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Abstract

Thermal fracture is prevalent in many engineering problems and is one of the most devastating defects
in metal additive manufacturing. Due to the interactive underlying physics involved, the computa-
tional simulation of such a process is challenging. In this work, we propose a thermo-mechanical
phase-field fracture model, which is based on a thermodynamically consistent derivation. The influ-
ence of different coupling terms such as damage-informed thermomechanics and heat conduction and
temperature-dependent fracture properties, as well as different phase-field fracture formulations, are
discussed. Finally, the model is implemented in the finite element method and applied to simulate
the hot cracking in additive manufacturing. Thereby not only the thermal strain but also the solidifi-
cation shrinkage are considered. As for thermal history, various predicted thermal profiles, including
analytical solution and numerical thermal temperature profile around the melting pool, are regarded,
whereas the latter includes the influence of different process parameters. The studies reveal that the
solidification shrinkage strain takes a dominant role in the formation of the circumferential crack,
while the temperature gradient is mostly responsible for the central crack. Process parameter study
demonstrates further that a higher laser power and slower scanning speed are favorable for keyhole
mode hot cracking while a lower laser power and quicker scanning speed tend to form the conduction
mode cracking. The numerical predictions of the hot cracking patterns are in good agreement with
similar experimental observations, showing the capability of the model for further studies.

Keywords: Thermal fracture, Hot cracking, Phase-field fracture, Additive manufacturing, Powder
bed fusion

1. Introduction

Fracture is a prominent issue for many structures and components in the engineering field. In
various practical applications, fracture is coupled with other involved physics which in return severely
influence the damage progression inside the material. As an example, when a piece of solid material
is subjected to a sharp temperature variation, the thermal stress induced by the non-uniform thermal
expansion results in breakage once it exceeds the material fracture strength. The latter phenomenon
is known as thermal fracture or thermal shock. Specifically, for metal additive manufacturing (AM),
thermal fracture plays an important role. Here, the subsequent layers of powders or wires are applied
on top of the previous layers until the whole component is manufactured. Therefore, the material
layers undergo complex thermal cycling history, where a non-uniform thermal field is formed and
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gives rise to thermal stress. In common practice, the thermal fracture happens, also known as hot
cracking in AM.

1.1. Hot cracking in additive manufacturing

There are many defects in the process of AM, such as porosity, inclusion, unmelting, and residual
distortion [26, 32, 65]. Hot cracking is one of the most common and devastating defects that hinder
the widespread application of AM in the engineering field. As shown in Fig. 1, in the process of
AM, specifically Powder Bed Fusion (PBF), different hot cracking patterns are observed in the cross-
section of single track samples. Typically for the conduction mode AM process, the hot cracking
shows as circumferential crack, while for the keyhole mode AM process, it shows as a combination of
circumferential crack and central crack. The two different patterns are referred to as the conduction
mode hot cracking and keyhole mode hot cracking, respectively.
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Fig. 1. Schematic of PBF process and hot cracking phenomenon. Different hot cracking patterns
in the melting pool for conduction mode and keyhole mode hot cracking with the increase of energy
density.

Hot cracking is the formation of cracks in and around the melt pool during the AM. The low
melting compositions solidify at the gap of dendrite and occur as intercrystalline and/or interden-
dritic cracks [53, 10, 35]. This process is the result of the competition between the mechanical driving
forces (mainly from the thermal stress) and the material’s intrinsic resistance to cracking [11]. It is
a dynamic process covering multi-physics at different time scales and length scales, which makes the
investigation of this phenomenon extremely challenging. Some works have been reported concern-
ing microstructural characterization and hot cracking susceptibility in the different AM processes.
Recently, Wu et al. [57] established the relationship between the microstructural evolution and
hot cracking susceptibility to reveal the hot craking mechanism by three-dimensional X-ray micro-
tomography technique, see also [58]. Chauvet et al. [10] elucidated the mechanism and the origin
of cracking in a non-weldable Ni-based superalloy fabricated by selective electron beam melting (S-
EBM) and concluded that the presence of liquid films is required and the hot cracking susceptibility
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depends on the grain boundary misorientation. Stopyra et al. [46] aimed at finding the process
window for the laser powder bed fusion (LPBF) manufacturing of defect-free components of AA7075
alloy, and found that the solidification cracks are formed by the liquid film rupture mode. Lu et al.
[35] obtained the same results with directed energy deposition. The effect of thermal gradient on the
hot cracking tendency is also studied. In the work of Chen et al. [11], the effect of thermal gradient
on the grain boundary misorientation and hot cracking tendency during the laser additive manu-
facturing of IN718. The result shows that highly ordered dendrites were established and liquation
cracking tendency was reduced under improved base cooling.

There are also some simulation works conducted from the perspective of microstructure charac-
terization to gain a better understanding of the process [13, 4, 55]. Gao et al. [18] studied the hot
cracking in laser welding with a multi-scale modeling approach, where the thermal field is calculated
with the finite element method and microstructural evolution by phase-field modeling. Vrancken et
al. [52] combined thermo-mechanical simulations with in situ high-speed videos of microcracking
in single laser-melted tracks and found microcracking occurs in a narrow temperature interval. A
multi-scale model was developed by Nie et al. [41] by combining the finite element method and
stochastic analysis.

While extensive experimental studies on additive manufactured microstructures and hot cracking
have been performed, the mechanism is still not fully understood. The latter point limits the process
optimization to avoid cracking and to improve product quality. An important task, therefore, is
to derive physical models and carry out reliable numerical simulations. Surprisingly, the numerical
model of hot cracking is very limited, particularly not in multiphysics scenario.

1.2. Phase-field fracture model

Computational modeling of thermal fracture has been studied extensively with different approaches.
In particular, phase-field modeling of fracture in solids has received extensive theoretical and compu-
tational attention. In the framework of the phase-field method, the sharp interface is replaced by a
continuous field variable, i.e. order parameter to differentiate multiple phases smoothly. Specifically,
for the phase-field fracture (PFF) model, the non-smooth crack is regularized by the diffusive crack
with an auxiliary field variable d in the range of 0 to 1, with 0 denoting unbroken state and 1 fully
broken state. The regularization is governed by the length-scale parameter `0 which controls the
width of the diffusive zone. The diffusive crack topology approaches the sharp crack topology when
`0 goes towards 0 according to the Γ-convergence [9]. Therefore, PFF describes the crack interface
continuously and no additional tracking of the surface is needed. Meanwhile, based on the varia-
tional framework, it does not need an ad-hoc failure criterion and the framework makes it easy to
incorporate other physics (e.g. thermal field) as well.

The phase-field modeling of brittle fracture originated from the work by Francfort and Marigo
[17]. They proposed a phase-field fracture model from the variational approach to brittle fracture
of reformulating Griffith’s energy criterion [20]. It aims to get the displacement field and fracture
field simultaneously by minimizing the total potential energy as the sum of the fracture energy
and elastic energy of the crack system. Karma et al. [25] proposed conceptually similar phase-
field approach to brittle fracture based on the classical Ginzburg-Landau evolution equation. The
numerical implementation of the model of brittle fracture developed in [17] and [7], see also [8, 2]. PFF
has the flexibility to simulate crack initiation, propagation, merging as well as branching, and thereby
is extended to various fracture problems, such as ductile fracture [22, 1], dynamic fracture [6, 19],
hydraulic fracture [39, 51], viscoelastic fracture [64], anisotropic fracture [27, 44] and multiphysics
fracture problems [60, 59].
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PFF model is also applied to study thermal fracture. Miehe et al. [40] extended the PFF to-
ward coupled thermo-mechanical and multi-physics problems at large strain. Li et al. [30] presented
phase-field modeling of quasi-static cracking in urania ceramic under multiphysics including neutron
radiation and high-temperature. Different PFF models apart from the standard PFF model are
also utilized. For example, Tangella et al. [49] presented numerical modeling of the thermo-elastic
fracture using a hybrid phase-field method. Mandal et al. [37] extended the phase-field regularized
cohesive zone model (PF-CZM) into multiphysics and presented a monolithic BFGS algorithm to
solve thermo-elastic fracture. Some works also studied thermal fracture of single crystal and poly-
crystalline materials. Razwan et al. [45] investigated brittle fracture of polycrystalline materials
due to thermal stress arising from anisotropic thermal expansion. Zhang et al. [66] proposed a
phase-field fracture model that includes single crystal anisotropy in both the elastic constants and
the fracture energy. Li et al. [29] developed a phase-field approach to model hydro-thermally induced
crack propagation in thermo-poroelastic media. Badnava et al. [3] investigated thermo-mechanical
induced cracks using a phase-field model in 2D and 3D continua in homogeneous and heterogeneous
materials. The influence of crack on the thermal field was also studied, specifically the heat conduc-
tion. Svolos et al. [47] proposed a thermal-conductivity degradation function derived from a novel
micromechanics analytical approach using spherical harmonics, and showed that the thermal conduc-
tivity across cracks must be degraded to satisfy crack Neumann boundary conditions. Furthermore,
they proposed a new anisotropic approach [48] in which thermal conductivity, which depends on the
phase-field gradient, is degraded solely across the crack.

Despite the previously mentioned progress, the thermodynamic consistency of the fully coupled
phase-field model for thermal fracture is not investigated properly. One of our first goals in this
work is to develop a consistent framework for the phase-field model of thermal fracture, in which
various coupling aspects between different fields are included. In this model, the temperature field
interacts with the displacement field and the crack field. The coupling effects like damage-informed
thermoelasticity and heat conduction, and temperature-dependent fracture properties are interac-
tively considered. Particularly, the degradation of elastic energy and thermal conductivity due to
cracking and the temperature-dependent fracture toughness are studied to recapture the heat trans-
fer behavior and the crack pattern more accurately. Furthermore, to the authors’ best knowledge
such a method is not yet applied to studies on hot cracking in AM process which belongs to our next
main goal in this contribution.

Based on the reviewed literature, this paper aims to cover some shortcomings related to thermo-
fracture modeling as well as the application of the PFF model in AM process. In Section 2, the
thermodynamically consistent phase-field model for thermo-elastic brittle fracture is presented, which
is derived from the basic principles of thermodynamics. In Section 3, the weak form and numerical
discretization of the problem for implementation with the finite element method are provided. In
Section 4, several numerical examples are then presented. The model is validated by the canonical
single edge notched tension test and further quenching test. Subsequently, the proposed model is
applied to study the different hot cracking patterns in AM process. The influence of different process
parameters on the hot cracking patterns is also investigated. Finally, the conclusions and outlook of
the current study are presented.

2. A thermo-mechanical phase-field brittle fracture model

The current work focuses on the thermo-mechanical coupling and its impact on hot cracking during
PBF. To single out the phenomenon, we assume first small deformation, elastostatics and the brittle
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fracture behavior. Such assumptions are applicable for the brittle materials e.g. ceramics or brittle
glass. For metallic materials, plasticity and ductile fracture should be addressed. However, it should
be noted that in any case they share some common thermo-mechanical coupling mechanisms, which
is the objective of this work. Soon after these mechanisms are understood in the linear and brittle
scenario, the extension of this framework for the nonlinear deformation and for the elastoplastic
ductile fracture can be expected in the next steps. For thermo-elastic coupled brittle fracture, the
primary field variables consist of the displacement field u(x, t), the damage field d(x, t) and the
temperature field T (x, t).

2.1. Energy dissipation inequality

The second law of thermodynamics, which is expressed in the form of local Clausius-Duhem inequality
is utilized here to derive the thermodynamically consistent constitutive laws of the model. The
detailed derivation is provided in the appendix A. For this thermoelastic coupled problem, the local
dissipated energy D considering the power produced by the micro and macro forces, is given as

D = σ : ε̇+Kḋ+H · ∇ḋ− ρ(ψ̇ + Ṫ η)− 1

T
∇T · q ≥ 0. (1)

Here, σ is the Cauchy stress tensor, ε is the total strain, ψ denotes the Helmholtz free energy, η
denotes the entropy, H is micro-traction on crack surfaces, K is the internal micro-forces, and ρ is
the material density.

The Helmholtz free energy ψ is decomposed into elastic energy ψe, fracture energy ψc and thermal
energy ψT parts, as follows

ψ = ψ(ε, d,∇d, T ) = ψe(ε, d, T ) + ψc(d,∇d, T ) + ψT (T ). (2)

The specific energy terms will be explained in the following subsections. For the above equation, the
rate of the free energy change is given by

ψ̇ = ψ̇e + ψ̇c + ψ̇T , (3)

where for the rate of each component we have

ψ̇e =
∂ψe

∂ε
: ε̇+

∂ψe

∂d
ḋ+

∂ψe

∂T
Ṫ

ψ̇c =
∂ψc

∂d
ḋ+

∂ψc

∂(∇d)
· ∇ḋ+

∂ψc

∂T
Ṫ

ψ̇T =
∂ψT

∂T
Ṫ

(4)

Substituting Eq. 4 into Eq. 3 and regrouping terms, the total free energy rate reads:

ψ̇ =
∂ψe

∂ε
: ε̇+

(
∂ψe

∂d
+
∂ψc

∂d

)
ḋ+

∂ψc

∂(∇d)
· ∇ḋ+ (

∂ψe

∂T
+
∂ψc

∂T
+
∂ψT

∂T
)Ṫ . (5)

Therefore, the Clausius-Duhem inequality (Eq. 1) is rewritten as

(
σ − ρ∂ψ

∂ε

)
: ε̇+

(
K − ρ∂ψ

∂d

)
ḋ+

(
H − ρ ∂ψ

∂(∇d)

)
· ∇ḋ−

(
ρη + ρ

∂ψ

∂T

)
Ṫ − 1

T
∇T · q ≥ 0. (6)

5



Note that here elastostatic and quasi-static fracture are adopted. The inequality in Eq. 6 must
hold for any arbitrary thermodynamic processes. Hence, the coefficients of the dissipative terms are
non-negative while the coefficients of the non-dissipative terms must vanish. Following the Coleman-
Noll procedure [12] for a thermodynamically consistent model the thermoelastic laws are

Elastic stress tensor: σ = ρ
∂ψ

∂ε
= ρ

∂ψe

∂ε

Micro-traction equation: H = ρ
∂ψ

∂(∇d)
= ρ

∂ψc

∂(∇d)

Internal micro-force equation: K = ρ
∂ψ

∂d
= ρ

∂ψe

∂d
+ ρ

∂ψc

∂d

Entropy equation: η = −∂ψ
∂T

(7)

Following the above assumptions for the thermodynamics forces, the remaining part of the dissipation
inequality reads:

−∇T · q ≥ 0. (8)

The above relation is also referred to as heat conduction inequality.

2.2. Damage informed thermoelasticity

The balance of the linear momentum equation in the tensorial notation and in the absence of the
body force reads

∇ · σ = 0, (9)

where ∇· is the divergence operator. The total strain ε is additively decomposed into the elastic
part and the thermal part:

ε = εe + εt = ∇su :=
1

2

(
∇u+∇Tu

)
, (10)

where εe denotes the elastic strain. The thermal strain εt follows a linear expansion law:

εt = αt(T − T0)I, (11)

where αt is thermal expansion coefficient, T0 is the initial temperature and I is the second-order
identity tensor. The total elastic free energy density for an undamaged body can be expressed as

ψe =
1

2
εe : Ce : εe =

λ

2
(tr εe)

2 + µtr(ε2
e). (12)

The fourth-order elastic stiffness tensor is denoted by Ce, and is expressed for isotropic elastic ma-
terials in terms of Lame constant λ and µ as

Ce = λI ⊗ I + 2µIS, (13)

where IS is the symmetric fourth-order identity tensor, ⊗ denotes the dyadic product of two second
order tensors. In the indicial notation, the symmetric fourth-order identity tensor is expressed
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(IS)ijkl =
1

2
(δikδjl + δilδjk), where δij is the Kronecker symbol, and the second-order identity tensor

is defined as Iij = δij.
To differentiate degradation in tension from compression, we additively decompose elastic strain

energy density ψe into a positive (tensile) part ψ+
e and a negative (compressive) part ψ−e :

ψe = ψ−e + f(d)ψ+
e . (14)

Here the function f(d) is the so-called degradation function, which has the following properties:

f(d) ∈ [0, 1], f(0) = 1, f(1) = 0; f ′(d) < 0, f ′(1) = 0. (15)

The choice of f(d) will be discussed in detail in the following. For the decomposition method, the
spectral decomposition of the strain tensor is utilized:

εe = ε+
e + ε−e , ε±e =

3∑
i=1

〈εi〉±ni ⊗ ni. (16)

Here, εi=1,2,3 are the principal strains and ni=1,2,3 denote the principal strain directions. The

Macaulay bracket operator is defined as 〈x〉 =

{
x if x ≥ 0,
0 if x < 0.

Therefore, for the different parts

of the elastic energy we have

ψ±e =
λ

2
(〈tr εe〉±)2 + µtr

(
〈εe〉±

2
)
. (17)

In this formulation, only the tensile component contributes to fracture. Similarly, the degraded stress
tensor can be derived as

σ =
∂ψe

∂ε
= f(d)

∂ψ+
e

∂ε
+
∂ψ−e
∂ε

= f(d)σ+ + σ−, (18)

where
σ± = λ〈tr εe〉± + 2µ〈εe〉±. (19)

In this paper, we explore also the applicability of the very promising cohesive phase-field (CPF)
fracture model [34, 56, 19], which characterizes itself by two main features: the threshold for damage
initiation and insensitivity to the length scale `0. Thereby the degradation function for elastic energy
is defined as

f(d) =
(1− d)2

(1− d)2 + a1d(1 + a2d+ a3d2)
. (20)

In the above equation, a1 =
4 lch
π`0

, a2 = −1

2
and a3 = 0 are selected to represent the cohesive nature

of fracture in the process zone. Furthermore, lch =
EGc

σ2
u

is the Irwin’s length which measures the size

of the fracture process zone. The smaller this length scale is, the more brittle the material behaves.
The parameters a2 and a3 are the shape parameters and can be tuned to represent the different
softening curves [56].

To prevent cracks from healing when ψ+
e decreases, the irreversibility condition is enforced. A

history variable H is introduced, which must satisfy the Karush-Kuhn-Tucker (KTT) conditions:

ψ+
e −H ≤ 0, Ḣ ≥ 0, Ḣ

(
ψ+
e −H

)
= 0. (21)
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Thus, the history variable can be written as

H = max
t

(ψ+
e (εe, t), ψth). (22)

where the damage threshold ψth is defined as

ψth =
σ2
u

2E
. (23)

where σu is the material strength and E Young’s modulus. Eq. 22 implies that before the onset of
any damage the material is characterized by an elastic domain, until the ψth is reached.

2.3. Temperature-dependent phase-field fracture model

Consider a cracked solid Ω with an external boundary denoted by ∂Ω and a crack set Γ. Starting
from Griffith’s theory in the fracture mechanics, the total fracture energy is given by

Ψc =

∫
Γ

Gc(T ) dA =

∫
Ω

Gc(T )γ(d,∇d)dV. (24)

In the above relation, we substitute the surface integral with a volumetric integral which yields an
approximation of the fracture energy [2, 38]. Here, γ is the crack surface density function and is
defined as

γ(d,∇d) =
1

c0

(
1

`0

ω(d) + `0|∇d|2), c0 = 4

∫ 1

0

√
ω(β)dβ. (25)

In the above equation, the geometric function ω(d) characterizes the homogeneous evolution of the
phase-field crack, which has the properties

ω(d) ∈ [0, 1], ω(0) = 0, ω(1) = 1;ω′(d) > 0. (26)

`0 is the length scale parameter regularizing the sharp crack, which is related to the diffusive crack
width, and finally, c0 > 0 is a scaling parameter (see also [38, 56]).

Different choices of the geometric function and degradation function results in different phase-
field fracture models. The three most commonly used models are listed in Table 1. In the following
session, the AT2 model, which is more often used so far than AT1, is chosen to compare with the
CPF model.

Table 1. Different phase-field fracture models.

Features
Models

AT1 AT2 CPF

ω(d) d d2 2d− d2

c0
8

3
2 π

f(d) (1− d)2 (1− d)2 (1− d)2

(1− d)2 + a1d(1 + a2d+ a3d2)

For the AT2 model, the geometric function and degradation function takes the quadratic form,
with which the predicted material strength shows a strong dependence on `0 [33]. In the work of
Lorentz et al. [33, 34] and Wu et al. [56], a rational degradation function was proposed. It is shown
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that the material response for this formulation converges to the sharp interface behavior (cohesive
zone) as `0 decreases [43]. The specific form of the length-scale-insensitive model is taken in this work.
One advantage thereby lies in the fact that it allows to prescribe the ultimate strength σu, in addition
to the fracture energy value Gc. As a result, the model takes the cohesive nature of the fracture
into account and can produce numerical results which converge with respect to the internal length
scale parameter. The latter point can be an interesting option for problems containing multiphysics
fracture since the influence of the length scale on the results can be omitted.

For quasi-static fracture assuming that micro-inertia is negligible, the micro-force momentum
balance equation is given by

∇ ·H = K. (27)

where H and K are defined in Eq. 7. Employing the the micro-force balance equation and using
the fracture free energy given in 24, the phase-field governing equation reads:

Gc

c0`0

ω′(d)− Y − 2Gc`0

c0

∇2d = 0, (28)

where the driving force of the phase-field is defined as

−Y =
∂ψe

∂d
= f ′(d)H. (29)

In thermo-mechanical problems, the temperature range can be considerable. Consequently, the
variation of Gc with the temperature near the crack tip cannot be ignored, which affects both
the initiation of crack onset for a non-isothermal quasi-brittle fracture and the dynamics of crack
propagation [14]. Thus the temperature-dependency of Gc needs to be taken into account to capture
the crack patterns more accurately. For brittle materials, the dependency of Gc with temperature
in this work is based on the description [28]. For quasi-brittle materials, the analytical relations of
Gc with temperature can be found in [5]. In this work, Gc is considered temperature-dependent and
takes the form as

Gc = Gc0[1− b1
T − Tref
Tmax

+ b2(
T − Tref
Tmax

)2]. (30)

Here, b1 and b2 are constant model parameters, Tref and Tmax are the reference temperature and
the maximum temperature, respectively, and Gc0 is the value of Gc at Tref . In this work, b1 = 1.80,
b2 = 1.10, Tref and Tmax are 300 K and 1000K, respectively.

2.4. Damaged informed heat conduction

The energy balance equation, derived from Eq. A.8 is written as

ρė = σ : ε̇+Kḋ+H · ∇ḋ−∇ · q +Q. (31)

Given the relation e = ψ + Tη one can write:

ė = ψ̇ + Ṫ η + T η̇. (32)

Considering ψ = ψ(ε, d,∇d, T ) and the thermodynamic relations obtained in Eq. 7, we can obtain

ψ̇ =
1

ρ

(
σ : ε̇+Kḋ+H · ∇ḋ− ρṪ η

)
. (33)
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Substituting Eq. 33 into Eq. 32, we have

ρė = σ : ε̇+Kḋ+H · ∇ḋ+ ρT η̇. (34)

Comparing Eqs. 31 and 34, one can conclude

ρT η̇ = −∇ · q +Q. (35)

Note that η(ε, d,∇d, T ) = −∂ψ
∂T

. Therefore for the specific entropy rate we have

η̇ = −
(
∂2ψ

∂T∂ε
: ε̇+

∂2ψ

∂T∂d
ḋ+

∂2ψ

∂T∂(∇d)
∇ḋ+

∂2ψ

∂T 2
Ṫ

)
= −1

ρ

(
∂σ

∂T
: ε̇+

∂K

∂T
ḋ+

∂H

∂T
∇ḋ− ρ ∂η

∂T
Ṫ

)
.

(36)

Next, we consider the Fourier’s law by means of which the inequality relation in Eq. 8 is automatically
satisfied:

q = −k(d)∇T. (37)

Here k(d) is the degraded thermal conductivity affected by the phase-field d and it is expressed as

k(d) = g(d)k0. (38)

In the above relation, k0 is the thermal conductivity of the undamaged material, and g(d) is a thermal
degradation function which ensures that no heat flux exists across the crack. Though there are other
forms of thermal degradation proposed in the work of [47, 48], an isotropic conductivity degradation
g(d) = (1− d)2 + ξ is adopted here, where ξ is a small number for numerical and physical purposes.
Substituting Eq. 36 into Eq. 35 we have

−T
(
∂σ

∂T
: ε̇+

∂K

∂T
ḋ+

∂H

∂T
∇ḋ− ρ ∂η

∂T
Ṫ

)
= k(d)∇2T +Q. (39)

By introducing the specific heat defined as

c = T
∂η

∂T
, (40)

the complete form of the heat equation reads:

ρcṪ = k(d)∇2T + T

(
∂σ

∂T
: ε̇+

∂K

∂T
ḋ+

∂H

∂T
∇ḋ
)

+Q. (41)

Eq. 41 can degenerate to the conventional heat conduction equation for heat conduction with an
internal heat source. At this point, we adopt the formulation for the quasi-static crack propagation
where the transient coupling terms ε̇ and ḋ vanish. Thereby, in the current implementation, the heat
equation takes the form as

ρcṪ = k(d)∇2T +Q. (42)
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2.5. Summary of governing equations

With the energy terms of the multiphysics problem being defined, the strong form of the quasi-
static fracture problem, following the balance laws and constitutive relations described above, can
be summarized as follows

Momentum balance: ∇ · σ = 0 (43a)

Phase-field equation:
Gc

c0`0

ω′(d)− 2Gc`0

c0

∇2d− Y = 0 (43b)

Heat equation: ρcṪ = k(d)∇2T +Q (43c)

with the Dirichlet boundary conditions and the Neumann boundary conditions
u(x, t) = u∗(x, t) x ∈ ∂Ωu,
d(x, t) = d∗(x, t) x ∈ Γ,
T (x, t) = T ∗(x, t) x ∈ ∂ΩT .

(44)

{
σ · n = t∗ x ∈ ∂Ωt,
q · n = q∗ x ∈ ∂Ωq.

(45)

Here, the boundary is partitioned into Dirichlet and Neumann type conditions. Specifically, the
boundary is split as follows

∂Ω = ∂Ωu ∪ ∂Ωt, ∂Ωu ∩ ∂Ωt = ∅, ∂Ω = ∂ΩT ∪ ∂Ωq, ∂ΩT ∩ ∂Ωq = ∅, (46)

where ∂Ωu, ∂Ωt, ∂ΩT and ∂Ωq is the part of boundary on which the prescribed displacement u∗,
traction t∗, temperature T ∗ and heat flux q∗ are imposed, respectively, Lastly, the governing equations
are supplemented with the following initial conditions. The initial state of the system is considered
to be undeformed, undamaged, and unstressed with temperature T0(x).

u(x, 0) = 0 x ∈ Ω,
d(x, 0) = 0 x ∈ Ω,
T (x, 0) = T0(x) x ∈ Ω.

(47)

3. Numerical implementation

3.1. Finite element discretization

This section presents the finite element implementation of the model. The weak form is constructed
by multiplying the equations in Eq. 43(a-c) by a corresponding arbitrary test function and integrating
them over the domain of the problem. After partial integration, the weak forms take the form:∫

Ω

σ : ∇δudV −
∫

Ωt

t∗δudS = 0, (48a)∫
Ω

Gc

`0c0

ω′(d)δddV +

∫
Ω

2Gc`0

c0

∇d∇δddV +

∫
Ω

g′(d)HδddV = 0, (48b)∫
Ω

k∇T∇δTdV −
∫

Ωt

k∇TδTdS +

∫
Ω

ρcṪ δTdV −
∫

Ω

QδTdV = 0. (48c)
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Utilizing the standard finite element method, the displacement field u, the phase-field d and the
temperature field T , as well as their first spatial derivatives, are approximated as

u =
∑
N i

uui = Nuue, ε =
∑
Bi

uui = Buue,
d =

∑
N i

ddi = Ndde, ∇d =
∑
Bi

ddi = Bdde,
T =

∑
N i

TTi = NTTe, ∇T =
∑
Bi

TTi = BTTe.
(49)

Here, ui, di and Ti are the nodal values of the displacement, damage and temperature field of node i of
element e, respectively. Nu, Nd, NT and Bu, Bd, BT denote the shape functions and their derivatives
for the displacement, damage field and temperature, respectively, Nu, Nd, NT and Bu, Bd, BT are
the corresponding shape function matrix and derivatives. For a quadrilateral 2D element they are
written as

Nu =

[
N1 0 · · · N4 0
0 N1 · · · 0 N4

]
, Bu =

N1,x 0 · · · N4,x 0
0 N1,y · · · 0 N4,y

N1,y N1,x · · · N4,y N4,x

 , (50)

Nd =
[
N1 · · · N4

]
, Bd =

[
N1,x · · · N4,x

N1,y · · · N4,y

]
, (51)

NT =
[
N1 · · · N4

]
, BT =

[
N1,x · · · N4,x

N1,y · · · N4,y

]
. (52)

With the above finite element discretization, we obtain the following equations for the residuals of
different fields:

ru =

∫
Ω

[Bu]TσdV −
∫

Ωt

[Nu]T t∗dS, (53a)

rd =

∫
Ω

Gc

`0c0

ω′(d)[Nd]
TNddV +

∫
Ω

2Gc`0

c0

[Bd]
TBddV +

∫
Ω

g′(d)[Nd]
THdV, (53b)

rT =

∫
Ω

[BT ]TkBTdV −
∫

Ωt

[BT ]TkNTdS +

∫
Ω

ρcṪ [NT ]dV −
∫

Ω

[NT ]TQdV. (53c)

3.2. Staggered solution scheme

In general, the energy functional of the thermal fracture problem is non-convex with respect to its
variables when all the field variables are considered simultaneously. Therefore it is challenging to
solve all the unknown variables at the same time utilizing the conventional Newton-Raphson method.
However, the problem is convex with respect to the variables u and d separately when the other is
fixed. The latter approach which is also known as the staggered minimization algorithm improves
the convergence of the numerical solver. In this work, the thermo-mechanical coupled problem is
first solved in a monolithic way with a fixed crack field. Then the phase-field crack problem is solved
with the updated displacement and temperature values. For the (i + 1)th time step, first, we solve
for the nodal displacements and temperature field from the coupled thermo-mechanical problem. At
this point, the crack is fixed at d(k) obtained in the previous iteration. Therefore, we first solve for{

r
(i+1)
u =

∫
Ω

[Bu]TσdV −
∫

Ωt
[Nu]T t∗dS,

r
(i+1)
T =

∫
Ω

[BT ]TkBTdV −
∫

Ωt
[BT ]TkNTdS +

∫
Ω
ρcṪ (i+1)[NT ]dV −

∫
Ω

[NT ]TQdV,
(54)
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where σ = σ(u(i+1), d(i), T (i+1)), k = k(d(i)) and Gc = Gc(T
(i+1)). This standard thermo-mechanical

problem can be solved by the Newton method, with the equation[
Kuu KuT

KTu KTT

] [
∆u
∆T

]
=

[
r

(i+1)
u

r
(i+1)
T

]
. (55)

Next, we solve the nodal unknowns for the crack problem with the updated nodal displacement and
nodal temperature u(i+1), T (i+1) i.e,

r
(i+1)
d =

∫
Ω

Gc

`0c0

ω′(d)[Nd]
TNddV +

∫
Ω

2Gc`0

c0

[Bd]
TBddV +

∫
Ω

g′(d)[Nd]
TH(i+1)dV. (56)

The linearization of the above relation yields

Kdd∆d = r
(i+1)
d (57)

Based on the above explanations, the algorithm for thermal fracture is summarized in Algorithm
1.
Algorithm 1 Staggered minimization algorithm at time interval [tn, tn+1]

1: Inputs: solutions of temperature field Tn, displacement field un, crack field dn at former time
step tn.

2: Outputs: temperature field Tn+1, displacement field un+1, crack field dn+1 at current time step
tn+1.

3: Set i = 1, Tolerance = 1e-8.
4: Set T

(0)
n+1 ← Tn, u

(0)
n+1 ← un, d

(0)
n+1 ← dn

5: repeat
6: Compute T

(i)
n+1, u

(i)
n+1 and fix d

(i−1)
n+1

7: Compute d
(i)
n+1 and fix T

(i)
n+1, u

(i)
n+1

8: Check the irreversibility constraint d
(i)
n+1 ≥ dn

9: i ← i+1
10: until | d(i)

n+1 − d
(i−1)
n+1 | ≤ Tolerance

11: Update solutions Tn+1 ← T
(i)
n+1, un+1 ← u

(i)
n+1, and dn+1 ← d

(i)
n+1

The model is numerically implemented by the Finite Element Method within the framework of
Multiphysics Object-Oriented Simulation Environment (MOOSE) [42]. It is worth noting that the
Automatic Differentiation (AD) capabilities in MOOSE are utilized here, which is a symbolic differ-
entiation method [31]. It applies the chain rule and propagates derivatives to elementary operations
at every step. AD offers a very accurate Jacobian at a relatively small overhead cost. Thus there is
no need to compute Jacobian by hand which is arduous and prone to errors in the context of multi-
physics problems, shifting the burden of computing the derivatives of the complex known expressions
for the free energies from the user to the software. MOOSE employs the DualNumber class from the
MetaPhysicL package to enable forward-mode AD capabilities [36].

4. Benchmark examples

Before the developed model is applied for hot cracking simulations in the complex situation during
AM in the next section, simulation results on a few benchmark thermal fracture problems are pre-
sented in this section to demonstrate and check the reliability of the proposed model. Thereby the
single edge notched tension test with the thermo-mechanical loading and the quenching test of a
solid plate are studied, respectively.
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4.1. Single edge notched tension test

We start by investigating the single edge notched tension test, which has become canonical in the
phase-field models for fracture. Consider a square plate of 1mm × 1mm with an initially horizontal
edge crack extending to the middle of the specimen. The geometry and boundary conditions are
shown in Fig. 2(a). The bottom edge is fixed while a vertical displacement is applied to the top
edge. To include the temperature field in the thermal fracture model, the initial temperature of
the plate is set as 300 K. The outer boundaries are treated as adiabatic. The domain is discretized
into the unstructured mesh, and the mesh is refined along the anticipated crack path to assure the
fracture phase-field variable in the localized band is well resolved. This point is essential to accurately
capture the evolution of the crack field in the simulations.

Table 2. Material parameters for single edge notched tension test

E (GPa) ν Gc (J/m2) σu (MPa) ρ (kg/m3) k (W/mK) cp (J/kgK) α
340 0.22 42.47 180 2450 300 0.775 8.0× 10−6

To compare the difference between AT2 model and CPF model and the `0 insensitivity of the
latter model, three different length scale parameters `0 = 0.010 mm, 0.015 mm, and 0.020 mm are
used, both for the AT2 model and the CPF model. The refined mesh size is set to be 0.005 mm.
Thus the ratio of length scale to mesh size is 2, 3, and 4 respectively. The fixed time step is 0.010 ms
and the total simulation time is 1.0 ms. The material properties used for these examples are listed
in Table. 2.

CPF: lc = 0.020 mm

AT2: lc = 0.020 mm

(a) (b)

u
   

A

A

Fig. 2. Results of single edge notched tension test under thermo-mechanical boundary conditions.
(a) Comparison of damage level of AT2 model and CPF model with different `0. (b) Reaction
force-displacement curve with different `0.

The AT2 model and CPF model are compared here to check the convergence of the results
concerning the length scale parameter `0. In Fig. 2(a), the crack patterns calculated using the CPF
model and AT2 model with `0 = 0.020 mm are shown, respectively. As `0 controls the width of
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the diffusive zone, with the increase of `0 the damaged zone becomes wider. Fig. 2(a) also shows
that the damaged zones of the CPF model are more compact compared with the AT2 model, as
the half bandwidth of the former model is π`0/2 while for the latter is infinity [56, 21]. This result
also verifies there is a threshold of damage initiation for the CPF model. The corresponding load
versus displacement curves are plotted in Fig. 2(b). The results show that the global responses of
the CPF model are almost independent of `0 while for the AT2 model the peak load decreases with
the increase of the length scale. The former observation confirms the insensitivity of the results from
the CPF model concerning the length scale parameter under thermo-mechanical conditions.

We further study the effect of thermal loading on the crack patterns and temperature distribu-
tions. Three cases are considered here. In case 1, we keep the temperature of the bottom and the top
edges at 300 K. In case 2, we cool down the top edge from the beginning to 0.25 ms at a ratio of 1.0e5
K/s to 275 K and then keep the temperature constant. Finally, in Case 3, we heat up the top edge
with the same speed to 325 K and then keep it constant. Other settings of the simulations are the
same as before. The comparisons of these results are shown in Fig. 3. It is observed that compared
with case 1 where the constant thermal loading is included and the crack propagates horizontally
to the right edge of the specimen, the crack develops slightly downwards when the temperature is
increasing on the top edge, while upwards when the temperature is decreasing. Take case 3 for
illustration here. Fig. 3(a) and (b) shows the crack patterns of case 3 with degraded and constant
thermal conductivity. The reaction force-displacement curves are plotted in Fig. 3(e). From the
curves, it is apparent the onset of the crack is delayed when the top edge is heated up compared with
the fixed temperature while the crack propagates earlier when cooling down the top edge. When
the temperature goes up, the specimen expands and the thermal strain is positive, which leads to
a smaller elastic strain with fixed displacement and a smaller driving force for crack propagation
compared with a uniform temperature field. Meanwhile, the fracture energy Gc is a function of
temperature and it decreases when the temperature increases at the temperature interval of interest
(see Eq. 30). According to Griffith’s theory [20], the fracture strength of material for plane strain
problem is defined as

σf =

√
2Eγs

πl(1− ν2)
=

√
EGc

πl(1− ν2)
(58)

where γs is the fracture surface energy density. Therefore, the decreasing Gc also leads to the
decreasing σf for case 3. However, the value changes very slightly and cannot compensate for the
influence of thermal strain. Therefore, a larger displacement is needed for the onset of crack initiation.
While for case 2 with decreasing temperature, the contraction of the specimen results in negative
thermal strain. Correspondingly, the elastic strain and the driving force are greater. Therefore the
onset of the crack only needs a smaller displacement, despite that Gc and σf increases slightly.

Note that the thermal conductivity is degraded as the crack develops. This effect is considered
to avoid non-physical heat transfer happening in the fully-cracked region. The comparisons of the
temperature profile of case 3 with degraded and constant thermal conductivity are depicted in 3(c)
and (d). It shows that when there is no thermal conductivity degradation with the phase=field
crack, the temperature field changes smoothly even in the cracked regions. However, as the thermal
conductivity is degraded with crack, the temperature is not continuous across the cracked regions.
The phenomenon can also be observed in Fig. 3(f), the temperature profiles along the line segment
A-A at the final time step for the three cases are depicted. Interestingly enough, when the thermal
conductivity is degraded with the phase=field crack, a sharp temperature jump is observed for case
2 and case 3. For case 1, because the temperature at the top edge and bottom edge are both fixed
at 300K, the temperature does not change. In contrast, the smooth temperature field change is
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observed when no thermal conductivity degradation is considered.

1

0

325 K

300 K

D
am
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k = g(d) k0 k =  k0

（e） （f）

（c）

(a)

u
   

A

A
T0

T1

（b）

（d）

Fig. 3. Single edge notched tension test under thermo-mechanical loading. Crack patterns (a and
b) and temperature profiles (c and d) for case 3 with and without thermal conductivity degrada-
tion. (e) Comparison of the reaction force-displacement curves for different thermal loading and (f)
Temperature profiles along A-A for different thermal loading with and without thermal conductivity
degradation.
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(c)  AT2: k = g(d) k0 (d)  AT2: k =  k0

Heat Flux                      Damage0 20000 W/m2 0 1

(a)  CPF: k = g(d) k0 (b) CPF:  k =  k0

Fig. 4. Snapshots of heat flux for cases with degraded (left column) and constant (right column)
thermal conductivity for CPF model (a and b) and AT2 model (c and d).

To further illustrate the influence of the degraded thermal conductivity, Fig. 4 depicts the heat
flux magnitudes and directions for the case 3 with degraded and constant thermal conductivity. The
initial heat flux directions are identical for the two scenarios. Because of the temperature gradient
between the top edge and the bottom edge, heat flux goes from high-temperature regions to lower-
temperature regions. In the right half of the specimen containing no crack, the heat flux goes almost
vertically downwards and perpendicular to the pre-crack direction, while for the other half the heat
flux tries to bypass the notch tip. However, with different thermal conductivity being considered,
the heat flux becomes different when the crack propagates forward, as shown in Fig. 4(a) and (b).
It is observed that when thermal conductivity is degraded with crack (see Eq. 38), the heat flux
directions change at the crack tip while it is still perpendicular to the crack for the constant thermal
conductivity case. Because of the cohesive nature of the CPF model, the damage level at the crack
tip is more diffusive. And also the residual conductivity still exists for the parameter ξ, so the
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thermal conductivity is not fully degraded. Thus there is still some residual heat flux crossing the
crack tip. This degradation phenomenon is also observed when the AT2 model is used, see Fig. 4(c)
and (d). When the degraded thermal conductivity is considered, its value approaches zero as soon
as the crack is fully developed, meaning the material is not continuous physically. Thus there is no
heat transfer happening in the fully cracked regions, and no heat flux across these regions either.
Instead, the heat flux arrows circumvent the crack tip (Fig. 4(a) and (c)). On the contrary, when the
thermal conductivity is not degraded with crack, i.e. constant crack, the heat flux directions don’t
change at all and the flux still crosses the cracked regions (Fig. 4(b) and (d)), which is not physically
correct. It is also observed that the magnitudes of the heat flux increase at the crack tip, since
the flux concentrates at this region. Note that one can also consider other sources of heat transfer
(e.g. convection or even radiation) at the damaged zone or where we have the discontinuity in the
displacement field. In the current work, we are first restricted to heat transfer through conduction
in solids.

4.2. Quenching test

In this section, the quenching tests are presented to further verify the phase-field fracture model. In
the experimental side of this test, a ceramic plate with an initially high temperature is subjected to
a cool water bath, and a series of parallel cracks are formed in the ceramics [54, 23].

In the numerical example, a ceramic slab of 50 mm × 10 mm with a high initial temperature T0

is considered. The ambient temperature Ta is lower, so there is a temperature difference ∆T. For
computational efficiency, only a quarter of the whole rectangle plate is modeled here. The symmetry
boundary conditions are therefore applied on the corresponding edges, where the adiabatic condition
is applied (i.e. no flux goes through these edges). The horizontal displacement is fixed on the right
edge while the vertical displacement on the top edge is fixed, respectively. The remaining edges are
subjected to quenching through heat conduction. The material properties are taken from [37] and
are listed in the Table. 3. In this quenching test, T0 = 300 ◦C, Ta = 20 ◦C and thus ∆T = 280 ◦C.
The length scale here `0 = 0.10 mm with the fine mesh size h = `0/4. The fixed time step is ∆t =
0.10 ms and the total simulation time is 200 ms.

Table 3. Material parameters used for the quenching test.

E (GPa) ν Gc (J/m2) σu (MPa) ρ (kg/m3) k (W/mK) cp (J/kgK) α
370 0.3 42.47 180 3980 31 880 7.5× 10−6

The temperature field, as well as crack development of the quenching test are simulated. At the
beginning of the quenching test, the outer boundaries of ceramics are damaged due to the high tensile
thermal stress induced by the temperature variation. Under the influence of the thermal shock, cracks
initiate and propagate almost uniformly with an equal spacing, which are almost perpendicular to
the boundaries. Initially, the cracks propagate quite rapidly, as they propagate to the inner of the
specimen. Then the propagation speed decreases gradually with the release of the thermal stress.
Some cracks get arrested at a short length because the declining strain energy is unable to support all
the cracks to further propagate simultaneously. Therefore, the remaining cracks gain more driving
force to keep propagating further. The process repeats once again until the final crack pattern forms.
For a more detailed description of the experimental quenching process, readers are referred to [23].

The comparison between the numerical result and experimental result of the quenching test for
the whole specimen with an initial temperature of 300 ◦C is shown in the first row in Fig. 5. The
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crack pattern for the whole ceramic specimen is obtained by using symmetry conditions at the top
edge and right edge of the quarter plate in post-possessing. From the comparison, it is apparent
that the results obtained from the proposed thermal fracture model shows good agreement with the
experiment results.

Fig. 5. Quenching tests with different initial temperatures T0. Comparison of crack patterns between
numerical and experimental results. Reprinted from [23] with permission.

To further study the influence of the initial temperature of the ceramics on the final crack pattern,
more quenching tests with different initial temperatures, i.e. 350 ◦C, 400 ◦C, 500 ◦C and 600 ◦C are
conducted. The material parameters and model settings are the same as before. The comparison of
the simulation results with the experimental observations [23] with different initial temperatures T0

is shown in Fig. 5. From the comparison, the thermal shock crack patterns (spacing, length, height
hierarchy, and periodicity) are similar for different initial temperatures T0. The crack mechanism like
crack initiation and propagation follows the same pattern as described before. However, the crack
pattern still keeps evolving with the increase of T0. The boundaries of the ceramics have a higher
level of damage with increasing T0. More cracks at the boundaries are formed as a result of higher
thermal stress. In addition, the crack spacing also gets smaller and the longer cracks propagate even
longer to the central part of the specimen. The experimental observations can also be reflected by
the simulation results.

4.3. Hot cracking in additive manufacturing

In this section, we present the first attempt to numerically study the hot cracking phenomenon
during the AM process with the proposed phase-field model for thermal fracture. As thermal initial
condition, we apply a simple analytical solution for the thermal profile around the melt pool and the
numerically calculated thermal profile by a phenomenological thermal PBF model, respectively. The
latter allows a more high-fidelity temperature field during PBF process, and the parameter study on
different process parameters.
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For explaining the simulation setup, we need to introduce also the solidification strain. In PBF,
the solid-state powders melt when the temperature exceeds the melting temperature. It then resolid-
ifies when the temperature is lower than the liquidus temperature. Most metals and alloys contract
on solidifying, and the liquid-solid contraction leads to the volume change, which adds the phase
transformation strain to the total strain calculation, as shown in Fig. 6(a). Therefore, the mecha-
nism of the solidification shrinkage is different from that of thermal strain induced by temperature
change [24]. Meanwhile, the contribution of solidification shrinkage is relatively significant and has
to be considered in the calculations. For example, the solidification shrinkage for aluminum is 6.6%,
equivalent to 2.2% of the linear contraction, which is about 50% greater than the thermal contrac-
tion of cooling from the melting temperature to room temperature (about 1.5%) [16]. Therefore, the
solidification shrinkage would play a significant role in the strain and stress field, particularly in the
vicinity of the melting pool. Interestingly enough, this phenomenon is usually overlooked by most of
researchers in numerical simulation of AM process.

In this work, the solidification shrinkage strain εSS is simulated utilizing the effective thermal
expansion coefficient. For alloys, solidification happens within a certain temperature range, i.e. the
liquidus temperature TL and solidus temperature TS. The shrinkage is proportional to the change of
solid fraction. Therefore, it is assumed to be linearly distributed in the temperature range and can
be treated as an additional thermal expansion term caused by temperature changes [16]. Here we
assume the effective thermal expansion coefficient α̃(T ) takes the following form:

α̃(T ) =


αT , T ≤ TS

αT + αSS, TS ≤ T ≤ TL

αT , TL ≤ T

, (59)

where αSS =
εSS

TL − TS
. Correspondingly, the thermal strain is obtained via:

εT = α̃(T )(T − T0) =


αT (T − T0), T < TS

αT (T − T0) + αSS(T − TS), TS ≤ T < TL

αT (TL − T0) + εSS, TL ≤ T

(60)

4.3.1. Hot cracking simulation by using analytical elliptic temperature profile

We start with the analytical elliptic solution of the temperature profile in the vicinity of the melting
pool [15], half of which is shown in Fig. 6(b). For a specific point (x, y) in Cartesian coordinates
within the cross section perpendicular to the scanning direction, x and y are the distance from the
current location to the center line and the top surface of the melting pool, respectively. The point
can also be determined by polar coordinates (r, θ), which are calculated by

r =
√
x2 + y2, θ = tan−1

∣∣∣∣ y − y0

x− x0

∣∣∣∣ (61)

where r denotes the distance to the center of the ellipses (x0, y0), and θ is the angle starting from the
top surface to the current position, as shown in Fig. 6(b). The temperature is calculated by linear
interpolation between liquidus temperature TL and solidus temperature TS as

T (x, y) = T (r, θ) = TL + c(TS − TL)
r − rL(θ)

rS(θ)− rL(θ)
. (62)
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Here, rL(θ) and rS(θ) indicate the respective isolines of T = TL and T = TS ellipses. They are
function of θ, and are calculated by

rL(θ) =

√
(lLdL)2

(dL cos(θ))2 + (lL sin(θ))2
(63)

rS(θ) =

√
(lSdS)2

(dS cos(θ))2 + (lS sin(θ))2 . (64)

The length parameters (lL, lS) and the depth parameters (dL, dS) are corresponding to liquidus
and solidus isotherms, respectively. Given that there is a large temperature gradient in the vicinity
of the melting pool, a coefficient c is included in Eq. 62. The approximated temperature field is
schematically shown in Fig. 6(c).

lS lL

dL

dS

rS

rL

r

(x0, y0)

T(x, y)
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rL rS

（a） （b） （c）

TS

TL

TS

TL

Fig. 6. (a) Volume change with temperature [24] and solidification shrinkage between TS and TL. (b)
Schematic of the elliptic temperature field approximation. (c) Linear interpolation of temperature
profile.

In this example, a cross section of 10 mm×10 mm perpendicular to the scanning direction is sim-
ulated. Since it is mechanically constraint along the scanning direction, the plane strain assumption
is taken. The liquidus and solidus temperatures are assumed to be 890 K and 900 K, respectively,
and the reference temperature is 1000 K. The coefficient c is set to 10. The aspect ratio of the
melting pool equals to 1.0, with parameters lL , lS , dL and dS to be 3.5 mm, 4.0 mm, 7.0 mm
and 8.0 mm. The normalized temperature field obtained from the analytical solution is shown in
Fig. 7(a). The predicted hot cracking patterns with the increasing solidification shrinkage strain are
shown in Fig. 7(b)-(d). When the solidification shrinkage strain is not considered (αSS = 0), a small
level of damage is observed only in the region of the melting pool where the temperature is quite
high. Outside these regions, there is no damage, as shown in Fig. 7(b). As the value of solidification
shrinkage increases (αSS = 4αT ), as shown in Fig. 7(c), a circumferential crack starts to form which
is mainly localized in the regions where the temperature is between the interval of the liquidus and
solidus isotherms (see also the temperature field profile). As illustrated above, the material goes
through a phase transformation in this temperature range, which causes volume change and rela-
tively larger solidification shrinkage strain compared with thermal strain in other regions. When the
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solidification shrinkage strain is significant enough (αSS = 26.7αT ), the circumferential crack is more
obvious, as can be seen in Fig. 7(d). The latter observation is in agreement with the experimental
results observed in the laser PBF process of alloy [46]. See also the middle part of Fig. 8.
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Fig. 7. Hot cracking of single track of PBF with aspect ratio to be 1.0. (a) Normalized temperature
field obtained by linear interpolation approximation, (b)-(d) Hot cracking patterns with increasing
solidification shrinkage strain, αSS = 0, 4αT and 26.7αT , respectively.

In order to study the influence of the shape of melting pool resulting from different AM process
parameters, two more melting pools with larger (1.2) and smaller (0.5) aspect ratios are studied. For
the former one, the melting pool is deeper, which results from the larger energy density and it is often
referred to as keyhole mode in AM [50]. For the latter one where the energy density is smaller and
the melting pool is shallower, it is called conduction mode. The temperature field is obtained by the
same method illustrated above. The results are shown in Fig. 9. The crack patterns resemble to the
result shown in Fig. 7(d), and only circumferential crack shows in the melting pool. Results show
the solidification shrinkage is responsible for the circumferential crack of the hot cracking pattern.
Hereby the central cracking is not much visible, which can be due to the fact that the inaccuracy
of the analytical thermal profile assumed above. As it can be seen in the next subsection, a central
crack can be formed as a consequence of high thermal gradient at high energy density.
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Fig. 8. Hot cracking of single track of PBF with different power densities in experimental observa-
tions. The image is reprinted from [46] under the terms of the Creative Commons CC-BY license.
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Fig. 9. Hot cracking patterns of a single track of PBF with different shapes of the melting pool. (a)
Keyhole mode with an aspect ratio of 1.2. (b) Conduction mode with an aspect ratio of 0.5.

At this point, the result of keyhole mode differs considerably from the experimental result observed
in the left column of Fig. 8. Note that for this case apart from the circumferential crack, one observes
a central crack as well. The disagreement of the crack pattern is the result of the way the temperature
field is approximated, where the coefficient c = 10 for all cases. In order to investigate the influence of
the temperature gradient near the melting pool, further studies with different values for the parameter
c (c = 20, 25) are conducted. The approximated normalized temperature profiles and corresponding
crack patterns are shown in Fig. 10. Compared with the results of the temperature field and crack
pattern in Fig. 7(a) and (d) with c = 10, it becomes clear that by increasing the parameter c, the
temperature field has the similar distribution but the temperature gradient increases accordingly.
As a result, the crack pattern also changes. The damage level near the center of the melting pool
is getting bigger, meaning that apart from the circumferential crack, a central crack begins to show.
However, because of the simple linear interpolation of temperature, the central region has the same
relatively larger temperature gradient in all directions, which contributes to crack showing in a very
diffusive region. Again, the latter observation does not fully agree with the experimental results
in Fig. 8. This implies the necessity of having a more accurate temperature profile, which will be
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considered in the next subsection.
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Fig. 10. Normalized temperature profiles and hot cracking patterns of single track of PBF with
different temperature gradient c. (a) c = 20. (b) c = 25.

4.3.2. Hot cracking simulation by using the phenomenological PBF thermal profile

The analytical thermal profile has limited accuracy and does not allow parameter study on process
condition. In this section, the numerical thermal profile calculated from the phenomenological ther-
mal PBF model developed by the authors [61, 63] is utilized as the temperature initial distribution
before it cools down to room temperature. In the phenomenological thermal PBF model, the ef-
fective thermal properties of the powder bed and the resolidified phase are regarded explicitly. A
phase indicator φ is introduced to indicate the state of the material, i.e. φ = 1 the fused state and
φ = 0 the power bed. Readers are referred to[61, 63] for more details. Consider the phase-dependent
thermal properties and the beam energy deposition, the heat transient problem is solved in the finite
element method.
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Fig. 11. Temperature field and phase indicator evolution of the 3D phenomenological thermal PBF
model (top) and the cross section perpendicular to the scanning direction (bottom).

In this simulation, the domain has a volume of 1000 mm×400 mm×200 mm, with a 50-mm-thick
powder bed layer and a 150-mm-thick substrate layer made of the same materials as the powder, as
shown in Fig. 11. All the outer surfaces except the bottom surface of the powder bed are subject
to the convection and radiation boundary conditions, while the bottom surface is applied with the
Dirichlet boundary condition, i.e. the temperature is fixed. Meanwhile, the displacements in x, y
and z direction of the bottom surface are fixed while other surfaces are traction-free. The laser power
is P0 = 2.18e4 W and the scanning speed is v0 = 0.181 m/s. The other parameters used for this part
are referred to the work [61].

In Fig. 11, the snapshots of the temperature field and the phase indicator evolution of the 3D
phenomenological PBF model are shown. As the heat source like a laser beam moves forward (z),
the temperature near the beam increases to the melting temperature, and the powders melt and
solidify to the substrate. This process is reflected by the phase indicator changing from blue (0) to
red (1). The snapshots of the temperature field and the phase indicator evolution of the slice along
the scanning direction are also shown in Fig. 11. As the laser approaches this slice, the temperature
goes up and the powders melt. And as the beam passes by, the temperature drops while the materials
keep as fused state.

After obtaining the steady-state cross-sectional thermal profile and the phase indicator distri-
bution around the melt pool perpendicular to the scanning direction (z), they are transferred as
the initial conditions for the subsequent hot cracking simulation. In the hot cracking simulation, a
plane strain 2D case is assumed as the cross section is more or less mechanically constraint along the
scanning direction. The bottom edge is fixed in the vertical direction (y) while the other edges are
assumed to be traction-free. Similar as in the previous subsection, the solidification shrinkage is also
considered.
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Fig. 12. Hot cracking patterns of slice of PBF with different laser power.
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Fig. 13. Hot cracking patterns of slice of PBF with different scanning speed.

In order to study the influence of the process parameters like laser power (P ) and scanning speed
(v) on the hot cracking pattern, some parameter analysis are conducted. Fig. 12 shows the different
temperature profiles and the corresponding hot cracking patterns with varying laser power P and
fixed v0. When the laser power is low (P = P0), with the solidification shrinkage considered in the
current model, only circumferential crack forms in the melting pool. In addition, a relatively low level
of damage is also observed in the central region. Interestingly, this conduction mode hot cracking
pattern predicted by numerical simulation is conformed in the results of the experimental observation
of the conduction mode hot cracking showing in Fig. 8. With the the laser power is increased to 2P0,
the damage level of the central region is also increasing. Meanwhile, the circumferential crack expands
outwards. The reason is the maximum and overall temperature of the melting pool increases, the
temperature interval of the solidus temperature and liquidus temperature gets far from the center.
When the laser power is further increased (P = 3P0), the damage level in the central region becomes
even larger, and finally the central crack also arises, shifting the hot cracking pattern from the
conduction mode to keyhole mode.

The influence of the scanning speed v is also studied, with fixed P0, results of which are depicted
in Fig. 13. As the scanning speed decreases from v0 to 0.5v0, more energy inputs into the domain,
causing the temperature and its gradient to increase. Therefore, the damage level in the central region
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is enhanced, and a central crack also appears, apart from the expanded circumferential crack, leading
to the keyhole mode hot cracking. However, the hot cracking pattern tends to be the conduction
mode when the scanning speed increases. The reason is the materials absorb less energy with fast
scanning speed. Accordingly, the temperature and its gradient is reduced, and the damage level in
the central region is also decreased. Thus, only the contracted circumferential crack forms in the
melting pool.

The reasons for different hot cracking patterns under different process parameters are related to
energy deposition and thus the thermal gradients. The laser power and the scanning speed determine
the linear energy density EL = P/v, which further determines the input energy to the PBF system.
With larger laser power and slower scanning speed, EL becomes larger, and the temperature gradient
near the melting pool is enhanced as well. Therefore, a larger thermal strain is formed and drives
the crack to develop. The hot cracking pattern tends to be the keyhole mode. On the contrary,
with smaller laser power and quicker scanning speed, EL becomes smaller, and the temperature
gradient is low. Correspondingly, the hot cracking pattern tends to be the conduction mode. These
results are also in agreement with previous discussions. The comparisons between the numerical and
experimental results above demonstrate the currently proposed modeling strategy has the potential
to predict the hot cracking in the PBF and other AM processes. This study also provides some basic
instructions on AM practice to eliminate hot cracking of AM products.

5. Conclusions and future work

In this work, a thermodynamically consistent model for thermo-mechanically coupled phase-field
fracture is introduced. Derived from the basic principles of thermodynamics, the coupling effects
between mechanics, heat transfer, and fracture are all taken into account. Particularly, the influence
of temperature-dependent fracture properties and the degradation of thermal conductivity with the
crack field are studied to capture the temperature field and the crack pattern more accurately. The
degraded thermal conductivity can avoid nonphysical heat transfer in the fully-cracked regions. The
insensitivity of the CPF model, which is adopted in the multiphysics framework, with respect to the
incorporated length scale parameter is also studied.

The proposed model is first applied to the canonical thermal fracture problem, i.e. the single-edge
notched tension. The length scale insensitive of CPF in multiphysics is compared with AT2 model,
and the degradation of thermal conductivity with crack is also compared with constant property.
The model is further validated by the quenching test. The crack mechanism like crack initiation,
propagation, stop and further propagation with different initial temperatures follows the same pat-
tern. However, the crack pattern still keeps evolving with the increase of the initial temperature.
The numerical predictions are validated by the experimental results.

The model is further applied to study the hot cracking phenomenon in AM, particularly PBF.
The analytic temperature solution is first used to obtain the temperature field near the melting pool.
When the solidification shrinkage is considered, the predicted hot cracking patterns of the conduction
mode AM are mainly shown as the circumferential crack. While for the keyhole mode AM, the
circumferential crack and central crack shows simultaneously in the melting pool. Subsequently, the
phenomenological PBF model is utilized to obtain a more accurate temperature field, specifically for
a slice of the whole powder bed model. The process parameters like the laser power and the scanning
speed on the final crack pattern are investigated. The results show that a higher laser power and
slower scanning speed is favorable of keyhole mode hot cracking while a lower laser power and
quicker scanning speed result in the conduction mode cracking pattern. The comparisons of the hot
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crackings between the numerical results and the experimental observations shows good agreement,
demonstrating the capability of the proposed model for the prediction of hot cracking in PBF and
other AM processes and the potential for further studies.

The current investigations open up new possibilities for studies on the hot cracking of AM in a
numerical way. Further study can be performed when it comes to a more precise thermal fracture
model. In this work, the elastic and brittle fracture is used, while in future work the influence of
plasticity and extension to ductile fracture would also be of great interest. Using a more accurate
temperature profile and phase evolution of the material is also interesting to study. For now, the
analytical temperature solution and the phenomenological phase-field model of the PBF process are
used to obtain the thermal field. However, a more high-fidelity powder-level PBF model can be
used to track the temperature evolution history and powder evolution history in future work, as it is
shown in our related work on selective sintering [62, 67]. The simulation results above are going to be
combined with the thermal fracture model to capture the hot cracking behaviors of the powder-level
PBF model more accurately. Finally, other process parameters except for laser power and scanning
speed in the PBF process are also worthy of investigation, so that the potential process window for
PBF to eliminate hot cracking can be proposed.
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Appendix A. Derivation of the dissipation inequality

Appendix A.1. Energy conservation: first principle

The first law of thermodynamics represents a detailed balance describing the interplay between the
internal energy, the kinetic energy, the rate at which power is expended, and the heat transferred to
Ω, which is expressed by:

d

dt
(E +K) =W +Q, (A.1)

where E , K, W and Q denote the net internal energy, the kinetic energy, the external power, and
the heat flow, respectively. 

E =
∫

Ω
ρedV

K =
∫

Ω

1

2
ρẋ2dV

W =
∫
∂Ω
T · ẋdS +

∫
Ω
b · ẋdV

Q = −
∫
∂Ω
q · ndS +

∫
Ω
QdV

(A.2)

where ρ denotes the material density, e internal energy per unit mass, (ẋ) is the time derivative of
displacement, T denotes the surface traction, and b the generalized body force, q is the heat flux, n
the outward unit normal to ∂Ω and Q internal heat supply.

Substituting the equations in Eq. A.2 into energy balance Eq. A.1 yields

d

dt

∫
Ω

ρ

(
e+

1

2
ẋ2

)
dV = −

∫
∂Ω

q · ndS +

∫
Ω

QdV +

∫
∂Ω

T · ẋdS +

∫
Ω

b · ẋdV. (A.3)

By integrating the balance equation of linear momentum (i.e. Newton’s law), multiplied by the
derivative of displacement over the domain, one can get

−
∫

Ω

σ : ε̇dV +

∫
∂Ω

T · ẋdS +

∫
Ω

b · ẋdV =
d

dt

∫
Ω

1

2
ẋ2dV. (A.4)

Substituting Eq. A.4 into Eq. A.3 and applying the divergence theorem, we obtain the following
energy equilibrium equation ∫

Ω

(ρė− σ : ε̇+∇ · q +Q)dV = 0. (A.5)

The identity in Eq. A.5 is valid for any region, thus the local energy balance equation is obtained

ρė = σ : ε̇−∇ · q +Q. (A.6)

In thermo-mechanical phase-field fracture analysis, besides the temperature T and the total strain
ε, the state variables also include the phase=field crack d. Correspondingly, the external power W
is reformulated as

W =

∫
∂Ω

(T · ẋ+H · ∇ḋ)dS +

∫
Ω

(b · ẋ+Kḋ)dV, (A.7)

where H is micro-traction on crack surfaces and K denotes the internal micro-forces, which will be
discussed later in the following derivation. Thus the energy balance equation, which accounts for
thermal diffusion and power produced by the micro and macro forces, is given as ( Stumpf and Hackl,
2003 )

ρė = σ : ε̇+Kḋ+H · ∇ḋ−∇ · q +Q. (A.8)
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Appendix A.2. Entropy inequality: second principle

The second law of thermodynamics postulates that the rate of net entropy production ṡ in any
convecting spatial region Ω is always nonnegative

ṡ =

∫
Ω

ρη̇dV − (−
∫
∂Ω

q

T
· n+

∫
Ω

Q

T
)dV ≥ 0, (A.9)

where η is the specific entropy per unit mass, the first term on the right hand denotes the internal
entropy and the second term denotes entropy flow, which is the rate at which entropy is transferred
to Ω.

This inequality is valid for any region of the body and using the divergence theorem leads to the
following local form of the irreversibility of the entropy production rate:

ρη̇ +∇ · ( q
T

)− Q

T
≥ 0. (A.10)

The fundamental inequality containing the first and second principles is obtained by replacing Q
with the expression resulting from Eq. A.8 of conservation of energy:

ρη̇ +∇ · ( q
T

)− 1

T

(
ρė− σ : ε−Kḋ−H · ∇ḋ+∇ · q

)
> 0. (A.11)

Note that

∇ · ( q
T

) =
1

T
∇ · q − 1

T 2
∇T · q, (A.12)

we obtain

ρ(T η̇ − ė) + σ : ε+Kḋ+H · ∇ḋ− 1

T
∇T · q ≥ 0. (A.13)

Here we introduce the specific free energy ψ defined by the Legendre transforms (shell, 2015)

ψ = e− Tη, (A.14)

where ψ is the Helmholtz free energy per unit mass, which measures the amount of obtainable work
in a closed thermodynamic system. The rate form of the internal energy e is given by

ψ̇ = ė− Ṫ η − T η̇. (A.15)

Substituting Eq. A.15 into Eq. A.13, the internal energy can be eliminated from the energy balance
equation, and the local Clausius-Duhem inequality is obtained.
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