A THERMAL ABSORBER FOR HIGH POWER DENSITY PHOTON BEAMS

S. Ulc and S. Sharma
Brookhaven National Laboratory, Upton, New York 11973, USA

ENL- -37707
DE86 008012
ABSTRACT
The high power density of multipole wiggler radiation from the X-ray ring at the National Synchrotron Light Source at Brookhaven National

Laboratory precludes the use of normal incidence water cooled masks and shutters due to high metal temperatures and resulting high stresses and/ or deflections and the possibility of cooling water boiling. One way the power density can be reduced is by positioning the absorber surface at a small angle to the beam, a technique first developed by Lawrence Berkeley Laboratory. Finite element analyses results for temperatures, displacements and stresses are presented in this paper for a thermal absorber designed for uitra-high vacuum operation.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

1. Introduction

The basic absorber is a continuous length of hollow core O.F. copper conductor which has been formed and machined into the required shape and positioned sc as to intercept the photon beam at a small angle (set Fig. 1). Water connections are made outside the vaçum containanent. The adVantage of this approach is that fabrication is relatively simple, there are no waternvacuum foints and only two permanent atmosphere to vacuum seals (brazed foints) are required.

A two-dimenbional finite element analysis is first carried out to obtain the temperature distribution across the absorber cross-section. The resulting thermal deflections and stresses are then obtained by two coupled structural anaiyses utiliziag plane-strain formulation and beam finite elements. Numerical reaults for maximum deflections and stresses are compared to their corresponding design values.
2. Thermal Analysis

The normal incidence peak power density from the X-ray ring superconducting wiggler at 10 m from the source is $3880 \mathrm{~W} / \mathrm{cm}^{2}$ with a nearly Gaussian distribution in the vertical plane[1]. Positioaing the absorbing surface at 6° in the horizontal plane to the photon beam (Fig. 1) reduces the peak power density to $406 \mathrm{~W} / \mathrm{cm}^{2}\left(3880 \mathrm{~W} / \mathrm{cm}^{2} \times \mathrm{sin} 6^{\circ}\right)$. The absorber cross-section itself is $5 / 8^{\prime \prime} \times 1^{\prime \prime}$ with a $3 / 8^{\prime \prime}$ diameter water channel through the center. A velocity of $20 \mathrm{ft} / \mathrm{sec}$ was assumed in the water channel resulting in a $7 \mathrm{gal} / \mathrm{min}$ flow and a pressure drop of 3 psi per foot of absorber length. At a water inlet temperature of $25^{\circ} \mathrm{C}$, a value of $2.1 \mathrm{~W} /\left({ }^{\circ} \mathrm{C} \mathrm{cm}^{2}\right)$ for the film coefficient for turbulent flow was determined by means of the expression[2]

$$
h_{f}=\frac{\nabla^{0.8}}{d_{h}^{0.2}}\left(0.118+0.0016 T_{b}\right) \times \frac{W}{{ }^{0} C m^{2}}
$$

where ∇ water velocity, ft/sec.
$d_{H}=$ water channel diameter, inches
$T_{b}=$ bulk water tenperature, ${ }^{\circ} \mathrm{C}$

Using the absorber geometry, power input and cooling paraveters, a 2dimensional finite element solution was obtained for the temperature distribution within the absorber cross-section. Approximately 500 temperatures were detemined gielding important maximum values such as copper temperature, water cooling channel wall temperature (to determine the possibility of poiling) and temperature drop across the film.

Fig. 2a shows the temperature distributions throughout the absorber cross-section when the photon bean is directly over the cooling channel and Pig. 2b shows them when the beam is near the edge or the absorber corresponding to a maximum shift of the beam centerlire. These temperatures are based on a water inlet temperature of $25^{\circ} \mathrm{C}$. There 18 a bulk water temperature rise in the absorber of

$$
\left.\Delta T\right|_{\text {bulk }}=\frac{3.8 \times \mathrm{kN}}{G P M}=\frac{3.8(7.8)}{7}=4.2 \mathrm{C}^{\circ}
$$

The maximum cooling channel wall temperature $1 \mathrm{~s} 6.6 .4^{\circ} \mathrm{C}(62+4.2)$, 10 w enough to preclude any possibility of boiling.

If the absorber is positioned at a small angle in the vertical plane it sees a peak power density at its center decreasing toward its ends as shown in Fig. 3a. It sees the beam across its entire width reaulting in a maximun power/unit length of $343 \mathrm{~W} / \mathrm{cn}$ (about 3 times that of che 6° horizontal absorber) at
an angle of 2° to the beam. This is about the anollest angle that can be used due to thermal deflections, fabrication colerances and alignaent requirenents. Thermal analysis results (Fig. 3b) indicate a marimum copper cemperature of $112^{\circ} \mathrm{C}$ and a maximum water channel temperature of $97^{\circ} \mathrm{C}$ which is close to the atmospheric bolling temperature of $100^{\circ} \mathrm{C}$. Boiling should be avotded in order not to geaerate steam voids and reswiting hot spots. By increasing the exit preanure to 10 psig the saturation (boiling) temperature at 10 psig increases to $116^{\circ} \mathrm{C}$. The inlet must aecessarily be higher due to the pressure drop in the channel. The bulk water tenperature rise is 1.36°.

3. Stress Analysis

A finite element plane-strain stress ansiysis techaique was used to determine the stress and strain distributions in the cross-sectional plane of the absorber. This techalque assumes that the temperature, stresses and strains do not vagy along the absorber's length and its ends are initially fixed (see Fig. 4). The absorber ahould not be fixed on Its sides since that increases the degree of restraint which tacreases the stress level. Two sides and both ends fixed increases the stress by a factor of $1 /(1-v)(v$ is Polsson's ratio $=1 /(1-.33)=1.5$. All four sides and both ends fixed increases the stress by a factor of $1 /(1-2 \cup)$ or $1 /(1-.67)=3$.

The temperature results as previously determined are used as inputs to the stress analysis program. The relations representing the equilibriw of each element and the conditions for conrinuity between the elements are solved directly. The normal stresses $8 x$ and $s y$ and shear
stress sxy in the plane of the cross-section are computed for each element and the axial stress s_{z} is determined from the expression

$$
\begin{equation*}
s_{z}=v\left(s_{x}+s_{y}\right)-\operatorname{EaT} \text { (for fixed eads) } \tag{3}
\end{equation*}
$$

where v is Poisson's ratio
E is modulus of elasticity
α is thermal expansion coefficient
T is temperature change of element
By combining s_{x}, s_{y} and $s_{x y}$ the in-plane principal stresses s_{1} and s_{2}, (maximum and minimus normal stresses) are determined for each element by دeans of the expression

$$
\begin{equation*}
s_{1}, s_{2}=\frac{s_{x}^{+s_{y}}}{2} \pm\left(\left(\frac{s_{x}^{-8} y}{2}\right)^{2}+s_{x y}^{2}\right)^{1 / 2} \tag{4}
\end{equation*}
$$

The absoluce values of principal stress differences $\left|s_{1}-s_{2}\right|,\left|s_{1}-s_{2}\right|$ and $\left|B_{2}^{-8}{ }^{-1}\right|$ are computed and the maximum of the three is compared to a design stress. Typically the axial stress s_{2} is largest conpared to s_{1} or s_{2} and is at the point of maximum copper temperature (point A in Fig. 4). The advantage of fixing the ends is that for a constant thermal moment at each section, counteracting equal moments are developed at the ends resulting in no absorber displacement. The product of s_{z} and the area on which it acts $\Delta A_{a x}$ is the axial force on each element and when summed across all elements is the axial restraining force on the absorber. In addition, this elemental axial force when aultiplied by its distance to each of the two neutral axes and summed over all elements results in the previously mentioned restraining moments acting on the ends of the absorber. The program determines the stresses when one end is fixed and the
other is free by applying the fixed ended elemental forces and monents of opposite sign to the ends of the absorber. The resultant aaxinua stress values for an absorber with a free end are about $1 / 3$ to $1 / 12$ of the fixed ends values and do not occur at the point of maximum copper temperature but typically at the water channel wall on the side away from the photon beam (point B in Pig. 4). Table 1 sumarizes these results. The resultant absorber displacements (deflections and slopes ${ }^{\circ} \not{ }^{\circ} 0.160^{\prime \prime}$ and 0.8° maximum) for the fixed/free condition are large. Due to the configuration of the absorber (the two loops at each end act as compliant structural members - see Fig. 1), one end constraint can be adjusted (the other end being fixed) by shifting the position of the support section aear the loop to optinize the stress/displacement characteristics.

The upstream end is fixed because the slight beam incident angle intri crease near the fixed end due to thermal heating is less than if the downstream end was fixed. The angle increase should be minamized as it results in greater power density on the absorber.
4. Absorber Stress/Deflection Analysis

A finite element beam-frame stress analysis program $: ~ u t i i z e d ~ t o ~$ determine stresses and displacements of the actual absorber. This method requires inserting the axial force and moments, as determined from the fixed ends solution, into the frame at the location corresponding to the two ends of the power input section (see PIg. 5).

The applied axial force and moments re-distribute themselves throughout the frame depending on the geometry, elasticity and boundary conditions of each finite element beam with the resultant axial force, $F_{a x}$, moments M_{x}, M_{y}, and displacements (3 translation, 3 rotation)
at each bean being determined. The resulting axial stress s_{2} is determined by the following eppression which combines the axial and bending stresses:

$$
s_{z}= \pm \frac{F_{a x}}{A_{a x}} \mp \frac{M_{y}}{I_{y}} \pm \frac{M_{x}}{I_{x}} y
$$

where $\quad F_{\text {ax }}$ is the axial force
at each section: Aax is the axial cross-section
M_{y}, M_{x} are the moments about orthogonal axes
I_{Y}, I_{X} are the moments of inertia about orthogonal axes
x, y are the distances of the element from the respective neutral axes

This resulting value of s_{z} is now combined with s_{\perp} and s_{2} as previousiy determined from the plane-strain analysis to determine the actual principal stress differences as before and the maximum of these is compared to the allowable thermal stress. There are two basic types of thermal stresses. One type causes excessive distortions of the entire structure and the allowable stress is twice the annealed O.F. copper field strength (2 times 8000 psi) [9]. The other produces no significant displacements and fatigue strength is used as a criteria for failure siace thermal cycling will occur during normal operating procedures.

For a ten gear life, a conservative value of 10^{5} cycles (40 times a day $\times 250$ days $/ \mathrm{yr}$) was assumed. A number of sources [5-8] were used zo determine actual test failure levels of stress of annealed 0.F. copper for various cycle times. A conservative value of stress failure level Was used and a safety factor of 2 was applied to determine the design
stress. At 10^{5} cycles the design stress aingle amplitude is 7500 pai. The computed maximum principal stress differance was compared to the stress range (double amplitude) or 15,000 pai. This is the basic procedure followed by the ASME Pressure Vessel Code in designing pressure vessels for fatigue [9].
Fig. 6 shows the resultant valuss of moments, axial forces, stresses, and displacements for a typical absorber positioned in the horizontal plane and a beam splitter positioned in the vertical plane.

Work done at Brookhaven is supported by the Division of Materials Sciences, U.S. Dept. of Eaergy, under contract DE-ACO2-76CHOOO16.

REFERENCES

1. Thominson, W., "X-Ray Power Distribution from Multipole Wiggler Magnets," April 1983, internal memorandum.
2. "Heat Transmission," McAdams, W.H. 1942.
3. "Elements of Thermal Stress Analysis," Burgreen, D., 1971.
4. "Strength of Materials," Singer, P.L. 1951.
5. "A Survey of Properties and Applications, OFHC Brand Copper," Amax Copper, Inc. 1270 Ave. of the Arrericas, NY, NX 10020.
6. "Stress-Strain Relationships in Low and Intermediate Cycle Fatigue," Blatherwick, A. and Mowbray, D., ASTM Proc. 64, 561-578 (1964).
7. "Experimental Support for Generalized Equation Predicting Low Cycle Patigue," Tavernelli, J. and Coffin, L., ASME Jour. of Basic Engineering, Dec. 1962, 533.
8. "Standards Handbook," Alloy Data, Copper Development Association, Inc. 405 Lextngton Avenue, NY, NY 10007.
9. ASME Boiler and Pressure Vessel Code, Section VIII, Division 2 , 1982.

Figure Captions

Fig. 1 Conceptual Design: 6° Horizontal Absorber.
Fig. 2 Temperature Distribution: 6° Horizontal Absorber.
(a) zero beam shift. (b) maximum beam shift.

Fig. 32° Vertical Absorber. (a) geometry and power density distribution. (b) temperature distribution.

Fig. 4 Stress Components: Plane-Strain Aasysis.
Plg. 5 Stress Analgsis: Beam-Frane Model
Fig. 6 Resultant Stresses, Displacements and Reactions:
(a) 6° Horizontal Absorber.
(b) 2° Vertical Absorber.

TABLE 1
STisesses, deflections and reactions - fixed/free end conditions
Eorizontal Absorber $96^{\circ}, 24^{\prime \prime}$ 10ng

Photon Beam Pos. Figure No.	Both Ends Fixed		One End Fixed, One End Free	
	2a	2b	2a	2b
$\mathrm{F}_{\text {ax }} \quad 1 \mathrm{lb}$	3430	3750	0	0
	138	110	0	0
$M_{20} \quad 1 b-10$	0	390	0	0
$\mathrm{s}_{\max } \mathrm{psi}$	15700	20000	5970	6600
$\delta_{y, \text { max }}$ inch	0	0	0	0.16
$\delta_{x, \max }$ lach	0	0	0.13	0.10
$\theta_{y, \text { max }}$ deg	0	0	0.62	0.50
$\theta_{x, \max }$ deg	0	0	0	0.80

	Both Enda Fixed	One Znd Fixed, One End Free
Photon Beam Pos. Figure No.	3b	3b
$\mathrm{F}_{\text {ax }} \quad 1 \mathrm{lb}$	8590	0
$\mathrm{M}_{\mathrm{yO}} \quad 1 \mathrm{~b}-1 \mathrm{n}$	322	0
$M_{x_{0}} \quad 1 i v-i n$	0	0
$\mathrm{s}_{\max } \mathrm{psi}$	25500	2000
$\delta_{y, \max }$ inch	0	0
$\delta_{x, \max }$ Inch	0	0.085
$\theta_{y, \max }$ deg	0	0.22
θ deg	0	0

COOLING WATER

ELEVATION

FIG.I

FIG. 3

FIXED

FIG. 4

FIG. 5
a
b

$M_{y}, I b-i n$	45	38
$M_{x}, I b-i n$	124	178
$F_{a x}, I b$.	31	37
$S_{\text {max }, \text { psI }}$	+4600	-14100

PLAN

FIG. 6

