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The thermodynamic quantities of the Ising model are analyzed near 7%, using the asymptot-
ic distribution function g(8, £) of zeros for the partition function on a unit circle in the plane
of the complex magnetic field. The distribution function is derived as g(0, &) =2f(0/**7),
assuming that the susceptibility behaves like %*~¢~7 near T, where t=77Ts1. It is shown that
there are two types of the situation: type I, in which a critical angle 0,(¢) exists such that
g(8, £) =0for 0<]0/<0,, and type 11, in which there is no critical angle. The critical indices are
related to one another, using the above ¢(4, 2).

The relation between the magnetic equation of state M=DM(A, £) and the distribution
function is given as follows: g(6, )= (1/2z)Re M (70, t), where h=2mH/kT. ¢(0,t) for an
exactly soluble model near 7T, is given by the equation 62~ +a 2¢2+aytgt+azy® (a;>0).
This is a good example for the general theory.

§1. ~ Introduction

This paper is concerned with the singularities of the thermodynamic quanti-
ties near the transition points in spin systems, especially 'in the Ising model.
On this problem, there are several works, such as the present author’s semi-
phenomenological theory® and conjecture,” Widom’s homogeneity assertion,”
Domb and Hunter’s conjecture,” Kadanoff’s scaling laws® and Patashinsky and
Pokrovsky’s dimensional analysis.” Kouvel and Rodbell” have studied the magnetic
equation of state (1-2) or (1-3) experimentally. '

Anyway, in order to explain the singularities of susceptibilities, spontaneous
magnetizations, specific heats, etc., the following form of the free energy has
been proposed :

F(t) =Fo (&) + ¢ f,(M? /7)), | (1-1)
where t=T7/T,—1; (see Eq. (27) in a pfevious paper by the present author?).
The magnetic equation of state is given in the following,

or

H=— 0 =i, (M), 1.2
oM S (M/t777) (1-2)

where
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1226 M. Suzuki

4'=4/2 and f,(x)=-—-2xf/(2").
If we invert the above equation (1-2) we obtain
M=t""¢,(h/t*) and h=2mH/ET. 1-3)

Equation (1-3) has been derived above the transition point 7T,. Now, we
assume that the equation of state (1-3) can be continued analytically beyond
- T,. Then, the spontaneous magnetization is given by

M, =1t]"""¢,(0) |~]z]® for <0, (1-4)

where ¢, (x) is such a branch of the solution for Eq. (1-2), as vanishes at
x=0 above 7T, and does not vanish at x=0 below 7,. Therefore, the index
8 is given by

B=a—7. 1-5)
Above the transition point, the magnetization becomes
M~ht™"¢, (h/t").

Consequently, the susceptibility is, above 77,

Lot ot (1-6)
Next, the specific heat behaves itself as follows, from Eq. (1-1),
2k
CLOF@)  uga, e . 1-7)
o

Then, we obtain the following relation
a=2+7—4. 1-8)

Thus, we can discuss the relations among the critical indices «, 8 and 7, in
terms of the free energy (1-1) or the magnetic equation of state (1-3).

In § 2, starting from the theorem of Lee and Yang in the Ising model, it
is shown that the same relations among the critical indices can be derived, in
terms of an asymptotic distribution function. This theory has already been
partly reported® and then Abe has generalized its treatment.” Flere, it should
be noted that the distribution function of the following form ~an be derived
without assuming the existence of a critical angle 0.(¢);

0=t"¥(g/t"") (1-9)
or inverting this, we obtain
g0, 1) =t"f0/t"). : (1-10)

In § 3, we discuss the relations between the magnetic equation of state and
the distribution function. It is pointed out that Egs. (1-3) and (1-10) are
equivalent each other.
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A Theory of the Second Order Phase Transitions 1227

In §4, the distribution function g0, #) for an exactly soluble model is

calculated concretely near the transition point, which is shown to be such a

type of distribution functions as discussed in § 2, and which has such a critical

angle as 6,(¢) ~#%.

$2. The critical behavior of the Ising model and the
distribution function of zeros

(1) Distribution function of zeros and Z:hermodynamié quantities
The Ising model is represented by the following Hamiltonian,
H=—JT2 1SS, —mH]S;, and S;=+1. 21
The partition function of the system is written as a polynomial of the fugacity

2 in the following way,

Zy(K, k) =Tt exp (—B.4) = Tr exp ( KS1S,8,+ ;Z S.)

“lep (/D1 N adt, 22

where z=e¢ " h=2mH/kT, and ay_,=a;. The theorem of Lee and Yang® indicates
that the zeros of the partition function lie on the unit circle in the fugacity
plane. Therefore, the free energy for infinite N is represented, in terms of
the distribution function of zeros,” neglecting a constant term JN, (IV,:
number of pairs),

4 . ' F . — :
2w
mH g i
e ] 0)log (= —e')do
fCon 0 9(0)log (z—e")
mH 3 9 .
= + Sy (@ log (z"—2z cos 0+1)db, (2-3)
; A

where ¢(0, ¢) satisfies the following condition of normalization,

Sg(@, ndo="1 .
2
0
Furthermore, we can rewrite the free energy in the following convenient form,

—F/kT = 89(0, t)log 2 (cosh h—cos 0)d0 , (2-4)
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1228 M. Suzuki

where t=(T—T,) /T, and h=2mH/kT. As far as the neighborhood of the
transition point and a weak external field are concerned, the integral in the
region of small § and % becomes important, so that we can write as follows,

k3

—F//eT:Sg(@, Hlog (0°+h?) do . (2.5)
0
- The magnetization is obtained from Eq. (2-4):

M=2m sinh A gwg 0 do

: cosh i—cos @

ki3

4 hgg@’i@ a0, 2.6
m 7o 0 (2-6)

0

The spontaneous magnetization is expressed in terms of ¢ (0, #) as follows,

k4

M =1lim 4772/1&—9756?—— Q—d@
R0 SO+

—dm gﬁmm, £ db

=2nmy (0, 7). 2.7
Consequently, the susceptibility above 7, is given by the equation

1t = U /hT) | @D g
) 1—cos 0

~ @m?/kT) g:‘?_(g;f) o, 2-8)

0
and below the Curie point, we obtain from Egs. (2-6) and (2-7)
% =lim{M(H) - My} /H
H-0

kg T

—lim {fl,??_lflig 90, Hdo _ 4m'H (-7 ©, f)dﬁﬁ_;‘.} w1

“H-0 U BT : coshh—cos kT ; cosh A—cos 0 J24
= @21& 90,8 ~90, 1) 4 (2.9
kT : 1—cos@
__8m’ gg(f), =90, 49 (2-99
kT 0’

0
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A Theory of the Second Order Phase Transitions 1229

The specific heat is obtained near 7, from the equation

& |
cw»d?ﬁg(o, ) log 040 . | 210

0

(1)  Plausible distribution function of zeros

In the previous paper®, we have shown that the singularities near the transi-
tion point can be explained in terms of the following asymptotic distribution
function for small 6 and ¢,

9@, 1) =a(0"—0t%", 90, 1) =0, for 0<0.(5), and O,~27", (2-11)

where 7 is a positive even integer, and ¢ a positive odd integer. Namely, if
we define the critical indices in the following way

XO+NZ_‘7) XO“NVI_'Y/’ MSNEZ-Iﬁa j\[c’-\"l:zl/8 >
Ct~i=%(c;log t4-¢,) and C-~t]7* (¢ log |t]+¢), (2-12)
then, from Egs. (2-6), (2-7), (2-8), (2-97), (2-10) and (2-11), the six indices

are related one another by two independent parameters ¢/7 and er as follows
(Appendix A): '

r=7"=e(l/9—k), B=ck, ,

a=a'"=2—cA/7+k) and 0=1/9=(¢/7)/ (k). (2-13)

These results satisfy the following relations

Q42841 =2 (2-14)
and

a+B(1+0)=2. (2-15)

Now, the plausible distribution function (2-11) may be also written in the
form

07] = (llts + 61291/” . (2 ° 16)

Even if we generalize it in the following form, under the condition of integer
g,

07=2>" ajt* 7 gy, (2-17)
j=0

the critical - behavior is the same as in the case of Eq. (2-16). In fact, the
distribution function of the molecular field theory or its equivalent exactly soluble
model is of the form given by substituting =2, ¢=3 and £=1/6 in Eq. (2-17),
as shown in §4.

Extending the plausible distribution function to Eq. (2-17), we notice that
there are two .types of the situation.
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1230 M. Suzuki

(i) g (8, 1) g (6,1)
(i) l ‘ 0/ 6i)
W) | ()
. 4 [
\4!/ e NN
: il
/i) J '
Ve 27,0 — 8 T
Fig. 1. Schematic distribution function in c. — ¢ T
type 1 to explain phase transitions. Fig. 2. Schematic distribution function in
(i) T=o0, (ii) T>T,, (i) T=T,, type II. (G) T>T, (@Gi) T'=T, and
(iv) T<T, and (v) T=0. Gi) T<T,.

{Type I> There exists a critical angle 0,(z) in the case a,7=0. In this case,
Eqgs. (2-16) and (2-17) are essentially the same, and putting ¢ =0, we obtain
the critical angle, for #£>0, ‘

0,() ~t", and ¢(0, £) =0 for 0=10]=0.(2). (2-18)

This situation is illustrated schematically in Fig. 1.

{Type II> There exists no critical angle in the case a,=0, because the value

g=0 corresponds to that §=0. This situation is shown schematically in Fig. 2.
(i) General type of distribution function

In the above paragraph, we have discussed two types of distribution func-
tions. In any case, the range of 9(0, ) is

0=9=<9,(@) for >0. (2-19)

This is expected to hold in general from the condition of continuity for g (6, #).
Let us investigate a general type of distribution function, using the above property
(2-19) and assuming that the susceptibility has the following singularity,

rot~t7" for £>0. (2-20)
Then, we can equate asymptotically in the following way,

Im

0’ (9gdg -
LIS L, f 0=0=<m. 2-21
OS 0* (9, ©) . - @20

If we make a change of variable

g=ry (A is a proper positive constant),

we find that
G/ E* @ N
S [0’ y, Hyl"t Jd .
w22 D2 dy ~constant. (2-22)
: 0* (¢, 2)
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A Theory of the Second Order Phase Transitions 1231

As the upper limit of the integral can be replaced by infinity near T,, we obtain

o

’ >y 42N
g [géf(i’;;ﬂg;} ydy~ constant. (2-23)

The sufficient condition for the susceptibility to have the singularity of Eq. (2-20)
is that, for a proper value of 1,

0@y, e

Ciry s 0O | (2-24)
If we return to the former variable
g==ty,
we find the following. differential equation
0609, 8) _ jrmpg 9/2). (2-25)
09 ,
The solution is given by
009, 8 =27 (9/1, (2-26)

where

7 (2) :—[gd?(x)dx]”l.
In the case ¥ (0) =0, the following critical angle is derived, by puttiﬁg g=0
in Eq. (2-26):
' 0,(8) =¥ () 2+ for ¢>0. (2-27)

This is the case of type I. For #(0) =0, the case of type II is obtained. If
we invert Eq. (2-26), the distribution function becomes of the form

g, £) =£2£(0/8*"). (2-28)

In the case of type I, this is written in the following way, using the critical
angle 6, in Eq. (2-27),

9@, t) =t70,£06/0,) for t>0? (2-29)

which agrees with the form derived by Abe.”

It is clear that Eqs. (2-11) and (2:17) yield simple examples of the general
form (2-26) or (2-28), taking that 1==¢k, and that A+7=¢/7.

Now, if we assume that the function (2-28) can be continued analytically

below 7, the critical indices are expressed as follows, from Egs. (2:6), (2-7),

(2-8), (2-9”) and (2-10),
a:a’:2%21~7,3=l,
/=y and J0=Q+7)/2. (2-30)
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1232 M. Suzuki

Consequently, the relations (2-14) and (2-15) hold.

In the case of type II, the distribution function of the form (2:28) can be
derived more simply (Appendix B). Here, it should be emphasized that the
distribution function (2-28) has been derived without assuming the existence
of a critical angle.

§ 3. The relation between the magnetic

equation of state and g (6, t)

(1) General relation Let us assume that the magnetic equation of state
is given by

M=y (h,t) and h=2mH/kT. 3-1)

Then, what relation exists between the distribution function and the equation
of state? ‘If we invert Eq. (3-1) as a power series in M, we obtain

h=S" a, () M¥+ (3-2)

where the coefficients {a;(¢)} may be singular at #=0." In principle, according

to the theory of Lee and Yang,” the distribution function can be obtained from

the complex value of the magnetization on a unit circle of the fugacity plane.
Therefore, putting

h=1:10 and M =Rc", (3-3)
and substituting them into (3-2), we obtain
g_‘u ayR* " cos (2k+1) ¢ =0
and | (3-4)
;i @R sin (2k+1) 9 =0.
It can easily be found that if M,=Re™ is a solution of Eq. (3-4), then
M,=Re™9 = _Re~t% | (3-5)

is another branch of the solution for Eq. (3-4), and consequently for Eq. (3-2).
Therefore, the distribution function is obtained as follows,

900, ¢) = 1 (M, — M) :1 R cos p=- L g, 3.6)
T 27 27
where
§=R cos g =Re M0, ?). (3-7)

Hence we get the following theorem.

Theorem 1. If the magnetic equation of state is given by (3-1), then the
distribution function is :
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A Theory of the Second Order Phase Transitions 1233

g0, 1) = 2; Re gy (i0, £). (3-8)

(ii) In particular, for the magnetic equation of state of the following form,

M=1t5¢,,(h/t"), (3-9)
which has been discussed in § 1, we find that
90, 5 =110/"), (3-10)
where
F(@) :»2}-;Re¢m Gz). (3-11)

The distribution function of the form (3-10) has been derived in § 2, under the
assumption of the singularity (2-20) of the susceptibility.

(iii) Inwversely, it can be shown that if the distribution function is given by
Eq. (3-10), then, the magnetic equation of state obeys the relation (3-9) near 7.
The magnetization is, from Egs. (2-6) and (3-10),

(0 Vg | :
M_4mh§ o f (-5 )do. (3-12)

If we make a change of variable
x=0/t"

in Eq. (3-12), and replace the upper limit of the transformed integral by infinity,
then we find that ‘

M=t?p, (h/t*), ‘ (313
where
om (V) = 4mg—y2f~~(—”’£>é»dx . (3-14)
: Sty :

Thus, it follows that the homogeneity assertion for the magnetic equation of
state is equivalent to that for the distribution function.

§4. g(@,t) for an exactly soluble model

In this section, the situation for the distribution function discussed in the
previous sections is exemplified in the molecular field theory or its equivalent
exactly soluble model near the transition point.

Let us consider the following Hamiltonian with a long-range interaction,

all
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1234 M. Suzuki

The same kind of models have been investigated by several authors,'®='*: but
there have been no explicit expression for the distribution function.
If we define the intensity of the magnetization as M=<{S;>, and put

lim (NJ) = a (finite), (4-2)
N>

then, the magnetic equation of state in the limit of infinite N is given by®

M=tanh(af M+ BmH), (4-3)

where f=1/kT. This agrees with the results in the molecular field theory.
Namely, the Curie point is determined by

af=1, or T,=a/k. 4-4)
The susceptibility is
%2~1/(T'=T,), , (4-5)
and the spontaneous magnetization takes the form
M~ (To—TY". | (4-6)
Now, the magnetic equation of state (4-3) is rewritten as follows,
M=tanh{(1—t) M+ pmH}, “4-7
where
t=1-T,/T=(T—-T,/T,+ (higher order). (4-8)

Equation (4-7) can be inverted to give®

b M—tnh{Q=0M} G -
2 1-Mtanh{Q—-0)M}’ (h » 2 tanh (BmH)). (4-9)

Near 7T, the expansion of this equation up to the third order of M gives

L VRS Vel (4-10)
2 3

As we have discussed in the previous sections, the distribution function can be
obtained from the value of M for the pure imaginary magnetic field 2=70. Then,
putting

h=i0, M=Re"® and §=Re M@0, 1),

and substituting them into (4-10), we obtain the following simultaneous equations,

tR cos cp+-é—R3 cos 3¢ =0, (4-11)

tR sin ¢>+—;—R3 sin Sgﬂ:é—(), (4-12)

Rcos¢p=7. (4-13)
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A Theory of the Second Order Phase Transitions 1235

Eliminating the parameters R and ¢ from the above equations (4-11), (4-12)
and (4-13), we can derive a relation between § and 6 near T, as follows,

0= <§>2<t + ; g’ > <t+—§~§2 >2, (4-14)

where we have used the following trigonometric formulae
cos 3¢ =4 cos® ¢—3cos
and | (4-15)
sin 3p =sin ¢ (4 cos’ p—1).
The distribution function ¢ (6, #) is given by
90, t)=9/2n. (4-16)

Equation (4-14) is just of the form (2-17) with the parameters =2, ¢=3 and
£=1/6, and consequently it satisfies the general relation (2.28). Putting §=0
in Eq. (4-14), the critical angle is cbtained as follows,

0, () = f;-f/? o (4-17)

The distribution function at the critical point is also given by
9(0’ O) — {35/6/ (27/37.[) } 01/3 . (4‘18)

Therefore, the distribution function is essentially the same as that given by the
relation® '

0 =a,t*+a9® for ¢*/t>1, (4-19)
which can be rewritten as ‘
900, t) =a(0®— b . (4-20)

This is just a nice example for the general theory discussed in the previous

sections. It can be easily shown from Eq. (4-14) or consequently from Eq. -

(4-20), that
i) for #£>0, we obtain
=0 0=0]=0, |
90, t):{ =l0l= (4-21)

and

9o (Ue, 2) =00 <.’/a'":‘3‘aa‘0!/(0: f));

# S, Katsura kindly pointed out to the author that for §2/¢<C1, §-~—(1/1/—2')t'1)4(0~0¢(t))1/2 in
terms of Eq. (4-14).
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1236 M. Suzuki

and
ii) for <0, we get
9(0, £)=£0 and ¢,(0, £) =0.

These features are schematically illustrated in Fig. 1. The same results are
obtained from Katsura’s implicit relations for the Husimi-Temperly model.*”

§ 5. Discussion

The concept of complex magnetic field can be applied to the Heisenberg
model. In general, let us consider the following Hamiltonian,

J{:ﬂ{o—‘ﬂlHZ Siz, Sq;z: 41 , and [ﬂ{o, ZSZZ] =0 N (5' 1)
where |
L%(): ——ZJZ-J-S,L-SJ-, etc. (5 2)

Then, the partition function can be expressed by the following polynomial of
the “fugacity” z,

Z="Trexp(—pIH,) exp (ﬁ’ 2.155%)

= (") Trexp(—LH,) ]_;[ <1 12z -+ Sf~——1— ;z>
= ("Y' fx (= B), | (5-37)

-2

where z=e¢ and A’ =pmI. It may be expected that the zeros of the parti-
tion function in the ferromagnetic Heisenberg model lie on a unit circle of the
“fugacity” plane as in the Ising model. This conjectured theorem can be easily
shown in the case of small finite lattices. For example, in the case N=2, we obtain

filz, K) =2"+z(1+e™*5) +1, (5-4)

where K=J/kT. The zeros of Eq. (5-4) lie on a unit circle of the =z-plane.
In the same way, we have found that the theorem holds for N=3 and N=4. For
N=5, numerical calculations will be needed. The wvalidity of the conjectured
theorem in the case N=6 has been proved by Katsura.'

Anyway, even if the theorem does not hold in general, the zeros of the
partition function in the Heisenberg model are, at least, expected to lie asymp-
totically on a unit circle near the positive real axis in the vicinity of the Curie
point. Therefore, the theory described in § 2 may be applied to the Heisenberg
model, asymptotically.

Next, what properties are there on the distribution of the zeros in the case
of the antiferromagnetic Ising model ? It is easily shown in the one-dimensional
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A Theory of the Second Order Phase Transitions - 1237

antiferromagnetic Ising model that the zeros of the partition function for the
ring of number N is given by

Y= JeXp< 4K) +tan’ [z (K +1/2) /N]| ¥ ‘
(tanh A )= + exp( 4K> = } 5.5)

where K=J/kT, and k=0, 1, 2, ---, N—-1. For J<0, we get, from Eq. (5-5),
(tanh 2),>1, or (tanh2’),<—1,
and consequently, the zeros on z—plane are given by .

oy 1 — tanh h '
1 +tanh A’

(5-6)
That is, all the zeros lie on the negative real T
axis. At a glance, the same situation may also
be expected in the two- and three-dimensional anti-
ferromagnetic  Ising models. However, we have
found a counter example in such a small finite
model, as is shown in Fig. 3. The existence of
complex roots is proved analytically, using the ¢
following theorems (Appendix C). Fig. 8. A counter example

Theorem 1I. Let us consider the following which has complex roots
in the antiferromagnetic

equation
case.

anx”~l~an_1x"“1+-~°{—aO:O, a,7-0 and q,=real. (57
The conditions necessary for all the roots of Eq. (5-7) to lie on a unit circle
are :
(i) Eq. (56-7) should be a reciprocal equation: a,.,=a; | (5-8)
and
(i1) lag] =uCylao] - (5-9)

Theorem III. If all the coefficients of Eq.
(5-7) are positive (a;,>>0), the condition necessary
and sufficient for all the roots of Eq. (5-7) to lie
on the negative real axis is that all the roots of
the following equation should lie on a unit circle,

n

2 dn— (1+2) P (1—2)*=0.  (5-10)

K=

The existence of complex roots may be also
proved analytically in the same way for a finite

X ) Fig. 4. A small lattice which
lattice (4x4) as is shown in Fig. 4, the numerical " may have complex roots in

solution of which will be reported elsewhere,*»*** the antiferromagnetic case.

220z ¥snBny Lz uo ysenb Aq 6.£9261/5221/9/8€/1011E/d}d /W00 dNO"dIWepeoE/:SARY WOy papeojumoq



1238 M. Suzuki

In this paper, the singularities of the thermodynamic quantities of the Ising
model near the Curie point are analyzed in terms of the concept of complex
magnetic field. The concept of complex temperature may be also useful for
the purpose of investigating the singularities (Appendix D).~
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Appendix A

The susceptibility %,* in terms of Egs. (2-8) and (2-11) is

0ot z%?;‘g?(m ;bté)f do . (A-1)
If we make a change of variable
0=0,y; 0,"=0bt°, ‘ (A-2)
we find
_Bam’ g [ (1)
XO+_,,%§?},.001 L X f,?’yzﬁ,,,_dy_ (A-3)

As the upper limit of the integral can be replaced by infinity near 77, we obtain

XO{A:%?C?Z?;'I(% £) - [0. ()], (A-4)
where
I(p, §) = S_(}{fﬁfgll'idy , (A-5)
y

1

This integral is convergent for 7x<(1. Therefore, the susceptibility above the
Curie point takes the form

2ot £ (A-6)
Below the Curie point, the susceptibility in terms of Egs. (2-9") and (2-11)
1s
~ 8m’ S a(07+blt]) —ab"|e|” 4 A7
= o . - AT

0

If we make a change of variable
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0=0.y; Oo= (b1, (A-8)
we find ‘
n//é;c
o Sam 0. S (1+y) —1 . (A-9)
0 .
As the upper limit of the integral can be replaced by infinity near 7%, we obtain
1= 1, 0 .01, (A-10)
where
T, 6) = S,Qf 3’,?,,": Lay. . (A-11)
y

0

This integral is convergent for 7>1 and 7x<<1. Therefore the susceptibility
below the Curie point also takes the form

2o~ LT ' (A-12)

Appendix B

In the case of type II, the condltxon for the susceptibility to have the
singularity of Eq. (2-20) is

Sgaéz Do~z ®B-1)

0

If we make a change of variable
0=t*y (u is a proper positive constant),

we find, in the same way as before,

ga 9"y, ) -dy~constant. - (B-2)

[ A ’)'y2

As a sufficient condition, we obtain

9@y, & /=T (y). (B-3)
Therefore, the distribution function takes the form
900, &) ="V (0/t"). B-4)

This agrees with Eq. (2-28).

Appendix C

Theorem II can be easily shown, using the fact that if all the zeros of a
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polynomial (5-7) lie on a unit circle, the polynomial should be decomposed
as follows,

A2+ Q2 oy
=a, (z+ 1P (z—e"%) (x—e™ ")
I
=a,(z+ 1P ] (2" —2z cos O+ 1), . ©
k

where p=0 or 1, for » even or odd, respectively. Then, we find theorem II,
from the expression for the coefficients {a;} in terms of {cosf,}.
Theorem III is evident from the following transformation,

_1-v=

14+ vz '

or g= (

1tz (€2

In terms of the transformation (C-2), negative = corresponds to a point on a
unit circle of the x-plane.

Next, let us consider an example as shown in Fig. 3. The partition func-
tion of this cluster is given by

Z—Tr exp{KS:> 1S+ 73S}
2 1

=e"{2 cosh (K +h)}*+e {2 cosh(K—A) }* (C-3)
If we put Z=0, we obtain the equation
A1) + (a4 1) (4 2) + 6+ 4a) (b2 =0, (C-4)
where
| z=e¢ " a=", K=J/kT and J<O0.
By the transformation (C-2), we obtain
(@ (a+ 1)+ (@D (454t + 52a° — 184> — 12a + 13)
e =0, (C-5)
It is clear that the condition (5-9) does not hold for small a:

[(l4/d0!/\-‘13>5C4 fOI‘ CZNO . (C'6)

This means that complex roots in the fugacity plane appear at low temperature, °

at least. In the above case, the existence of complex roots can be also shown
directly from Eq. (C-4) in the following way. The solution of Eq. (C-4) is
given by

2= 1, z—"—%—[ﬁ-(a) L {fH @) — 4}, (=1, 2) (C-7)

where
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/
4
/
/.
// N (]
o=| a=0l{ 9 [ Re

a=0Q
Fig. 5. The {functions fi(a) and  fola), Fig. 6. Loci of zeros for the counter
where ;= (4+21/2)12—~(1+12) and example, where a=¢?K,
ay=(4—2v"2)?+ (/2 —1).
Sfial@) = (a*—4a*— 141 VD) /(2a%) (C-8)

and
D= (a—1)*(5a°+18a° + 23a* + 12a° + 3a*+ 2a + 1) .

The features of the functions {f;(a)} are illustrated in Fig. 5. Therefore, we
obtain the loci of zeros shown in Fig. 6. In the whole region of temperature,
a pair of complex roots appear on a unit circle of the fugacity plane.

Appendix D

For brevity, distribution of zeros of the one-dimensional Ising model is
investigated in the complex temperature plane. The zeros of the partition func-
tion for the ring of number N is given as follows, from Eq. (5-5),

1—ivD
s=tanh K=~ 2 D-1
an 14+ivD (-1
where
D=sinh® A" + cosh’ h’tanﬂn </’v + ;) /N} (D-2)

This means that the zeros of the one-dimensional model lie on a unit circle of
the complex temperature plane, even in the presence of the external field. If
we put v ' ,

z=c", (D-3)
then the distribution function on tanh K plane for N infinite takes the form

1 sin(0/2)

90 1) = [sin'(0/2) — tank? /]

(D-4)
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The critical angle is, consequently, given by
0,=2 sin™* (tanh 4”), (D-5)

and g(0, ') =0 for [0]<0.(A"). The loci of zeros cut the positive real axis in
the complex temperature plane, only in the absence of the magnetic field. That
point on the positive real axis which the loci of zeros approach corresponds to
the transition point (in the present case, z,=1 or T,=0).

Equation (5-5) or Eq. (D-1) is derived from the equation

tanh® A7 -+ (e7**)’— (tanh A’ -¢7*%)?

:htanz[ﬂ</e+~;>/NJ. (D-6)
This shows the duality of magnetic field and temperature in the following way,
tanh b/ = ¥
or
e T tanh K. D7

This duality seems to be due to the special features of the one-dimensional model.
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