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Expressions for general correlation functions in Ising ferro magnets are derived in terms of 
the Lee-Yang theorem. By the use of these expressions, the asymptotic forms of correlation 
functions in the presence of magnetic field are analyzed, assuming those in the absence of the 
external field. In particular, the critical indices of spin-spin, energy-density-energy-density, energy­
density-spin correlation functions are related with the critical indices of thermal susceptibility 
XTo, specific heat, susceptibility XlIO, and magnetization. These results agree in form with those 
predicted by the scaling law approach. 

§ 1. . Introduction 

It is our purpose in the present paper to study the relation among the 

critical indices of thermodynamic quantities and various spin-correlation functions. 

In one of the previous papers, 'we have discussed the functional form of the 

free energy in spin systems semi-phenomenologically.l) In the other papers by 

the present author,2),3) the asymptotic form of the free energy and magnetization 

in the Ising model near the transition point has been derived in terms of the 

distribution function 9 (0, t) of zeros in the fugacity plane. Rewriting the results 

given by Lee and Yang,4) the free energy is expressed in tern~s of the distribu­

tion function of zeros in the follO\ving :2),3) 

,.. 

-F/kT= ~ g(O, t)log 2(cosh h cos 0) dO , (I-I) 
II 

and consequently the magnetization (or magnetic equation of state) IS given by 

Al = m<s) = 2m sinh h (._- ·l
g
.··/((), t) dO , . .l COSl 1 - cos ° (1·2) 

II 

where 

h=2mII/kT, (1· 3) 

Assuming an asymptotic form of the susceptibility such as %o"--'t "I, the distribu­

tion function of zeros for small 0 and t has been derived in the form 
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350 ill. Su.z It!:: i 

g(O,t) = t/3j'(OrJ') , (1·4) 

\vith LJ' = j3 + r, (see Eqs. (2·28) and (2·30) of II). As usual, ct, ,3 and r de­

note the indices of specific heat, spontaneous magnetization, and susceptibility, 

respectl,-ely. The magnetic equation of state is gn-en b."c 

11,1 = t(3~:?n (11 t J
') 

111 terms of Eqs. (1·2) and (1·4). 

(1·5) 

In ~ 2, \ve deri\-e similar basic expressions for general spin-correlation func­

tions as the magnetic equation of state (1·2), by the use of the Lee-Yang theorem. 

In § 3, \ve discuss the asymptotic form of even-even spin-correlation functions 

in the presence of magnetic field, such as the energy-density-energy-density cor­

relation function, \\-hich is related with the anomaly of the specific heat. In § 4, 
odd-odd spin-correlation functions are analyzed. In this case a point different 

from that of even-even spin correlation function is that the odd-odd spin-correla­

tion functions in the absence of the magnetic field vanish abO'l-e the transition 

point as the distance bet\veen the t\vo clusters becomes infinite. In particular, 

the critical behavior of the pair-correlation function is related ·with those of the 

magnetization and susceptibility. In § 5, \ve discuss odd-even spin-correlation 

functions such as the energy-density-spin correlation function, which is related 

\vith the susceptibility /'IIo or spontaneous magnetization. Finally, these results 

are compared \vith those predicted by the sCeding law. 

§ 2. Basic equation.s 

As the ferromagnetic Ising model is represented by the Hamiltonian 

a ncl Si =:= ± 1 , (2 ·1) 

correlation functions of even number of spins can be written as 

.ZN + ... + lh,zh: + '" -+ 1 

.ZN + ... + {l7,;Zk+ ... --! 1 
(2·2) 

\vhere the fugacity z=e Ii, 11 =2mII/kT, (IN-7,;={lJ.;, bN-,,;=bk, and lV is the number 

of spins. The theorem of Lee and Yang-I) states that the zeros of the denomi­

nator of Eq. (2·2) lie on a unit circle in the complex z-plane. Therefore, we 

easily obtain the following expression in the limit o£ N infinite in Eq. (2·2), 
(Appendix A): 

7< 

i .r < S i ••• Sj) == 1 T) 
(Jp(O; i··j; t) 

g(O, I) dO , 
2 (cosh lz -- cos 0) 

(2·:3) -

\"here t= (7'-1',;)/1'", [l(O, t) is th" distribution function or zeros, and {J,,(O; 
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il Theory of the Second Order Phase TransitioJls ~351 

i··j; t) "the spectral intensity" of the correlation function <S-l"·Sj). 

In the same way, correlation functions of odd number of spins can be 

written as 

(2·4) 

where the coefficients of the numerator in Eq. (2·4) satisfy the reciprocal 

relation 

b~l.;= ·-bl.;' . (2·5) 

Therefore, the follo\ving expression is obtained (Appendix B): 

(2· 6) 

In the limit of h infinite in Eq. (2·6), the following normalization condition IS 

derived: 

,.. 

) PoCO, ij-··m)g(O, t)dO=I, (2·7) 
o 

where we have used the property 

lim <SiSj'" s'n) = 1 , (2·8) 
h-->oo 

which is obvious from Eq. (2·4). In particu1ar, the spectral intensity p() (0, i, t) 

for single spin <Si) is given by 

Po(O, i, t) =2 (2·9) 

from Eq. (1· 2). 
As was discussed m L and II, the integral for small 0 is important ncar 

Tc and for small h, so that the expressions (2·3) and (2·6) can be simplified 

as 

(2·10) 

and 

(2·11) 

respectively. 

When even number of spins Si, Sj, "'Sf,; are separated into two groups Ao 
and BJ? (R is the distance between the two groups), it is convenient to define 

the correlation function as 
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352 AI. Su.'Zltl~i 

poco, t; R) 
- ... --- g (0, t) dO 

2 (cosh h - cos 0) 
(2 ·12) 

?r 

:::::::::.(Pe(O, t;.R) g(O, t)dO, 
) h2 + O~ (2 ·13)· 

(I 

·where 

(2 ·14) 

In terms of the property 

lim <AoBR> = <A)<B) . (2·15) 
R >00 

In a similar way, the correlation function of odd number of spins can be 

expressed in the following form: 

. 11 ~>Tp()(O,t;R) ( ) 
= SIll 1 1 g 0, t dO 

. cosh h -. cos 0 
(2·1 G) 

(I 

2hi5 o (0, t; R) 
h2+02 g(O,t)dO. (2 ·17) 

These expressions -will be used 111 the foll()\ving sections in order to investigate 

the relation between the asymptotic forms of the correlation functions in the 

absence of the magnetic f1eld and those in the presence of the external field. 

~ 3. Even-even spin-correlation functions 

(i) From the basic expressions in the foregoing section, we should classify 

our treatment into three cases, In this section, let us consider the case in ·which 

spin variables are separated into two clusters of even number of spins such as 

Ao = -'ii" 'SI.; (even number) 

and 

BR=Sj"'Sm (even nUlllber), 

,vhere R is a dimensionless parameter representing the distance between the 

clusters A and B, ,,y e start from the expression for the correlation function 

(2·12) or (2·13): 
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A Theory of the ,,"Yecond Order Phase Transitions 353 

,.. 

= r ..... ,ac,c(O,t,T?) g (0, t) dO 
) 2 (cosh h -- cos 0) 
o 

(3 ·1) 

,d,>,10 (0, t, R) r; (/l .. ) lO 
/

2 02 g IJ, t ( 
l + (~3· 2) 

for small t and h. From Eqs. (2·28) and (2·30) of lI, the distribution func­

tion for small 0 and t takes the form 

g(O, t) = t~l(Ot-J'); J'=/3+r· 
Substituting Eq. (3·3) into Eq. (3·2), we obtain 

j .. c,e(. J i)~ . __ ~.r /5c,c(0, t, R)t f3f(OtJ') 10 
.tJ! t, l, \. -- /2 02 ( • 

I + 
il 

Making the change of variable 0 =--= tJ' y, we get 

(3·5) 

Near the Curie point, we may replace the upper limit of the integral byinlini­

ty, so that the correlation function can be expressed as 

( ') C) d'O 

As was discussed in L and II,· there is also a case in which there exists a criti­

cal angle Oc(t) such that g(O, /)=0 for O<IOI:<=O()(t). From Eq. (2·27) of II, 

the critical angle near Tc is of the form 

for t>O, (3·7) 

so that in this case, the lower limit of the integral (3· 6) is simply replaced by 
a finite constant, and the discussion below is quite the same. 

(ii) Now, if the correlation function in the absence of a magnetic field 

assumes the form 

(3 ·8) 

VI' hich will be discussed III Appendix C under a certain condition, then, in terms 

of Eq. (3·6), we obtain 

00 

~ i'ic,cCtJ'y, I; R) R!o'r'lf(y) y 2dy = (1'1 (Rt"'). 
o . 

As a suHicient condition, the integrand of Eq. (3·9) may be a function of Rt"l 
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354 ilL Suzuki 

and y: namely 

(:3 -10) 

where 

0) 

) PI (.r, y)fCv) y "ely = '(1 Ct:). (3·11) 

From Eq. (3 ·10), the spectral intensity takes the follo\ving asymptotic form: 

(Jc,c(O, I; R) =R- Al{IF1 (Rt"\ Ol-Y), 

= R-Al(l]\ (RJ ' / V1 0, Ot-J'). (3 -12) 

Therefore, the correlation function in the presence of the magnetic 11eld in 

terms of Eqs. (3 -6) and (3 -12) is given in the form 

j -'C,C(t h R) =R--Allf/ (Rtv:t ht-- J ') 
AD , , 1" (3 ·13) 

where 

w 

~
. b~ (x, u)f(u) 

?JlJ (.1', y) = ? 2 du . 
y"+u 

o 

(3 ·14) 

This result agrees with that given by the scaling law. 5
)-i) 

(iii) What we are particularly interested in is an energy-density-energy­

density correlation function i
) defined by 

where 

The specific heat of the system is given by 

c~ 1 (' JEE(t, lz, R)Rd-1dR, 
lzT2 j 

(:3 ·16) 

where d is the dimensionality of the system, and the correlation function JEE 
in terms of Eq. (3 ·13) is given in the form 

Then, we obtain the following singularity of the speciilc heat: 

where 

00 

/' ~/ 1 (" TTI (1)t-V1'} to-oJ') 1;>rl- A1' --:te/ __ l-> 
v ---- !.?1'2 j'J.' EE \. ,I _\.. _ \.. 

o 

(3 -17) 

(3 -18) 
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A Theory of Lhe Second Order Phase Transitions 355 

co 

(/Ju;(.t) == \ ?lIBB(Y, X)y<l-Al' Idy. 

o 

Consequently, the index (I.: of the specific heat is rciat(xl \vith the parameters A/ 
and v/ b); the equation 

a c::.::: v/ (d -l./). (3 ·19) 

Tn ~ 5, it will be discussed that the range of correlation defIned by means of 

the energy-density-energy-density correlation function is naturally expected -to be 

equal to that by means of the pair-correlation function. That: IS, we may put 

v/ = V , (3·20) 

w here V is the index for the range of correlation defined by means of the pair­

correlation function. Then, from Eq. (3 ·19), the parameter }'/ is given by 

l./ = d-- a/v = 2 d ( 1 - a) / (2 -- a) , (:3·21) 

where the second equation is obtained in terms uf Eqs. (5·2:3) and (5·25). 
Tn the case of the two-dimensional Ising model, Heche) has found the exact 

energy-density-energy-density correlation function in the absence of the magnetic 

field, His solution is 

(:3·22) 

where t= (4J/kT) I (T·-Tc)/T{!I, and l{o and Kl are modified Bessel functions 
of the second kind: 

OJ 

J.·'{n(..c) =: \ exp( -- . .c cosh y)cosh ny dy. ( ') () '») 0'...,0 

o 

For very large R, i.e. iR> 1, 

03·24) 

whereas for very small i, 1.e. ZR <1, 

(:3·25) 

This IS a 11lCC example for t he assumption (:3·8) with AI ::...-::: 2 and VI =::: 1. 

~ 4. Odd-odd spin-correlation fun{~Lions 

(i) Here, we discuss the case in which spin variables are separated into 

two gtoups of odd llumber of spins such as 

110 Si'''S!G (odd number) 

A Theory of Lhe Second Order Phase Transitions 355 

co 

(/Ju;(.t) == \ ?lIBB(Y, X)y<l-Al' Idy. 

o 

Consequently, the index (I.: of the specific heat is rciat(xl \vith the parameters A/ 
and v/ b); the equation 

a c::.::: v/ (d -l./). (3 ·19) 

Tn ~ 5, it will be discussed that the range of correlation defIned by means of 

the energy-density-energy-density correlation function is naturally expected -to be 

equal to that by means of the pair-correlation function. That: IS, we may put 

v/ = V , (3·20) 

w here V is the index for the range of correlation defined by means of the pair­

correlation function. Then, from Eq. (3 ·19), the parameter }'/ is given by 

l./ = d-- a/v = 2 d ( 1 - a) / (2 -- a) , (:3·21) 

where the second equation is obtained in terms uf Eqs. (5·2:3) and (5·25). 
Tn the case of the two-dimensional Ising model, Heche) has found the exact 

energy-density-energy-density correlation function in the absence of the magnetic 

field, His solution is 

(:3·22) 

where t= (4J/kT) I (T·-Tc)/T{!I, and l{o and Kl are modified Bessel functions 
of the second kind: 

OJ 

J.·'{n(..c) =: \ exp( -- . .c cosh y)cosh ny dy. ( ') () '») 0'...,0 

o 

For very large R, i.e. iR> 1, 

03·24) 

whereas for very small i, 1.e. ZR <1, 

(:3·25) 

This IS a 11lCC example for t he assumption (:3·8) with AI ::...-::: 2 and VI =::: 1. 

~ 4. Odd-odd spin-correlation fun{~Lions 

(i) Here, we discuss the case in which spin variables are separated into 

two gtoups of odd llumber of spins such as 

110 Si'''S!G (odd number) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/39/2/349/1938012 by guest on 20 August 2022



:356 111. 5'uzuki 

and 

13n=,""j"'Sm (odd number). 

From Eq. (2·3), the correlation function can be re\vriUen as 

,.. 
/ '113 ,) = )' Po,o (0, t, R) + 4 (cosh h -cos 0) (C -.) lO "L 0 10 ') ( 1 7 0) fJ '), t (. , . ~ cos 1 2 - cos 

o 

for small h 

and neglecting h in the numerator, 

(4·1) 

where 

()(),O (0, t, R) = Po,o (0, t, R) + 202 
, (4·2) 

and we have used the normali;-::ation 

r. 

\ fJ (0, t) dO =b . (4<3) 
() 

(ii) Noting that above Tc and in the absence of the magnetic lield, 

lim <AoBu)o = <.ll)o<13)o = 0 , (4·4) 
Il->oo 

which is a situation different from that in §:3, let us assume that the correla­

tion function in the absence of the magnetic :field takes the form 

<AoEn) = R--A~CP2 (Rt"2). (4·5) 

In the same way as 111 §:3, the spectral intensity 111 terms of Eqs. (4 ·1) and 

(4·5) becomes 

(!J·6) 

as a sufficient condition. Then, -the correlation function 111 the presence of the 

magnetic field is given in the form 

(4·7) 

Equation (4·7) yields the expression for the product <A) <B) 1ll the presence 

of the magnetic field as 

/ 1) /13"- --1' < /1 13 ,,- f"2 A.,fij (7 t -J'), '"L \)/ -- In1 L 0 ll/ --- - --'1' 2 2 (4 ·8) 
ll-->oo 
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A, Theory of the Second Order Phase Transitimls 

vvhere 

:)J---)(j) 

In particular, In the case A:= B, we obtain 

<A)2~: t V2X2?]r2 (ht Y ), 

It IS also useful to study the singularity of the quantity 

which IS calculated in terms of Eq. (4·7) as 

if) 

X (AB) :::::::t"2X2~ {ijr2 (RCz, heY) - iff2 (ht J')} R<l-ldR 

'vvhere 

co 

(jj2(X):= \ {iJf2(y, :x~,) -fJf2(y)}y(lldY. 

(iii) The pair-correlation function is given in the form 

/ ) DX?Tf (1::> tV 1 t"-Y) "SOSR := L\, '.J: S,S \. ,2 , 

357 

(4 ·9) 

(4 ·10) 

(4·11) 

(4 ·12) 

(4 ·13) 

(4 ·14) 

putting Ao = So and B 1l = SR in Eq. (4·7). From Eq. (4 ·10), the magnetization 
IS 

(4 ·15) 

Comparing this expression with Eq. (3 ·13) in II (or Eq. (1· 5», we obtain 

vl 2/3. (4 ·16) 

Furthermore, 111 terms of Eq. (4 ·12), the susceptibility takes the form 

X = t-v(d-X)(/) (ht,F) 
8,8 . (4 ·17) 

In particular, the initial susceptibility has the following singularity:8) 

Xo"-' rv(rl~) . (4·18) 

Consequently, the index r of the susceptibility IS glven by 

r=v(d-J.). (4·19) 

T'herefore, the parameters }\ and V in terms of Eqs. (4·16) and (4 ·19) are ex­

pressed as 

}, =c 2d(1/ (2(1 + r) 
and 
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Y= (2(J+r)/d. (4·20) 

From Eq. _ (4 ·14-), the temperature dependence of correlation length ~ near Tc is 

(4·21) 

§ 5. -Odd-even spin-correlation functions 

(i) .As regards a correlation {unction of odd number of SplllS such as 

_.l10 = Si'" S1,; (odd n um ber) 

and 

Bn=Sj""Sm (even number), 

it IS convenient to define the "semi-normalized" correlation function 

(5 ·1) 

In terms of Eq, (2·6), this correlation function is expressed as 

fO,C(-!'R)=(" PAB(O,l,R) (0 \10/(" PA(O,l) (0 )10 
AB L, L, j cosh h-cos 0 g\ , L)c j ~osl~-j~--~os d- g ,t ( 

o 

(5·2) 

and for small h 

(5·3) 

(ii) If the correlation function in the absence of the magnetic field assumes 

the form 

j 'O, e (t (), R) = R __ -A;J(f'. (Rt"3) AR , , 't 3 , (5·4) 

then from Eqs. (5·3) and (5·4) we obtain 

7r 

~ PAlJ (0, t, R) g (0, t) 0 2dO~r'YARA;Jcr3 (Rt"3) , (5·5) 

-where we have used the asymptotic form 

rr 

~ PA (0, t) g (0, t) 02dO"-,, r'YA . (5·6) 

In the same way as in the previous sections, the spectral intensity takes the form 

(hB(O, t; R)g(O, l) =R A:lt F -'YAF 3 (Rt"3, Or-J') 

= R--A;JtJ'-'YAFa (RJ'/"3(), Or F) . (5·7) 

Therefore, the correlation {unction in the presence of the magnetic field in terms 
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of Eqs. (2 ·11) and (5·7) is given by 

<AoEll) = hR- Aar'YA?j/3 (Rt"s, hrJ') = ht"3?cd 'YAijfs (Rt"\ hrJ'). (5 ·8) 

From the expression (5·8), \ve obtain 

<A)<B) = lim <AoBa) = ht'Y At?c:1v'¥3 (ht J'), (5·9) 
R->oo 

where 

(5 ·10) 

Furthermore, the summation of the correlation function (AoBll) has the follow­

l1lg singularity: 

(5 ·11) 

vvhere 

00 

(/)3(X) = ~ {fit3(y, x) - fit3(y) }ycl ldy. 
() 

(iii) The energy-density-spin correlation [unction in terms of Eq. (5·8) IS 

=IzR ?c:l'r'YlJlBS(Rt":l', IztJ') 

=.-= I:)---A:{t(37'1'" (I)t":>' J t-- J ) -\. '1.' ];S \. ,l • 

(5 ·12) 

(5 ·12') 

From Eqs. (5·9) and (5 ·12), the following relation between the energy-density 

and spin-density is derived: 

< ) <1-') l' < 1') J -'Y-; ":J'?ca'(rr (/ t -J'), Sit'.. It 1111 So '--R h == It '.1' Hi) l 
11-->00 

where 

fitEs(y) =lim x -A3'lJ-'BS(,:r, y). (5 ·14) 
,1;->00 

In terms of Eq. (1· 5), the magnetization can be -written 111 the form 

(5 ·15) 

Consequently, the energy-density in terms of Eqs. (5 ·1~3) and (5 ·15), i~ given 

in the form 

(5 ·IG) 

where 

Therefore, the specilic heat has the singularity 
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I (1 v:/:\,,') 
I, 0 (5 0 17) 

Namely, the index of the specifIc heat is 

(5 ·18) 

On the other hand, below the Curie point, the following susceptibility can 

be considered :9) 

1-11 I · \i (YAl) d 711 I I;J 1 .1m , ,c:= iIi .,,,-j' / • 

:;)1' l1'" I, JI->O: 0, Ii ( 
([)·19) 

It can also be easily shown that the susceptibility (5 ·19) in terms of the energy­

density-spin correlation function is expressed by' 

'I o/~ '\;" [< 'E~ '" < "'<E)] 1.71 -L -"0 -'R/ -- s/ -' . ([)·20) 
R ' 

In terms of Eqs. (5 ·12) and ([) ·1:3), the susceptibility Y.uo has the singularity 

(5·21) 

Comparing this result (5·21) "\'itll Eq. (5 '19), \ve obtain another relation 

! (! . I) ~ V3 (-- /;3 'cc.=: ~ • (5·22) 

From the relations (5 ·18) and (5·22), the parameters Y/ and }'/ are determined 

as 

Y;/ =--= (2·- a) Id , 

l/ = d (1- a) / (2 -- a). 

(5·23) 

(5·24) 

The relation1
),2),3),lO),1l) a -+ 2/3 + r = 2 together with Eqs. (4·20) and (5·23) gives 

the equality 

V/ == V 0 (5·25) 

This means that the range of correlation defined by means of the pair correla­

tion function and that by means of the energy-density-spin correlation function 

agree with each other. This is quite natural. Thus the index Y/ for the range of 

the energy-density-energy-denstiy correlation may also be equal to that of the 

pair correlation: 

Y/ = Y . (5·26) 

In the case of the two-dimensional Ising model, l-Ieche) has also found the 

exact solution of the energy-density-spin correlation function in the absence of 

the magnetic field: 

co 

j~<Js(Z, 0, R) == 2'!. Z<s) ( :c2e ,1:dr. 
I, ) 

([)·27) 

2lR 
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A Theory of the SccOJld Order Phase Transitions 3G1 

This is also a nice examp1e for our assumption (5·4). In this case, the para­

meters ;'/ are 

ls' = v/ = 1 . (5·28) 

§ 6. Concluding relnarks 

Expressions for general correlation functions in Ising ferromagnets have 

been derived in terms of the Lee-Yang theorem. By the' use of these expres­

sions, we have obtained the asymptotic forms of the correlation functions in the 

presence of the magnetic field, assuming those in the absence of the external 
field. 

A similar discussion has been presented by Abe12
) ill the case of the pair­

correlation function. However, his starting point is incorrect, which should be 

corrected as is shovvn in our theory. 

To summarize our results, the asymptotic forms of the energy-density-energy­

density, spin-spin and energy-density-spin correlation functions are given by 

j~;;E =-::. t2(1~a)fl (Rt", hr:1') , 

fss = t 2f3 j; (Rt", hrY
), 

fES = t 1
-

a
:-

fJ fl (Rt", ht Y
), 

(G·1) 

(G·2) 

(G·3) 

with V = (2 - a) / d and J' = fl r. These results agree with those predicted by 
the scaling-law approach in Hecht's paper.7) 

It is to be hoped that various correlation functions of the three-dimensional 

Ising model, at least, in the absence of magnetic field should be investigated as 
in the two-dimensional case. 

Acknowledgements 
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Appendix A 

Without loss of generality, \ve assume that l\Tc_-= 277 (even number). Then, 
Eq. (2·2) can be rewritten as 

, __ (zn +- Z-1~) + ~ bk (Zk -I- Z--k) 
<Si"'Sj)-- n --n -- ~--l-k -Ie- (A·]) 

(z+z )+~ak(z +z ) 

'lOn+ ···bk'Wk + ... +bn ' 

,zc_,n ... a,/ 'lOk +- ... -+ {ln l 
(A·2) 

where 
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362 ]1.1. Suzuki 

°z("=z+ liz. (A·3) 

From the theorem of Lee and Yang, the %eros of the denominator of Eq. (A ·1) 

are glVen in the form 

(A·4) 

It means that the %cros of Eq. (A· 2) are given by 

(A·5) 

Consequently, Eq. (1\·2) can be decom posed into the follO\ving partial fractions: 

In the limit of JV infinite, the summation may be replaced by the integral 

'" 
<s[o .. s/>=l+ C. Pe(O; i··); t)g(O, t)dO. 

, j2(c()shh-cosO) 
u 

(1\.7) 

Appendix B 

In the same ,yay as in Appendix 1\, ,vithout loss of generality, we assume 

that N=2;z (eyen number). Then, Eq. (2·4) can be re,vriUen as 

( 
1 

) 
0 n -1 j 1 III !,; I 1 III == _ ,z X lC'-- ... )!,; 0lC.' -, ••• );; 

Z 'len -+ . 0 oa/oz\'.,!'; -+ .. oa,/ 

-2 . "[ I Y1 PoCO!,;, zJ··m; t) 
- SIn 1 ). / ' . 

T 

In the limit of lV infinite, ,ye obtain the following expreSSIOn: 

/ '-.. 1 1 \'" Po ( 0, i j- .. JJZ; t) ( ) 
<.... Si SJ 0 0 0 S'III / =---= SIn 1) ( '] 1 ' ) g (), t dO. 

cos 1 I - COS (J 
II 

Appendix C 

First, in the case of an even-even spin-correlation function, ,ve start from 

Eq. C3·2): 

e, e ( 1 D) )7r {5 p, e ( 0, t, R) ( ) f ' t I 1'- = --,-------- - gOt dO 
All " • lz 2 + 02 , • 

(C·1) 

Here, assumll1g that the spectral intensity PAR (0, t, R) IS regular with respect 

to variable t near t = 0, we neglect the I-dependence of PAn. Then, Eq. (C ·1) 
can be writ tell as 
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cos 1 I - COS (J 
II 

Appendix C 

First, in the case of an even-even spin-correlation function, ,ve start from 

Eq. C3·2): 

e, e ( 1 D) )7r {5 p, e ( 0, t, R) ( ) f ' t I 1'- = --,-------- - gOt dO 
All " • lz 2 + 02 , • 

(C·1) 

Here, assumll1g that the spectral intensity PAR (0, t, R) IS regular with respect 

to variable t near t = 0, we neglect the I-dependence of PAn. Then, Eq. (C ·1) 
can be writ tell as 
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.n: (t, 0, R) = ~ {5", (~; R) [! (0, t) dO , (C·2) 

On the other hand, the correlation function at the Curie point may be given as 

f c,e (0 0 R) "--' R-?c1 
AB , , • 

As the distribution function at Tc takes the form 

'we obtain 
,.. 

\ PAn(O, R) OfJ/(fJ :'Y)--2dO,,--,R -?c 1 

(I 

If ,ve change a variable 

(j=R-l"y, ((l>O; a proper positive constant), 

Eq. (C·5) becomes 

"RI" 

\ PAB (R-I"y, R) R?c1:-I"'Y/(fJ :'Y)yfJ/(fJr'Y)2dyr-J constant . 

o 

(C·3) 

(C·4) 

(C·5) 

(C·6) 

As the upper limit of the integral may be replaced by infinity for large R, vve 

get 

00 

\ PAB (R-f'y, R) R?c 1 i f''Y!(fJ-r7)yfJ/(fJl'Y)--2dy,,-,constant. 

o 

(C ·7) 

As a sufficient condition, the integrand of the above equation (C· 7) may be of 

the form 

(C·S) 

where r[J (y) IS an arbitrary function of y. Then, the spectral intensity becomes 

PAB(O, R) =R-?c1-f''Y/(fJl'Y)r[J (B..'"O) 

R-?c1 (j'Y/(fJi'Y)(b (RI"()). 

Therefore, the correlation function is calculated as 

·where 

(c·g) 

(C·10) 
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364 1\1. S zt.'Zu/zi 

F(x, y) = \ (C ·11) 

and 

(C ·12) 

In particular, putting lz = 0 in Fq. (C ·10), the correlation function in the absence 

of the field becomes of the form 

fwCt, 0, R) =R--A1F(Rt"\ 0) 

==R (Rl"I). (C ·13) 

Thus, if 'lye assume that the spectral intensity should be regular \vith respect 

to variable t near t = 0, we obtain the asymptotic correlation function of the 

form (C ·10). However, the above assumption seems to be severe, so that in 

the text we have safely accepted the form of the correlation function (3·8) in 

the absence of the magnetic field, and we have discussed \he relation between 

the correlation function in the absence of the magnetic field and that in the 

presence of tbe field. 

Similar discussions are possible for odd-odd and odd-even spin-correlation 
functions. 
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