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Abstract—We hereby publish a new thermal infrared video
benchmark, called TIV, for various visual analysis tasks, which
include single object tracking in clutter, multi-object tracking
in single or multiple views, analyzing motion patterns of large
groups, and censusing wild animals in flight. Our data describe
real world scenarios, such as bats emerging from their caves
in large numbers, a crowded street view during a marathon
competition, and students walking through an atrium during
class break. We also introduce baseline methods and evaluation
protocols for these tasks. Our TIV benchmark enriches and
diversifies video data sets available to the research community
with thermal infrared footage, which poses new and challenging
video analysis problems. We hope the TIV benchmark will
help the community to better understand these interesting
problems, generate new ideas, and value it as a testbed to
compare solutions.

Keywords-thermal infrared benchmark; object detection;
visual tracking;

I. INTRODUCTION

The fast growth in computer vision research in the last

decade has mostly been associated with visible-light sen-

sors. Non-visible spectrum sensors have not been used as

widely because, initially, low cost cameras had poor spatial

resolution and a narrow dynamic range, and cameras with

better image quality were prohibitively expensive for many

researchers. Sensor technology has now advanced to a point

that non-visible range sensors have regained researchers’

attention in both academia and industry. With our work, we

intend to answer the community’s need for a comprehensive

benchmark for a now popular non-visible range sensor, the

thermal infrared camera. This passive sensor captures the

infrared radiation emitted from the scene and its objects.

Thermal imaging was originally developed for industrial and

military use, for example, surveillance and night vision tasks.

Recent studies have gone beyond the traditional tasks and

applied thermal imaging to monitoring of wild animals, non-

invasive food inspection, and heat loss detection [1], [2]. Our

goal here is to provide the research community with a di-

verse set of video sequences that addresses various common

computer vision problems. The proposed benchmark comes

with a large number of high quality annotations to facilitate

quantitative evaluations and comparisons of detection and

tracking algorithms.

A few of thermal infrared dataset have been published

in the past, e.g., the OTCBVS Benchmark 1, the LITIV

Thermal-Visible Registration Dataset [3], the AIC Thermal-

Visible Night-time Dataset [4], and the ASL Thermal In-

frared Dataset [5] (Table I). Typically these datasets focus

on specific biometric applications or involve thermal-visible

multimodal systems and imply a close-up view of the objects

in the scene. For general tasks, such as object detection

and tracking, the usefulness of these datasets as benchmarks

is limited due to their low image resolution, short video

duration, and most importantly, lack of complexity of visual

events in realistic, challenging environments. In contrast, our

new thermal infrared video (TIV) dataset was collected by

high-resolution high-speed cameras (FLIR SC8000, FLIR

Systems, Inc., Wilsonville, OR), with a series of carefully

designed recording protocols and preprocessing steps. The

TIV benchmark covers five common computer vision tasks:

noitemsep,nolistsep

• Tracking a single object through clutter,

• Tracking multiple objects from a single view,

• Tracking multiple objects from multiple views,

• Visual counting,

• Group motion estimation.

In addition, background subtraction and object detection, are

generally required as part of the solution. The categories

of objects of interest, included in TIV, are pedestrians,

marathon runners, bicycles, vehicles, and flying animals

at various resolutions (see Fig. 1 for some snapshots). So

far, TIV consists of 63,782 frames, recording thousands of

objects; active updates are in progress. To the best of our

knowledge, this is the largest thermal infrared video dataset

available to the public.

II. TIV DATASET DESCRIPTION

Our TIV dataset consists of seven different scenes, two

of them indoor scenes. Most of the data were recorded with

FLIR SC8000 cameras (FLIR Systems, Inc., Wilsonville,

OR), except sequences Davis08-sparse, Davis08-dense,

Davis08-counting, which were previously published [8]. The

full resolution is 1024×1024, but we use cropped images for

some sequences in order to focus on regions of interest. Each

1http://www.vcipl.okstate.edu/otcbvs/bench/
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Table I
SUMMARY OF THE PROPERTIES OF THE THERMAL INFRARED VIDEO TIV BENCHMARK

Data Resolution #Seq. #Frames Category Density Views

OTCBVS
OSU Pedestrian [6] 360× 240 10 284 Pedestrian Sparse 1 (thermal)
OSU Color-Thermal [7] 320× 240 6 17,089 Pedestrian Sparse 1 (thermal) + 1 (visible)
IRIS Face 320× 240 N/A 8,456 Face N/A 1 (thermal) + 1 (visible)
Terravic Face 320× 240 20 23,335 Face N/A 1 (thermal)
Terravic Motion 320× 240 18 25,355 Pedestrian Sparse 1 (thermal)

Divers, Plane
Terravic Weapon 320× 240 5 1,900 Weapon N/A 1 (thermal)

LITIV [3] 320× 240 9 6,236 Pedestrian Sparse 1 (thermal) + 1 (visible)

ASL-TID [5] 324× 240 9 4,381 Pedestrian, Sparse 1 (thermal)
Cat, Horse

Our TIV up to 16 63,782 Pedestrian, Runner Sparse up to 3 (thermal)
1024 × 1024 Car, Bicycle Medium

Motorcycle, Bat Dense

Figure 1. Snapshots of TIV dataset. Sequences captured from the same scene are grouped with the same false color.

pixel is described by 16 bits and has a value typically ranging

between 3,000 to 7,000 units of uncalibrated temperature.

The frame rate was set between 5 to 131 fps depending

on the speed of the objects in the scene. The full list of

sequences is given in Table. II.

Thermal cameras typically exhibit a fixed pattern of noise

caused by the nonuniform response of the sensor across

the pixel array. For the users’ convenience, the benchmark

includes both raw data and image data after we applied a

“nonuniform two-point correction pre-process” [9], [10], in

which two uniform sources of intensity (“cold” and “hot”)

were sequentially imaged. For each pixel, the difference be-

tween the measured intensity ym and the corrected intensity

yc of the image is expressed as the linear approximation

∆y = ym − yc = a · y + b. (1)

From the hot and cold measurements, the multiplicative

gain a and additive offset b can be computed for each

pixel. The output of the nonuniform correction is obtained

by subtracting the approximated difference ∆y from the

original input ym. An example image before and after

nonuniform correction is given in Fig. 2.
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Table II
SUMMARY OF THE VIDEO SEQUENCES IN OUR TIV BENCHMARK

Name Resolution #Fra. Category Density Views

Atrium 512 × 512 7,964 People medium 2

Velifer 1024×1024 3,000 Bat Sparse 3

Bracken-

counting

1024×1024 150 Bat Dense 1

Bracken-

flow

1024×1024 10,000 Bat Dense 1

Davis08-

sparse

640 × 512 3,300 Bat Sparse 3

Davis08-

dense

640 × 512 600 Bat Dense 3

Davis08-

counting

640 × 512 300 Bat Dense 1

Davis13-

medium

1024×1024 1,500 Bat Medium 3

Frio10 1024 × 512 499 Bat Dense 1

Frio11 1024×1024 299 Bat Medium 1

Lab 512 × 512 26,760 People Medium 3

Marathon-1 1024 × 512 1,000 Pedestr. Medium 1
Marathon-2 2,999 Runner Medium 1
Marathon-3 1,275 Bicycle Medium 1
Marathon-4 1,282 Motorcy. Medium 1
Marathon-5 1024 × 640 6,000 Car Medium 1

(a) Raw Frame (b) Corrected Frame

Figure 2. Sample images for nonuniform correction.

Four out of seven scenes in TIV have multiview support.

When multiple cameras were used, all cameras were syn-

chronized with a signal generator that triggered the recording

at the same time. TIV includes camera calibration informa-

tion. For planar motion (Atrium and Lab), a homography-

based ground plane was estimated [11]. For free motion in

3D space (Velifer and Davis13-medium), we applied the self-

calibration procedure proposed by Theriault et al. [2].

In the following sections, we show the use of specific TIV

sequences to address five different visual analysis tasks.

A. Tracking a Single Object through Clutter

Tracking a single object through clutter is one of the

most active research topics in computer vision [12]. The

task starts typically with a manual initialization to specify

the object of interest. The object is then tracked through-

out the sequence. The object may experience appearance

changes, have interactions with distractors, or change its

motion pattern. Most of the state-of-the-art algorithms focus

(a) Frio10 (b) Marathon-5

Figure 3. Sample frames for single object tracking.

on appearance modeling and the search strategy, and use

machine learning tools. They typically cannot be directly

applied to infrared videos, because there are other, unique

challenges here. The thermal radiation helps the foreground

object to stand out in the image, but very often the object

also loses appearance details. Moreover, it is very difficult to

distinguish multiple objects having the same thermal profile.

To specifically highlight these two issues, we collected the

sequences Frio10 and Marathon-5 (Fig. 3).

For the Frio10 sequence, the task is to track 10 specified

bats during the emergence of the colony. The density of

the bats is high, while the resolution of each bat is small.

There are frequent partial or complete occlusions, but the

periodic motion pattern of each bat is relatively stable. For

the Marathon-5 sequence, the task is to track 10 specified

pedestrians walking on busy sidewalks and between parked

cars. The background is noisier in this case, and there are

frequent occlusions as well. Given the small resolution of

the objects in the image, we only annotated a single point

for each object and smoothed the trajectory.

Baseline Method and Evaluation. To initialize a track, we

used either the annotation from the first or the last frame.

We call these“tracking forward” and “tracking backward”

initializations. For the Frio10 sequence, the baseline is a

detection-based method that applies an object detector and

filters the state of the object by a nearest neighbor search.

The object detector requires background subtraction and

localizes the objects by computing the pixels with local in-

tensity maxima within each binary disconnected component.

For Marathon-5, the baseline is an intensity-based method

that uses normalized correlation to find the best match in

the next frame. Both methods also apply a linear dynamic

motion model to predict the position of the object when

the detection fails or the correlation score is not sufficiently

high.

To evaluate baseline performance, we computed the Eu-

clidean distance between the tracked position and the ground

truth in each frame. If the distance was smaller than a

predefined hit/miss threshold, we claimed a good match was

found. Throughout the experiments, we chose 5 pixels as the

threshold. The key metric, “success rate,” is defined as the

total number of good matches divided by the total number of

frames, with ideal value 1. We do not encourage the usage of
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(a) Frio11 (b) Marathon-2 (c) Marathon-4

Figure 5. Sample frames for multi-object tracking from a single view.

the traditional metric “mean distance error” here for reasons:

1. The error can become arbitrarily large when the tracker

drifts. 2. The resolution of the object in our experiment is

small, so the tracked pixel location within the region of the

object is not crucial. 3. The 5 pixel hit/miss threshold is

sufficiently small to guarantee that the tracked position falls

into an acceptable region of trust.

The results of the baseline methods on the two sequences

are shown in Fig. 4. The average success rate is 51% for the

Frio10 sequence, and 23% for the Marathon-5 sequence,

which suggests there is much room for future research in

tracking algorithms. In Fig. 4, we also observe that the

baseline method is sensitive to the initialization and is not

working robustly for a wide range of conditions. The poor

generalization of many tracking algorithms has also been

witnessed in visible-sensor tracking domain [12].
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(a) Frio10 (b) Marathon-5

Figure 4. Tracking results for single object tracking with tracking forward
and tracking backward initializations

B. Tracking Multiple Objects from a Single View

The classic pipeline for tracking multiple objects from a

single view involves object detection, temporal data associa-

tion and object state estimation. These steps can be arranged

in a sequential order, or placed in a batch processing mode.

We refer to Wu’s PhD thesis [13] for a detailed summary of

the state-of-the-art algorithms. In addition to detecting noisy

objects, the main challenge for thermal image analysis is to

resolve the data association ambiguity in the presence of

mutual occlusion. To address these problems, we collected

five sequences: Frio11, and Marathon-1, 2, 3, and 4 (Fig. 5).

For the Frio11 sequence, the task is to track all bats flying

across the scene. For the Marathon sequences, the task is

to track pedestrians, bicycles, motorcycles and cars. Two

different viewpoints are provided with cropped images to

focus on the region of interest. We annotated a single point

for each bat in Frio11 and a bounding box for each object

in Marathon.

Baseline Method and Evaluation. For the bat sequence, the

baseline method we adopted here is similar to the sequential

tracking method proposed by Betke et al. [14]. This method

detects bats by searching for the local maxima of each

disconnected component after background subtraction. Then

it sequentially associates detections to objects through bipar-

tite matching and applies Bayesian filtering to estimate the

motion of each bat. For the marathon sequences, we chose a

batch processing method (“SDD-Net”) [13] with a sparsity-

driven object detector that handles mutual occlusions in

the scene. The data association was implemented with the

network flow formulation.

We use the popular “CLEAR MOT” metrics [15] to

evaluate the tracking performance of our baseline methods.

The Multiple Object Tracking Accuracy (MOTA) combines

false positive detection rate, miss rate, and identity-switch

rate into a single number with ideal value 100%; the Multiple

Object Tracking Precision (MOTP) measures the average

distance between ground truth and tracker output. For

bounding box measurements, precision is defined according

to the region overlap criterion with ideal value 1. For point

measurements, it is based on the Euclidean distance with

ideal value 0. To better assess the quality, we also report

the numbers of Mostly Tracked (MT, ≥ 80%) trajectories,

Mostly Lost (ML, ≤ 20%) trajectories, track fragmentations

(FM, the number of times that a ground truth trajectory is

interrupted), and identity switches (IDS, the number of times

that a tracked trajectory changes its matched ground truth).

These metrics depend on a user-defined threshold parameter

that determines the hit/miss rates. A detection is a true

positive if the distance between the detection and its matched

ground truth is lower (or higher) than the threshold. We

chose 0.5 for the region overlap threshold, and 15 pixels for

the Euclidian distance threshold. The results of the baseline

methods [14], [13] on two TIV test sequences are shown

in Table III. It can be seen that the tracking algorithm

achieves a low miss rate for the Frio11 sequence because

of the high contrast between foreground and background,

but fails to handle frequent mutual occlusions and results

in a high ID switch error. The noisy background makes the

marathon sequences more challenging, as more than 10%
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Table III
RESULTS FOR MULTI-OBJECT TRACKING FROM A SINGLE VIEW.

Data Method MT ML FM IDS MOTA MOTP

Frio11 Betke et al. [14] 96.9% 0.8% 410 1,222 65.0% 3.3 px

Marathon SDD-Net [13] 60.9% 12.3% 172 158 62.1% 76.1%

objects were mostly lost. Clearly, even for state-of-the-art

algorithms, there is still large room to improve performance

on these sequences.

C. Tracking Multiple Objects from Multiple Views

Occlusion, especially long-term occlusion, is one of the

most difficult challenges in multi-object tracking. Occlusion

reasoning may be improved if multiple cameras with over-

lapping fields of view can be provided. However, a new

spatial data association step to establish the correspondence

across the camera views must then be introduced [13]. We

further classify the multi-object multi-view scenario into two

categories: planar motion and free 3D motion. To address

these two scenarios, we collected two sequences, Atrium and

Lab for the planar motion; and Velifer, and Davis08-sparse,

Davis08-dense and Davis13-medium for the free 3D motion.

A few sample frames are shown in Fig. 6. We further provide

camera calibration files that describe the multiview geometry

of the scene, and annotations. We annotated a bounding box

for the human sequences and a single point for each bat.

In the Atrium sequence, students are entering and leaving

a building through an open area near the/exit doors. The

students who are about to leave the building and those

who just entered the building can be distinguished by their

thermal profiles. The original video takes about 15 min but

we removed all “idle” frames with no activity.

The Lab sequence captures interactions between 6 people

walking close to each other. This sequence is more difficult

to interpret because of a low camera view point and severe

occlusion. Generally, with the help of the homography, it

is easier to track objects on the ground plane than in the

image plane. For the bat sequences, triangulation can be used

to localize the animals in 3D space. The problem becomes

more difficult as their density increases.

Baseline Method and Evaluation. For free 3D motion,

we adopted the “Reconstruction-Tracking” algorithm [16],

a variant of Multiple-Hypothesis-Tracking. This baseline

method first reconstructs the 3D location of the object by

solving a multi-dimensional assignment problem, and then

sequentially tracks each object in 3D space. An enhanced

version (“SDD-MHT”), proposed by Wu [13], applies a spar-

sity constrained optimization procedure to the reconstruction

step above. The extension proves to be very effective to

reduce the number of false positives, or “ghost points,”

which are generated by the false matches across camera

views.

Atrium - two views

Lab - three views

Bamberger - three views

Davis08 - three views

Figure 6. Sample frames for multi-object tracking from multiple views.

For the planar motion, we adopted the same sparsity driv-

en object detector [13] to detect people on the ground plane

from the foreground estimation, as described in Section II-B.

The data association step was based on Kalman filter and

bipartite matching. Note that this baseline (“SDD-KF”) and

the variants of MHT above are all sequential online tracking

methods.

To evaluate the tracking performance, the same “CLEAR

MOT” metrics [15] were used. We chose 0.5 m on the

ground plane as a miss/hit threshold for the localization of

people, and 0.3 m in 3D space as the miss/hit threshold

which approximates the physical size of a bat. Quantitative

results for multi-object tracking from multiple views are

listed in Table IV. As expected, the multi-camera setup

helps when the 3D localization step can be solved accurately.

205



Table IV
RESULTS FOR MULTI-OBJECT TRACKING FROM MULTIPLE VIEWS.

Data Method MT ML FM IDS MOTA MOTP

Atrium-1-view SDD-KF [13] 75.7% 2.4% 48 55 48.6% 72.5%
Davis08-sparse MHT [16] 96.6% 0 105 97 64.1% 8.9 cm
Davis08-sparse SDD-MHT [13] 95.2% 0 145 126 78.9% 5.7 cm

Davis08-dense MHT [16] 71.9% 2.5% 274 355 -32.0% 10.0 cm
Davis08-dense SDD-MHT [13] 61.1% 3.0% 454 444 44.9% 7.7 cm

Otherwise, more efforts are needed to improve the accuracy

of 3D localization before the tracking step takes place,

especially in dense tracking scenarios.

D. Visual Counting

The visual counting task is to count the number of objects

in the scene, a non-intrusive task for crowd analysis. One

may think a straightforward solution is to apply object

detection methods or even the multi-object tracking methods

described in previous sections. However, it still remains a

challenging problem to extend the scalability of these tradi-

tional techniques to handle very dense scenarios. Fortunate-

ly, techniques to count the objects without using an object

detector exist [17], [18], [19]. To encourage research in this

direction, we provide two sequences “Davis08-counting”

and “Bracken-counting” to count the bats in a given region-

of-interest, as shown in Fig. 7. For each frame, we only give

the total number of bats as ground truth. We also provide a

few training data that contain the location of every bat in an

image.

Figure 7. Sample frames for counting.

Baseline Method and Evaluation. Counting methods

can be broadly categorized by three classes: counting-by-

detection, counting-by-regression, and counting-by-density-

estimation. The counting-by-detection method typically

needs a visual object detector to localize the object’s position

in the image. With the localization information, the counting

is a trivial problem. The counting-by-regression method

learns a regression model that directly maps some global fea-

tures of the image to a number and for which it needs a large

amount of training data. Finally, the counting-by-density-

estimation method estimates the object density at each pixel

based on local features, and integrates the density over the

entire image. Here we report results on the two sequences

with a customized bat detector [14] and a density estimation
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(a) Counting results on Davis08-Counting
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(b) Counting results on Bracken-Counting

Figure 8. Comparison of frame-by-frame counting results of two baseline
methods, the counting-by-density-estimation method (Density Meth.) and
the counting-by-detection method (Detection Meth.) with the ground truth.

method [18]. The detector searches for the local maximum

points, or key points, in each disconnected component after

background subtraction. The final count is the total number

of key points after non-maximum suppression. The density

estimation method first computes dense SIFT features for the

entire image and then approximates the density at each pixel

by a linear transformation of the quantized SIFT feature. The

final count is the integration of the density function over the

image.

Frame-by-frame counting results on Davis08-counting

and Bracken-counting are shown in Fig. 8. The mean num-
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Figure 9. Sample frames for group motion estimation and flow vector
annotations.

bers of objects per frame for these two sequences are 356

and 250, respectively. Both methods tended to underestimate

the number of objects in the crowds due to partial or

even complete occlusion. No temporal information was used

here. To evaluate the two methods, we computed the mean

counting error over all frames as well as the standard

deviation. The detection method achieved a 7.1± 5.8 error

on Davis08-counting and a 10.4± 6.5 on Bracken-counting,

while the density estimation method achieved 7.4 ± 5.0

and 11.8 ± 9.7, respectively. Given the fact that occlusion

is difficult to resolve on image plane here, we believe it

is promising to incorporate temporal information into the

counting frameworks above.

E. Group Motion Estimation

Recent progress in visual event monitoring goes beyond

the analysis in individuals. Crowd motion or group behav-

ior studies have become popular in the computer vision

community [20]. Unlike previous topics, one of the main

challenges here is the actual lack of data as well as ground

truth annotations. Meanwhile, researchers are still trying

to devise interesting topics in different contexts and make

formal problem definitions for them. Here we provide a long

sequence, Bracken-flow, that shows part of the emergence

of a Brazilian free-tailed bat colony. There are different

group formations during the emergence, and we would like

to continuously identify those motion patterns throughout

the sequence using some group motion estimation method.

Some unique patterns are shown in Fig. 9.

We manually divided the sequence Bracken-flow into

multiple segments, each of which is associated with a motion

pattern label. Some motion patterns repeat multiple times

in the sequences. For each unique motion pattern, we also

annotated the instantaneous flow vector (i.e., flow between

2 frames) for 10 examples. The annotations of the flow

vector are noisy due to the high density of the objects in

the scene. For a group behavior study, we are less interested

in the accurate analysis of an individual. Instead, a high-level

global description is desired. So the annotated flow vector

here is only for reference purposes. This topic remains an

open problem, and we expect to see algorithms dedicated to

solving such problems in future.

III. SUMMARY

With this paper, we introduced a new thermal infrared

video dataset. We designed it to be extensive and diverse,

and to include scenarios not present in existing datasets.

Our intension is to provide a challenging benchmark for

addressing several visual analysis tasks. We hereby publish

the dataset, annotations, and the source code of the baseline

methods with the evaluation protocols used to obtain the

results in this paper and make them available to the public

at http://csr.bu.edu/BU-TIV/.

Our preliminary study with this dataset showed that ther-

mal infrared videos are not necessarily easier to process than

data from visible sensors. We expect to see new ideas emerge

in the future. Other researchers may design algorithms

specifically for thermal infrared videos and improve the

analysis results.

In near future, we plan to add data to the proposed

benchmark. We will provide videos of additional scenes, as

well as data from moving cameras, or camera network with

non-overlapping fields of view.
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