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A Thermodynamic Formulation of Economics
Juergen Mimkes

The thermodynamic formulation of economics is based on the laws of calcu-

lus. Differential forms in two dimensions are generally not exact forms (δQ),

the integral from (A) to (B) is not always the same as the integral from (B) to

(A). It is possible to invest little in one way and gain a lot on the way back,

and to do this periodically. This is the mechanism of energy production in heat

pumps, of economic production in companies and of growth in economies.

Not exact forms may be turned into exact forms (dS) by an integrating fac-

tor T, dS = δQ/T. The new function (S) is called entropy and is related to

the probability (P) as S = ln P. In economics the function (S) is called pro-

duction function. The factor (T) is a market index or the standard of living,

GNP/capita, of countries. The dynamics of economic growth is based on the

Carnot process, which is driven by external resources. Economic growth and

capital generation – like heat pumps and electric generators – depend on nat-

ural resources like oil. GNP and oil consumption run parallel for all countries.

Markets and motors, economic and thermodynamics processes are all based

on the same laws of calculus and statistics.

1.1

Introduction

In the last ten years new interdisciplinary approaches to economics and so-

cial science have been developed by natural scientists. The problems of eco-

nomic growth, distribution of wealth, and unemployment require a new un-

derstanding of markets and society. The dynamics of social systems has been

introduced by W. Weidlich (1972) [17] and H. E. Stanley (1992) [15] has coined

the term econophysics. A thermodynamic approach to socio-economics has

been favored by D. K. Foley (1994) [4], J. Mimkes (1995) [10] and Drăgulescu

and V. M. Yakovenko (2001) [3]. Financial markets have been discussed by

M. Levy et al. (2000) [8], S. Solomon and Richmond (2001) [14], Y. Aruka

(2001) [1] and many others. Many conferences have been held to enhance the

communication between natural and socio-economic sciences with topics like
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econophysics, complexity in economics and socio-economic agent systems. In

the first chapter, the mechanism of economic production is discussed on the

basis of calculus and statistics. The two mathematical fields will be applied

to economics in a similar way to thermodynamics, this is the thermodynamic

formulation of economics.

1.2

Differential Forms

1.2.1

Exact Differential Forms

The total differential of a function f (x, y) is given by (see, e.g., W. Kaplan [6])

d f = (∂ f /∂x) dx + (∂ f /∂y) dy (1.1)

The second (mixed) derivative of the function f (x, y) is symmetric in x and y,

∂2 f

∂x ∂y
=

∂2 f

∂y ∂x
(1.2)

In the same way every differential form

d f = a(x, y) dx + b(x, y) dy (1.3)

is called total or exact, if the second derivatives

∂a(x, y)/∂y = ∂b(x, y)/∂x (1.4)

are equal. Exact differential forms are marked by the “d” in d f . The function

f (x, y) exists and may be determined by a line integral,

∫ B

A
d f =

∫ B

A

(

∂ f

∂x
dx +

∂ f

∂y
dy

)

= f (B)− f (A) (1.5)

The closed integral of an exact differential form is zero: The closed integral

may be split into two integrals from A to B on path (1) and back from B to A

on path (2). Reversing the limits of the second integral changes the sign of the

second integral. Since both integrals depend on the limits A and B only, the

closed integral of an exact differential is zero:

∮

d f =
∫ B

A
d f(1) +

∫ A

B
d f(2) =

∫ B

A
d f(2) −

∫ B

A
d f(2) = 0 (1.6)
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Example:

f (x, y) = x3y5

d f = (3x2y5) dx + (5x3y4) dy

∂2 f

∂x∂y
= 3 · 5 · x2y4 =

∂2 f

∂y∂x
∮

d f = 0

(1.7)

1.2.2

Not Exact Differential Forms

In one dimension all differential forms are exact. A two-dimensional differen-

tial form δg

δg = a(x, y) dx + b(x, y) dy (1.8)

is not always an exact differential form. The second derivatives are generally

not equal,

∂a(x, y)/∂y �= ∂b(x, y)/∂x (1.9)

These differential forms are called not exact and are marked by the “δ” in δg.

A function g(x, y) does not exists in general and may not be determined by a

line integral, because the line integral of not exact differential forms depends

on the integral limits A and B and on the path of integration. Any different

path of integration will lead to a new function g(x, y). A closed integral from

A to B along path (1) and back from B to A along path (2) will not be zero,
∮

δg =
∫ B

A
δg(1) −

∫ B

A
δg(2) �= 0 (1.10)

Example: We may construct a non exact differential form by dividing d f (1.7)

by y:

δg = d f (x, y)/y = (3x2y4) dx + (5x3y3) dy (1.11)

12x2y3 = ∂a(x, y)/∂y �= ∂b(x, y)/∂x = 15x2y3

In Fig. 1.1. the closed integral of δg is calculated for path (1) from point A =
(1; 1) along the line (y = 1) to B = (2; 1) and then along the line (x = 2) to

point C = (2; 2).
∫ 2;2

1;1
δg1 =

∫ 2

1
(3x2(y = 1)4 dx +

∫ 2

1
5(x = 2)3y3 dy

= (23 − 13) + 5 · 23(24 − 14)/4 = 157
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The second integral of δg is calculated for path (2) from point A = (1; 1) along

the line (x = 1) to point D = (1; 2) and then along the line (y = 2) to point

C = (2; 2):

∫ 2;2

1;1
δg2 =

∫ 2

1
(3x2(y = 2)4 dx +

∫ 2

1
5(x = 1)3y3 dy

= 24(23 − 13) + 5 · 13(24 − 14)/4 = 130, 75

The closed line integral along path (1) from A = (1; 1) via B = (2; 1) to C =
(2; 2) and back along path (2) from C via D = (1; 2) to A = (1; 1) – see Fig. 1.1

– is

∮

δg =
∫ B

A
δg(1) +

∫ A

B
δg(2) = 157− 130, 75 = 26, 25 �= 0

Fig. 1.1 The closed line integral along path (1) from A = (1; 1) via
B = (1; 2) to C = (2; 2) and back along path (2) from C via D = (2; 1)
to A is not zero!

1.2.3

The Integrating Factor

A two-dimensional differential form δg may be made exact by an integrating

factor 1/T:

d f = δg/T = [a(x, y) dx + b(x, y) dy]/T (1.12)
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(Sometimes the integrating factor is also called λ, but with respect to thermo-

dynamics the factor 1/T will be used here.) In two dimensions this factor

always exists.

Example: The non total differential form δg (1.11) has been obtained by divid-

ing the exact form d f (1.7) by “y”. Accordingly, y = 1/T will be the integrating

factor of δg.

1.2.4

The First and Second Law of Differential Forms

The results above may be stated in two laws for differential forms:

The first law of differential forms:

Two-dimensional differential forms δg will generally not be exact.

The second law of differential forms:

A not exact differential form may be made exact by an integrating factor 1/T.

1.2.5

Not Exact Differential Forms in Thermodynamics and Economics

Why are differential forms and calculus of not exact forms so important for

thermodynamic and economics?

1. Thermodynamics. Heat is a function of at least two variables, tempera-

ture and pressure. According to the first law of differential forms, heat (δQ)
will be a non exact differential form. The value of the integral from (A) to (B)
will not be the same as from (B) to (A). This makes the first law of differential

forms so important in the application to periodic machines: it is possible to

invest little heat in one way and gain a lot of heat on the way back and to do

this periodically.

Heat pumps. A heat pump or generator may periodically invest 1 kWh of energy

in one way and gain 5 kWh on the way back!

The second law makes it possible to calculate a complicated technical pro-

cess of not exact differential forms by a simple function. This makes thermo-

dynamics so important for theory and application (see, e.g. R. Fowler and

Guggenheim (1960) [5]).

2. Economics. Economic growth is a function of at least two variables,

labour and capital. According to the first law of differential forms profit (δQ)
will not be an exact differential form. The value of the integral from (A) to (B)
will not be the same as from (B) to (A). This makes the first law of differential

forms so attractive in the application to periodic production: it is possible to

invest little capital in one way and gain a lot of capital on the way back and to

do this periodically:
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Banks. A bank may periodically invest 4% of interest in savings and collect 10%

interest from investors.

Companies. A company may periodically pay as little as possible to workers and

collect periodically as much as possible from customers.

The second law makes it possible to calculate a complicated technical pro-

cess of not exact differential forms by a simple function. This makes the ther-

modynamic formulation of economics so important for theory and application

in economics and business.

1.3

The First Law of Economics

1.3.1

The First Law: Capital Balance of Production

Economic production in farms, automobile plants, medical offices or banks

is achieved by hard work, but the output will be different for each type of

production. The output depends on each specific production process, or in

mathematical terms, on the path of integration. Production may be modeled

by calculus of not exact differential forms,

−
∮

δW =
∮

δQ (1.13)

The surplus (Q) is a result of work input (−W). The cyclic process of eco-

nomic production Eq. (1.13) may be split into two parts, the integral from A to

B and back from B to A,

−
∮

δW =
∮

δQ =
∫ B

A
δQ(1) −

∫ B

A
δQ(2) = Y − C = ∆Q (1.14)

The economic process consists of output (Y) and input (C), the difference is

the surplus ∆Q. (The letter S for surplus in standard economics has been re-

placed by ∆Q.) Income (Y) and costs or consumption (C) are both part of the

same production cycle, and depend on the specific production and consump-

tion processes. Surplus and economic growth cannot be calculated in advance

(ex ante), unless the whole process is entirely known.

Equation (1.14) may be written in differential forms. If two not exact dif-

ferentials (−δW) and (δQ) are equal along the same path of integration, they

may differ only by a total differential form (dE), which will always vanish for

closed integrals,

δQ = dE − δW (1.15)

This is the first law of economics in differential form. It is a capital balance

of production. The surplus (δQ) will increase the capital (dE) and requires
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the input of work (−δW). The main feature of this first law of economics is

the fact that the capital balance of production cannot be expressed by defi-

nite functions. The capital balance can only be given by not exact differential

forms! Eq. (1.13) will be discussed in more detail below.

1.3.2

Work (W)

Work (W) is the effort and know-how which we invest in our job. The func-

tion (W) does not exist as a general function, it always depends on the path

of integration, the production process. Accordingly, (W) cannot be calculated

“ex ante”. Work is not equivalent to labor, which defines the number and kind

of people in the production process. Work is equivalent to the production

process. The dimension of (W) is capital, the same as capital (E) and sur-

plus (Q). In thermodynamics the function (W) refers to work of machines. In

economics the function (W) may refer to people as well as to machines! The

thermodynamic formulation of economics reveals a problem of modern pro-

duction namely that people and machines work according to the same laws,

Eq. (1.13). If people do not work efficiently, they may be replaced by machines:

in construction labor will be taken over by cranes and motors, in offices work

may be done by computers.

1.3.3

Surplus (∆Q)

The surplus (∆Q) is the result of work (W), Eq. (1.13), and again cannot be cal-

culated “ex ante”, as (δQ) is a not exact differential form. The integral depends

on the path of integration, the surplus depends on the production process.

The thermodynamic formulation of economics makes it possible to compare

economic production to work in thermodynamics.

Heat pumps. A heat pump is close to the energy reservoir of a river or garden. A

heat pump or generator may periodically invest 1 kWh of energy one way and gain

5 kWh on the way back! The heat output (Q) is larger than the work input (W).

Where does the heat come from?

In each cycle the heat (∆Q) is pumped from the environment, the garden

or river, which will be cooled down when the heat pump is operating. In

gardens or rivers the energy loss will be filled up from the reservoir of the

environment.

Banks. A bank is close to the capital reservoir of savers. A bank may periodically

invest 4% of interest in savings and collect 10% interest from investors. The output

(Q) is larger than the input (W)! Where does the surplus come from?

For banks the surplus capital for each cycle is taken from the growth of the

saving community. It is not only the first member of an economic chain which
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exploits nature and the environment, but all other members of an economic

chain do the same in each production cycle. This mechanism of economic

growth will be discussed in more detail in the Carnot process, below.

1.3.4

Capital (E)

The capital (E) is the basis of economic production (W). The farm is the cap-

ital of the farmer, the production plant is the capital of a company, the invest-

ment the capital of investors.

Without labour (W) capital cannot grow. Only by an input of work may

the capital increase. Of course, capital may also decrease by mismanagement

or failures. But every economic system has to produce positive surplus in

order to survive. After each production cycle the surplus (∆Q) has to be in a

reasonable relationship to the invested capital (E). The relation

r = −
∮

δW/E =
∮

δQ/E = ∆Q/E (1.16)

is called the efficiency of the production cycle (δW). The ratio “r” is called the

interest rate and is given in percent. The efficiency or interest rate measures

the success of a production cycle (δW) and determines, whether people or

machines will be employed in a specific production process.

1.4

The Second Law of Economics

1.4.1

The Second Law: Existence of a System Function (S)

The not exact differential form δQ may be changed into an exact differential

form dS by an integrating factor T. This is called the second law:

dS =
1

T
δQ (1.17)

Equation (1.17), is a law for the existence of a system function (S), which is

called entropy in physics and information science. Economists usually call

this function the production or utility function. 1/T is the integrating factor.

1.4.2

The Integrating Factor (T)

1/T is the integrating factor of the capital balance (1.13). T is proportional to

the mean capital (E) of N agents of the specific economic system,

E = cNT (1.18)
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c is a proportional factor. T may be regarded as an “economic temperature”.

In a market of N commodities, T is proportional to the mean price level. In a

society of N households T is proportional to the mean capital per household,

or standard of living. In countries, T is proportional to the GDP per capita. T

is introduced by the second law as the main variable in all economic functions.

1.4.3

Entropy and Production Function (S)

Inserting Eq. (1.17) into (1.13) we find

−
∮

δW =
∮

TdS (1.19)

The entropy or production function (S) is closely related to the work function

(W). But in contrast to (W) the function (S) is independent of the production

process, it has the dimension of a (production) number and may be calculated

“ex ante”. The functions (W) and (S) represent mechanism and calculation in

all economic processes:

The work function (W). The work function (W) is defined by the produc-

tion process and may be different for each process. This makes it possible to

invest little in one part of the process and gain much in another part of the

production process in order to obtain a surplus.

The production function (S). The entropy or production function (S) de-

pends on the system and makes it possible to calculate the economic process

“ex ante”.

1.4.4

Pressure and Personal Freedom

In Eq. (1.17) the non exact form δQ has been expressed by dS: δQ = TdS. In

the same way the non exact form of production (δW) may be expressed by the

exact differential form dV,

δW = −p dV (1.20)

The parameter p may be called the pressure, V may be regarded as space or

personal freedom, which may be reduced due to the external economics or

social pressure.

1.4.5

The Exact Differential (dS(T, V))

According to Eq. (1.17) and (1.20) the entropy (dS) may be written as an exact

differential form of T and V:

dS(T, V) =
∂S

∂T
dT +

∂S

∂V
dV =

1

T
(dE(T, V) + p(T, V) dV)
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dS(T, V) =
1

T

∂E

∂T
dT +

1

T

(

∂E

∂V
+ p

)

dV (1.21)

The exact differential dS may be integrated independent from the path of in-

tegration. The production function S(T, V) depends on capital E(T, V) and

economic pressure p(T, V). However, other variables, like S(T, p) are also

possible, they require additional calculations and will be discussed at a later

point.

1.4.6

The Maxwell Relation

The functions E and p cannot be chosen arbitrarily, as the mixed differentials

of the exact form dS in Eq. (1.21) have to be equal. This leads to (exercise! )

∂p

∂T
=

1

T

(

∂E

∂V
+ p

)

=
∂S

∂V
(1.22)

These “Maxwell relations” are general conditions for all model functions

E(T, V), p(T, V) and S(T, V).

Equation (1.21) leads to the existence of a function F(T, V),

F(T, V) = E(T, V)− TS(T, V) (1.23)

(see exercise). F may be called the “effective costs” function, which will be

a minimum for stable economic systems. The function F corresponds to the

“Helmholtz free energy” function of thermodynamics.

Exercise: The total differential dF = d(E− TS) = dE− TdS− S dT may be trans-

formed by Eqs (1.15), (1.17) and (1.20) into

dF = −p dV − T dS

The mixed second derivative of dF is given by the Maxwell relation Eq. (1.22).

1.4.7

Lagrange Function

Dividing the function F(T, V) in Eq. (1.23) by (−T) we obtain

L(T, V) = S(T, V) − (1/T)E(T, V) → maximum! (1.24)

L is the Lagrange function which maximizes the production function (S) un-

der constraints of costs (E) with a Lagrange multiplier λ = (1/T). This is the

result of the first and second law. The discussion of the Lagrange function will

be continued in Section 1.5.4.
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1.5

Statistics

1.5.1

Combinations

The distribution of decisions is given by the mathematics of combinations. For

two possible decisions – left/right or yes/no – we find the probability P

P(NL; NR) =
N0!

NL!NR!
· 1

2N
(1.25)

NL is the number of decisions for the left side and NR the number of decisions

for the right side, NL + NR = N0. (N! stands for the product 4! = 1 · 2 · 3 · 4

and 0! = 1).

1.5.2

Normal Distribution

For large numbers N0 the probability function P(NL, NR) in Eq. (1.25) leads to

a normal distribution,

P(N) =
1√
2πσ

· e
− (N−N)2

2σ2 (1.26)

with 0 ≤ N ≤ N0, N = N0/2 and 2σ =
√

N. The normal distribution is one of

the most important probability functions in the natural, social and economic

sciences.

1.5.3

Polynomial Distribution

In many cases we have more than two decisions, e.g., we can choose the color

of a car to be black, white, red, blue, etc. For N0 = N1 + . . . + NK and K

possible equal decisions we obtain

P(N1; . . . ; NK) =
N0!

N1! · . . . · NK!
· 1

KN
(1.27)

If the probability of the decisions is not equal, we have to introduce the prob-

ability qk of the decision k. The sum of all qk will be equal to one, Σ qk = 1:

P(N1; . . . ; NK) =
N0!

N1! · . . . · NK!
· q

N1
1 · . . . · qNK

K (1.28)

If we have N0 cars with K different colors and each color has the probability

qk, then P(N1; . . . ; NK) is the probability to find, in a street with N cars, N1

cars of color 1, N2 cars of color 2 and Nk cars of color k.
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1.5.4

Lagrange Function in Stochastic Systems

What is the most probable distribution of apples, pears and bananas under

given prices (E)? Or, what is the most probable distribution of N goods in K

different price categories?

The probability (P) will always tend to be a maximum. The most probable

distribution of N commodities with constraints of price E may be calculated

by the Lagrange function (L),

L(Nk) = ln P(Nk) − (1/T)Σ NkEk → maximum! (1.29)

P(Nk) is the probability according to Eq. (1.28), Nk is the number of goods, Ek

the price in price class (k), (1/T) is the Lagrange multiplier. Equation (1.29) is

the Lagrange function Eq. (1.24) of systems that follow the laws of probability.

Example: The Munich beer garden.

1. A Munich beer garden has N1 permanent and N2 temporary employees.

The wages are E1 = 15€ per hour for the permanent and E2 = 7, 5€

per hour for the temporary staff. The Lagrange function calculates the

optimal output per hour under the constraints of wages E,

E = N1E1 + N2E2 = N(x1E1 + x2E2) (1.30)

where xk = Nk/N is the relative number and N the total number of staff.

The entropy for two types of employees is given by

S = N ln N − N1 ln N1 − N2 ln N2 = −N(x1 ln x1 + x2 ln x2) (1.31)

The Lagrange function is maximized,

L = N ln N − N1 ln N1 − N2 ln N2 − (1/T)(N1E1 + N2E2) = max! (1.32)

At a maximum the derivatives with respect to N1 and N2 will be zero.

The relative numbers of permanent and temporary staff x1 and x2 follow

a Boltzmann distribution. With the given values of E1 and E2 we obtain

x1 = exp(−E1/T) = 0.38

x2 = exp(−E2/T) = 0.62

T = 15.8

S/N = 0.664

E/N = 10.35

The relative numbers of permanent and temporary staff x1 and x2, the

Lagrange parameter T, the mean output per person S/N and the mean

wages per person may be calculated from the wages E1 and E2 without

any further assumptions.
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2. In standard economics the Cobb Douglas production function U

U = Nα
1 N1−α

2 = Nxα
1 x1−α

2 (1.33)

is often used in the Lagrange function. In addition to wages Ei, the em-

ployees xi are rated by an additional elasticity parameter α. For an arbi-

trary value α = 0.7 we obtain

x1 = α/[α/E1 + (1 − α)/E2]/E1 = 0.538

x2 = α/[α/E1 + (1 − α)/E2]/E2 = 0.462

T = (E1/α)(N2/N1)
1−α = 22.44

S/N = xα
1 x1−α

2 = 0.5141

E/N = (E1x1 + E2x2) = 11.54

For all values of α the mean output S/N is lower and the mean wage

costs E/N are higher compared to the entropy S = ln P. The Cobb Dou-

glas function is obviously not the optimal production function. The en-

tropy and Cobb Douglas function look very similar and differ by a factor

of about 1.4, this is shown in Figs 1.2 and 1.3.

1.5.5

Boltzmann Distribution

In Fig. 1.4 we have N = 10 buyers looking for automobiles. There are now

K = 5 different car models on the market with the attractiveness qk = 1. The

constraint for each model is the price Ek. As a result we find Nk buyers for

each car model k.

What is the most probable distribution?

The problem is solved by the Lagrange function (1.29). The probability

P(Nk) is given by (1.28):

L(Nk) = ln{N!/(ΠNk!}ΠqNk
k − (1/T)Σk(NkEk)} = maximum! (1.34)

For large numbers N the faculty may be replaced by the Stirling formula

N! = N ln N − N (1.35)

where N may be replaced by N = (ΣNk). The Lagrange function is now given

by

L(Nk) =
{

(ΣNk) ln(ΣNk) − Σ(Nk ln Nk) + Σ(Nk ln qk)

− (1/T)ΣNkEk

}

→ maximum! (1.36)
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Fig. 1.2 The entropy S(N2) = (N1 + N1) ln(N1 + N1) − N1 ln N1 −
N2 ln N2 plotted versus N2 in the range from 0 to 10. The parameter is
N1 in the range from 0 to 10.

Fig. 1.3 The Cobb Douglas function U(N2) = Nα
1 N1−α

2 plotted versus
N2 in the range from 0 to 10. The parameter is N1 in the range from 0
to 10. In this range the Cobb Douglas Function is smaller than entropy
by a factor of about 1.4 for all values of α. The closest match between
the functions is obtained for α = 0.4.
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Fig. 1.4 N = 10 identical buyers are looking for automobiles. There
are now K = 5 different car models on the market with the attractive-
ness qk = 1. The constraint for each model is the price Ek. As a result
we find Nk buyers for each car model.

At equilibrium the Lagrange function may be differentiated with respect

to Nk,

∂L/∂Nk = {ln(ΣNk) − ln Nk) + ln qk − Ek/T = 0 (1.37)

This leads to the distribution of Nk different objects as a function of price Ek,

Nk/N = qk exp(−Ek/T) (1.38)

The Boltzmann distribution is the most probable distribution of N elements

in K categories under constraints (E).

Figure 1.5 shows the distribution of cars sold in the German automobile

market in 1998. According to the German tax laws there are four classes of

cars, 1.5 liters. 1.8 liters. 2.4 liters and above. The diamond points in Fig. 1.5

are the data of cars sold in Germany in 1998 as given by the automobile in-

dustry. The distribution does not yield a Boltzmann distribution, nearly six

million units are missing in the lowest category at 1.5 liters or 20 000 DEM.

However, the number of seven million used cars is reported for Germany in

1998 by the German Automobile Agency in Flensburg. If this number is added

to the new cars of 1998 in the lowest price category, a Boltzmann distribution

is obtained. Obviously, the complete automobile market is determined by new

and used cars!

Figure 1.6 shows traffic violators given by the German Traffic department in

Flensburg, in 2000. The number of repeated violators is shown as a function of

the fine (in number of points proportional to a fine in €). The number of vio-

lators decreases with a growing fine according to the Boltzmann distribution,

Eq. (1.38). The data in Fig. 1.6 exactly follow the calculations. Decisions on
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Fig. 1.5 Production of new cars in Germany 1998. According to the
German tax classes four types of cars are reported by the industry,
1.5 liters, 1.8 liters, 2.4 liters and above. A Boltzmann distribution,
Eq. (1.38), is obtained only if the number of seven million used cars is
added to the lowest price category. The complete automobile market is
only given by new and used cars!

buying cars or violating traffic rules depends exponentially on the price (E)
in relation to the standard of living (T).

1.6

Entropy in Economics

1.6.1

Entropy as a Production Function

In stochastic systems the production function (S) is given by

S(Nk) = ln P(Nk). (1.39)

The term entropy (S) is used in mathematics, physics and information science,

and has been first introduced to economics by N. Georgescu-Roegen (1974)

[7] and more recently by D. K. Foley and J. Mimkes (1994) [4]. In stochastic

systems, entropy replaces the Cobb Douglas function of standard economics

as a production function. There are several reasons for this replacement.

1. Entropy is a natural system function without additional parameters. The

Cobb Douglas function has an arbitrary “elasticity parameter” α.
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Fig. 1.6 The Boltzmann distribution of repeated traffic violating agents
as a function of fine (in points) in Germany 2000. Decisions on viola-
tions depend exponentially on the fine (E).

2. The Cobb Douglas function has been found by fitting data, there is no

theoretical foundation for this function. The similarity between the func-

tions in Figs 1.2 and 1.3 suggests that entropy would fit the data as well.

3. Figure 1.2 and 1.3 indicate that entropy leads to higher values of produc-

tion and lower values of costs than does the Cobb Douglas function.

4. In the Lagrange principle the value of different groups of labor are char-

acterized by their wages. They do not need an additional characteriza-

tion by a parameter α. The Lagrange function with entropy is a sufficient

characterization of labor groups.

5. Entropy has a very great significance in production and trade, entropy

characterizes the change in the distribution of commodities and money

during the process of production and trade. This will be discussed in the

following section.

1.6.2

Entropy of Commodity Distribution

We will now discuss the significance of entropy in economics in more detail.
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Example: A farmer sells ten apples. Before the transaction the apples are un-

evenly distributed, the customers have none and the farmer has all the apples,

Fig. 1.7.

Fig. 1.7 Before selling the ten apples are unevenly distributed, the
customers have none and the farmer has all the apples.

The probability for the distribution of ten apples to one out of five persons

is given by Eq. (1.28):

P1 = 10!/(0!0!0!0!10!)/510 = 5−10

S1 = −10 ln 5 = −16.094

The farmer sells two apples to each customer and keeps two for himself,

Fig. 1.8. Probability and entropy are now

P2 = 10!/(2!2!2!2!2!)/510 = 0.0116

S2 = ln(0.0116) = −4.557

The entropy of these distributions is negative, since the probability is always

P ≤ 1.

Fig. 1.8 After selling, the apples are evenly distributed, the farmer and
each customer has two apples.

In the process of selling, the entropy of apple distribution has changed by

∆S = S2 − S1 = −4.557 + 16.094 = 11.437

Selling (distribution) of commodities is equivalent to an increase in entropy.

At the end of the sale the distribution of apples has reached equilibrium, all

have the same number of apples and the probability and entropy are at a max-
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imum,

S2 = ln P2 = maximum!

The trade of commodities is generally finished when equilibrium has been

reached.

1.6.3

Entropy of Capital Distribution

Example: The farmer sells his ten apples for 1 € each. Before the transaction

the farmer and each of his four customers have two 1 € coins in their pockets.

The coins are evenly distributed, Fig. 1.9.

Fig. 1.9 Before selling the ten 1 C coins are evenly distributed: all five
persons have two 1 C coins each in their pocket.

The probability for a distribution of two 1 € coins for each of five person is

given by

P1 = 10!/(2!2!2!2!2!)/510 = 0.0116

S1 = ln(0.0116) = −4.557

The farmer sells two apples to each customer and keeps two for himself,

Fig. 1.10. He collects 2 € from each customer. The farmer has now 10 € in his

pocket, the customers have no more 1 € coins. The probability and entropy

are now

P2 = 10!/(0!0!0!0!10!)/510 = 5−10

S2 = −10 ln 5 = −16.094

Fig. 1.10 After selling the apples the 1 C coins are unevenly dis-
tributed: the farmer has all coins and the customers have none.
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In the process of selling, the entropy of the 1 € coins distribution has

changed by

∆S = S2 − S1 = −16.094 + 4.557 = −11.437

The negative entropy difference indicates that the coins have been collected.

The example shows a new aspect of entropy (S). A positive change of entropy

in a system of elements (commodities, capital) is equivalent to distributing,

while a negative change of entropy corresponds to collecting elements (com-

modities, capital). In trading the entropies of commodities and capital change

in the opposite direction, the absolute entropy difference of commodities and

capital is the same.

1.6.4

Entropy of Production

In the production line of an automobile plant, workers have to assemble parts

of a car according to the construction plan. In Fig. 1.11 there are still N dif-

ferent parts, which may be assembled in P = N! possible ways. Assembling

means ordering N parts together in one and only one way according to the

construction plan.

Fig. 1.11 Before assembling N parts of a product there are still
P = N! possibilities. Before production the car is still in disorder.

Fig. 1.12 Assembling means ordering N parts in one and only one
way according to the construction plan. Production is ordering.

Assembling and ordering according to a plan means entropy reduction,

∆S < 0. Work and production are always accompanied by entropy reduc-
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tion. This applies to manual work as well as mental work. A puzzle

d+i+c+n+o+o+p+r+t+u = production

may be rearranged into a meaningful word. Mental work is ordering many

ideas into one meaningful master plan or theory.

1.6.5

Summary of Entropy

Entropy may have many different aspects, but the main result for entropy may

be stated as follows.

∆S = S2 − S1 > 0 (1.40)

corresponds to distributing elements like commodities or money and creating

disorder.

∆S = S2 − S1 < 0 (1.41)

corresponds to collecting elements like commodities or money and creating

order.

1.7

Mechanism of Production and Trade

1.7.1

The Carnot Process

The mechanism of production and trade is based on the Carnot process. Equa-

tion (1.19) may be integrated along the closed path with T = constant and

S = constant in the T-S diagram, Fig. 1.13

−
∮

δW =
∮

δQ =
∮

T dS =
∫ 2

1
T1 dS +

∫ 4

3
T2 dS = Y − C = ∆Q (1.42)

Automobile production is a typical economic process that can be modeled by

the Carnot process in Fig. 1.13. The cycle of production starts and ends at

point (1).

Example: Carnot cycle of automobile production.

(1) → (2): Automobile production starts at point (1). Workers with a low

standard of living (T1) produce the automobile according to the produc-

tion plan (∆S). The total production costs are given by material (E) and

labor: C = E + T1∆S. The costs could be reduced by building the cars
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according to the same production plan (∆S) and same material (E) in a

place with low standard of living (T1).

(2) → (3): Transport of cars from production plant (T1) to market (T2).

(3) → (4): The automobiles are sold to customers at a market with a high stan-

dard of living (T2). The sales price is given by the material and the mar-

ket: Y = E + T2∆S.

(4) → (1): The cycle is closed by recycling the automobile.

The surplus is ∆Q = Y − C = ∆T∆S and corresponds to the enclosed area in

Fig. 1.13.

Fig. 1.13 In the Carnot production cycle the flow of goods starts and
ends at point (1), (see text).

Example: Carnot cycle of apple farming.

(1) → (2): In the fall a farmer collects apples from his trees and stores them in

his cellar. The work of collecting apples from the trees leads to a reduction

of entropy of apple distribution, (∆S < 0). The production costs are

C = T1∆S. T1 is the price level of apples in the fall.

(2) → (3): The apples are stored in the cellar without changing the distribu-

tion, S = constant.

(3) → (4): In spring the apples are distributed (∆S > 0) from the farm to the

market at the higher price level (T2) of apples, the total amount of income

from the apples is Y = T2∆S.
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(4) → (1): The apples are sold and there is no change in the distribution of

apples until the fall, S = constant. The cycle starts again. The surplus of

the apple production cycle is ∆Q = Y − C = ∆T∆S and corresponds to

the enclosed area in Fig. 1.2. The capital flow starts from point (1) and

ends at point (1), but capital flow is opposite to the flow of apples, the

work (W) and the profit (Q) in Eq. (1.42) have the opposite sign.

(1) → (4): The apple farmer goes to the market. The money in his pocket does

not change, (∆S = 0).

(4) → (3): At the market the apple farmer collects (∆S < 0) money from the

customers.

(3) → (2): The apple farmer returns home without spending the money in his

pocket, (∆S = 0).

(2) → (1): At home the apple farmer distributes (∆S < 0) part of the money

to the apple pickers.

Income (Y), costs (C) and profits (∆Q) of labor are determined by

Y = E + T2(S4 − S3) (1.43)

C = E + T1(S2 − S1) (1.44)

∆Q = Y − C = ∆T∆S (1.45)

∆Q = Y − C is the profit given by the enclosed area of Fig. 13. The mate-

rials (E) are the same in production and consumption and do not enter the

calculations in a closed cycle. The Carnot process is the basis of all economic

processes and will now be discussed in more detail. In economics every com-

pany, bank, and every person is a Carnot-like machine. In thermodynamics

every motor and energy generator is a Carnot-like machine. In biology ev-

ery living cell is a Carnot-like machine. The Carnot process is the common

mechanism in economics, thermodynamics and biology.

1.7.2

The Origin of Growth and Wealth

What is the mechanism of economic interaction? If a baker sells bread to his

customers, where does the wealth come from? From his work? From his

customers?

If buyers and sellers just exchange values, there is no change in wealth and

nobody will become richer. Since people make profit and do get rich by eco-

nomic interactions, agents must take it from somewhere. If one agent takes it

from the other agent, there will be no economic transactions, nobody wants to

go to a market where he gets robbed.
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Fig. 1.14 shows the world GDP per capita in US$ for all countries in
2004. South Asian countries have the lowest and North America the
highest GDP per capita.

Fig. 1.15 shows the energy consumption in tons of coal in 122 coun-
tries in 1991. South Asian countries have the lowest and North Amer-
ica the highest energy consumption. (UN Statistical Yearbook 1991).
The shape of the functions in Figs 1.14 and 1.15 are very similar and
correspond to nearly the same countries.

The answer is the Carnot process. A heat pump extracts heat from a cold

river and heats up a warm house. A bank may extract capital from poor savers

and give it to rich investors. Economic interaction of two partners is only pos-

sible by exploitation of a third party due to clever manipulation (work). The

most common objects of exploitation are natural resources, the environment

and common property like water, air, coal and oil. A motor runs on oil, in-

dustrial production also runs on oil. Figure 1.14 and 1.15 show the world

distribution of wealth (GDP per capita) and the world energy consumption

per capita. Both run nearly parallel in all countries. This shows indeed that
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all wealth comes from exploitation. And this is not only true for the first per-

son in the economic chain (like miners and farmers), but for everybody in the

economic chain who wants to make a profit.

1.7.3

World Trade Mechanism

Fig. 1.16 shows the distribution of wealth in
the world (CIA World Factbook, USA, 2004).
The number of people in different income
classes is given by the gross domestic prod-
uct (GDP) per person. The distribution is
clearly divided into two parts. The majority of
people (about three billion) in the “third world”
live below or close to 2 000 US$ per person.

The minority of about one billion people in
the “first world” have an income between
12 000 and 15 000 US$ per capita. (The gap
at 14 000 US$ per capita is an artifact and
due to US–EU currency fluctuations.) About
two billion people , the “second world” live in
between the two extremes.

Machines like motors or heat pumps always require or create two different

temperatures (T). Inside the motor it is hot and therefore it needs water or air

cooling outside. The heat pump works with a cold river and a warm house,

the refrigerator has a cold inside and a warm outside. This difference in tem-

peratures is necessary to make the Carnot process work. The areas of different

temperatures have to be separated. If the door of the refrigerator stays open,

it will not work, the efficiency is r = 0.

In all economic systems, work (W) according to the Carnot process always

creates two different price or income levels (T). Buying and selling must create

two price levels, otherwise there is no reason to do business. But also within

a country, production (W) will create poor workers and rich capitalists.
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The two-level system is also observed in the world distribution of wealth.

Figure 1.16 shows the GDP distribution of the world and the corresponding

number of people. The wealth of nations is clearly divided into two parts. In

the “third world” more than three billion people live below or close to a GDP

of 2 000 US$ per capita (1995). And in the “first world” about one billion peo-

ple live between 12 000 and 16 000 US$ per capita. (The small dip at 14 000 US$

per capita is more or less artificial and due to fluctuations of the US$ and EU

currencies.)

The Carnot process will stabilize the two different standards of living in

the world population. The lower standard will grow with time, but also the

difference will grow in order to enhance the efficiency. But the distribution of

countries does not have to stay that way for ever. Some countries like China

and India will emerge from the bottom and come closer to the top after a

decade or two. Some richer countries may stay in the same position or even

drop their standard of living. This will be discussed in Section 1.8 on the

economic growth of interdependent systems.

1.7.4

Returns

Profits ∆Q = ∆T∆S rise with the difference in price and costs ∆T of the prod-

uct. The ideal efficiency of production in Eq. (1.16) may now be given by

r =
Y − C

C
=

T2 − T1

T1
(1.46)

Example: Dutch Importation of furniture from Indonesia

The GDP per capita in Holland and Indonesia are

THolland = 12 000 US$ per capita and

TIndonesia = 3 000 US$ per capita.

Importing local commodities like furniture from Indonesia to Holland leads

to an (ideal) efficiency

r = (12 000− 3 000)/3 000 = 3 or 300%.

Returns are ideally independent of the type of commodity. The efficiency is

determined only by the difference in the standard of living ∆T.

The difference in complexity ∆S does not appear in efficiency calculations.

For this reason the entropy function (S) has little importance in macro eco-

nomics. However, in micro economics, the entropy (S) is linked to the prob-
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ability (P) of the system. This is important for stock markets. A high en-

tropy difference ∆S indicates a high probability of continuity or security of a

share. A company with simple products may quickly be replaced. A com-

pany with complex products will last longer. Production (∆W) creates a cer-

tain area ∆T∆S, Fig. 1.13. The area with a large ∆T and a small ∆S will be

highly efficient but less secure. A large ∆S and a small ∆T indicates that this

company creates complex products with less efficiency and high security. The

area ∆T∆S is determined by the work invested in the product. The shape of

the area indicates whether a share is speculative and (perhaps) profitable or

secure and less profitable. The optimum for a portfolio of stocks may be a

nearly square area ∆T∆S with medium efficiency and medium security.

1.8

Dynamics of Production: Economic Growth

1.8.1

Two Interdependent Systems: Industry and Households

The dynamics of economic systems is again based on the Carnot process. So

far all equations have been static, as in the thermodynamic formulation of

economics the first and second laws do not contain time. But the length of

a Carnot cycle is a natural time scale; a day, a month or a year. Economic

growth may be handled like a starting motor. Both the inside and outside

of the motor will get warmer, depending on how the heat is distributed. In

economic systems the profit of each cycle has to be divided between the two

sides of the production cycle, Y and C. If the lower level (C) gets the share “p”

and the higher level (Y) the share (1 − p) of the profit (∆Q), we obtain:

dY1 = p∆Q dt (1.47)

dY2 = (1 − p)∆Q dt (1.48)

∆Q = Y2 −Y1 (1.49)

The solution of this set of differential equations is:

Y1(t) = Y0 + p[Y20 −Y10][exp(αt)− 1] (1.50)

Y2(t) = Y20 + (1 − p)[Y20 − Y10][exp(αt)− 1] (1.51)

with

α = (1 − 2p) (1.52)

According to Eqs (1.47)–(1.52) a rising standard of living (Y) in two interde-

pendent economic systems is determined by the share of the profit “p” of the

group at the lower level (Y1). The results are shown in Figs 1.17–1.22.
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1. p = 0; Fig. 1.17. If all profit goes to the richer party (Y2), the standard of

living of group (2) will grow exponentially, the standard of living of the

first party stays constant, (Y10).

2. p = 0.25; Fig. 1.17. at 25% of the profit for the poorer party (Y1) and 75%

for the rich party (Y2) both parties will grow exponentially. Examples are

Japan and Germany after World War II, both economies were depending

on the US and were growing exponentially, this is indicated in Fig. 1.18.

3. p = 0.50; Fig. 1.17. An even split between the two parties leads to a

linear growth of both parties. The efficiency of the interaction is reduced

with time.

4. p = 0.75; Fig. 1.19. The growth of both parties is leveling off not much

above the initial standard of living. An example is the present US–

Japanese economic relationship; both economies are close to each other

without much economic growth, as shown in Fig. 1.20.

5. p = 1.00; Fig. 1.19. If all profit goes to the poor side, the standard of

living of the poor party soon reaches the constant standard of living of

the rich party.

6. p = 1.25; Fig. 1.21. If more than 100% of the profit goes to the poor

party, (Y2) will decrease, and (Y1) will catch up with (Y2). This has been

observed in the relationship of West and East Germany after reunion in

1990, Fig. 1.22.

The data in Figs 1.17–1.22 can only indicate the results of Eqs (1.47)–(1.52), as

all countries also have other (less important) interactions with other countries.

The results may also be applied to other binary interactive economic systems

like industry and households, or in trade. For industries and households the

distribution of profit p is determined by the interacting agents of unions and

industry, whereas in trade we have buyer and seller. This is now discussed in

more detail.

1.8.2

Linear and Exponential Growth (0 < p < 0.5)

Figure 1.17 shows the problem of unions and industry in more detail. Unions

tend to ask for high raises in payments, industry urges to invest the profits.

Indeed, the fair deal, a split of profits 50:50 between workers and industry

(dashed line) in Fig. 1.17 is not the best deal and will only result in linear

growth. Workers and industry are much better off in a deal where 90% of

the profits are reinvested (solid lines). Low increase in wages will lead to

exponential growth for industry and later for workers as well. But workers
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(as well as their managers) will have to be more patient with pay raises, as in

Germany or Japan after World War II, Fig. 1.18.

1.8.3

Trailing Economies: USA and Japan (0.5 < p < 1)

The opposite picture is shown in Fig. 1.19. A high factor p leads to decreasing

efficiency, (Y1) is trailing a decreasing (Y2). After Japan and Germany have

acquired many production plants, the factor p has grown and the efficiency

of the exports has started to decrease. In Fig. 1.20 the economic level (Y1) of

Japan is now trailing the slowly decreasing level (Y2) of the USA.

1.8.4

Converging Economies, West and East Germany (p > 1)

If the poor side (Y1) profits very much, p = pN1/(N1 + N2) > 1, both parties

will converge, as shown in Fig. 1.21. This happened during the reunification

of West and East Germany, Fig. 1.22. The standard of living in East Germany

grew by 100% within six years, as the standard of living in West Germany was

declining. The economic levels (Y1) and (Y2) in East and West Germany have

nearly converged and differ now, after more than 15 years, by only 20%.

1.9

Conclusion

In the thermodynamic formulation of economics, the laws of markets and so-

cieties have been derived from calculus and statistical laws. No further as-

sumptions have been used to derive the laws of economics. The calculated

functions are supported by data, which all seem to agree very well. Many ar-

guments indicate that the thermodynamic formulation of economics is a very

general approach, which fits the data very well and explains economics and

economic growth on the basis of natural science.

However, economic interactions are not only governed by statistical laws.

Many economic interactions are restricted by traditional customs, civil laws

or by agreements between trading partners. These additional laws will influ-

ence the interactions of free economic agents. How will they affect the results

above? This will be discussed in more detail in the chapter on “The Thermo-

dynamic Formulation of Social Science”.
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Fig. 1.17 The development of the standard of living of two interdepen-
dent economic systems starting at Y1 = 1 and Y2 = 2. The profit for
the poor side varies from p = 0.10 to p = 0.40. After some time the
standard of living of workers (Y1) will grow with a lower pay raise p!!

Fig. 1.18 Economic growth of US, UK, Switzerland, Japan, Germany
and China between 1870 and 1990. The victorious allies USA and UK
have grown exponentially. Japan and Germany only started to grow
exponentially after World War II by international trade at low wages.
China was excluded and did not take part in economic growth at that
stage.
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Fig. 1.19 The development of the standard of living of two interdepen-
dent economic systems starting at Y1 = 1 and Y2 = 2. At high values
of profit for the poor side, p = 0.75, economic growth is declining with
time.

Fig. 1.20 The development of the standard of living (GDP/person) of
the USA and Japan in quarters between 1980 and 2000.The interde-
pendent economic systems are declining with time.
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Fig. 1.21 The development of the standard of living of two interdepen-
dent economic systems starting at Y1 = 1 and Y2 = 2. At very high
values of profit for the poor side, p > 1 both economies will converge
below Y2 = 2.

Fig. 1.22 Real standard of living in West and Germany between 1989
and 1998 due to productivity and capital transfer. In 1998 East Ger-
many reached about 80% of the living standard in West Germany.
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