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Abstract

The present paper deals with the derivation of an interface model character-
ized by macroscopic fracture energies which are different in modes I and II, the

macroscopic fracture energy being the total energy dissipated per unit of fracture
area.

It is first shown that thermo-dynamical consistency for a model governed by
a single damage variable, combined with the choice of employing an equivalent

relative displacement and of a linear softening in the stress-relative displacement
law, leads to the coincidence of fracture energies in modes I and II. To retrieve the

experimental evidence of a greater fracture energy in mode II, a micro-structured
geometry is considered at the typical point of the interface where a Representa-
tive Interface Element (RIE) characterized by a periodic arrangement of distinct

inclined planes is introduced. The interaction within each of these surfaces is
governed by a coupled damage-friction law.

A sensitivity analysis of the correlation between micromechanical parameters
and the numerically computed single-point microstructural response in mode II

is reported. An assessment of the capability of the model in predicting different
mixed mode fracture energies is carried out both at the single microstructural

interface point level and with a structural example. For the latter a double
cantilever beam with uneven bending moments has been analyzed and numer-

ical results are compared with experimental data reported in the literature for
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different values of mode mixity.

Keywords: cohesive-zone models; fracture energies; mixed-mode fracture;

damage-friction coupling.

1. Introduction

Cohesive zone models combining interface damage, friction and unilateral con-

tact find primary applications in the description of an extensive family of degra-
dation behaviors, involving macroscopic and/or microscopic surface debonding,

experimentally observed both in homogeneous and in heterogeneous materials.
Two well known experimental findings of the mechanics of interface decohe-

sion in quasi-brittle materials are: 1) the existence of coupling between damage
progression and hysteretic frictional behavior and 2) the existence of an experi-

mentally measured fracture energy in pure mode-II decohesion that is often sig-
nificantly higher than its pure mode-I counterpart.

Several interface models accounting for damage-friction coupling have been
proposed in literature, e.g., Del Piero and Raous (2010) and references therein.
For quasi-brittle materials, asymptotic expansions of the crack-tip fields account-

ing for Coulomb-type friction law have been reported by Karihaloo and Xiao
(2008) and by Barpi and Valente (2010). Several models capture the evolution

from adhesion to frictional regime exploiting different strategies, with a progres-
sive or a sudden transition (Raous et al., 1999). Among these models, Alfano

and Sacco (2006), Alfano et al. (2006) and, more recently, Sacco and Toti (2010)
introduced a method to combine interface damage and friction in a cohesive zone

model based on a simplified micromechanical formulation. The main idea de-
veloped in these references is to combine damage and friction by considering a

representative area at a micromechanical scale, which is assumed to be addi-
tively decomposed into an undamaged and a fully damaged part; moreover, it is
supposed that friction occurs only on the latter. Damage is assumed to evolve

according to the formulation originally addressed in Alfano and Crisfield (2001),
while the frictional behavior is governed by a Coulomb law. A similar approach

has been developed in Ragueneau et al. (2000) to define the stress-strain rela-
tionship for continuum media.

In the present contribution, a study of the damage-friction interface model
is accomplished within the framework of thermodynamics with internal variables

with a specific investigation on the possibility to account for the presence of
different mode-I and mode-II fracture energies.
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With the purpose of devising a model capable to suitably address different

mode-I and mode-II fracture energies while preserving a consistent standard ther-
modynamic formulation, a strategy for enhancing the approach exploited in Al-

fano and Sacco (2006) and generalized by Sacco and Toti (2010) is investigated
in the present contribution.

The solution exploited for retrieving a greater fracture energy in mode-II is

based on the enhancement proposed by Serpieri and Alfano (2011), whereby the
geometry of the interface is represented in the form of a periodic arrangement

of distinct inclined planes, denominated Representative Interface Element (RIE).
The interaction within each of these surfaces is governed by the combined damage-

friction interface formulation proposed in Alfano and Sacco (2006). Although a
simple bilinear damage law with equal mode-I and mode-II fracture energies and

no dilatancy is introduced on each individual plane, a macroscopic dilatant and
hysteretic behavior of the interface law is obtained with a significant difference

among mode-I and mode-II fracture energies.
Numerical applications are reported together with some details on the algo-

rithmic implementation. In particular, a sensitivity analysis of the correlation

between micromechanical parameters and the mixed-mode behavior of the model
is carried out at the constitutive level in terms of macroscopically observed frac-

ture energies. Moreover, to assess the applicability of the model to a full-scale
structural problem, the results of finite-element simulations of the mixed-mode

delamination of a Double Cantilever Beam subjected to Uneven Bending Mo-
ments (DCB-UBM) are also illustrated. In particular, the numerical results,

as predicted by the proposed model, are compared with the experimental ones
determined by Sørensen and Jacobsen (2009).

In the following braces are used to denote vector arrays, treating them as
column vectors by default, while square brackets are used for matrices.

2. Assumptions on state laws and damage evolution

A cohesive zone model with relative displacement variables s = {sn, st, }
t is

considered. A right-handed global reference frame (n, t) is introduced, n and t

being the tangential and normal directions of the planar interface S.The interface
is endowed with adhesion that can experiment damage driven by both normal and

tangential relative displacements. A pure mechanical formulation is considered
assuming that temperature is not significant for the model and it is consequently

ruled out from the set of state variables. Damage is addressed by introducing a
single damage variable α. Following Del Piero and Raous (2010) α is the unique

internal variable so that the whole set of normal state variables is χ = {s, α}t

(Suquet, 1982).
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2.1. State law

The Helmholtz free energy function for the cohesive zone model under study,

denoted as:
Ψ = Ψ (s, α) (1)

is assumed to be a convex function of s and a non-convex function of α. The

Ψ -conjugated generalized stress variables are denoted as:

X =
∂Ψ

∂χ
= {σ, X}t =

{

∂Ψ

∂s
, −

∂Ψ

∂α

}t

(2)

where σ = {σn, σt}
t is the reversible stress and X is the damage-associated

driving force.
To set the ideas, it is initially assumed sn ≥ 0 and st ≥ 0; in this case, two

landmark points are introduced in the space of the state variables: the onset

of damage in pure mode I and pure mode II, respectively denoted as χ(I0) and
χ(II0) whose associated relative displacements are s(I0) =

{

s0
n, 0,

}t
and s(II0) =

{

0, s0
t

}t
. Two further landmark state points are denoted as χ(If) and χ(IIf). The

former is the state at which zero normal stress is attained in a monotonic path
in pure mode I. The latter is the state at which zero tangential stress is attained

in a monotonic path in pure mode II. The associated relative displacements are

s(If) =
{

sf
n, 0,

}t

and s(IIf) =
{

0, sf
t

}t

. Finally, the four points above introduced

are characterized by the state variables:

χ(I0) =
{

s(I0), α(I0)
}t

, χ(II0) =
{

s(II0), α(II0)
}t

(3)

χ(If) =
{

s(If), α(If)
}t

, χ(IIf) =
{

s(IIf), α(IIf)
}t

(4)

The generalized stress coordinates corresponding to the first attainment of
χ(I0) and χ(If) in a pure mode I monotonic path are:

X(I0) =
{

σ(I0), X (I0)
}t

, X(If) =
{

σ(If), X (If)
}t

(5)

Similarly, the generalized stress coordinates corresponding to the first attainment

of χ(II0) and χ(IIf) in a pure mode II monotonic path are:

X(II0) =
{

σ(II0), X (II0)
}t

, X(IIf) =
{

σ(IIf), X (IIf)
}t

(6)

Further hypotheses at the basis of the interface model are introduced as fol-
lows.
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I Natural state - The interface stress at zero relative displacements, s = 0,

is assumed to be always zero. Such a point of the displacement plane is
denoted as O.

II Initial elastic behavior in a neighborhood of the origin - It is as-
sumed that in the displacement plane within a finite neighborhood ∆O of

the zero relative displacement damage does not evolve, so that the behav-
ior of the interface is completely elastic. Consequently, setting the internal

variable α equal to the initial value α(0), any curve in the χ space, whose
points are all such that s ∈ ∆O, is a path characterized by a constant

α = α(0) and, moreover,

α(I0) = α(II0) = α(0) (7)

The boundary of ∆O curve in the s space connecting points χ(I0) and χ(II0)

is denoted as Γ0 and contains points s(I0) and s(II0).

III Region of complete decohesion - It is assumed that a region of the
displacement plane ∆sep exists in which the state of complete decohesion

is attained. The separation region ∆sep is characterized by a vanishing
Helmholtz free energy. Any displacement point belonging to this region,

s ∈ ∆sep, is such that:
Ψ = 0 (8)

for any previous loading/displacement history.

The boundary of ∆sep in the s space is denoted as Γf and connects points
χ(If) and χ(IIf). When s belongs to ∆sep, the damage variable α has

reached a final value α(f) that cannot be modified for any other loading-
unloading history.

Two further curves are introduced in the s space, denoted as Γ I and Γ II ,
that, respectively, represent pure mode I and mode II increasing displace-

ment paths. Figure 1 shows a schematic plot in the s plane with the above
introduced displacement-like and stress-like state points.

IV Uncoupled elastic behavior in pure modes I and II - Elastic un-
coupling is assumed between the stress-relative displacement responses in

modes I and II. More specifically, it is assumed that in a pure mode I,
along Γ I (mode II, along Γ II ) the stress response consists only in normal

(tangential) stresses. Physically, this hypothesis amounts to state that the
interface is perfectly plane, without any form of interlocking. This condition

is mathematically stated in a synthetic and general formula

∂2Ψ

∂sn∂st
= 0, s ∈ Γ I , s ∈ Γ II (9)
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Figure 1: Schematic plot of landmark points, regions and curves in the s space.

and implies that when the interface is subjected to a monotonic relative
displacement path along Γ I the stress response contains no tangential stress

and vice-versa, i.e. when the interface is subjected to a relative displacement
path along Γ II , the stress response exhibits no normal stress.

V Equivalent relative displacement in mixed mode - An equivalent

relative-displacement scalar function seq (s) can be introduced whose max-
imum attained value during the past loading history is indicated as s̄eq

s̄eq(t) = max
history

seq (s) = max
τ∈[t0, t]

seq (s(τ)) (10)

where t0 is the initial time of the analysis, t is the current time and it is

assumed that the damage variable depends on s̄eq only through a suitable
scalar function α̂:

α = α̂ (s̄eq) . (11)

2.2. Complementary law for damage

The model requires additional equations which govern the evolution of α and

these are introduced in the framework of a standard thermodynamic formulation.
It is assumed that damage may increase only when X attains a threshold value
X0 which depends only on the current value of the damage variable α, whereby

it results:
f = X(s, α)− X0 (α) ≤ 0 (12)
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with the additional classical Kuhn-Tucker loading-unloading conditions:

α̇ ≥ 0 f ≤ 0 α̇f = 0 (13)

In order to have α̇ > 0, the consistency condition requires not only that f = 0,
but also that ḟ = 0 whereby, with the aid of the chain rule, it results:

ḟ =
∂X

∂α
α̇ +

∂X

∂s
ṡ −

dX0

dα
α̇ = 0, if α̇ > 0 (14)

which gives:

α̇ = −

(

∂X

∂α
−

dX0

dα

)−1
∂X

∂s
ṡ (15)

On the other hand, the evolution of α can be restated in terms of the evolution
of the equivalent displacement s̄eq using equation (11), which yields

α̇ =
∂α̂

∂s̄eq
˙̄s
eq

(16)

In order to have α̇ > 0 in equation (16), it must therefore result ˙̄s
eq

6= 0. From
the definition of s̄eq in equation (10) this can only happen if ˙̄s

eq
> 0 , seq = s̄eq

and ṡeq = ˙̄s
eq

. Therefore we can write:

α̇ =
dα̂

dseq

∂seq

∂s
ṡ if α̇ > 0 (17)

By equating formulas (17) and (15), one obtains:

dα̂

dseq

∂seq

∂s
= −

(

∂X

∂α
−

dX0

dα

)−1
∂X

∂s
(18)

which represents a system of two differential equations to be satisfied by the two

scalar functions α̂ and X0.

Remark 2.1. The choice of assuming X0 to depend on α only is not compulsory
but it is frequent in cohesive interface formulations. It will be seen in the next

sections that this choice leads to strong constraints for the input values, and in
particular for the fracture energies in modes I and II, to preserve thermodynamic

consistency.
Instead, X0 could be made to depend on s too and it is easy to show that this

would allow one to introduce the dependence of damage evolution and fracture
energy on mode mixity. Another way to introduce the dependence of fracture
energy on the mixed-mode ratio can be to formally define two separate damage

variables, one for mode I and one for mode II. However, to be physically realistic
these damage variables should simultaneously reach the value corresponding to
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full damage. For example Alfano and Crisfield (2001) make the two damage vari-

ables evolve in exactly the same way, resulting in the violation of the normality
rule for the damage evolution law. In both cases, the procedure is essentially phe-

nomenological and the underlying physics behind the dependence of the measured
fracture energy on mode-mixity is hidden within the model equations.

Hence, it is believed that making X0 depend on α only is conceptually and

practically a valid alternative, because, as it will be shown in the next sections,
the dependence on mode mixity can be reintroduced in the model by making use

of well justified, simplified micro-mechanical assumptions.

3. Specialisation of the model to linear elastic constant-damage re-

sponse

In this section, the model formulated in the previous section is specialized to
the case in which the following further hypothesis is made:

VI Linear elastic behavior - The interface responds with a linear elastic
stress-displacement law when α does not evolve.

Hypothesis IV specializes formulas (5) and (6) as:

X(I0) =
{

s0
n, 0, α(I0)

}t

, X(II0) =
{

0, s0
t , α(II0)

}t

(19)

X(If) =
{

sf
n, 0, α(If)

}t

, X(IIf) =
{

0, sf
t , α(IIf)

}t

(20)

Because of Hypothesis VI, the Helmholtz free energy function Ψ is required
to be a quadratic form in s, admitting the following representation form:

Ψ (s, α) =
1

2
Kα

n (α) s2
n +

1

2
Kα

t (α) s2
t +

1

2
Kα

nt (α) snst (21)

Hypothesis IV yields that the function Kα
nt must be equal to zero so that

representation (21) simplifies to:

Ψ (s, α) =
1

2
Kα

n (α) s2
n +

1

2
Kα

t (α) s2
t (22)

The values Kα
n and Kα

t are the secant stiffness moduli in unloading.
According to equation (22), the stress and the thermodynamic force associated

with α are:

σ (s, α) =
∂Ψ

∂s
= {Kα

n (α) sn, Kα
t (α) st}

t (23)

X (s, α) = −
∂Ψ

∂α
= −

1

2
K ′

n (α) s2
n −

1

2
K ′

t (α) s2
t , (24)
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respectively, where

K ′

n =
dKα

n

dα
, K ′

t =
dKα

t

dα
(25)

Equation (18) can be written in a form that explicitly contains the constitutive
functions Kα

n , Kα
t and X0. Actually, upon differentiating (24) one obtains:

∂X

∂α
= −

1

2
K ′′

n (α) s2
n −

1

2
K ′′

t (α) s2
t (26)

∂X

∂s
= −

{

K ′

nsn, K ′

nsn

}t
(27)

and substitution of (26) and (27) into (18) yields:

∂seq

∂s
=



























K ′

nsn

dα
dseq

[

−1
2

(

K ′′
ns2

n + K ′′

t s2
t

)

− dX0

dα

]

K ′

tst

dα
dseq

[

−1
2

(

K ′′
ns2

n + K ′′

t s2
t

)

− dX0

dα

]



























(28)

Equation (28) is a partial differential equation that represents a sufficient

condition to preserve thermodynamic consistency, to be fulfilled for the existence
of seq .

Alongside of (28), boundary conditions for seq have to be also considered.

These are related to the conditions to be satisfied by the interface response at
the onset of damage (curve Γ 0) and at complete decohesion (curve Γ f ).

Specifically, in compliance with (7) and (12), at the onset of damage, in pure
mode I and pure mode II, the same damage and same damage-driven force must

be attained
α(I0) = α(II0) (29)

X (I0) = X (II0) (30)

Analogously, at complete decohesion the same damage α and damage-driven force
must be attained in pure modes I and II.

α(If) = α(IIf) (31)

X (If) = X (IIf) (32)

Equations (29), (30), (31) and (32) are rewritten below in terms of equivalent

displacement by means of (24)

seq
(

s(I0)
)

= seq
(

s(II0)
)

(33)
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1

2
K ′

n

(

seq
(

s(I0)
))

(s0
n)2 =

1

2
K ′

t

(

seq
(

s(II0)
))

(s0
t )

2 (34)

seq
(

s(If)
)

= seq
(

s(IIf)
)

(35)

1

2
K ′

n

(

seq
(

s(If)
))

(sf
n)2 =

1

2
K ′

t

(

seq
(

s(IIf)
))

(sf
t )2 (36)

3.1. Damage model with linear mode I and mode II softening

To reproduce an experimentally measured interface response the model re-
quires calibration with an appropriate assignment of the functions Kα

n and Kα
t .

However, the dependence of the secant moduli as function of α is only provided
implicitly by the experimental diagrams. Actually, the secant moduli functions

that can be straighforwardly acquired on the basis of the measured, or assumed,
stress-displacement mode I (mode II) responses are available in the form of func-

tions whose independent variable is the maximum normal (tangential) displace-
ment.

For monotonically increasing relative displacement components histories, (i.e.
along Γ I and Γ II under the conditions sn ≥ 0, ṡn > 0 and st ≥ 0, ṡt > 0), these
functions, denoted Ks

n , Ks
t , can be represented as follows:

Ks
n = Kα

n ◦ α̂ ◦ seq
I , Ks

t = Kα
t ◦ α̂ ◦ seq

II (37)

In (37) (◦) indicates function composition and function α̂ has been introduced

by equation (11) while seq
I and seq

II are functions defined as follows:

seq
I : seq

I (sn) = seq (sn, 0) , seq
II : seq

II (st) = seq (0, st) (38)

For monotonic modes I and II, the functions seq
I and seq

II are increasing, and

hence one-to-one, functions of their arguments. Consequently their inverse func-
tions exist and are denoted as:

sα
n =

(

s
eq
I

)

−1
◦ α̂−1, sα

t =
(

s
eq
II

)

−1
◦ α̂−1 (39)

According to (39) the function sα
n (α) is introduced, such that, for a given

α, sα
n (α) represents the displacement sn that in a monotonic mode I path cor-

responds to the first attainment of damage value α. Similarly, sα
t (α) represents

the displacement st that in a monotonic mode II path corresponds to the first

attainment of a level of damage equal to α.
Finally, on account of the definition of sα

n and sα
t , it can be inferred from (37):

Kα
n = Ks

n ◦ sα
n, Kα

t = Ks
t ◦ sα

t (40)

To consider a specific example, the analytical expressions that yield bilinear
stress-strain laws, under monotonically applied increasing displacements in pure
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modes I and II, are now examined. The relation between secant moduli and maxi-

mum displacements attained for the softening branches can be obtained by means
of simple geometrical considerations. In particular, denoting by Kn0 the initial

elastic normal stiffness, by s0
n the normal displacement at the onset of damage

and by sf
n the displacement at which zero stiffness is attained, the expression for

Ks
n is:

Ks
n (sn) =

Kn0s
0
n

s
f
n − s0

n

(

s
f
n

sn

− 1

)

(41)

Similarly, in mode II, denoting by s0
t the displacement at the onset of damage

and by sf
t the displacement at which zero stiffness is attained, Ks

t turns out to
be:

Ks
t (st) =

Kt0s
0
t

sf
t − s0

t

(

sf
t

st
− 1

)

(42)

where Kt0 is the initial elastic tangential stiffness. The constitutive functions Kα
n

and Kα
t are thus

Kα
n (α) =

Kn0s
0
n

s
f
n − s0

n

(

sf
n

sα
n (α)

− 1

)

, Kα
t (α) =

Kt0s
0
t

s
f
t − s0

t

(

sf
t

sα
t (α)

− 1

)

(43)

Differentiating (43) with respect to α one obtains

K ′

n (α) = −Kn0
s0
nsf

n

sf
n − s0

n

1

s2
n

dsα
n

dα
, K ′

t (α) = −Kt0
s0
t s

f
t

sf
t − s0

t

1

s2
t

dsα
t

dα
(44)

3.2. Equivalent displacement function

The following equivalent displacement function considered by Sacco and Toti
(2010) is hereby used:

seq =















0 if s̃eq ≤ 0

s̃eq if 0 ≤ s̃eq ≤ 1

1 if s̃eq ≥ 1

(45)

s̃eq =
β − 1

β

1

1 − η
(46)

where

β (s) =

√

(

sn

s0
n

)2

+

(

st

s0
t

)2

, η (s) =
s2
n

‖s‖2

s0
n

sf
n

+
s2
t

‖s‖2

s0
t

sf
t

(47)

11



A computation of seq
I and seq

II from (46) provides:

seq
I =

sf
n

sf
n − s0

n

(

1 −
s0
n

sn

)

, seq
II =

sf
t

sf
t − s0

t

(

1 −
s0
t

st

)

(48)

Taking the inverse of the previous functions, according to (39) one has:

sα
n (α) =

s0
nsf

n

sf
n − α

(

sf
n − s0

n

) , sα
t (α) =

s0
t s

f
t

sf
t − α

(

sf
t − s0

t

) (49)

According to (40), combining these last relations with (41) and (42) provides:

Kα
n = (1 − α)Kn0, Kα

t = (1 − α) Kt0 (50)

Therefore, the adoption of Sacco and Toti’s norm recovers for parameter α the
meaning of the ratio of the area dAd of the damaged subset of the interface over

the total interface area dA, bounded by the limits 0 ≤ α ≤ 1. Accordingly, the
quantity (1 − α) recovers the meaning of the complementary undamaged area

fraction.
Differentiation of functions (50) with respect to the dimensionless parameter

α finally yields

K ′

n = −Kn0, K ′

t = −Kt0, K ′′

n = 0, K ′′

t = 0 (51)

Sacco and Toti’s model also addresses linear softening branches in pure modes

I and II, described by equations (41) and (42). The possibility of retrieving this
behavior in fulfillment of thermodynamic consistency is now examined. This

requirement specifically amounts, in the light of the previous discussion, to the
fulfillment of the domain equation (28) and of boundary conditions (33)-(36).

The fulfillment of boundary conditions by seq is analyzed first. Function (45)
authomatically satisfies (33) and (35) with α0 = 0 and αf = 1, as it can be

easily verified. Hence, it is necessary to satisfy the remaining conditions on the
X , represented by (34) and (36). In view of (51), these simply specialize to:

1

2
Kn0(s

0
n)2 =

1

2
Kt0(s

0
t )

2 (52)

1

2
Kn0(s

f
n)2 =

1

2
Kt0(s

f
t )2 (53)

Equation (52) states that the same elastic energy must be attained in mode

I and mode II at the onset of damage. Moreover, the following constraint for
displacements stems from the combination of (52) and (53):

sf
n

s0
n

=
sf
t

s0
t

(54)
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These constraints are recognized to introduce a quite severe limitation to the

possible mechanical behaviors addressed by the model. Actually, a significant re-
striction imposed by (52) and (54) is recognized by combining these two equations

into the following one:
1

2
Kn0s

0
nsf

n =
1

2
Kt0s

0
t s

f
t (55)

Equation (55) represents the coincidence of the areas underneath the triangular
diagrams of stress-relative displacements laws in modes I and II and, thus, simply

equates the fracture energies in mode I, Gn
c , and mode II, Gt

c

Gn
c = Gt

c (56)

This requirement is in agreement with the results of Del Piero and Raous (2010).
In this reference, it is observed that, as a result of the employment of a single

damage variable, one single diagonal experiment is sufficient to determine the
constitutive behavior. It is worth recalling that also Alfano and Crisfield (2001)

introduce a restriction to specialize the 2 damage parameters model of Crisfield
and coworkers Mi et al. (1998) to a 1 damage parameter model so as to achieve

simultaneous complete debonding in mode I and II. Similarly, other authors (Allix
and Corigliano, 1996; Corigliano, 1993) add this ’simultaneity’ condition as a
further constraint to the evolution equations.

The second requirement for thermodynamic consistency is represented by the
fulfillment of equation (28). According to (51) equations (28) specialize as:

∂seq

∂sn

=
Kn0sn

dα
dseq

dX0

dα

,
∂seq

∂st

=
Kt0st

dα
dseq

dX0

dα

(57)

Since the denominators of the right hand sides in equations (57) are equal, the
following equation is inferred from (57) as a necessary condition for the existence

of a function X0 (α) capable of fulfilling (28):

Kn0sn

∂seq

∂sn

=
Kt0st

∂seq

∂st

(58)

The components of ∂seq

∂s
appear at the denominator of the previous equation.

The explicit expressions for these components are written below with the usual
aid of the chain rule:

∂seq

∂s
=

∂seq

∂β

∂β

∂s
+

∂seq

∂η

∂η

∂s
(59)

The terms in the previous equations are

∂seq

∂β
=

1

β2 (1 − η)
,

∂seq

∂η
=

β − 1

β (1 − η)2
(60)
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and

∂β
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=

1

β
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(61)
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The overall gradient thus turns out to be

∂seq
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β3 (1− η)
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(63)

Substituting (51) and (63) in the denominators of (58) one arrives to the

conclusion that the displacement defined by expressions (46) and (47) does not
generally admit a thermodynamic consistent reformulation, except for special

cases. Actually, satisfaction of (58) is only guaranteed if the following conditions
are fulfilled

Kn0 = Kt0, s0
n = s0

t , sf
n = sf

t (64)

Since the fulfillment of (64) implies the fulfillment of (52) and (53), conditions

(64) represent a stronger limitation to the interface model.
On the other hand, in the next two sections it will be shown that these limita-

tions can be overcome by enhancing the cohesive-zone model to account for two

important aspects of the physics of the problem, namely friction and interlock-
ing, the latter being related to the roughness of the fracture interface. Rather

than doing so using a pure phenomenological approach, friction and interlocking
are introduced in the model based on simplified, yet effective, micro-mechanical

arguments.

4. Frictional damage model

In this section the opening-sliding damage model of the previous section, en-
dowed with the equivalent displacement norm of subsection 3.2, is combined with

unilateral contact and friction exploiting the strategy employed, among others,
by Alfano and Sacco (2006) and Spada et al. (2009). The state of the surface,
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apart from the displacement s, is completely defined by the history variables α

and a new internal variable spt representing friction sliding in tangential direction.
This last parameter accounts for inelastic sliding which acts only in tangential

direction and enters the model in the form of nonassociative plasticity.
Accordingly, the free energy Ψ is decomposed as the sum of the elastic energy

on the undamaged and damaged parts of such plane, denoted by Ψu and Ψd,

respectively:
Ψ (s, α, spt) = (1 − α)Ψu (s) + α Ψd (s, spt) (65)

For the specific free energy of the undamaged part, the following quadratic
expression, associated with a linear elastic stress-relative displacement relation,

is considered:

Ψu =
1

2

(

Kn0s
2
n + Kt0s

2
t

)

(66)

The expression of Ψd is devised so as to account for unilateral contact in the
normal direction and friction, in the form of a tangential frictional slip spt:

Ψd =
1

2
[Kn0 < sn >2

−
+Kt0(st − spt)

2] (67)

where the brackets < • >− denote the function that extracts the negative part
of the argument < x >−= (x − |x|)/2.

The governing set of equations is completed by the equations that describe
the evolution of the history parameters α and spt.

The evolution law for α is the same as the one that has been discussed in the
previous section.

As for frictional sliding, the following threshold function of the Mohr Coulomb

type, with no cohesion, is considered :

φ(σd) = µ < σdn >− + |σdt| (68)

where

σd =
∂Ψd

∂s
, σdn =

∂Ψd

∂sn
, σdt =

∂Ψd

∂st
(69)

Frictional slip is obtained by means of a slip function g(σd) and postulating
that it results

ṡp = λ̇
∂g

∂σd
(70)

where λ, similar to the plastic multiplier introduced in elastoplasticity by Simo
and Hughes (1998), is the slip multiplier. To address a pure frictional effect with

no dilatancy, the following slip potential is considered:

g(σd) = |σdn| (71)
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The slip potential (71) provides an entirely tangential flow rule:

ṡpt = λ̇
∂ĝ

∂σdt
= λ̇ sign(σdt), ṡpn = 0 (72)

which is completed by the additional Khun-Tucker conditions:

λ̇ ≥ 0, φ ≤ 0 λ̇φ(σd) = 0 (73)

Summarizing, the evolution of the tangential frictional slip spt is governed by
the system of nonlinear coupled differential equations, (68), (72) and (73).

The frictional damage evolution law by Alfano and Sacco (2006) summarised
in this section correctly leads to an increase in total energy dissipated, i.e. macro-

scopically measured fracture energy, due to the frictional dissipation when mode
II is accompanied by compressive stress in mode I. However, for pure mode II
without compression in mode I the model would predict no frictional dissipation

and therefore no increase in fracture energy. This is in contrast with the experi-
mental finding that, for most material interfaces, a significant increase in fracture

energy is measured for increasing mode II/mode I ratios even for positive relative
displacements in mode I. In the next section it is shown how this shortcoming can

be overcome by further enhancing the model to account for interface roughness
and associated interlocking mechanism.

5. Enhanced micromechanics of rough interface with interlocking

As shown in the previous sections, use of a single damage variable in a co-
hesive zone model for quasi brittle materials, when combined with the choice

of employing an equivalent relative displacement, introduces several limitations
for the damage model, and specifically requires coincidence of fracture energies
in modes I and II to comply with thermodynamic consistency. This result is in

agreement with past theoretical (Del Piero and Raous, 2010) and experimental
(Carpinteri et al., 1993) researches on cohesive zone interface models, that have

raised questions on the viability of treating mode II fracture energy as a real
material parameter independent from mode I fracture energy.

Focusing in particular on concrete, experiments in mixed mode crack propa-
gation typically show an apparent mode II fracture energy even up to 30% higher

than its mode I counterpart (Carpinteri et al., 1993). Therefore, it is desirable
to have interface models capable of accounting for this experimental evidence.

To bridge the theoretical and engineering issues posed by these two seemingly
opposite evidences, a meso-scale cohesive zone model is considered. In particular,
the solution exploited for retrieving a greater fracture energy in mode-II consists

of a simplified meso-scale approach based on the enhancement proposed by Ser-
pieri and Alfano (2011) whereby the geometry of the interface is represented in the
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form of a periodic arrangement of distinct inclined planes, denominated Repre-

sentative Interface Element (RIE). The interaction within each of these surfaces is
governed by the combined damage-friction interface formulation above discussed.

In the present section the original idea proposed by Serpieri and Alfano (2011)
is briefly recalled. The geometry of the interface is represented in the form of
a periodic arrangement of distinct inclined planes, denominated Representative

Interface Element (RIE).

s n(k)
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Figure 2: Trapezoidal Representative Interface Element

Figure 2 shows a trapezoidal RIE. The global reference frame {N, T} is now

introduced on the meso-scale average surface, N and T being the normal and
tangential directions of the macroscopic average interface S, shown in Figure 2
by a dotted line. On each k-th inclined plane a right handed local coordinate

system n(k) − t(k) is also introduced. The unit vectors associated with the axes
of the global frame are N and T, while their counterparts for the k-th inclined

plane are n(k) and t(k).
At any point of the interface, the macroscopic displacement vector s is consid-

ered to be coincident with the displacement vector on each inclined plane s(k), i.e.
s(k) = s. In the global and local reference frames the overall relative displacement

vector s is represented by the arrays {s} = {sN , sT }
t and {s}(k) =

{

s
(k)
n , s

(k)
t

}t

,

respectively, with sN = s ·N, sT = s · T, s
(k)
n = s · n(k) and s

(k)
t = s · t(k).

On each k-th plane, the internal variables are the damage variable α(k) and

the tangential frictional slip s
(k)
pt which both evolve independently from the in-

elastic parameters on the other inclined planes. The interaction within each of
these sub-surfaces is governed by the combined damage-friction interface formu-

lation presented in the two previous sections. Evolution of α(k) is defined by the
equivalent displacement function seq whose argument on each plane is {s}(k), i.e.
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α(k) = seq
(

s
(k)
n , s

(k)
t

)

. Moreover, for each plane, constraints (64), that stem from

the requirement of thermodynamic consistency and result in coincidence of mode
I and mode II fracture energies as pointed out in section 2, are fully taken into

account.
The free energy per unit area Ψ is defined as the weighted sum of the free

energies associated with each contact plane (Serpieri and Alfano, 2011) the weight
being the area fraction γ(k) i.e. the ratio between the length of the k-th inclined

plane and the total length of the RIE:

Ψ =

Nm
∑

k=1

γ(k)Ψ (k) (74)

where Ψ (k) is the free energy per unit area of the k−th contact plane.

The macroscopic stress turns out to be expressed as the weighted sum of the
contribution of each inclined plane

σ =
∂Ψ

∂s
=
∑

(k)

γ(k)σ(k) where σ(k) =
∂Ψ (k)

∂s
(75)

Stress is in turn divided into two parts associated with the damaged and

undamaged parts of the specific free energy:

σ(k) =
∂Ψ (k)

∂s
= (1− α(k))σ(k)

u + α(k)σ
(k)
d , σ(k)

u =
∂Ψ

(k)
u

∂s
, σ

(k)
d =

∂Ψ
(k)
d

∂s
(76)

Symbols σN and σT denote the normal and tangential components of the

macroscopic stress in the global frame. Conversely, symbols σ
(k)
N and σ

(k)
T are the

stresses components on the k-th inclined plane, again in global coordinates:

{σ} =
∂Ψ

∂(sN , sT )
=

{

σN

σT

}

,
{

σ(k)
}

=
∂Ψ (k)

∂(sN , sT )
=

{

σ
(k)
N

σ
(k)
T

}

(77)

Furthermore, σ
(k)
n and σ

(k)
t denote the normal and tangential stress components

contributed on the k-th inclined plane with respect to the local system, defined

as

σ(k)
n =

∂Ψ (k)

∂s
(k)
n

, σ
(k)
t =

∂Ψ (k)

∂s
(k)
t

(78)

and collected in the vector

{

σ(k)
}(k)

=
∂Ψ (k)

∂(s
(k)
n , s

(k)
t )

=

{

σ
(k)
n

σ
(k)
t

}

= (1− α(k))
{

σ(k)
u

}(k)
+ α(k)

{

σ
(k)
d

}(k)

(79)
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where:

{

σ(k)
u

}(k)
=

∂Ψ
(k)
u

∂(s
(k)
n , s

(k)
t )

=

[

σ
(k)
un

σ
(k)
ut

]

,
{

σ
(k)
d

}(k)
=

∂Ψ
(k)
d

∂(s
(k)
n , s

(k)
t )

=

[

σ
(k)
dn

σ
(k)
dt

]

(80)

The stress components on the inclined planes are related to the global stress
components by the coordinate change stemming from the chain rule

{

σ(k)
}

=
∂Ψ (k)

∂(sN , sT )
=

∂Ψ (k)

∂(s
(k)
n , s

(k)
t )

∂(s
(k)
n , s

(k)
t )

∂(sN , sT )
= [Q]

{

σ(k)
}(k)

(81)

where [Q] is the orthogonal matrix associated with the intrinsic coordinate change
tensor Q, such that [Q] = [Q]−t and defined as:

[Q] =









∂sN

∂s
(k)
n

∂sN

∂s
(k)
t

∂sT

∂s
(k)
n

∂sT

∂s
(k)
t









=









∂s
(k)
n

∂sN

∂s
(k)
t

∂sN

∂s
(k)
n

∂sT

∂s
(k)
t

∂sT









(82)

The coordinate change (81) may be synthetically represented as:

σ(k) = σ(k)
n n(k) + σ

(k)
t t(k) (83)

and, obviously, analogous transformations hold for the remaining stress vectors

introduced so far:

σ(k)
u = σ(k)

un n(k) + σ
(k)
ut t(k), σ

(k)
d = σ

(k)
dn n(k) + σ

(k)
dt t(k), (84)

On each plane the constitutive problem can be thus integrated in the local

frame, to provide
{

σ(k)
}(k)

, and the macroscopic stress array {σ} can be recon-

structed in global coordinates according to the following formula

{σ} =

Nm
∑

k=1

[Q]
{

σ(k)
}(k)

(85)

6. Numerical applications

This section deals with the development of numerical applications. Subsection

6.1 provides some details concerning the developed numerical algorithm for time
integration of the interface evolutive equations. Next, Subsection 6.2 illustrates
a sensitive analysis of the response of the single interface point. Finally, the last

subsection, 6.3, reports the results of a structural simulation with a numerical-
experimental comparison.
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6.1. Numerical procedure

The overall set of evolutive equations is summarized to derive the finite step

relationships. This set is composed of relations (79) and (85) supplemented by the
equations describing the evolution of the state parameters associated with friction
and damage on each k-th plane. In particular, each k-th plane contributes two

systems of evolutive equations S
(k)
F , S

(k)
D , respectively describing the evolution of

the state parameters associated with friction and damage on such plane. System

S
(k)
F , in the unknowns σ

(k)
dt , σ

(k)
dn , λ(k), corresponds to equations (68)-(73), relevant

to the k-th plane, and system S
(k)
D , in the unknown α(k), corresponds to equations

(10), (11), (45)-(47), again for the k-th plane.
The path-dependent rate equations of the interface model are converted into

step-wise path-independent laws driven by relative displacements s by selecting
a suitable time interpolation for the state variables plus a discretised form of the

evolutive equations governing the local response. Specifically, the plastic variables
are updated assuming a linear interpolation of s and λ(k), so that ∆s = ∆tṡ
and ∆λ(k) = ∆tλ̇(k), ṡ and λ̇(k) entering the finite step problem as constants.

Concerning the time advancing scheme, an implicit backward Euler scheme is
exploited.

The resulting finite step local problem for a given time interval between the
instants t and t + ∆t consists in determining the updated value of the history

variables at time t+∆t as function of the local state at time t and of the associated
deformation.

An advantage of the presented interface formulation is that the response of
each micro-plane is uncoupled from the response on the remaining planes so that

on each plane the updating of the state can be performed independently from the
variables associated with the other planes. Moreover, on each plane, uncoupling
between the evolution equations of damage and inelastic slip allows independent

updating of the relevant damage and friction variables.
Therefore, in a typical iteration, an updated value of α(k) at the end of the step

α
(k)
t+∆t can be directly computed in explicit form from the discrete counterparts

of equations (10), (11), (45)-(47). Next, using Equation (79) the total stress on
microplane k is given by:

{

σ(k)
}(k)

t+∆t
= (1 − α(k))

{

σ(k)
u

}(k)

t+∆t
+ α(k)

{

σ
(k)
d

}(k)

t+∆t
(86)

To compute
{

σ
(k)
d

}(k)

t+∆t
, the solution of the discretized finite step counterpart

of equations S
(k)
F is required. Such solution is obtained by computing first the

variation of the plastic multiplier ∆λ(k). It is worth recalling that if s
(k)
n < 0,

which amounts to the surfaces of microplane (k) persisting in a contact state,
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∆λ(k) is given by

∆λ(k) =
1

Kt

[

µ Kn∆s(k)
n + sgnσ

(k)
td, t+∆tKt∆s

(k)
t

]

(87)

whereby the frictional slip is updated as

s
(k)
pt,t+∆t = s

(k)
pt,t + ∆λ(k) sign(σ

(k)
td, t+∆t) (88)

Further details on the integration procedure and the formulae of the tangent
operator can be found in Serpieri and Alfano (2011).

6.2. Constitutive response at the single interface point

This subsection reports the results of a numerical analysis to assess the ca-

pability of the model described in the previous sections to capture the variation
of apparent fracture energy in mixed mode loading at the constitutive level for

the single interface point. Specifically, it is shown that endowing the cohesive
model with the friction effect and considering the presence of inclined planes at a

micro-mechanical scale, a greater apparent fracture energy is recovered in mode
II, as an effect of friction and interlocking, even when mode I and II fracture

energies, stiffness moduli and stresses at damage onset are set equal.
The experimental data reported by Carpinteri et al. (1993) are employed as a

term for analysis and assessment of the approach with inclined planes, to validate
its viability in providing reasonable estimates of variations of apparent fracture
energy in mixed mode loading for concrete (i.e. concrete-to-concrete) interfaces.

In this reference mixed mode crack propagation and fracture energy variations are
investigated experimentally in four point shear tests for two different concretes

made with maximum aggregate sizes of 10 mm (concrete 1) and 20 mm (concrete
2). As reported, for concrete 1 the (mode I) fracture energy is equal to 0.122

KJ/m2 and, for concrete 2, it is equal to 0.145 KJ/m2. These experimental
values, (used as input data for the FE analyses carried out by Carpinteri et

al. (1993)) are employed in the present subsection to calibrate the constitutive
parameters in the analyses of the local response at the single typical interface

point. Crack propagation is not investigated in this subsection. Accordingly,
we set Gcn = Gct = 0.122 KJ/m2 for concrete interface 1 and Gcn = Gct =
0.145 KJ/m2 for concrete interface 2. In compliance with constraints (64), equal

values for σon and σot are taken, as reported in Table 1, as well as equal values
of the ratios in equation (54). The common value adopted for the reciprocal of

these ratios, Rη =
s0
n

sf
n

=
s0
t

sf
t

, is also reported in Table 1.

In all numerical examples the trapezoidal shaped RIE of Figure 2 is employed.

The micro-scale pattern is composed of three planes, marked 0, A and B, with
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σon σot Rη

2.4 MPa 2.4 MPa 0.95

Table 1: Material parameters common to concrete interfaces 1 and 2 employed in the sensitivity
analyses of mixed mode fracture energy.

equal area fractions γ(0) = γ(A) = γ(B) = 0.333 whose outward normal vectors

have respectively inclination angles equal to 0o, −θint and θint, where θint is an
angle that accounts for interlocking and is measured counterclockwise from the

average interface surface.
Mixed mode response is tested by applying a displacement controlled opening

separation law in a direction el, inclined by an angle θl from the outward normal

direction so that when θl = 0o, θl = 90o pure mode I loading and pure mode II
loading are recovered, respectively. The relative displacement orthogonal to el is

left as a free unloaded degree of freedom.
The response is first investigated for concrete 1 in terms of sl − τl diagrams,

where sl = s · el and τl = s · el are, respectively, the components of relative
displacement and stress along the el direction.

Figure 3 shows families of sl − τl plots generated by varying θl in the range
[0o, 90o] associated with several friction and interlocking angles. In the legends

the fracture energies Gcl spent in bringing interfaces to complete decohesion is
also reported. It is worth observing, in particular from the upper left figure, that
when µ = 0 the diagrams experiment a moderate variation from mode I bilinear

shape and, notably, no variation emerges in fracture energy which is constantly
equal to Gcl = 0.122 KJ/m. Notice that this mode insensitivity of fracture energy

is detected, irrespective of θint, as a peculiar effect of absence of friction.
Figure 4 shows the polar diagrams of fracture energy as function of θint and

µ for concrete 1. From this figure it can be observed that when µ = 0 the polar
plot recovers a circumference while fracture energy ratio RG = Gct

Gcn
increases with

both θint and µ.
The trends shown by the analytical sensitivity analyses are in agreement with

the experimentally evaluated variations of RG obtained by Carpinteri et al. (1993)
where it is found mixed mode fracture energy higher than mode I fracture energy
and, specifically, a relative increase of, approximately, 16% for concrete 1 and 33%

for concrete 2 with larger aggregates. These experimental results were also used
to determine quantitatively the interlocking angle, which is, with friction, the

remaining unset parameter, by selecting it so as to fit the reported values for RG.
In particular, the coefficient of sliding friction is taken equal to 1.4 which is the

values suggested in ACI code (2005) for concrete placed monolithically. Following
a rationale similar to Serpieri and Alfano (2011), the interlocking angle is treated

as a mean macroscopic measure of the protruding patterns due to aggregates,
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Figure 3: Mixed mode sl − τl diagrams for varying θint and µ.

analogously to friction and dilation angles. This match provides θint = 8.5o for
smaller aggregates and θint = 15.0o for concrete 2 with larger aggregates. Figure

5 shows the contour plot of the numerically computed relation between RG, µ
and θint. The two dashed lines are the contour levels corresponding to the values

of RG reported by Carpinteri et al. (1993) for concrete 1 (smaller aggregates) and
concrete 2 (larger aggregates). The dots denote the points of the µ − θint plane

fitting the experimental values, inferred assuming µ = 1.4.

23



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

mode II

m
o

d
e

 I

 

 

θ
int

=30   µ=0

θ
int

=30   µ=0.7

θ
int

=30   µ=1.4

θ
int

=20   µ=0.7

θ
int

=20   µ=1.4

θ
int

=10   µ=0.7

θ
int

=10   µ=1.4

Figure 4: Polar diagrams of fracture energy as function of θint and µ.
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Figure 5: Contour levels of the numerically computed relation between fracture energy ratio
RG, the tangent of the friction angle, µ, and the interlocking angle θint. The dashed lines are
the contour levels corresponding to the values of RG reported by Carpinteri et al. (1993) for
concrete 1 (smaller aggregates) and concrete 2 (larger aggregates). Dots denote the points of
the µ − θint plane fitting the experimental values, inferred assuming µ = 1.4.

6.3. DCB-UBM Structural simulations

Nonlinear Finite-Element (FE) simulations of quasi-static structural response
were carried out using the commercial FE code Abaqus (2012) (version 6.12-2)24



upon implementing the present interface formulation as a user-defined routine

(UMAT) defining the constitutive law for interface elements. In particular, com-
putations concerned the study of the Double Cantilever Beam loaded with Un-

even Bending Moments (DCB-UBM), experimentally investigated by Sørensen
et al. (2006). The DCB-UBM test has been employed by Sørensen and Jacob-
sen (2009) to obtain mode mixity-dependent experimental measurements of the

crack tip fracture energy. These experimental data provide a suitable term of
comparison to assess the capability of the present interface model in predicting,

also at the structural level, the increase in fracture energy under increasing mode
II loading.

The specimens tested by Sørensen and Jacobsen considered in the simula-
tions are composite beams made of E-glass laminates in polyester matrix, whose

geometry, constraints and loading are schematically reported in Figure 6. The
out-of-plane width is B=30 mm.

M1

M2
L=600 mm

Unbonded region 60 mm

t=0.015 mm 2H=2x9 mm

Figure 6: Geometry, constraints and loading of the DCB specimen

During the tests pure bending moments M1, M2 were applied at the free ends

of the cantilever by a special test fixture using a wire and roller arrangement that
allows increasing the magnitude of both M1, M2 while keeping fixed their ratio.

Several experimental tests were performed, by spanning the ratio M1/M2 in the
interval −1 ≤ M1/M2 < 1.

These tests were numerically reproduced via implicit dynamic FE analyses,
which was preferred to quasi static path-following arc-length methods (Alfano and

Crisfield, 2003; Riks et al., 1996) in consideration of the improved convergence
capabilities of the former. To account for the reported moderately large rota-

tions experimented by the superior and inferior arms of the cantilever, the finite-
deformation kinematics option available in the software was activated (Abaqus,
2012). The experimental results were reported by Sørensen and Jacobsen in

terms of J-integral computed in the assumption of plane strain. For this reason,
a two-dimensional plane strain model was used in the FE simulations.

The presented interface formulation was employed to describe the behaviour
of the bonded region. In the unbonded region no contact and no friction are

considered to account for the presence of the gap created by the slip foil and for
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the positive mode I present in each loading case simulated. The in-plane inter-

face thickness across bonded and unbonded regions is set equal to the reported
thickness of the slip foil, of 0.015 mm, applied to prevent adhesion at the left end

of the specimens in the experimental test.
For the composite arms, the only available material data reported by Sørensen

and Jacobsen were the Young modulus, E=37 GPa, and the Poisson ratio, ν=0.3,

which were used by them to postprocess the experimental data based on an
isotropic linear elastic model. Accordingly, a simplified linear elastic isotropic

model with the same material properties is considered for the composite arms in
the simulations. The density of the composite material was taken equal to 2000

Kgm/m3.
Each arm of the cantilever has been discretized with a uniform structured

mesh of 4x230 4-noded linear, fully integrated, plane-strain elements with incom-
patible modes. On the initially bonded part the interface has been discretized by

207 4-noded interface elements.
As above mentioned, the experimentally recorded moments have been re-

ported in terms of J integral, related to M1 and M2 in the assumption of plane

strain by Sørensen et al. (2006):

J =
(

1 − ν2
) 21

(

M2
1 + M2

2

)

− 6M1M2

4B2H3E
(89)

The quantity J was plotted against the norm δ of the relative displacement be-

tween upper and lower beams at the initial crack tip. These data are reproduced
in Figure 7 by point markers for the tests corresponding to the ratios M1/M2

reported in the legend.
Calibration of the interface parameters in the bonded region was performed as

follows. The fracture energy Gcn = Gct = Gc was taken as the plateau value of J
in the J-δ curve in pure mode I (M1/M2 = −1). σon = σot were estimated based

on the pure mode I curves reported by Sørensen and Jacobsen. The slopes of
the curves turned out to be rather insensitive to Rη, provided values sufficiently

close to unity are taken for such parameter. As a second step, the remaining
parameters µ and θ were set so as to curve-fit the other mixed-mode responses.

The interface parameters resulting from this calibration procedure are collected
in Table 2.

σon [MPa] σot [MPa] Gcn [N/mm] Gct [N/mm] Rη [-] µ [-] θint [ deg.]

1.0 1.0 0.97 0.97 0.95 1.0 40◦

Table 2: Interface material parameters employed in the DCB-UBM structural examples.

The numerical J-δ responses, corresponding to the five mode ratios of Figure
7, are plotted by solid lines in the same figure. As shown by Figure 7 while a
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Figure 7: Numerical-experimental comparison of J -integral fracture resistance plotted vs. the
norm of relative displacement, obtained under different mode mixity ratios

strong quantitative correlation is not expected, since the current interface model

does not account for fiber bridging, it can be appreciated that the overall final
plateaus for the J-δ curves, corresponding to steady state crack propagation are
well captured. In particular, the numerical model also captures the increase in

the steady state values of fracture resistance as the mode II component becomes
predominant, i.e., as M1/M2 approaches unity. The numerical trend of the J-

δ curves observed under mixed mode loading confirms, also at the macroscopic
structural level, the capability of the present interface model in predicting the

increase in fracture energy under increasing mode II.

7. Conclusions

The formulation of a mixed-mode cohesive-zone model (Alfano and Sacco,
2006) accounting for friction interface damage and its recently proposed enhance-

ment to account for friction and interlocking (Serpieri and Alfano, 2011) have
been recast within the general theory of thermodynamics with internal variables,

with an original derivation of thermodynamic consistency conditions that should
be satisfied.

In the presented formulation, the widely used choice of introducing an equiva-

lent relative displacement seq which suitably combines mode-I and mode-II com-
ponents is made and the assumption that damage is an increasing function α̂ of

seq is made. The model is presented in a very general setting first, and then it
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is specialized to the case of linear elastic behavior for constant damage, linear

softening and to specific choices for seq and α̂.
This study shows that use of a single damage variable combined with the

choice of having a threshold damage function only depending on the damage
variable itself and an equivalent displacement norm requires coincidence of frac-
ture energies in modes I and II for thermodynamic consistency. This result is in

agreement with Del Piero and Raous (2010), who observe that, for the construc-
tion of a general model of adhesive interfaces with a single damage variable, one

single diagonal experiment is sufficient to determine the constitutive behavior.
Furthermore, it is shown that the experimental evidence that the measured

fracture energy increases with increasing mode II/mode I ratio can be retrieved by
enhancing the model to account for friction and interlocking, based on simplified,

yet physically well justified, micro-mechanical assumptions.
Results of microstuctural computations conducted at the single interface-

point have been reported to show that, within the presented model, the increase
of apparent mode II fracture energy emerges as the joint effect of a nonzero fric-
tion angle and a nonzero interlocking angle. Interlocking is thus recognized to be

a fundamental parameter to be accounted for in order to obtain predictions of
different mode I and mode II fracture energies for a single fixed cohesive damage

behavior. For concrete-to-concrete interfaces, a possible calibration of the inter-
locking angle was also shown to retrieve experimentally measured values of mode

I and mode II specific fracture energies.
The structural simulations of mixed mode delamination in laminated compos-

ite DCB-UBM experiments have shown that the present interface model succeeds
in predicting the increase in fracture energy under increasing mode II/mode I ra-

tio with good overall agreement.
The possibility of considering a cohesive relationship in the tangential direc-

tion as well as in the normal direction for quasi-brittle materials is a contentious

issue, since it is difficult to separate the cohesive-sliding relation from the fric-
tional force between the rough cohesive crack faces. The reported numerical com-

parisons show that the presented model provides a means for capturing such a
separation in a thermodynamically consistent framework employing a microstruc-

tural description in which the separate contributions of adhesion, interlocking and
friction are indentifiable and are associated with parameters having a specific mi-

crostructural meaning.

8. Acknowledgements

The first author gratefully acknowledges the financial supports of the Univer-
sity of Sannio. The second author gratefully acknowledges the financial supports

28



of the University of Cassino and of the Consorzio RELUIS (Department of Civil

Protection).

References

Abaqus 6.12 Analysis Users Manual, Dassault Systèmes Simulia Corp., Providence, RI, USA,
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