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When a three-phase contact line moves along a solid surface, the contact angle no longer cor-

responds to the static equilibrium angle but is larger when the liquid is advancing and smaller

when the liquid is receding. The difference between the advancing and receding contact angles,

i.e., the contact angle hysteresis, is of paramount importance in wetting and capillarity. For exam-

ple, it determines the magnitude of the external force that is required to make a drop slide on a

solid surface. Until now, fundamental origin of the contact angle hysteresis has been controver-

sial. Here, this origin is revealed and a quantitative theory is derived. The theory is corroborated

by the available experimental data for a large number of solid-liquid combinations. The theory

is applied in modelling the contact angle hysteresis on a textured surface, and these results are

also in quantitative agreement with the experimental data. ➞ 2017 Author(s). All article content,

except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4996912]

INTRODUCTION

Wetting of solid surfaces by a liquid is a classical and

familiar physics problem and its understanding is crucial in

many industrial processes.1–5 When the liquid does not wet

the solid completely, a specific Young’s equilibrium angle6 θ

is formed at the three-phase contact line and can be used as a

measure of the hydrophobicity of surfaces.7,8

However, wettability is not determined by θ alone. In

addition, there is another important property, contact angle

hysteresis, that characterizes wetting. Under the influence of

an external force, such as gravity, no motion of the contact

line occurs instantaneously but the contact angle changes. In

the case of a drop, its shape then becomes asymmetric, and

only when a sufficiently high force is exerted does the sliding

begin (Fig. 1). At that time, there occurs the highest possible

contact angle, θa, and the lowest possible contact angle, θr,

the difference of which is called the contact angle hysteresis,

H = θa ☞ θr.
9,10 The effect of the contact angle hysteresis can

also be measured by cos θr ☞ cos θa, which is linked with the

net force that is required to make a drop slide.11

Contact angle hysteresis is a crucially important element

of wetting and, given the great practical importance of the

subject, numerous experimental and theoretical studies have

been made to understand it. These have been reviewed by de

Gennes8 and, more recently, by Eral et al.12 Attempts have

been made to explain the origin of contact angle hystere-

sis, e.g., by surface roughness and chemical heterogeneities,

surface deformation, liquid adsorption and retention, vis-

cous dissipation, molecular rearrangement upon wetting, and

inter-diffusion (for review, see Ref. 12). Qualitatively, contact

angle hysteresis has also been explained by the shape of the

a)
Author to whom correspondence should be addressed: lasse.makkonen@
vtt.fi

disjoining isotherms13–15 and by a phenomenological phase

field model.16

However, there is no consensus on the fundamental origin

of contact hysteresis on a smooth and homogenous surface, and

there is no well-verified quantitative theory. Most of the present

models predict no contact angle hysteresis on a smooth chem-

ically homogenous surface, while experimentally hysteresis

is always observed, even on inherently smooth surfaces.17,18

Eral et al.12 end their review by stating “The manifestations

of contact angle hysteresis are everywhere in our daily lives,

yet how to include this physical phenomenon in models is far

from settled.”

Here, the fundamental origin of contact angle hysteresis is

revealed and a thermodynamic quantitative theory is developed

for an ideal surface. The theory is then extended to textured

surfaces.

THE FUNDAMENTALS

At the heart of the problem is the balance at a contact line

proposed by Thomas Young10 in 1805. Formally, Young’s idea

results in the following equation:

γSV = γSL + γLV cos θ, (1)

where γSV, γSL, and γLV are, respectively, the solid-vapor

(S,V), solid-liquid (S,L), and liquid-vapor interfacial tensions

(Fig. 2). In this classical construction, the three mechanical

surface tensions γSV, γSL, and γLV are at equilibrium in the

direction parallel to the solid surface.

Equation (1) has widely not only been interpreted as the

mechanical balance of the three surface tensions but also as

the result of minimizing the total free energy. In the latter

interpretation, γSV, γSL, and γLV in Fig. 2 represent scalar

thermodynamic surface energies instead of mechanical ten-

sion vectors. While the surface tensions involving a liquid

phase can be interpreted either way, the mechanical surface
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FIG. 1. Drops of water sliding on an inclined polymer surface.

tension of a dry solid is a contentious concept.19–21 Never-

theless, Eq. (1) can be used when considering the balance of

forces solely in parallel to the solid surface because such equi-

librium must exist irrespectively of the origin and nature of the

forces.

A consequence of Young’s equilibrium is that a drop

on a solid surface, or a column of liquid in a thin capillary,

should move even with the slightest external force. Histori-

cally, this is referred to as the Bertrand theorem. However, a

contact line is pinned, so when one tries to move a drop or

a liquid column, Eq. (1) is violated. Joanny and de Gennes22

in 1984 started their analysis on contact angle hysteresis by

writing that “the natural interpretation of this violation is

based on irregularities of the solid surface.” This idea found

its way into textbooks3 and has been subsequently adopted

to the extent that even in the most recent literature, phrases

such as “. . . known to originate from surface heterogeneities

. . . ” are used when discussing the physics of contact angle

hysteresis.23

It is shown in the following that this idea is incorrect.

This is not to say that surface heterogeneities could not cause

contact angle hysteresis but that the fundamental origin of con-

tact line pinning and contact angle hysteresis lays elsewhere.

That it was overlooked by Joanny and de Gennes22 and all

subsequent authors is rather peculiar because the physics here

are embedded in the most basic definition of the Gibbsian

surface thermodynamics: Work must be spent when creating

new surface, and this work defines the thermodynamic surface

energy γ (J m☞2). Specifically, the International Union of Pure

and Applied Chemistry (IUPAC) definition of surface tension

reads as follows: “Work required to increase a surface area

FIG. 2. Young’s construction of surface tensions at a three-phase contact line

of a drop.

FIG. 3. Example of creating a new interface. Upon sliding of a drop, the solid-

vapor (S,V) interface disappears and a solid-liquid (S,L) interface forms at the

advancing contact line. Correspondingly, the solid-liquid interface disappears

and a solid-vapor surface is formed at the receding contact line.

divided by that area. When two phases are studied, it is often

called interfacial tension.”

Obviously, when a three-phase contact recedes along the

solid surface, a new solid surface is created behind the contact

line. Correspondingly, when a contact line advances, a new

solid-liquid interface is created behind it. These processes are

illustrated in Fig. 3 by a sliding drop in the ideal case where

the advancing and receding contact lines move simultaneously

at the same velocity.

One could argue that the surface energy of the disappear-

ing surface would be available as free energy on the other

side of the contact line. In that case, the frictional force F

would be related to the difference of the solid and solid-

liquid interface energies. However, the surface energy is a

thermodynamic concept, and in thermodynamic theory, the

surface energy is not associated with a volume but with a two-

dimensional discrete interface. Therefore, when a contact line

moves across a solid surface, the surface energy of a disap-

pearing surface is not stored in any way and thus cannot be

transferred to the other side of the contact line. Consequently,

upon the motion of a three-phase contact line, the surface

energy of the disappearing surface dissipates into thermal

energy.

Therefore, work must be done in moving the contact line.

This is possible only when there is a frictional force F, against

which work is done. The magnitude of this frictional force F

is such that the related tension F/w equals the thermodynamic

surface energy γ of the interface being created. This is directly

measurable, e.g., when stretching a liquid film. In the general

case, this can be understood by considering an object of width

w moving in complete contact by an increment dx so that an

area dA is formed behind it. Then, work dE is spent in creat-

ing a new surface. It follows from the definition of force that

F = dE/dx = γdA/dx = γw. Thus, the frictional tension that

resists the motion is

F/w = γ. (2)

CONTACT ANGLE HYSTERESIS ON AN IDEAL
SOLID SURFACE

As shown by Eq. (2), when a new smooth interface is

formed, the resisting frictional tension F/w equals the surface

energy γ of that interface. Consequently, when the contact line

on the left side of Fig. 3 is forced to advance to the left, thus

creating a new solid-liquid interface, the frictional tension that
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resists the motion equals γSL. A force balance parallel to the

solid surface must exist in this situation. The frictional tension

is in addition to the tensions that exist already in the static

equilibrium described in Fig. 2. To adjust the static force equi-

librium in Eq. (1) to the new dynamic situation, the additional

frictional tension arising at the continuously moving contact

line F/w = γSL must be balanced by a change in the contact

angle, i.e.,

γSL = γLV(cos θ − cos θa). (3)

The change occurs in the contact angle because it is the only

free parameter in the system, the other parameters, i.e., surface

energies, being material constants. Equation (3) is analogous

to the concept of spreading tension,22 which, in a quasi-static

condition, equals the frictional tension. When using Eq. (1),

the force equilibrium at an advancing contact line becomes

γSV = γSL + γLV cos θa + γSL, (4)

where θa is the advancing contact angle.

Similarly, when considering the receding contact line, i.e.,

the situation where in Fig. 3 the left side of the drop moves to

the right, the motion brings in an additional frictional tension,

γSV, owing to the work spent in creating a new solid-vapor

interface at the contact line. This must be balanced by the

change in the contact angle so that

γSV = γLV(cos θr − cos θ). (5)

The force equilibrium at the receding contact line is thus

obtained as

γSV + γSV = γSL + γLV cos θr, (6)

where θr is the receding contact angle.

The frictional terms on the left side of Eqs. (3) and (5) can

also be interpreted by the conventional concept of the work of

wetting. In a situation where the contact angle does not change

upon moving, this work is that of immersional wetting Wi

= γSV ☞ γSL. Accordingly, when considering the motion of a

contact line as an irreversible process, Wi equals either ☞γSL

as in Eq. (3) or ☞γSV as in Eq. (5), depending on the direction

of the motion.

Equations (4) and (6) provide a thermodynamic model

of the dynamic contact angles on a smooth and homogenous

surface as a function of the surface energies of the system.

These equations include two material properties, γSV and γSL,

that cannot be directly measured. However, γSV and γSL can

be related to the static equilibrium contact angle θ as will be

discussed below.

Berthelot’s rule24 follows from applying the geometric

mean combination rule in the London theory of dispersion

forces. Thus, it has a theoretical basis in the case of non-polar

materials.25 However, because of entropic contributions26 and

non-dispersive forces across interfaces, Berthelot’s rule needs

to be modified so that a semi-empirical interfacial interaction

parameter φ is used.27 Then, the solid-liquid interface energy

can be expressed as

γSL = γSV + γLV − 2φ(γSV γLV)
1/2. (7)

This Girifalco-Good equation is widely discussed in the

literature. From Eqs. (1) and (7), it follows that

γSV/γLV = [(1 + cos θ)/2φ]2. (8)

Theory27 and experiments27,28 show that the value of the

interfacial interaction parameter φ varies between 0.5 and

1.2.

Inserting Eq. (8) into Eqs. (4) and (6), respectively, and uti-

lizing Eq. (1) give analytical expressions for the two dynamic

contact angles as a function of the static contact angle. For the

advancing contact angle

cos θa = [−cos2θ + (8φ2
− 2) cos θ − 1]/4φ2. (9)

The maximum contact angle is 180➦, so that cos θa has a limit,

below which cos θa = ☞1 and H is determined by θr alone. For

φ = 1, the limit is at cos θ = ☞0.464 (θ = 117.7➦).

For the receding contact angle, the corresponding equa-

tion is

cos θr = [cos2θ + (4φ2 + 2) cos θ + 1]/4φ2. (10)

The minimum contact angle is 0➦, so that cos θr has a limit,

above which cos θr = 1 and H is determined by θa alone. For

φ = 1, the limit is at cos θ = 0.464 (θ = 62.3➦).

It has been shown28,29 that a linear relationship exists

between the solid-liquid surface tension γSL and φ, i.e.,

φ = −αγSL + β. (11)

In Eq. (11),α and β are the constants for a specific liquid. Their

values have been determined both by studies based on contact

angles and by direct measurements of liquid-liquid surface

tensions.28 These studies show that Eq. (11) provides a very

high linear correlation coefficient for very different material

combinations. From the applications point of view, water is the

most important liquid, and for water-organic liquid systems,

the correlation coefficient for Eq. (11) is 0.992 in the range φ

= 0.5–1.0 of the data.28

One may utilize Eq. (11) by combining it with Eqs. (1)

and (8) and solving for φ. This yields

φ = αγLV[cos θ − ((1 + cos θ)/2φ)2] + β. (12)

Thus, there is a theoretical solution for φ as a function of

the static equilibrium contact angle θ. Inserting Eq. (12)

into Eqs. (9) and (10) then gives us, for a system with

known α and β, the equations for the dynamic contact

angles θa and θr as a function of the static contact angle θ.

These are third-degree equations and can readily be solved

numerically.

RESULTS AND VALIDATION

According to the model developed above, for a liquid with

known α and β, the dynamic contact angles θa and θr, as well

as H, depend on θ alone. The theory explains the empirically

observed basic features that the contact angle hysteresis is

inherent to all surfaces and is independent of the contact line

velocity30 and the effective vertical force,31 when viscosity

effects and impurities can be excluded.

The results of the theory are shown in Fig. 4. The depen-

dence of θa and θr on θ is shown in Fig. 4 making the

assumption φ = 1. In addition, the effect of the interfacial

interaction parameter φ on the dynamic contact angles, as

calculated by the theory, is illustrated in Fig. 4. Numerical

solutions are shown in Fig. 4 for two liquids, water and ethy-

lene glycol. They represent the highest and smallest mean
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FIG. 4. Advancing (θa, blue) and receding (θr, red) contact angles as a func-

tion of the static contact angle as calculated by the theory for two liquids:

water and ethylene glycol. The values used for parameters α and β are 0.0113

and 1.129 for water and 0.012 91 and 1.032 for ethylene glycol (EG).28

values of φ in the data based on direct liquid-liquid measure-

ments.28 The corresponding values of α and β are 0.0113 and

1.129 (water—organic liquid) and 0.012 91 and 1.032 (ethy-

lene glycol—organic liquid).28 Figure 4 shows that, although

φ varies in a wide range, the dynamic contact angles are

only moderately sensitive to deviations from the theoretical

solution that assumes φ = 1, i.e., α = 0 and β = 1. The advanc-

ing contact angle θa is significantly affected by varying α

and β within their experimental limits only at high contact

angles.

Quantitative predictions of the theory, with the assump-

tion that Berthelot’s rule is valid in its original form, i.e.,

φ = 1, are shown again in Fig. 5, where this theoreti-

cal prediction is compared with the available experimental

data on the three contact angles from experiments on sur-

faces that have been considered “smooth” by the respective

authors.32–36

FIG. 5. Advancing (θa, blue) and receding (θr, red) contact angles as a func-

tion of Young’s contact angle on a smooth surface, θ. The lines show the

prediction of the theory with φ = 1. The circles are the experimental data

for water on plasma polymer surface coatings,32 triangles for different water-

ethanol mixtures on a Si3N4 surface,33 squares for water on untreated and

treated PET and PMS surfaces,34 and stars for water on six other polymer

surfaces.35 The crosses are for different saturated hydrocarbon liquids on a

PTFE surface.36

In view of Fig. 4, the scatter of the experimental data

in Fig. 5 is undoubtedly caused by the material dependent

variations in the interfacial interaction parameter φ. Minute

roughness of the solids may also play a role here. More-

over, there are many inherent difficulties in determining the

contact angles accurately, particularly determining the equi-

librium state that corresponds to θ, and measuring θr at small

angles.37–41 This withstanding, the theory is in good quantita-

tive agreement with the data. The data in Fig. 5 are based on

four different measurement methods: the Wilhelmy immer-

sion plate method, the capillary rise method, measuring the

drop shape by pumping liquid in and out of a sessile drop,

and the tilted plate method. The experiments include fifty dif-

ferent liquid-solid combinations plus one combination with

12 different liquid mixture concentrations. Hence, noting the

uncertainty envelope shown in Fig. 4, the data in Fig. 5

provide strong support for the theory. Note that the model,

as applied in Fig. 5, is purely physical, i.e., the curves in

Fig. 5 include no fitting parameters or other experimental

ingredients.

APPLICATION TO TEXTURED SURFACES

The model presented above for a smooth surface

cannot be directly applied to a rough surface because

the contact angles depend on the surface morphology at the

contact line.41–43 However, since the model represents the fun-

damental mechanism of contact angle hysteresis, it can be used

as the foundation of any successful theory also on a rough sur-

face. When applied to the Wenzel state on a textured surface,

surface generation per increment dx is higher than on a smooth

surface so that this theory gives HR = r H. Here r is the ratio

of the total surface area of the solid to its apparent surface

area (r > 1). Thus, the model shows that increasing the rough-

ness increases the contact angle hysteresis on a hydrophilic

material, as experimentally observed.44

In the Cassie state, air is entrapped at the interface, and

contact angles can be modeled by the differential Cassie frac-

tionΦd, which is the solid fraction traversed by the contact line

during a hypothetical small displacement.33,45 The fractionΦd

can be related to the conventional Cassie factorΦs, i.e., the ratio

of the true solid-liquid contact area to the apparent interface

area, when the surface texture morphology and the direction of

the contact line motion in relation to it are known.46,47 For the

static contact angle θR on a textured pillar-like hydrophobic

surface, the force balance in the Cassie-state can be formulated

as45

γLV cos θR
= Φd(γSV − γSL) − (1 − Φd)γLV. (13)

Analogously with Eqs. (4) and (6), the dynamic Cassie-Baxter

equations become

cos θa
R
= Φd,a(1 + cos θ) − 1 − Φd,a(γSL/γLV) (14)

for the advancing angle and

cos θr
R
= Φd,r(1 + cos θ) − 1 + Φd,r(γSV/γLV) (15)

for the receding angle.
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FIG. 6. Apparent receding contact angle on a textured surface θr
R vs.

Young’s equilibrium contact angle on a smooth surface θ. The points are

experimental observations with different Cassie fractions Φs of rough sur-

faces consisting of micropillars.33 The lines are predictions of this theory,

Eq. (17).

Using Eqs. (1) and (8) and taking φ = 1 for simplicity,

these analytical solutions can be written as

cos θa
R
= Φd,a[(−cos2θ + 6 cos θ + 3)/4] − 1 (16)

and

cos θr
R
= Φd,r[(cos2θ + 6 cos θ + 5)/4] − 1. (17)

This allows purely theoretical modeling of the advancing and

receding contact angles on a textured surface by variables Φd

and θ.

The theoretical dynamic contact angles from Eqs. (16)

and (17) can be compared with recent measurements of

contact angle hysteresis on surfaces with a well-controlled

Cassie fraction. Using the data for cylindrical pillars,33 for

which the differential solid fraction for the receding con-

tact line is given33 as Φd,r = (2/π➼) Φs
➼, the theory can be

tested. This is presented in Fig. 6 for a geometry for which

Φd,a = 0.46 Figure 6 shows excellent agreement for different

Cassie fractions Φs, in a wide range of equilibrium contact

angles.

DISCUSSION

The theory presented here has many important impli-

cations. From the theoretical point of view, it is now clear

why the motion of a contact line is a dissipative process and

involves a resisting frictional force. The existence of a fric-

tional force, which causes contact angle hysteresis already on

an ideal smooth surface, has been postulated48–51 and mea-

sured52 before but is identified and quantified here as the force

that arises from creating a new surface behind a contact line.

This mechanism is analogous with the thermodynamic origin

of the sliding friction of solids.53

The resulting solution of the problem is remarkably simple

in that the contact angle hysteresis H on a smooth and chem-

ically homogenous surface depends only on Young’s static

equilibrium angle θ. Only for accurate estimates for polar

materials does the interfacial interaction parameter φ need

to be considered. This simplifies the characterization of sur-

faces where typically θa and θr have been measured but not θ.

Since θ is generally considered more difficult to measure than

the dynamic angles, application of this model will improve

the accuracy of determining the static equilibrium Young’s

angle.

There has been a long debate on how the dynamic con-

tact angles are related to the Young’s equilibrium contact

angle. Approximations θ = (θa + θr)/2
54 and cos θ = (cos θa

+ cos θr)/2,55 as well as some more complicated relation-

ships,56,57 have been proposed. Out of these, the analytical

solution by Tadmor56 is the most widely used.58–61 The theory

presented here shows that none of these proposals are accurate

in the whole range of θ. More importantly, such approxima-

tions are no longer necessary since this theory provides the

physical model of the problem. It turns out that θ is not a func-

tion of both θa and θr, but rather θa and θr are related to θ by

two separate equations.

The theoretical results in Eqs. (9) and (10) reveal the fun-

damental difference between θ and θa. Consequently, θa or

any measured static angle between θ and θa should not be

used in Young’s equation to replace θ, as done in some the-

ories of contact angle hysteresis62,63 and quite generally in

determining solid surface energies by the advancing contact

angle.

According to the theory presented here, the dynamic con-

tact angles and the contact angle hysteresis are independent of

the velocity of the contact line. This prediction is corroborated

by the experimental data, which show that there is no velocity-

dependence of dynamic contact angles for liquids with low

viscosity.30,64,65 Due to hydrodynamic effects, this theory is

not directly applicable to viscous liquids moving at a high

velocity or to a liquid with impurities.66 Experimentally, con-

tact angles have been studied at low velocities,67 and the limit

of the velocity dependence appears30 to be at the viscosity of

about 0.01 Ns/m2. Therefore, this model is applicable to the

issues of hydrophobicity in natural conditions.

In the medium range of θ, the data for both θa and θr

appear to be systematically somewhat above the theoretical

prediction in Fig. 5. In the receding case, errors in measuring

θr are the most likely explanation for this.32,36–39 There are

many problems involved, such as deformation of the interfaces

and varying fitting procedures of optical data,67 particularly

at small angles. In addition, liquid adsorption on the bulk

material during the experiment68 or a precursor film on the

solid69 may be factors here. In case of a drop at high contact

angles, the mode of motion, i.e., sliding vs. rolling, does not

explain the discrepancies in Fig. 5 because the thermodynamic

cost of creating a new interface is unrelated to how the liquid

moves.

Systematic errors in Fig. 5 may also arise due to dif-

ficulties in obtaining the true equilibrium when measuring

the Young’s static contact angle θ. These could be allevi-

ated by a detailed statistical contact angle analysis.67 Due

to the pinning of the contact line, the apparent static con-

tact angle may be far from θ, depending on the way the drop

is placed on the surface, or when evaporation of the drop

takes place. Apparently, an accurate value of θ may only be

obtained by determining the most stable contact angle using

tilted plane experiments.35 More work is necessary in this

area.



064703-6 Lasse Makkonen J. Chem. Phys. 147, 064703 (2017)

A related issue is that experimentally θa is increased

and θr is decreased by noise.70 The theory agrees with this

observation since vibrations make the contact line move

in both advancing and receding directions, thus reduc-

ing the larger apparent angle and increasing the smaller

apparent angle. Large enough vibration levels mitigate hys-

teresis as predicted by the model and as experimentally

observed.70

Yet another possible explanation for the systematic dif-

ference in θa in Fig. 5 is that the circles in the figure are

based on the first immersion of the Wilhelmy plate method.

On a slightly rough surface, the advancing angle is larger

for the first immersion and remains at a smaller constant

value thereafter.71 This suggests that micro- or nano-bubbles

of air are entrapped upon the first immersion, and that data

based on subsequent immersion should be used in compar-

isons with the theory. Deviation from the symmetric drop

shape in the tilted angle experiments does not significantly

affect the measured contact angles,72 but gravity may play a

role.

In addition to experimental errors, one reason for the scat-

ter in the data in Fig. 5 may be the varying stiffness of the solid

materials. Some experiments suggest that H may be increased

on compliant materials, such as natural rubber.73 In view of

the theory presented here, this is probably related to the elastic

component of the surface energy of a soft solid, as described by

the specific theories of wetting on deformable materials.74–77

Surface restructuring of the bulk material may also play a role

here, as some energy may be transferred across a moving con-

tact line in that form. However, the effect of restructuring on

the surface energy is generally quite small,78 except perhaps

for very soft materials.

The theoretical result that the contact angle hysteresis on

a textured surface is a function of the equilibrium static con-

tact angle θmeasured on a smooth surface and the differential

Cassie fractionΦd only makes the interpretation of hydropho-

bicity remarkably simpler. It also makes it possible to consider

in detail the effect of specific surface texture geometries on

contact angle hysteresis.46,50 An increased slip length at very

large micro-feature spacing may play a role in contact line

dynamics.79 However, no relationship between micro-feature

scale and contact angle hysteresis, when the geometry and

Cassie fraction are held constant, has been observed in the

spacing range of 2–128 µm covered by the experiments.46,80

Therefore, this theory is applicable to textured surfaces, at least

in this range and when no precursor film is present.

SUPPLEMENTARY MATERIAL

See supplementary material for the experimental data in

Fig. 5.
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