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Expressions for general correlation functions in Ising ferromagnets are derived in terms of
the Lee-Yang theorem. By the use of these expressions, the asymptotic forms of correlation
functions in the presence of magnetic field are analyzed, assuming those in the absence of the
external field. In particular, the critical indices of spin-spin, energy-density-energy-density, energy-
density-spin correlation functions are related with the critical indices of thermal susceptibility
%70, specific heat, susceptibility x;°, and magnetization. These results agree in form with those
predicted by the scaling law approach.

§ 1. Introduction

It is our purpose in the present paper to study the relation aniong the
critical indices of thermodynamic quantities and various spin-correlation functions.
In one of the previous papers, we have discussed the functional form of the
free energy in spin systems semi-plienomenologically.’ In the other papers by
the present author,”® the asymptotic form of the free energy and magnetization
in the Ising model near the transition point has been derived in terms of the
distribution function ¢(0, ) of zeros in the fugacity plane. Rewriting the results
given by Lee and Yang,” the free energy is expressed in terms of the distribu-

tion function of zeros in the following:»®

»

_F/T= g 700, )log 2 (cosh h—cos 0)d0 | (1-1)
[
and consequently the magnetization (or magnetic equation of state) is given by

M=m{sp=2m sinh

§ S I0D gy (1-2)

; cosh & —cos 07
where
h=2mH/kT, and t=(T-T,)/T,. (1-3)

Assuming an asymptotic form of the susceptibility such as z,~¢ 7, the distribu-
tion function of zeros for small ¢ and # has been derived in the form
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g(0,.2) =270, (1-4)
with 47=734+7, (see Egs. (2-28) and (2-30) of II). As usual, «, 8 and 7 de-

note the indices of specific heat, spontaneous magnetization, and susceptibility,
respectivelv. The magnetic equation of state is given by.

M=1%¢,, (ht ") ' (1-5)
in-terms of Eqs. (1-2) and (1-4).

In §2, we derive similar basic expressions {or general spin-correlation funec-
tions as the magnetic equation of state (1-2), by the use of the LLee-Yang theorem.
In §3, we discuss the asyvmptotic form of even-even spin-correlation functions
in the presence of magnetic field, such as the energy-density-energy-density cor-
relation function, which is related with the anomaly of the specific heat. In §4,
odd-odd spin-correlation functions are analvzed. In this case a point different
from that of even-even spin correlation function is that the odd-odd spin-correla-
tion functions in the absence of the magnetic field vanish above the transition
point as the distance between the two clusters becomes infinite. In particular,
the critical behavior of the pair-correlation function is related with those of the
magnetization and susceptibility. In §5, we discuss odd-even spin-correlation
functions such as the energy-density-spin correlation function, which is related
with the susceptibility %’ or spontaneous magnetization. Finally, these results

are compared with those predicted by the scaling law.

§ 2. Basic equaiions
As the ferromagnetic Ising model is represented by the Hamiltonian
== T ysis;—mIH > si5 0,0, and s;=+1, (2-1)
correlation functions of even number of spins can be written as

N Trosyosy exp(—39)

’ Trexp(—359))
N e BN
= B TehhE e (2-2)
_«31 \‘I" e -P— akz" .Jr. ‘e ‘: 1

where the fugacity x=c¢ ", h=2mH/kT, ay =aw, by =0y, and N is the number

) states that the zeros of the denomi-

of spins. The theorem of Lee and Yang'
nator of ¥Eq. (2-2) lie on a unit circle in the complex z-plane. Therefore, we
easily obtain the following expression in the limit of N infinite in Eq. (2-2),

(Appendix A):

0,05 8-3: )

N, 2.9) .
2(cosh i —cos ) 90, )dl, 2-3)

where 1= (T--T.)/T. g(0.¢) is the distribution function ol zeros, and p.(0:
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i-j; 1) “the spectral intensity” of the correlation function {s;---s;».

In the same way, correlation functions of odd number of spins can be
written as

i s
N e o 2.4)
<Sisj"'sm/ _""'I I' % i N ( 5

I+ tap+ 42
where the coefficients of the numerator in Eq. (2-4) satisfy the reciprocal
relation

b;\*}(,: - ])1\,, . (2 . 5)

Therefore, the following expression is' obtained (Appendix B):

. S (sinh 1) 0,(0 j--m)

{s;85008
T cosh A—cos 0

= g0, t)d0 . (2-6)
-~ In the limit of 7/ infinite in Eq. (2-6), the following normalization condition is
derived: ’ '

g 0,00, i) g (0, d0=1, 2.7

0
where we have used the property

Lim {ss50-5m0 =1, ' (2-8)

>0
which is obvious from Eq. (2-4). In particular, the spectral intensity 0,(0, 7, ¢)
for single spin {s;» is given by
0o (09 Z t) =2 (2'9>

from Eq. (1:2).

As was discussed in L and 1I, the integral for small 0 is important near
T, and for small i, so that the expressions (2-3) and (2-6) can be simplified
as

w

[ 0;"'“-’ l P
(sprs =1+ S £ lh‘?ffbiw)‘” 700, Ol (2-10)
0

and

il

<Si5.‘f' ’ 'Sm>: g

d

20h00(05 2j:--m, 1)

/ZQ 'f‘ 02 g(o’ t) dO H (2.11>

respeétively.

When even number of spins s, s;, +-:s; are separated into two groups A,
and By (R is the distance between the two groups), it is convenient to define
~ the correlation function as
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f‘jﬁ([’ ]l, R) - <AOBR> - <A><B/\

£

:5 ﬁp(;IOiZOR) g0, Hd0 , 21y
where
5.0, t: R) =0.00, t, R) — 0.0, ¢, o) (2-14)
in terms of the property
lim {ABp>={AMB> . (2-15)

R >

In a similar way, the correlation function of odd number of spins can be
expressed in the following form:

f:;or;@, h, R) = <AOBR> - <A><B>

=sinh / g 0000, 25 1)

0 cosh i—rcos () A (2-16)

200,00, ¢ R
:g lpo«(i() l-y ) g0, ) do . (217)
SRRk .

1]

These expressions will be used in the following sections in order to investigate
the relation between the asymptotic forms of the correlation functions in the
absence of the magnetic field and those in the presence of the external field.

e

3. Even-even spin-correlation functions

(i) From the basic expressions in the foregoing section, we should classify
our treatment into three cases. In this section, let us consider the case in which

spin variables are separated into two clusters of ewven number of spins such as
Ay=s;--+5, (even number)
and

Bp=s;+-s, (even number),

where R is a dimensionless parameter representing the distance between the
clusters A and B. We start from the expression for the correlation function

(2-12) or (2-13):
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fiag (¢ hy, R) = AoB )y — (AY(B)

(000, 8, R) | ,,

~§ 2 (cosh h—-cos 0) g0, )l (-1
C 0en(0, £, R) .,

=| e g, a0 (3-2)

for small z and 4. From Egs. (2-28) and (2-30) of 1I, the distribution func-
tion for small 0 and ¢ takes the form

g0, ) ="t ); d'=3+7. ' (3-3)
Substituting Eq. (3-3) into Eq. (3-2), we obtain

Fios(t, hy R) =

¢ v’\c e\U, 7, R Preoe
S Oee (0, 1, RYLFCOE) (3-4)

R+ 0°

[}
Making the change of variable 0=¢"y, we get

wt 4 . 4 7 .y
Doty t; R)t7f(y)
i b By = (T Gy

bt

(3-5)

Near the Curie point, we may replace the upper limit of the integral by infini-
ty, so that the correlation function can be expressed as
o | " e (1w, 15 RY U () -
ot hy, R mg S Dy Ty Ty 3:6
./.U ( ) (/ZZJ )_,_I_yz N ( )

0

As was discussed in L and 1I, there is also a case in which there exists a criti-
cal angle 0,(¢) such that g(0, #) =0 for 0=|0|=0.(¢). From Eq. (2-27) of II,
the critical angle near 7, is of the form

0, (1) ~t" for 1>0, (3-7)
so that in this case, the lower limit of the integral (3:6) is simply replaced by
a finite constant, and the discussion below is quite the same.

(ii) Now, if the correlation function in the absence of a magnetic field

assumes the form ' ,

fas(t, 05 R) =R ™p, (Re), (3-8)
which will be discussed in Appendix C under a certain condition, then, in terms

of Eq. (3:6), we obtain
g De,e (L3, 15 RYRMET () y 'y = @ (R (3-9)
; .

As a sufficient condition, the integrand ol Eq. (3-9) may be a function of Rz

220z ¥snbny oz uo 1senb Aq 21086 L/67€/2/6€/210Me/d)d/wod dno dlwapese//:sdjy woly papeojumoq



354 M. Suzuk:

and y: namely

Joe (¢ 'y, t; RYRM"=F (Re™, y), (3-10)
where ‘
S Iy (e, 9) S () v dy = ¢ (). ' (3-11)

From Eq. (3-10), the spectral intensity takes the following asymptotic form:
| Deo(0, £ R) =RMEF, (R, 067,
= ROMYF (R0, 007 . (3-12)
Therefore, the correlation function in the presence of the magnetic field in
terms of Egs. (3:6) and (3:12) is given in the form
Fo8 (e, Ty R) = R (R, he ), O (3-13)

where

[*1(\1'; u){ () du . (3-14)
vtu

“
Vi(x, ) = S
0
This result agrees with that given by the scaling law.”
(iii)  What we are particularly interested in is an energy-density-energy-
density correlation function” defined by

f]«;]«,‘(t, ]I, I{) = <Eo]f:]¢> - <1‘:0><E1,{> , <3 . 15)

where

2N RN S e
Lp=5 i JJ:!,_R[ SRSB4 -
The specific heat of the system is given by
1
k1

o= S Fan(t, Ty, YRR (3-16)
where d is the dimensionality of the system, and the correlation function jfiy
in terms of Eq. (3-13) is given in the form

Fun(t, hy B) =R™M U (ReY, he™*). (3-17)

Then, we obtain the following singularity of the specific heat:

S W (REY, Rt ¥ ) REMW AR

0

=G (), (3-18)

1
Cz
k1™

where
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Bz (x) :S Vs (y, )y ey
[t}

Consequently, the index « of the specific heat is related with the parameters 4,
and v,” by the equation
W=y’ (d—2"). (3-19)
In §5, it will be discussed that the range of correlation defined by means of
the energy-density-energy-density correlation function is naturally expected to be
equal to that by means of the pair-correlation function. That is, we may put
v =y, (3-20)
where v is the index for the range of correlation defined by means of the pair-
correlation function.  Then, from Eq. (3:19), the parameter 1, is given by
M=d—o/y=2d1—«)/2--a), (3-21)
where the second equation is obtained in terms of Eqgs. (5:23) and (5-25).
In the case of the two-dimensional Ising model, Hecht” has found the exact
energy-density-energy-density correlation function in the absence of the magnetic
field. His solution is ‘

Sons 0, B = (P PIK R — K2 RO, (3-22)
T

where Z= 4J/kT)Y| (T —T,) /T,

of the second kind:

, and Ky and K, are modilied Bessel functions

K, (x) = % exp(—.r cosh y)cosh ny dy . (3-23)
0

For very large R, i.e. IR>1,

-2fR
v ¢ : .
f]/;]g:(/ Ty (3 : 24)
' R .
whereas for very small 7, i.c. IR<L1,
- 1 .
JSun=2C’ R2 : (3-25)

This is a nice example for the assumption (3-8) with 4,=2 and y;=1.

§4. Odd-odd spin-correlation functions
(i) Here, we discuss the case in which spin variables are separated into

two groups of odd number of spins such as

Ag=s;--35; (odd number)
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and
Br=s;s, (odd number).
From LEq. (2-3), the correlation function can be rewritten as

x

" 00,0(0, 2, R) 44 (cosh h—cos 0)

AR — ,
CAoBy 6& 2(cosh it —cos 0) g0, )do,

for small 2

7

" on‘:[;Ie +2 2"/2
= L0 8 ) 32O 0 0 o
) 40
and neglecting /2 in the numerator,
C 00 (0, 1, R
;:%”f O 6 B0 (4-1)
p A0 ,
where
00,00, 1, R) = 0,,,(0, t, R) +20%, (4-2)
and we have used the normalization
g 700, D=} . (4-3)

0
(it) Noting that above 7% and in the absence ol the magnetic leld,

lini <AOB1§>o = <A‘/l>0<1))>0 - () 5 (4— . 4)

B>

which is a situation different from that in §3, let us assume that the correla-

tion function in the absence of the magnetic field takes the form
<AOB]g> = I{ﬁkgwg (I{t“z) . (4 . 5)

In the same way as in §3, the spectral intensity in terms of Egs. (4-1) and
(4-5) becomes

Do (0, 1, R) =R Fy (Re*s, 067
— R (R0, 01, (4-6)

as a sufficient condition. Then, the correlation function in the presence of the

magnetic field is given in the form

(AoBry =R (Re>, ht *) = =T, (R, he ™). (4-7)
Equation (4-7) yields the expression for the product {AY{B) in the presence
of the magnetic field as

CAYBY =lim (A By =120, (he ), (4-8)

B>
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where

By () = lim & W e, ) =0 (00, 3). 4-9)

In particular, in the case A=DB, we obtain
CAY = 120, (he ). (4-10)
It is also useful to study the singularity of the quantity

£(AB) =" [{AuB) — {AXB)] (4-11)

which is calculated in terms of Eq. (4-7) as

o

1 (AB) ::t”WS {To(Re>, bty =Wy (ht ")} R*MAR

= v;z(([ng)(})z(]Zt——J’)’ . (4.12)
where
D, (x) ~§ Ty, ©) =T () }y* 'dy . (4-13)

0
(iii)) The pair-correlation function is given in the form

(> =R Mg s (R, he™), (4-14)

is
Csy =™ T s s (ht ) P2 (4-15)

Comparing this expression with Eq. (3-13) in II (or Eq. (1-5)), we obtain
V=23 - (4-16)

Furthermore, in terms of Eq. (4-12), the susceptibility takes the form '
L=t"""P0g s (ht™). (4-17)

In particular, the initial susceptibility has the following singularity:®

Lot EN (4-18)

Consequently, the index 7 of the susceptibility is given by

y=v(d—12). (4-19)

‘Therefore, the parameters 2 and v in terms of Eqs. (4-16) and (4-19) are ex-

pressed as
h=2d3/ 28+ 7)

and

putting Ay=s, and Bp=s; in Eq. (4-7). From Eq. (4-10), the magnetization
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y=(23+7)/d. (4-20)
From Eq. (4-14), the temperature dependence of correlation length ¢ near 7', is

sociv. (4-21)

§ 5. Odd-even spin-correlation functions
(1)  As regards a correlation function of odd number of spins such as
Ay=1s;---5, (odd number)

and

Br=s;s, (even number),
it is convenient to define the ‘“semi-normalized” correlation function
“/’{)};’([, ]l; ]€> :<[&0BR>/<*4O> . (5‘1)

In terms of Eq. (2-6), this correlation function is expressed as

(o bR /S 040, )
S U hrs R) = S cosh /L—COSO (0, 1)d0 p cosh h-~cosO 90, dl
(5-2)
and for small 2
{0, 4 B | / 0400, 1) .
mg PO TR S 90 0d0. (5-3)

(ii) If the correlation function in the absence of the magnetic field assumes

the form
;;,:(z 05 R) =R M¢, (Re*), ' (5-4)
then from Egs. (5:3) and (5-4) we obtain

=

S 0.0, 2, R) G0, £)0 2d0==1""4R ¢, (Rt*), (5-5)

0

where we have used the asymptotic form
J 0400, 090, D09~ rs, (5-6)
0

In the same way as in the previous sections, the spectral intensity takes the form
0as(0, t; RYG0, 1) =R " Talry (Reve, 06
=RV TR (RY20, 067, (5-7)

Therefore, the correlation function in the presence of the magnetic field in terms
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of Egs. (2-11) and (5-7) is given by
(ABRy = hR™ "W (Res, he™) = hes™ "alW, (R, ht™™). (5-8)

From the expression (5-8), we obtain

{AXBy =lim {ABry= he T W (e Y, (5-9)
where
Vy(y) =lim & ¥, (x, v) =T, (c0, v). (5- l())

Furthermore, the summation of the correlation function {(A4,B;> has the follow-

ing singularity:

1 (AB) =21 [{ABry — CAXBY J=ht 747 2205 (he ™), (5-11)

where

oD

O;(x) :g Ty (y, ) — Vs () }y* 'dy .

U

(iii)  The energy-density-spin correlation function in terms of Eq. (5-8) is
Sus(ts by R) = {soliny =% }_SJ I iy slSoSpSnisy
=NR "W s (R, he ) (5-12)
== RMPYL(ReY, he™). (5-12%)

From Egs. (6:9) and (5-12), the flollowing relation between the energy-density

and spin-density is derived:

ol By :}Einl {solwpn=he ™" ”""’WZZ}ES (he ), (6-13)
where
?iffs (v) =lim x ¥ ys(x, v). (5-14)

In terms of Eq. (1:5), the magnetization can be written in the form
o=@ (he ") =ht "Ws(ht ™). (5-15)

Consequently, the energy-density in terms of Lgs. (5-13) and (5-15), is given

in the form
D=t W (he ), (5-16)
where '
V() =Uns(x) /¥s().

Therefore, the specific heat has the singularity
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(30/\’/» (L vy’x3") N (5.17)
Namely, the index of the specilic heat is
w=1=y/2. (5:18)

On the other hand, below the Curie point, the following susceptibility can
be considered:”

o 0M> d o~ e o
e = M~ . : 519
e H})lg}i& o g Ml (5:19)

It can also be easily shown that the susceptibility (5-19) in terms of the energy-

density-spin correlation function is expressed by’
szpz}; [{solony — sy Y], | (5-20)
In terms of Eqs. (5-12) and (5-13), the susceptibility %, has the singularity
Lu o £ (5-21)

Comparing this result (5-21) with Eq. (5-19), we obtain another relation

v/ (d—125") =1. (5-22)
From the relations (5-18) and (5-22), the parameters y,” and 1;” are determined
as
v/ =C2-a)/d, (5-23)
i =d(l—w)/(2—). (5-24)

The relation” 1 (1123 + 1 =2 together with Eqs. (4-20) and (5-23) gives

the equality
93, =, . (5‘25)

This means that the range of correlation defined by means of the pair correla-
tion function and that by means of the energy-density-spin correlation function
agree with each other. This is quite natural. Thus the index »,” for the range of
the energy-density-energy-denstiy correlation may also be equal to that of the

pair correlation:
yl’ =Y. <5 M 26)

In the case of the two-dimensional Ising model, Hecht” has also found the
exact solution of the energy-density-spin correlation function in the absence of
the magnetic field:

e 2d .,
Sus (€, 0, R) =" I{s)

8 2 Pde . (5-27)

AR
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This is also a nice example for our assumption (5-4). In this case, the para-
meters ;" are

Jy =y =1. (5-28)

§ 6. Concluding remarks

Expressions for general correlation functions in Ising ferromagnets have
been derived in terms of the lee-Yang theorem. By the' use of these expres-
sions, we have obtained the asymptotic forms of the correlation functions in the
presence of the magnetic field, assuming those in the absence of the external
field.

A similar discussion has been presented by Abe' in the case of the pair-
correlation function. However, his starting point is incorrect, which should be
corrected as is shown in our theory.

-+ To summarize our results, the asymptotic forms of the energy-density-energy-

density, spin-spin and energy-density-spin correlation functions are given by

Sen= "L (R, ht ™), (6-1)
Fss=CfH (Rt ht™), (6-2)
Jus= 0L (RE, he ), (6-3)

with v=(2—a)/d and 4’=§F+7. These results agree with those predicted by
T g p

the scaling-law approach in Hecht’s paper.”

It is to be hoped that various correlation functions of the three-dimensional
Ising model, at least, in the absence of magnetic field should be investigated as
in the two-dimensional case.
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Appendix A

Without loss of generality, we assume that N=2» (even number). Then,
Eq. (2:2) can be rewritten as

Cspmossd= ("2 ")+ 20 bp (227 (A-1)
7 7 . . N
("2 4+ 20 ap (P =27")
B AR

wh g Wb ay,

, (A-2)

where
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w=g+1/2. (A-3)

From the theorem of Lee and Yang, the zeros of the denominator of Eq. (A-1)
are given in the form

zp=exp(i0y) (k=1, 2, ---N). (A-4)
It means that the zeros of Eq. (A-2) are given by
w=2 cos 0,(0=0,<7r). (A-5)
Consequently, Eq. (A-2) can be decomposed into the following partial fractions:
Copmsdy =143 0Oz 203 1) (A-6)
= W — Ty

In the limit of N infinite, the summation may be replaced by the integral

N 7 0005055 0) ) N
H (3% 2 (cosh h—cos ) 90, H)d0 . (A7)

Appendix B

In the same way as in Appendix A, without loss of generality, we assume
that N=2n (even number). Then, Eq. (2-4) can be rewritten as
o= TDUE D (1) S G
RFRY Son - . . L = - Z o - A
’ dSlap (s ) Stag(EF+z)
_ < 1 ~:z> y w" - N A A b

P 7 k ’
n ».{, ey T J(" ey,

N

w

“~

N1 O (O, 2j--m25 1)

E 0 — Wy,

=2 s,inih h

In the limit of N infinite, we obtain the following expression:

(0000, ijms 0)
(cosh i —cos 0)

<5.,'S]'"‘Sm>:siﬂh n g g(()-. Z) d0 . (B°1>

Appendix C

First, in the case of an even-even spin-correlation function, we start from
Eq. (3-2):
b 4

ﬁ;:(l, h, R) :g p”e(()_ ZZ R>

g 90, 0d0. (C-1)

Here, assuming that the spectral intensity p45(0, ¢, R) is regular with respect
to variable ¢ near 7=0, we neglect the /-dependence of p,p. Then, Eq. (C-1)
can be written as
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‘00000, R
s (¢, 0, R)ZS K)l,.(g2 )

0

g0, t)do . (C-2)

On the other hand, the correlation function at the Curie point may be given as

fix (0, 0, R) ~R™. (C-3)
As the distribution function at 77, takes the form
9(0, ()) N0ﬁ/<f9—1 7) , (C-4)
we obtain
g Ban(0, R) 0P D200 R (C-5)

0
If we change a variable
0=R *y, (#>>0; a proper positive constant),

Eq. (C-5) becomes
xR¥
S Dan(R#y, R) RM #7/BLDWBIBED 2y L constant . (C-6)
i}

As the upper limit of the integral may be replaced by infinity for large R, we
get

S Oap(R™*y, R) RM 1 #7/ By BIBIM =2y constant. (C-7
0

As a sufficient condition, the integrand of the above equation (C-7) may be of
the form

Dan(R™"y, R) R0 = (), (C-8)
where @(y) is an arbitrary function of y. Then, the spectral intensity becomes
0450, R) =R #1/BIDg (R#()
= R EDG (RHD). | (C-9)
Therefore, the correlation function is calculated as

Sap(t, by R) = (A¢Bgy —(AXB)

:S '/ﬁ“j- g ROOEDB(RA) 740/ 2747 O

~RMF(Re™, h/°+), (C-10)

where
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21 L, O () u O F () du (C-11D)
Vo

Ple, )= |

and
=@+ /. (C-12)

In particular, putting 2=0 in Eq. (C-10), the correlation function in the absence
of the field becomes of the form

Jan(t, 0, R) =R"™MF (R, 0)
=R (R, (©13)

Thus, if we assume that the spectral intensity should be regular with respect
to variable ¢ near /=0, we obtain the asymptotic correlation function of the
form (C-10). However, the above assumption seems to be severe, so that in

the text we have salely accepted the form of the correlation function (3-8) in

the absence of the magnetic field, and we have discussed ‘the relation between
the correlation function in the absence of the magnetic field and that in the
presence of the field.

Similar discussions are possible for odd-odd and odd-even spin-correlation
functions.
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