equation 
of state? If we invert Eq. (3 ·1) as a power series in Jl.1, we obtain 

(X) 

h = ~ ak (t) JlvJ2k+l, (3· 2) 
k=O 

where the coefficients {ak (t)} may be singular at t = 0. 1l In principle, according 
to the theory of Lee and Yang,9l the distribution function can be obtained from 
the complex value of the magnetization on a unit circle of the fugacity plane. 
Therefore, putting 

h = iO and Jl.f =Rei"' , 

and substituting them into (3 · 2), we obtain 
OJ 

~ akR2k+ 1cos (2k + 1) cp = 0 
k=O 

and 
co 

~ akR2
k+l sin (2k + 1) cp = 0 . 

k=O 

(3 ·3) 

l (3 ·4) 

It can easily be found that if ]1.1]1 =Rei"' is a solution of Eq. (3 ·4), then 

(3 ·5) 

is another branch of the solution for Eq. (3 · 4), and consequently for Eq. (3 · 2). 
Therefore, the distribution function is obtained as follows, 

g (fJ, t) = } (Nil- Jl.ifz) = __ }- R cos cp =- 1 g, 
4~ 2~ 2~ 

(3 ·6) 

where 

g =R cos cp =Re 1\1(i(}, t). (3. 7) 

Hence we get the foflowing theorem. 

Theorem I. If the magnetic equation of state IS given by (3 ·1), then the 
distribution function is 
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A Theory of the Second Order Phase Transitions 

g (0, t) = 
1 Re cpM (iO, t). 

2rc 

1233 

(3 ·8) 

(ii) In particular, for the magnetic equation of state of the following form, 

M = t 13c;:;m (h/t!!'), 

which has been discussed in § 1, we find that 

g(O, t) =tflf(fJjtA'), 

where 

f(.x) = 
1 Recpm (ix). 

2rc 

(3·9) 

(3 ·10) 

(3 ·11) 

The distribution function of the form (3 ·10) has been derived in § 2, under the 
assumption of the singularity (2 · 20) of the susceptibility. 

(iii) Inversely, it can be shown that if the distribution function is given by 
Eq. (3·10), then, the magnetic equation of state obeys the relation (3·9) near Tc. 
The magnetization IS, from Eqs. (2 · 6) and (3 .. 10), 

(3 ·12) 

If we make a change of variable 

X== 0jt4' 

in Eq. (3 ·12), and ~eplace the upper limit of the transformed integral by infinity, 
then we find that I 

(3 ·13) 

where 

(3 ·14) 

Thus, it follows that the homogeneity assertion for the magnetic equation of 
state is equivalent to that for the distribution function. 

§ 4. g (0, t) for an exactly soluble model 

In this section, the situation for the distribution function discussed in the 
previous sections is exemplified in the molecular field theory or its equivalent 
exactly soluble model near the transition point. 

Let us consider the following Hamiltonian with a long-range interaction, 

all 

c!J£= -J~SiS1 -ml-TJ.:,si; Si= ±1 and J>O. (4·1) 
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1234 M. Suzuki 

The same kind of models have been investigated by several authors/0
)-lS), 

21
) but 

there have been no explicit expression for the distribution function. , 
If we define the intensity of the magnetization as M = (Si), and put 

lim (NJ) =a (finite), (4·2) 
]!,"~>CO 

then, the magnetic equation of state in the limit of infinite N is given by13
) 

M =tanh (a{3M + {3mH), (4·3) 

where {3 = 1/kT. This agrees with the results in the molecular field theory. 
Namely, the Curie point is determined by 

a{3 = 1 , or Tc = a/ k . (4·4) 

The susceptibility is 

Xo"-' 1/ (T- Tc), (4·5) 

and the spontaneous magnetization takes the form 

Ms"-' (Tc- TY12 • (4 • 6) 

Now, the magnetic equation of state (4 ·3) IS rewritten as .follows, 

M =tanh{ (1-t)M + {3mH}, (4 ·7) 
where 

t=1-Tc/T= (T-Tc)/Tc+ (higher order). (4 ·8) 

Equation ( 4 · 7) can be inverted to give4
) 

h - M -tanh{ (1-t)M} (h =2 tanh({3nzH)). 
2--1~ ivi ta;;-1{(1-=t) Ni} ' (4·9) 

Near Tc, the expansiOn of this equation up to the third order of M gives 
A 

}L=Mt +1-M3
• 

2 3 
(4 ·10) 

As we have discussed in the previous sections, the distribution function can be 
obtained from the value of M for the pure imaginary magnetic field h = ifJ. Then, 
putting 

h =ifJ, M =Reicp and fj =Re M(ifJ, t), 

and substituting them into ( 4 ·10), we obtain the following simultaneous equations, 

tR cos cp + -}R3 cos 3cp = 0, (4·11) 

R . 1Rs· 3 1() t Sill cp+-- Sill cp=---
3 2 ' 

( 4 ·12) 

R cos cp =ff. ( 4 ·13) 
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A Theory of the Second Order Phase Transitions 1235 

Eliminating the parameters R and cp from the above equations ( 4 ·11), ( 4 ·12) 
and ( 4 ·13), we can derive a relation between fj and 0 near Tc as follows, 

where we have used the following trigonometric formulae 

and 

cos 3cp = 4 cos
3 

cp - 3 cos cp l 
sin 3cp =sin cp (4 cos2 cp -1). 

The distribution function g (0, t) is given by 

g (0, t) == fj /2rc . 

(4 ·14) 

( 4 ·15) 

(4 ·16) 

Equation (4·14) is just of the form (2·17) with the paran1eters "1j=2, s=3 and 
IC = 1/6, and consequently it satisfies the general relation (2 · 28). Putting g = 0 
in Eq. (4 ·14), the critical angle is obtained as follows, 

The distribution function at the critical point is also given by 

g (0, 0) = {35;6; c27;src)} 011a • 

(4 ·17) 

(4 ·18) 

Therefore, the distribution function is essentially ·the same as that given by the 
relation*) 

02=a1t3+a2!/6 for !/2/t>1, 

which can be rewritten as 

(4 ·19) 

(4 ·20) 

This is just a nice example for the general theory discussed in the previous 
sections. It can be easily shown from Eq. (4 ·14) or consequently from Eq. · 
(4 ·20), that 

i) for t>O, we obtain 

(4. 21) 

and 

( go==, :o-u co, t) ) , 

*) S. Katsura kindly pointed out to the author that for fj2ft<l, {j::::::::.(l/v'i)r 114 (0-(}c(t)) 112 in 
terms of Eq. ( 4 ·14). 
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1236 2\IJ. Suzu/::.i 

and 

ii) for t<O, we get 

g(O,t)=/=0 and Ye(O,t)=O. 

These features are schematically illustrated in Fig. 1. The same results are 
obtained from Katsura's implicit relatio:q.s for the Husimi-Temperly ·model_1°l 

§ 5. Discussion 

The concept of complex magnetic field can be applied to the Heisenberg 
model. In general, let us consider the following Hamiltonian, 

${=!1{0 -mH~S/, S/= ±1, and [${0, ~S/] =0, (5 ·1) 
i i 

where 

(5·2) 

Then, the partition function can be expressed by the following polynomial of 
the "fugacity" z, 

Z = Tr exp (- {3!}{0) exp (h' ~ S/) 
i 

= (eh')N Tr exp (- j3${o) II ( 1 + z + S/ 1-z) 
i 2 2 

N 

= (eh')N ~akzk (5·3) 
k=O 

(5. 3') 

where z = e- 2
h' and h' = f]mi-I. It may be expected that the zeros of the parti

tion function in the ferromagnetic Heisenberg model lie on a unit circle o£ the 
"fugacity" plane as in the Ising model. This conjectured theorem can be easily 
shown in the case of small finl.te lattices. For example, in the case N = 2, we obtain 

(5·4) 

where K=J/kT. The zeros of Eq. (5·4) lie on a unit circle of the z-plane. 
In the same way, we have found that the theorem holds for J.V = 3 and N = 4. For 
N>5, numerical calculations will be needed. The validity of the conjectured 
theorem in the case N = 6 has been proved by Katsura. 14l 

Anyway, even if the theorem does not hold in general, the zeros of the 
partition function in the Heisenberg model are, at least, expected to lie asymp
totically on a unit circle near the positive real axis in the vicinity of the Curie 
point. Therefore, the theory described in § 2 may be applied to the Heisenberg 
model, asymptotically. 

Next, what properties are there on the distribution of the zeros in the case 
of the antiferrmnagnetic Ising model? It is easily shown in the one-dimensional 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/38/6/1225/1926379 by guest on 21 August 2022



A Theory of the Second Order Phase Transitions 1237 

antiferromagnetic Ising model that the zeros of the partition function for the 
ring of number N is given by 

(tanh h')~v= ± { ~~E_L=~~)~tt=~~f~-i}/~2/~]} 
112

, (5·5) 

where K=J/kT, and k=O, 1, 2, ... , N--cl. For J<O, we get, from Eq. (5·5), 

(tanh h')k> 1, or (tanh h')k< -1, 

and consequently, the zeros on z-plane are given by 

zk = e-2h' = 1·---:-~ani:_}L~ <O . 
1 +tanh h' 

That is, all the zeros lie on the negative real 
axis. At. a glance, the same situation may also 
be expected in the two- and three-dimensional anti
ferromagnetic. Ising models. However, we have 
found a counter example in such a small finite 
model, as is shown in Fig. 3. The existence of 
complex roots is proved analytically, using the 
following theorems (Appendix C). 

Theorenz II. Let us consider the following 
equation 

(5·6) 

Fig. 3. A counter example 
which has complex roots 
in the antiferromagnetic 
case. 

(5 ·7) 

The conditions necessary for all the roots of Eq. · (5 · 7) to lie on a unit circle 
are: 

(i) Eq. (5 · 7) should be a reciprocal equation: an--k =a,. (5 ·8) 

and 

(ii) 

Theorem III. If all the coefficients of Eq. 
(5 · 7) are positive (ak>O), the condition necessary 
and sufficient for all the roots of Eq. (5 · 7) to lie 
on the negative real axis is that all the roots of 
the following equation should lie on a unit circle, 

n 

2:: an-k (1 + x/<n-k) (1-x/k=O. (5 ·10) 
A;=O 

The existence of complex roots may be also 
proved analytically in the same way for a finite 
lattice (4 X 4) as is shown in Fig. 4, the numerical 
solution of which will be reported elsewhere.15

J, 16l· 
20

l 

(5 ·9) 

Fig. 4. A small lattice which 
· may have complex roots in 

the antiferromagnetic case. 
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1238 M. Suzuki 

In this paper, the singularities of the thermodynamic quantities of the Ising 
model near the Curie point are analyzed in terms of the concept of complex 
magnetic field. The concept of complex temperature may be also useful for 
the purpose of investigating the singularities (Appendix D) .15l- 19l,22 l 
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Appendix A 

The susceptibility Xo + in terms of Eq s. (2 · 8) and (2 ·11) is 

(A·1) 

If we make a change of variable 

(A·2) 

we find 

n:/Bc 

Xo + ~--f}_X~!~ · 0 c'1 ~-l • ~ _(_y_'7__2_~)-~ dy . 
1 y 

(A·3) 

As the upper limit of the integral can· be replaced by infinity near Tc, we obtain 

(A·4) 

where 

(A·5) 

This integral is convergent for '1te<L Therefore, the susceptibility above the 
Curie point takes the form 

(A·6) 

Below the Curie point, the susceptibility in terms of Eqs. (2 ·9') and (2 ·11) 
lS 

(A·7) 

If we make a change of variable 
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(A·8) 

we find 

(A·9) 

As the upper limit of the integral can be replaced by infinity near Tc, we obtain 

(A·10) 

where 
co 

I(r;, !C) =) (}~=+· Y'J:-= ~ dy. (A ·11) 
0 y 

This integral is convergent for r;> 1 and r;JC<L Therefore the susceptibility 
below the Curie point also takes the :form 

Xo- rv ltletc-·e/7J. (A ·12) 

Appendix B 

In the case of type II, the condition for the susceptibility to have the 
singularity of Eq. (2·20) 1s 

TC 

) [[~~!2-de rv r 7 
• 

0 

If we make a change of variable 

() = t"'y (/1 is a proper positive constant), 

we find, 1n the same way as before, 

As a sufficient condition, we obtain 

g (t"'y, t) I t"'- 7 = ?f! (y). 

Therefore, the distribution functiqn takes the form 

g((), t) =t1'-
7?J!(()/t"'). 

This agrees with Eq. (2 · 28). 

Appendix C 

(B·1) 

(B·2) 

(B·3) 

(B·4) 

Theorem II can be easily shown, using the fact that if all the zeros of a 
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1240 M. Suzuki 

polynomial (5 ·7) lie on a unit circle, the polynomial should be decomposed 

as follows, 

=an(z+ 1)PII (z2 -2z cos Ok+ 1), (C·1) 
k 

where jJ = 0 o~ 1, for n even or odd, respectively. Then, we find theoren1 II, 
from the expression for the coefficients {ak} in terms of {cos flk}. 

Theorem III is evident from the following transformation, 

1-v~ (1 x) 2 

x=-
1 
+ ,;;; or z= 1-~~- . (C·2) 

In terms of the transformation (C · 2), negative z corresponds to a point on a 

unit circle of the x-plane. 
Next, let us consider an example as shown in Fig. 3. The partition func

tion of this cluster is given by 

5 5 

Z=Tr exp{KS1~Si+h~Si} 
2 1 

=eh{2 cosh(K+h)} 4 +e-h{2 cosh(K-h)} 4
• 

If we put Z = 0, we obtain the equation 

where 

z=e-2
\ a=e2

K, K=J/kT and J<O. 

By the transformation (C · 2), we obtain 

(x2Y (a+ 1)4 + (x2
)

4 
( 45a4 + 52a3 -18a2 -12a + 13) 

+···=0. 

It is clear that the condition (5 · 9) does not hold for small a : 

ia4/aolr-v13>5C4 for arvO. 

(C·3) 

(C·4) 

(C ·5) 

(C·6) 

This means that complex roots in the fugacity plane appear at low temperature, 

at least. In the above case, the existence of complex roots can be also shown 

directly from Eq. (C ·4) in the following way. The solution of Eq. (C ·4) is 

given by 

z= -1, z=--~-[fi(a) ± {h2 (a) -4} 112
], (i=1, 2) (C·7) 

where 
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Fig. 5. The functions f1 (a) and f2 (a), 
where a1 = ( 4 + 2v_2_) 112 - (1 + -v-z-) and 

Fig. 6. Loci of zeros for the counter 
example, where a=e2K. 

a2= (4-21/'2) 112+ (v2 -1). 

(C·S) 

and 

D = (a -lY (5a6 + 18a5 + 22:a'1 + 12a3 -+- 3a2 + 2a + 1). 

The features of the functions {h: (a)} are illustrated in Fig. 5. Therefore, we 
obtain the loci of zeros shown in Fig. 6. In the whole region of temperature, 
a pair of complex roots appear on a unit circle of the fugacity plane. 

Appendix D 

For brevity, distribution of zeros of the one-dimensional Ising model is 
investigated in the complex temperature plane. The zeros of the partition func
tion for the ring of number N is given as follows, from Eq. (5 · 5), 

1·-iJD 
z=tanh K= ·· ··· ... , 

l+iJD 
(D·l) 

where 

D=sinh2 h' +cosh2 h'tan2 [rc (1~+ -~) jN J. (D·2) 

This means that the zeros of the one-dimensional model lie on a unit circle of 
the complex temperature plane, even in the presence of the external field. If 
we put 

(D·3) 

then the distribution function on tanh J( plane for N infinite takes the form 

g(O,h')= 1 sin(0/2) 
2rc [sin2(0/2)--tanh2 h']I12 

(D·4) 
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1242 M. Suzuki 

The critical angle 1s, consequently, given by 

Be= 2 sin-1 (tanh h'), (D·5) 

and g({}, h') =0 for IBI<tJc(h'). The loci of zeros cut the positive real axis in 
the complex temperature plane, only in the absence of the magnetic field. That 
point on the positive real axis which the loci of zeros approach corresponds to 
the transition point (in the present case, zc = 1 or Tr; = 0). 

Equation (5 · 5) or Eq. (D ·1) is derived from the equation 

tanh2 h' + (e-2KY- (tanh h' ·e-2KY 

(D·6) 

This shows the duality of magnetic field and temperature In the following way, 

tanh h' <: > e-2
K 

or 

e- 2
h' < '> tanh K . (D·7) 

This duality seems to be due to the special features of the one-dimensional model. 
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