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ABSTRACT

Dialogue move recognition is taken as being representative

of a class of spoken language applications where inference

about high level semantic meaning is required from lower

level acoustic, phonetic or word based features. Topic identi-

�cation is another such application. In the particular case of

inference from words, the multinomial distribution is shown

to be inadequate for modelling word frequencies, and the

multivariate Poisson is a more reasonable choice. Zipf's law

is used to model a prior distribution. This more rigorous

mathematical formulation is shown to improve dialogue move

classi�cation both subjectively and quantitatively.

1. INTRODUCTION

It has been suggested [5] that a dialogue, that is, the inter-

action between two or more people in a conversation, can be

represented as a series of moves (as a game of chess consists

of alternate moves). These moves follow a natural sequence,

with alternatives and counter moves. The dialogue moves

dictate portions of speech that can be classi�ed into the dif-

ferent move types, and may in turn dictate sensible bounds

between which processing can be carried out.

The dialogue moves also form a natural part of the progres-

sion from raw acoustic data to natural language processing.

Inference can proceed in either direction: down towards the

acoustic recogniser or up towards the natural language pro-

cessor. This paper is concerned with the latter, and in par-

ticular with the question of whether it may be possible to

construct a data driven natural language processor. Dia-

logue move recognition can be viewed as a metric against

which the contribution of dialogue moves to natural language

processing can be judged.

2. AN INITIAL EXPERIMENT

2.1. Data

The HCRC map task corpus [1] has been annotated at the

dialogue move level, and this database was used as an exper-

imental vehicle. Only utterances which could be identi�ed as

belonging to one move category were used, and all non-word

annotation was stripped out. Punctuation was removed, and

upper case letters were converted to lower case.

The 128 dialogues were then split into training and testing

sets of 64 dialogues each such that no map appeared in both

sets. This was to prevent discrimination occuring on par-

ticular map features, hence forcing the use of other words

more indicative of semantic meaning. The training and test-

ing sets contained 11799 utterances and 10265 utterances

respectively.

2.2. Methodology

The methodology was essentially that used in word based

topic identi�cation, outlined as follows:

The moves were assumed to be samples from a random vari-

able M2 fm1;m2; : : : ;mMg; in this case, the number of

possible moves,M , was 12. Given an utterance x, and train-

ing data D, the problem is to maximise the likelihood of the

move mi. Using Bayes's theorem,

P (M = mijx;D) =
P (xjM = mi;D)P (M = mijD)

P (xjD)
:

The denominator, P (xjD), is independent of the move and

can be ignored.

Assuming P (mi) to be an abbreviation for P (M = mi),

P (mijD) is the prior (prior to the utterance but posterior

to the data), and was calculated as the number of moves of

type mi in D divided by the total number of moves in D.

P (xjmi;D) is the likelihood. Here, it was assumed that

x was generated by sequentially sampling from a random

variable W 2 fw1; w2; : : : ; wV g, where V is the vocabulary

of the task, and samples from W are independent. Hence, if

x is K words in length,

P (xjmi;D) = P (W = w1;W = w2; : : : ;W = wK jmi;D);

= P (w1jmi;D)

�P (w2jmi;D)� � � �

�P (wK jmi;D):



P (wkjmi;D) was calculated as the number of words of type

wk in move mi in D divided by the total number of words

in move mi in D. Where the count for a word in x was zero,

that word was assumed to have occured 0.5 times.

2.3. Results

Table 1 shows a confusion matrix for the classi�cation prob-

lem so far described. The overall accuracy is 47.22%, and

assuming the test set accuracy is binomially distributed [2],

the 95% con�dence limits for 10265 independent testing sam-

ples are around �1%.

Note that a disproportionate number of utterances have been

classi�ed as `Ready'. This is counter intuitive; one would

expect utterances about which the system was unsure to be

classi�ed as `Acknowledge', since that is the most frequent

class. Further, `Acknowledge', `Ready' and `Reply-Y' are

all basically a�rmative utterances (\yes"), and one would

expect them to be indistinguishable at this level.

3. PROBABILITY DISTRIBUTIONS

3.1. The Multinomial

When probabilities are calculated as a relative frequency as

described, one is implicitly assuming a multinomial (dice

throwing) distribution. That is, if the number of words of

type wi in a move is ni, and N =
P

V

i=1
ni, then P (wijD) =

ni=N . In fact, this is the maximum likelihood estimator of

the true probability; it becomes more accurate as N ! 1.

In this case, though, some of the ni are actually zero and the

maximum likelihood estimator breaks down completely.

More light can be shed on the situation by considering a

Bayesian formulation of the word probability problem [4].

Using a multinomial distribution with a at Dirichlet prior,

the probability of a single word wi being drawn from W is

P (wijD) =
ni + 1

N + V
:

The formula now depends on V , the vocabulary of the task.

This can be thought of intuitively too: Given a biassed die,

but no data upon which to base an approximation, most

people would agree that a good starting point would be to

assume a probability of throwing any particular number to

be 1=6. This is implicitly based on the prior knowledge that

a die has 6 sides.

This explains the reason for assuming ni = 0:5 for unseen

words: the probability for ni = 0 is half that for ni = 1. V is

large, though, and whilst it is unknown it suggests that the

maximum likelihood estimate is consistently an overestimate

of the true posterior probability. The largest overestimates

of this word probability will occur in the class for which N
is smallest; the least frequent class is `Ready'.

3.2. The Multivariate Poisson

If the underlying probability of drawing word wi from W is

!, then the multinomial distribution is

P (nj!) =
N !

n1! : : : nV !
!n11 : : : !

nV

V

where n = fn1; n2; : : : ; nV g and ! = f!1; !2; : : : ; !V g. Con-
sider what would happen if this model were used to generate

an in�nite amount of data: It can be proved that if the !i
are constrained to be small enough such that N!i ! �i as
N !1,

P (nj�) =
�n1
1
�n2
2
: : : �

nV�1

V�1

n1!n2! : : : nV�1!
e��1��2������V�1 ;

where � = f�1; �2; : : : ; �V�1g. This is the multivariate Pois-

son distribution.

Note that one of the ! terms has disappeared. More cor-

rectly, any of the ! terms can be made to disappear by sim-

ply grouping them into one term; the useful approach is to

group all unknown words into a single !, and have that dis-

appear. The result is a distribution which is independent of

vocabulary; indeed it can be tailored to any arbitrarily sized

vocabulary.

The intuitive approach to the above derivation is to consider

several throws of a die. !i relates to each individual throw,

whereas �i is concerned with the rate of occurence of the

feature of interest.

The probability of an utterance of K words in length using

a multivariate Poisson distribution and a gamma prior can

be shown [4] to be

P (xjD) =

WY
i=1

�
(N + �)ni+�

(N + � +K)ni+�+xi
�(ni + �+ xi)

�(ni + �)

�
;

where ni and N are the same as in the multinomial, xi is

the number of words of type wi in x, W is the number of

`keywords' and � and � are the parameters of the gamma

prior. Note that this calculation refers to the probability of

the whole utterance, not the product of the probabilities of

the individual words.

4. PRIOR INFORMATION

4.1. Zipf's Law

Whilst it is convenient to attach a at prior to a distribu-

tion and simply let the data decide what to do, it must be

acknowledged that prior information exists in the form of

Zipf's law[7]. Zipf's law itself is an empirical law relating

relative frequencies. If a graph is plotted of frequency as or-

dinate, and the words rank ordered on the abscissa, that is,

the most frequent word on the left and the least frequent on

the right, the points will form a smooth curve with approx-

imately reciprocal square root form; the actual analytical



form is discussed by McNeil[6]. Further, this law will hold

no matter which database is used.

Such a graph is not very useful in that form, but integrating

up the vertical axis produces a graph which, suitably nor-

malised, can be interpreted as `Probability of Frequency',

which in turn is the prior on the � terms in the Poisson dis-

tribution. This is illustrated in �gure 1, where the graph on

the left is a traditional Zipf plot, and the one on the right is

modi�ed as described.
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Figure 1: The Zipf plot, and how to modify it to relate to

probability.

The graph on the right of �gure 1 can be estimated with a

histogram from a large dataset, and this is depicted in �gure

2. The scatter plots refer to the King James version of the

Bible, the entire radio 4 weather forecast spotting database

[3], and the entire HCRC Map Task corpus. Two things are

apparent from this plot:

1. All the plots are straight lines with the same gradient.

If they are indeed the same, then Zipf's law holds, and

one dataset can be used as a prior for another.

2. The fact that they are straight lines on a double loga-

rithmic scale implies that the real curve is of the form

y = Axm, where A is some normalising term and m is

the gradient of the line.

Note that the map Task plot is only shown for reference.

This is supposed to be prior information, and looking at any

of the Map Task data is cheating, never mind looking at all

of it.

The gamma distribution has a xm term, so it ought to be

possible to �t a gamma distribution to this database. The

lines on Figure 2 illustrate this. The line labelled `Gamma 1'

is a gamma distribution with parameters � = 0:1 and � = 1;

`Gamma 2' is the same with � = 10. Shrinking � any more

has the e�ect of moving the whole line downwards.

There is clearly nothing to be gained from setting � to be

anything other than 0. It only acts as a prior on the number

of observations, which is of the order of several thousand.

Even a value of 10 introduces more curvature than can be

justi�ed. Setting � to some small value may clearly be of

bene�t though.
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Figure 2: Modi�ed Zipf plot for various data sources, with

approximate gamma distribution �ts.

5. EVALUATION

Table 2 shows a confusion matrix for the classi�cation exper-

iment using the Poisson based estimate with a gamma prior

with � set to 0.1. The classi�cation rate is better than the

maximum likelihood case, but more importantly, the misclas-

si�cations are much better distributed. No one class seems

to mop up the ambiguous observations in a disproportionate

manner. In fact, nothing is classi�ed as `Ready', but that is

understandable since that category is indistinguishable from

`Acknowledge'.
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Figure 3: Classi�cation rate as a function of amount of

training data.

To evaluate the performance of the Poisson technique more

fully, a test data set was constructed by randomly sampling

100 observations of each category from the test data pre-

viously described. With the classi�er suitably modi�ed for

equal class membership priors, experiments were performed

on training set sizes ranging from 10 to 64 dialogues. The

results are shown in �gure 3, con�dence limits for 1200 test



samples are around �3%. This plot is very gratifying, show-

ing that the Poisson based estimate performs better than the

maximum likelihood multinomial, and that incorporation of

a Zipf's law based prior further improves performance, espe-

cially for small amounts of training data.

6. CONCLUSIONS

It has been shown that the multivariate Poisson distribution

is a justi�able and more suitable distribution to model word

frequencies for dialogue move recognition. Incorporation of

Zipf's law as a prior follows naturally and further improves

performance.

Dialogue moves can be inferred from their constituent words

to an accuracy of around 50% using a very simple unigram

model, implying that better performance should be possible

using a more involved N-gram Markov model.

AGE AGN CCK CFY EIN ICT Q-W QYN RDY R-N R-W R-Y Total
Acknowledge 1795 17 32 2 17 66 4 18 119 61 5 323 2459

Align 390 125 19 11 6 33 14 28 114 3 9 8 760
Check 29 38 273 38 46 251 40 40 209 21 37 15 1037
Clarify 7 11 54 35 15 135 7 5 111 8 31 4 423
Explain 23 23 52 15 172 43 11 9 277 82 77 2 786
Instruct 10 30 122 159 35 639 41 20 425 11 49 2 1543

Query-W 5 8 19 4 5 29 186 11 47 1 0 0 315
Query-YN 3 28 47 10 28 36 29 401 144 12 13 3 754

Ready 82 0 4 0 1 11 0 0 9 0 0 0 107
Reply-N 3 1 4 1 1 3 0 1 4 301 3 0 322
Reply-W 11 13 45 20 28 82 10 10 108 21 51 4 403
Reply-Y 329 14 25 4 21 32 3 14 35 11 8 860 1356

Total 2687 308 696 299 375 1360 345 557 1602 532 283 1221 10265

Table 1: Confusion matrix for the initial experiment, Accuracy = 47.22%

AGE AGN CCK CFY EIN ICT Q-W QYN RDY R-N R-W R-Y Total
Acknowledge 1851 25 39 2 37 86 4 23 1 58 9 324 2459

Align 397 171 28 9 24 59 14 38 0 3 9 8 760
Check 41 42 326 28 109 359 28 53 0 11 23 17 1037
Clarify 12 13 69 28 37 212 4 9 0 4 30 5 423
Explain 42 37 101 12 379 86 9 23 0 35 58 4 786
Instruct 21 36 164 74 88 1052 27 34 0 6 39 2 1543

Query-W 9 15 34 3 9 39 187 17 0 0 2 0 315
Query-YN 12 32 70 3 74 81 25 438 0 3 13 3 754

Ready 87 1 4 0 2 12 0 0 0 0 1 0 107
Reply-N 6 1 8 1 10 3 0 1 0 289 3 0 322
Reply-W 22 18 56 16 83 130 6 14 0 9 44 5 403
Reply-Y 343 15 32 2 40 38 3 14 0 3 9 857 1356

Total 2843 406 931 178 892 2157 307 664 1 421 240 1225 10265

Table 2: Confusion matrix for the Poisson based classi�cation, Accuracy = 54.77%
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