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In this paper, we develop a phase-field model for binary incompressible (quasi-incompress-
ible) fluid with thermocapillary effects, which allows for the different properties (densities,
viscosities and heat conductivities) of each component while maintaining thermodynamic
consistency. The governing equations of the model including the Navier-Stokes equations
with additional stress term, Cahn-Hilliard equations and energy balance equation are
derived within a thermodynamic framework based on entropy generation, which guaran-
tees thermodynamic consistency. A sharp-interface limit analysis is carried out to show
that the interfacial conditions of the classical sharp-interface models can be recovered
from our phase-field model. Moreover, some numerical examples including thermocapil-
lary convections in a two-layer fluid system and thermocapillary migration of a drop are
computed using a continuous finite element method. The results are compared to the
corresponding analytical solutions and the existing numerical results as validations for
our model.

1. Introduction

When the interface separating two fluids is exposed to a temperature gradient, the
variations of surface tension along the interface lead to shear stresses that act on the
fluid through viscous forces, and thus induce a motion of the fluids in the direction of
the temperature gradient. For most of the fluids, the surface tension generally decreases
with the increasing temperature. The non-uniformity of surface tension then drives the
fluids to move from the region with higher temperature to that with lower temperature.
This effect is known as thermocapillary (Marangoni) effect (Levich 1962), and it plays an
important role in various industrial applications involving microgravity (Subramanian &
Balasubramaniam 2001) or microdevices (Darhuber & Troian 2005), where the surface
forces become dominant. One famous example for thermocapillary effects is the thermo-
capillary migration of drops, where the drops are set in a liquid possessing a temperature
gradient, and will move toward the hot region due to the thermocapillary effects. The
thermocapillary migration of a drop was first examined experimentally by Young et al.
(1959), who derived an analytical expression for the terminal velocity of a single spher-
ical drop in a constant temperature gradient by assuming the convective transport of
momentum and energy are negligible. Since then, extensive works were carried out ex-
perimentally, analytically and numerically in order to investigate this phenomenon, where

† Email address for correspondence: plin@maths.dundee.ac.uk



2 Z. Guo and P. Lin

many of them are summarized by Subramanian & Balasubramaniam (2001). Another ex-
ample for thermocapillary effects is the thermocapillary convection in a two-layer fluid
system (thermocapillary instabilities), where the system is typically confined between two
parallel plates and subjected to a temperature gradient. Due to the perturbations in the
temperature and velocity field as well as the interface position, surface tension gradients
will occur at the interface and drive the fluid to motion. The instabilities then set in and
lead to the convective motion, where a typical convection pattern is the hexagonal cell
formation found by Bénard (1900). The thermocapillary instabilities are widely studied,
which can be traced back to some pioneering works performed by Block (1956), Pearson
(1958), Sternling & Scriven (1959), and Scriven & Sternling (1964). Literature reviews
of recent experimental and analytical work on instabilities in thermocapillary convection
are provided by Schatz & Neitzel (2001), Davis (1987) and Andereck et al. (1998).
The problem described above is the multiphase flow problem, and the available numeri-
cal methods can roughly be divided into two categories: interface tracking and interface
capturing methods. In interface tracking methods, the position of the interface is ex-
plicitly tracked, which requires meshes that track the interfaces and are updated as the
flow evolves. Boundary integral methods (see the review Hou et al. 2001), front-tracking
methods (see, for the review, Tryggvason et al. 2001 and Hua et al. 2008), and immersed
boundary methods (see the review Mittal & Iaccarino 2005) are examples of this type. In
the context of thermocapillary (Marangoni) effects, e.g., the thermocapillary migration
and thermocapillary instabilities, several works have been performed by using interface
tracking methods. Here we refer the work of Zhou & Davis (1996); Berejnov et al. (2001);
Rother et al. (2002) as examples for boundary-integral methods, Tavener & Cliffe (2002);
Nas & Tryggvason (2003); Nas et al. (2006); Yin et al. (2008) for front-tracking methods,
and Pozrikidis (2004); Blyth & Pozrikidis (2004) for immersed-boundary methods. In in-
terface capturing methods, on the other hand, the interface is not tracked explicitly, but
instead is implicitly defined through an interface function (e.g. level-set, color or phase-
field function). This means that the computations are based on fixed spatial domains
and thus eliminate the problem of updating the meshes encountered in interface tracking
methods. For example, volume-of-fluid (VOF) methods (see Scardovelli & Zaleski 1999
for the review, and Gambaryan-Roisman et al. 2005; Ma & Bothe 2013 as examples for
thermocapillary effects), level-set methods (see Osher & Fedkiw 2001; Sethian & Smereka
2003 for the review, and see Haj-Hariri et al. 1997; Herrmann et al. 2008 as examples for
thermocapillary effects) are of this type.
Another interface capturing method is phase-field method, or diffuse-interface method
(see, for the review, Anderson et al. 1998; Emmerich 2008; Kim 2012), which has now
emerged as a powerful method to simulate many types of multiphase flows, including
drop coalescence, break-up, rising, and deformations in shear flows (Jacqmin 1999; Lee
et al. 2002a,b; Boyer 2002; Liu & Shen 2002; Baldalassi et al. 2004; Yue et al. 2004; Kim
& Lowengrub 2005; Yue et al. 2006; Ding et al. 2007; Shen & Yang 2009; Hua et al. 2011;
Guo et al. 2014a), phase separation (Baldalassi et al. 2004; Kim et al. 2004; Kim 2005),
contact line dynamics (Jacqmin 2000; Qian et al. 2006; He et al. 2011; Gao & Wang
2012; Bao et al. 2012; Yue & Feng 2012; Jiang & Lin 2014), and dynamics of interface
with surfactant adsorption (van der Sman & van der Graaf 2006; Teigen et al. 2011) and
thermocapillary effects (Jasnow & Vinals 1996; Borcia & Bestehorn 2003; Borcia et al.
2004; Sun et al. 2009; Guo et al. 2014b). Phase-field methods are based on models of
fluid free energy, which goes back to the work of van der Waals (1979), Gibbs (1875)
and Cahn & Hilliard (1958); Cahn & Allen (1978). The basic idea for phase-field method
is to treat the multiphase fluid as one fluid with variable material properties. An order
parameter is employed to characterize the different phases, which varies continuously
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over thin interfacial layers and is mostly uniform in the bulk phases. Sharp interfaces are
then replaced by the thin but non-zero thickness transition regions, where the interfacial
forces are smoothly distributed. One set of governing equations for the mixture can be
derived variationally from its energy density field, where the order parameter fields sat-
isfy an advection-diffusion equation (usually the advective Cahn-Hilliard equations) and
are coupled to the Navier-Stokes equations through extra reactive stresses that mimic
surface tension.
The classical phase-field model, in the case of two incompressible, viscous Newtonian
fluids, is the so-called Model H (Hohenberg & Halperin 1977), which couples fluid flow
with Cahn-Hilliard diffusion with a conserved parameter. It has been successfully used to
simulate complicated mixing flows involving binary incompressible fluid with the same
densities for both components (see, for example, Chella & Vinals 1996). Gurtin et al.
(1996) re-derived this model in the framework of classical continuum mechanics and
showed that it is consistent with the second law of thermodynamics in a mechanical
version based on a local dissipation inequality.
One of the fundamental assumptions when deriving Model H is that the binary fluid is
incompressible, more precisely, its total density as well as the densities for each compo-
nent are constant. Therefore this model is restricted to the density matched case and
cannot be used for the case where the two incompressible fluids have different densities.
To treat the problems with small density ratios, a Boussinesq approximation is often
used, where the small density difference is neglected except in the gravitational force.
The achieved model maintains thermodynamic consistency (see, for example, Hua et al.
2011). This approach however is no longer valid for large density ratios. Several general-
izations of Model H for the case of different densities have been presented and discussed
by Lowengrub & Truskinovsky (1998), Boyer (2002), Ding et al. (2007), Shen & Yang
(2010), and most recently by Abels et al. (2012). Thermodynamic consistency however
could only be shown for the models proposed by Abels et al. (2012) and Lowengrub &
Truskinovsky (1998). Benchmark computations for three of them, namely the models
of Boyer (2002), Ding et al. (2007), and Abels et al. (2012), were carried out by Aland
& Voigt (2012). Moreover, several works have been performed to study the model of
Abels et al. (2012). Grun & Klingbeil (2014) presented a numerical method, where the
mixed finite element formulation was employed in order that the discrete energy law of
the numerical method can be obtained. The convergence of the method was presented
in Grun 2013. Garcke et al. (2014) presented a numerical method that satisfies an en-
ergy inequality. Antanovskii (1995) derived a quasi-incompressible phase-field model for
two-phase flow with different densities. The extended model was presented by Lowen-
grub & Truskinovsky (1998), where the pressure rather than density was employed as
an independent variable and worked through the Gibbs free energy. In their model, the
two fluids of different densities are assumed to be mixed and compressible along the
interfacial region (introducing the quasi-incompressibility into the model). The flow in
the interfacial region is in general non-solenoidal (∇ · v 6= 0), resulting in an expan-
sion or contraction flow. Thermodynamic consistency is maintained within the resulting
system (quasi-incompressible NSCH), where the Navier-Stokes equations are coupled
with the Cahn-Hilliard equations, and the kinetic fluid pressure and variable density
were introduced into the chemical potential. Very recently, a numerical method for the
quasi-incompressible NSCH system with a discrete thermodynamic law (energy law) was
presented by Guo et al. (2014a), where the quasi-incompressibility (the non-solenoidal
velocity) near interfaces was captured. Namely, the numerical results reveal that away
from interfaces the fluid is incompressible, while near interfaces waves of expansion and
contraction are observed. Very recently, another model of quasi-incompressible fluids for
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the phase transition simulation was developed by Giesselmann & Pryer (2013), where a
discontinuous Galerkin finite element method is used and studied in Aki et al. (2014).
The model considered differs from the quasi-incompressible NSCH system developed in
Lowengrub & Truskinovsky 1998 in that the volume fraction, rather than the mass con-
centration, is used as the phase variable. In addition, the two models are derived with
different energy functional.
Another assumption for Model H is that the fluid flow is isothermal. However, for the
case that considers thermocapillary (Marangoni) effects, the surface tension gradient is
produced by the non-uniform distribution of the temperature, so that the system cannot
be assumed to be isothermal and the transport of temperature field cannot be ignored.
The extension of Model H in the non-isothermal case was presented by Jasnow & Vinals
(1996), where, to study the thermocapillary motion of droplets, a constant, externally
imposed temperature gradient is considered. Several other works, as mentioned above,
have also been devoted to use the phase-field method to simulate the dynamics of in-
terface with thermocapillary effects (Borcia & Bestehorn 2003; Borcia et al. 2004; Sun
et al. 2009; Guo et al. 2014b). For most of these models, the system equations of flow
field (the Navier-Stokes equations with extra stress) and phase field (the advective Cahn-
Hilliard equations) are usually derived from the free energy functional that depends on
temperature. The energy equations, however, were not derived together with the system
equations. Instead, either the classical energy transport equations are incorporated into
the system directly, or the temperature fields are fixed and the energy equations are not
needed. Therefore, thermodynamic consistency can be hardly maintained. It turns out
that the concept of thermodynamic consistency plays an important role for the phase-
field modelling. As the phase-field model can be derived through variational procedures,
thermodynamic consistency of the model equations can serve as a justification for the
model. In addition, it ensures the model to be compatible with the laws of thermody-
namics, and to have a strict relaxational behaviour of the free energy, hence the models
are more than a phenomenological description of an interfacial problem. Antanovskii
(1995) presented a phase-field model to study the thermocapillary flow in a gap, where
to obtain a free energy that depends on the temperature, the Cahn-Hilliard gradient
term associated with the phase field is introduced into the entropy functional of the
system, which leads to a corresponding extra term appearing in the energy equation.
The resulting system of equations was derived together through the local balance laws
and thermodynamic relations, which maintains thermodynamic consistency. A similar
gradient entropy term was considered by Anderson & McFadden (1996) to study a single
compressible fluid with different phases near its critical point. In their work, the phase-
field model was derived through a thermodynamic formalism (Sekerka 1993) based on
entropy generation. Through a similar thermodynamic framework, Verschueren et al.
(2001) presented a phase-field model for two-phase flow with thermocapillary effects in a
Hele-Shaw cell. The system of equations maintains thermodynamic consistency, in which
the energy equation contains an extra term associated with the variations of the phase
field.
In the present paper, we develop a thermodynamically consistent phase-field model for
two-phase flows with thermocapillary effects, which allows the binary incompressible
fluid (quasi-incompressible fluid) to have different densities, viscosities and thermal con-
ductivities for each component. By employing the thermodynamic framework used by
Anderson & McFadden (1996), we first derive a phase-field model for binary compress-
ible flows with thermocapillary effects, where the mass concentration is chosen as the
phase variable to label the phases, and the Helmholtz free energy is chosen as the fluid
free energy. We then derive the model for binary incompressible flows with thermocap-
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illary effects. Following the work of Lowengrub & Truskinovsky (1998), we employ the
pressure rather than density as the independent variable and thus work with the Gibbs
free energy. The equations of both models, including the Navier-Stokes equations with
extra stress, an advective Cahn-Hilliard equation and energy equation are derived under
a thermodynamic framework. To the best of our knowledge, such a thermodynamically
consistent phase-field model for binary incompressible fluid with thermocapillary effects,
which allows for different physical properties of each component, is new. To validate
our model, we first show that thermodynamic consistency is maintained in both models,
where the first and second laws of thermodynamics are derived from the model equations.
We also show that the system equations of our model satisfy the Onsager’s reciprocal
relation and the Galilean invariance, which can be critical for the phase-field modelling.
We then analyze the model in the sharp-interface limit to show that the governing equa-
tions and interfacial conditions of the classical sharp-interface model can be recovered
from our phase-field models. This further reveals the underlying physical mechanisms of
the phase-field model. In the jump condition of momentum balance, we relate the sur-
face tension term of our phase-field model to that of the classical sharp-interface model
by introducing a ratio parameter, where the value of the parameter can be determined
through the provided relation. As another validation of our model, three examples are
computed by using a continuous finite element method, including thermocapillary con-
vection in two-layer fluid system and thermocapillary migration of a drop in a medium
fluid. The numerical results for the first two examples are consistent with the correspond-
ing analytical solutions (Pendse & Esmaeeli 2010) and the existing numerical solutions
(Herrmann et al. 2008). Note that for all the examples computed in this paper, we assume
that the interface have no contact with the boundary of the domain. In the case that
the interface contacts with the boundary of the domain, extra difficulties would arise
from complicated interface/boundary interacting conditions and should be dealt with
separately (e.g., Qian et al. 2006; Eck et al. 2009; Gao & Wang 2012).
The paper is organized as follows. In §2, we introduce the variable density and mass-
averaged velocity of the binary fluid. We then present the derivations of the phase-field
model for binary compressible fluid with thermocapillary effects in §3, and the corre-
sponding derivations for the binary incompressible (quasi-incompressible) fluid in §4.
The sharp-interface limit analysis of our phase-field model is carried out in §5. §6 shows
some numerical results as validations of our model. Finally, conclusion and future work
are discussed in §7.

2. Variable density and mass-averaged velocity

In phase-field modelling, an order parameter (phase variable) is normally introduced
to distinguish different phases and the intervening interface. Lowengrub & Truskinovsky
(1998) have argued for the advantage of using a physically realistic scalar field instead
of an artificial smoothing function for the interface. Several physically realistic scalar
fields have been suggested as the order parameters for phase-field modelling, e.g. the
mass density ρ for the case of a single compressible fluid with different phases (Anderson
& McFadden 1996), the mass concentration c of one of the constituents for the case of
compressible and incompressible binary fluid (Lowengrub & Truskinovsky 1998; Abels
et al. 2012), or an alternative phase variable, the volume fraction φ for the case of
incompressible binary fluid (Liu & Shen 2002) and solidification of single materials (Wang
et al. 1993). Here we choose the mass concentration c of one of the constituents as the
phase variable, and begin by introducing the variable density for the mixture. We consider
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a mixture of two fluids in a domain Ω, and take a sufficient small material volume V ∈ Ω.
We then have the following theorem (e.g. Mase & Mase 1999),

Theorem 1. For a smooth function f(x, t) in the Eulerian coordinate,

d

dt

∫

V (t)

f(x, t)dV =

∫

V (t)

(

Df

Dt
+ f(∇ · v)

)

dV =

∫

V (t)

(

∂f

∂t
+∇ ·

(

fv
)

)

dV, (2.1)

where D/Dt = ∂/∂t+v · ∇ is the material derivative and v is the velocity of the moving
volume V (t).

In the control volume, the two fluids are labeled by i = 1, 2 and they fill the volumes Vi
separately. We then introduce the volume fraction γi for the ith fluid such that γi = Vi/V .
Further we assume that two fluids can mix along the interfacial region and the volume
occupied by a given amount of mass of the single fluid does not change after mixing. Then
within the material volume V , γi satisfy the condition γ1+γ2 = 1. Let M =M1+M2 be
the total mass of the mixture, andMi be the mass of the ith fluid in the volume. We now
introduce the local volume-averaged mass density taken over the sufficient small volume
V for each fluid ρ̃i =Mi/V , and the actual local mass density for each fluid ρi =Mi/Vi.
Note that for incompressible components, we assume that ρi are uniform constants.
Having in mind the definition of volume fraction, we obtain the relation between the
volume-averaged mass densities and the local mass densities

γi =
ρ̃i
ρi

and
ρ̃1
ρ1

+
ρ̃2
ρ2

= 1. (2.2)

We then define the volume-averaged mass density for the mixture as

ρ = ρ̃1 + ρ̃2 =
M1 +M2

V
=
M

V
. (2.3)

Let ci be the mass concentration for the ith fluid, such that

ci =
Mi

M
=
ρ̃i
ρ

and c1 + c2 = 1. (2.4)

Using Eqs.(2.2) and (2.4), we obtain the variable density for the mixture of two fluids

1

ρ(c)
=

c

ρ1
+

1− c

ρ2
. (2.5)

Here we chose the mass concentration of fluid 1 as the phase variable for our phase-
field model, such that c = c1 = 1 − c2. It can be seen that, for two incompressible
components of different densities, the variable density ρ(c) for the mixture is constant
almost everywhere except near the interfacial region. For simplicity, we write the variable
density ρ(c) as ρ in all the following derivations.
Now we suppose that the two fluids move with different velocities vi(x, t). The equation
of mass balance for each fluid within the material volume V can then be written in the
form (Lowengrub & Truskinovsky 1998; Boyer 2002; Abels et al. 2012)

∂ρ̃i
∂t

+∇ · (ρ̃ivi) = 0. (2.6)

We then introduce the mass-averaged velocity for the mixture as

ρv = ρ̃1v1 + ρ̃2v2 or v = c1v1 + c2v2. (2.7)

Substituting the density (2.3) and mass-averaged velocity (2.7) into Eq. (2.6), we obtain
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the mass balance for the mixture of two fluids

∂ρ

∂t
+∇ · (ρv) = 0. (2.8)

In the following derivations, we consider the mixture as a single fluid moving with velocity
v. Note that if we consider a binary incompressible fluid (assuming the two fluids of the
mixture are incompressible, and the temperature effects on the densities of both fluids
are negligible), then ρ1 and ρ2 are constants, and the above equation (2.8) can be further
written as

∇ · v = −1

ρ

Dρ

Dt
= −1

ρ

dρ

dc

Dc

Dt
= αρ

Dc

Dt
, (2.9)

where α = (ρ2 − ρ1)/ρ2ρ1 is constant. We note that, due to the variations of the phase
variable c, the mass-averaged velocity for the mixture is non-solenoidal (∇ · v 6= 0) near
the interfacial region, which introduces the compressibility effects into the model. Such
binary incompressible fluid is termed as the quasi-incompressible fluid (e.g. Antanovskii
1995; Lowengrub & Truskinovsky 1998).
We remark that except for this mass-averaged velocity v, another velocity for the mixture,
the volume-averaged velocity ṽ was considered by Abels et al. (2012); Boyer (2002), and
Ding et al. (2007), where the volume fraction γ instead of the mass concentration c is
employed as the phase variable, and further used to relate the velocity of single fluids
and mixture. This volume-averaged velocity of binary incompressible fluid is solenoidal
(∇ · ṽ = 0) over the whole domain, where an extra term that accounts for the mass flux
relative to the volume-averaged velocity appears in the Navier-Stokes equations (see, for
details, Abels et al. 2012).

3. Phase-field model for binary compressible fluid with

thermocapillary effects

In this section, we develop a system of equations for a binary fluid with thermocapillary
effects, in which both components are compressible and Cahn-Hilliard diffusion is coupled
with fluid motion.

3.1. Derivation of the model

We first consider a mixture of two fluids in a domain Ω, and we take an arbitrary material
volume V ∈ Ω that moves with the mixture. Within the material volume, we define the
properties for the binary compressible fluid as

M =

∫

V (t)

ρ dV, (3.1)

P =

∫

V (t)

ρv dV, (3.2)

E =

∫

V (t)

(

1

2
ρ|v|2 + ρgz + ρû

)

dV, (3.3)

S =

∫

V (t)

ρŝ dV, (3.4)

C =

∫

V (t)

ρc dV, (3.5)

whereM , P, E, S is the total mass, momentum, energy, and entropy of the mixture, ρ(c)
is the variable density of the mixture, v is the mass-averaged velocity of the mixture,
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|v|2/2 is the kinetic energy per unit mass, gz is the gravitational potential energy per
unit mass, z is the z-coordinate, û (ŝ) is the internal energy (entropy) per unit mass, c
is the phase variable. Substituting the mass concentration (2.4) into Eq.(3.5) gives

C =

∫

V (t)

ρc dV =

∫

V (t)

ρc1 dV =

∫

V (t)

ρ̃1 dV, (3.6)

where C stands for the constituent mass of fluid 1 within the material volume V (t). In
phase-field modelling, except the classical free energy density for bulk phases, an extra
gradient term is typically added into the model accounting for the free energy of the
diffuse interface (Cahn & Hilliard 1958). Several ways have been suggested to introduce
the gradient term into the phase-field model, e.g. by introducing it into the entropy
functional (Antanovskii 1995; Wang et al. 1993), free energy functional (Lowengrub &
Truskinovsky 1998) or internal energy functional (Anderson et al. 1998; Verschueren
et al. 2001). In the present work, as the thermocapillary effects along the interface are
investigated, we expect that the surface free energy (serving as the surface tension (See
§5.4)) of our phase-field model is temperature dependent. Therefore, according to the
thermodynamic relations, we introduce the gradient term into both the internal energy
and entropy of our model, such that

û(s, ρ, c,∇c) = u(s, ρ, c) + ugrad(∇c), ugrad = λu
1

2
|∇c|2, (3.7)

ŝ(T, ρ, c,∇c) = s(T, ρ, c) + sgrad(∇c), sgrad = λs
1

2
|∇c|2, (3.8)

f̂(T, ρ, c,∇c) = f(T, ρ, c) + fgrad(T,∇c), fgrad = λf (T )
1

2
|∇c|2, (3.9)

where u, s and f stand for the classical parts of the specific internal energy, entropy and
free energy separately. Here f is the Helmholtz free energy. The parts ugrad, sgrad and
fgrad are the gradient terms analogous to the Landau-Ginzburg (Ginzburg & Landau
1950) or Cahn-Hilliard (Cahn & Hilliard 1958) gradient energy. Note that these parts are
termed as the ”non-classical” terms by Anderson & McFadden (1996) who used a phase-
field model to study a single compressible fluid with different phases near its critical
point. In addition, λu and λs are constant parameters, λf (T ) is a parameter depending
on the temperature and will lead to the thermocapillary effects along the interface. Note
that λu, λs and λf (T ) can be further used to relate the surface tension of the phase-field
model to that of the sharp-interface model when the phase-field model reduces to its
sharp-interface limit (see §5.4 for details). As u(ρ, s, c) is the classical contribution to the
specific internal energy û, we have the thermodynamic relation

du(s, ρ, c) =
∂u

∂s

∣

∣

∣

∣

ρ,c

ds+
∂u

∂ρ

∣

∣

∣

∣

s,c

dρ+
∂u

∂c

∣

∣

∣

∣

s,ρ

dc = Tds+
p

ρ2
dρ+

∂u

∂c

∣

∣

∣

∣

s,ρ

dc, (3.10)

where the subscripts indicate which variables are held constant when the various partial
derivatives are taken. This relation states that the heat transfer (Tds), pressure-volume
work (p/ρ2dρ) and chemical work ((∂u/∂c)dc) all contribute to the changes in the internal
energy. Further, we have the thermodynamic relation for Helmholtz free energy

f = u− Ts. (3.11)

Having in mind the relation (3.10), we obtain

df = du− d(Ts) = du− sdT − Tds =
p

ρ2
dρ− sdT +

∂u

∂c

∣

∣

∣

∣

s,ρ

dc, (3.12)
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such that
∂f

∂ρ

∣

∣

∣

∣

T,c

=
p

ρ2
,

∂f

∂T

∣

∣

∣

∣

ρ,c

= −s and
∂f

∂c

∣

∣

∣

∣

T,ρ

=
∂u

∂c

∣

∣

∣

∣

s,ρ

. (3.13)

Similarly, we assume that the same thermodynamic relations, which hold for the classical
terms also hold for the general terms, such that

f̂ = û− T ŝ and
∂f̂

∂T

∣

∣

∣

∣

s,ρ,c,∇c

= −ŝ. (3.14)

With the relations (3.11) and (3.13), we must also have the relations for the gradient
terms

fgrad = ugrad − Tsgrad and
∂fgrad

∂T

∣

∣

∣

∣

∇c

= −sgrad, (3.15)

and for the corresponding coefficients

λf (T ) = λu − Tλs and
dλf (T )

dT
= −λs. (3.16)

For simplicity, we omit all the subscripts in the following derivations. Under the assump-
tions above, the general forms of physical balance associated with M , P, E, S and C
can be given as follows

dM

dt
= 0, (3.17)

dP

dt
=

∫

∂V (t)

m · n̂ dA−
∫

V (t)

ρgẑ dV, (3.18)

dE

dt
=

∫

∂V (t)

(

v ·m · n̂− qE · n̂− qnc
E · n̂

)

dA, (3.19)

dS

dt
= −

∫

∂V (t)

(

qE

T
· n̂+ qnc

S · n̂
)

dA+

∫

V (t)

Sgen dV
(

Sgen > 0
)

, (3.20)

dC

dt
= −

∫

∂V (t)

qC · n̂ dA, (3.21)

where n̂ is the unit outward normal vector of the boundary, ẑ is the vertical component of
the unit normal vector. Eq.(3.17) represents the mass balance of the mixture within the
volume. Eq.(3.18) represents the momentum balance, stating that the rate of the change
in total momentum equals to the force (surface forces m and body forces ρgẑ) acting
on the volume. Here only the gravitational forces are considered. The energy balance
equation (3.19) states that the change in total energy equals to the rate of work done
by the forces (m) on the boundary plus the energy flux (classical qE and non-classical
qnc
E internal energy flux) through the boundary. The entropy balance (3.20) states that

the rate of change of entropy in the control volume during the process equals to the net
entropy transfer through the boundary (classical qE/T and non-classical qnc

S entropy
flux) plus the local entropy generation (Sgen > 0) within the control volume (e.g. Moran
et al. 2010). Based on the second law of thermodynamics, the local entropy generation
is non-negative for a dissipative system (or say for an irreversible process), which is key
to the thermodynamic frame that we used for the derivations. For the constituent mass
balance (3.21), we use Eq.(3.6) and Theorem 1 to obtain

dC

dt
=

d

dt

∫

V (t)

ρ̃1dV =

∫

V (t)

(

∂ρ̃1
∂t

+∇ · (ρ̃1v)
)

dV = −
∫

∂V (t)

qC · n̂ dA. (3.22)



10 Z. Guo and P. Lin

Substituting (2.6) into (3.22), we obtain qC = ρ̃1(v1 −v), where qC stands for the mass
flux of fluid 1 with velocity (v1 − v) through the boundary of control volume. Note that
in the following derivations qC will be related to the chemical potential of the phase field,
which is analogous to the standard derivations for the Cahn-Hilliard equations (see, for
examples, Anderson et al. 1998 and Lowengrub & Truskinovsky 1998).
In what follows, we use the definitions (3.1)-(3.5) and the balance laws (3.17)-(3.21) to
obtain the equations that expressed in terms of the above unknowns, including m, qE ,
qnc
E , qnc

S , qC and Sgen. We then specify those unknowns with respect to the second law
of thermodynamics (ensuring Sgen > 0) and the concept of thermodynamic consistency
of the phase-field model.
For mass balance (3.17), we use Theorem 1 to obtain

Dρ

Dt
= −ρ(∇ · v), (3.23)

based on which, we have the following,

Theorem 2. (Transport Theorem 2) For a smooth function f(x, t) in the Eulerian
coordinate,

d

dt

∫

V (t)

ρf(x, t) dV =

∫

V (t)

ρ
Df

Dt
dV =

∫

V (t)

ρ

(

∂f

∂t
+ (v · ∇)f

)

dV, (3.24)

where ρ is the density of the mixture defined in the volume V (t) and satisfies the mass
balance (3.23).

Note that as Theorem 1 and Theorem 2 are frequently used, we will not refer them in
the following derivations.
For momentum balance (3.18), we simply have

ρ
Dv

Dt
= ∇ ·m− ρgẑ. (3.25)

For energy balance (3.19), we obtain

ρT
Ds

Dt
= −∇ · (ρλu

Dc

Dt
∇c) +

(

m− ρλu|∇c|2I+ ρλu(∇c⊗∇c)
)

: ∇v

+λuρ∆c
Dc

Dt
−∇ · qE −∇ · qnc

E − ρ
∂u

∂c

Dc

Dt
− p

ρ

Dρ

Dt
. (3.26)

where Eqs.(3.10), (3.23) and (3.25), and the following identities are used

d

dt

∫

V (t)

ρgz dV =

∫

V (t)

ρgv · ∇z dV =

∫

V (t)

ρgv · ẑ dV, (3.27)

and

ρ
D

Dt
(
1

2
λu|∇c|2) = ∇ · (ρλu

Dc

Dt
∇c) +

(

ρλu|∇c|2I− ρλu(∇c⊗∇c)
)

: ∇v − ρλu∆c
Dc

Dt
.

(3.28)

Here “ : ” stands for the double dot product of the stress tensor (e.g. Mase & Mase 1999).
For entropy balance (3.20), we obtain

ρ
Ds

Dt
= −∇ · (ρλs

Dc

Dt
∇c) +

(

− ρλs|∇c|2I+ ρλs(∇c⊗∇c)
)

: ∇v

+λsρ∆c
Dc

Dt
−∇ · (qE

T
) + Sgen −∇ · qnc

S , (3.29)
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where, similar to Eq.(3.28), the following identity is used,

ρ
D

Dt
(
1

2
λs|∇c|2) = ∇ · (ρλs

Dc

Dt
∇c) +

(

ρλs|∇c|2I− ρλs(∇c⊗∇c)
)

: ∇v − ρλs∆c
Dc

Dt
.

(3.30)

For constituent mass balance (3.21), we simply have

ρ
Dc

Dt
= −∇ · qC . (3.31)

We then use Eq.(3.29) and Eq.(3.31) to substitute the terms ρDs/Dt and ρDc/Dt in
(3.26), and use the relation (3.16) to obtain the expression for the entropy generation,

Sgen =
1

T

(

m− ρλf (T )|∇c|2I+ ρλf (T )T+ pI

)

: ∇v +∇ 1

T
·
(

ρλu
Dc

Dt
∇c+ qE + qnc

E

−µCqC

)

−∇ ·
[

1

T
ρλf (T )

Dc

Dt
∇c+ 1

T
qnc
E − 1

T
µCqC − qnc

S

]

− 1

T
qC · ∇µ. (3.32)

To ensure the non-negativity of the entropy generation Sgen > 0 (second law of thermo-
dynamics), we specify the unknown terms in the form

qE = −k(c)∇T, qnc
E = −ρλu

Dc

Dt
∇c+ µCqC , (3.33)

qnc
S = −ρλs

Dc

Dt
∇c, m = ρλf (T )|∇c|2I− ρλf (T )T+ σ, (3.34)

µC =
∂f

∂c
− λf (T )∆c, qC = −mC∇µC , (3.35)

T = ∇c⊗∇c, σ = −pI+ τ , (3.36)

p = ρ2
∂f

∂ρ
, τ = µ(c)(∇v +∇vT )− 2

3
µ(c)(∇ · v)I. (3.37)

Note that τ is the deviatoric stress tensor from the classical Navier-Stokes equations (e.g.
Batchelor 2000). Here we use the thermodynamic relation (3.13) to obtain the chemical
potential µC . The pressure p can be obtained immediately through the thermodynamic
relation (3.13). By substituting the above terms into (3.17)-(3.21), we obtain the system
of equations for the phase-field model governing binary compressible flows with thermo-
capillary effects

Dρ

Dt
= −ρ(∇ · v), (3.38)

ρ
Dv

Dt
= ∇ ·m− ρgẑ, (3.39)

ρ
Du

Dt
= (σ − ρTλs|∇c|2I+ ρTλsT) : ∇v + λu∇ · (ρ∇c)Dc

Dt
+∇ · (k(c)∇T

+mCµC∇µC), (3.40)

ρ
Ds

Dt
=

1

T
(τ − ρTλs|∇c|2I+ ρTλsT) : ∇v + λs∇ · (ρ∇c)Dc

Dt
+

1

T
∇ · (k(c)∇T ),

(3.41)

ρ
Dc

Dt
= mC∆µC , (3.42)

µC =
∂f

∂c
− λf (T )∆c. (3.43)

Note that the second term in the stress tensor m is the extra reactive stress (Ericksen’s
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stress) to mimic the surface tension. This stress term is associated with the presence of
concentration gradients energy (Cahn-Hilliard energy). We note that the temperature
dependent coefficient in m is a linear function of temperature, which leads to the ther-
mocapillary effects along the interface (see §4.2 for details). mC is a positive constant
standing for the mobility of the diffuse interface. Note that in the non-classical heat (or
entropy) flux qnc

E (or qnc
S ), the term ρλu∇c Dc/Dt (or ρλs∇c Dc/Dt) is associated with

the gradient energy (or entropy, respectively) and is in the direction of the gradient of
the phase variable. Similar terms were obtained by Wang et al. (1993) who used a phase-
field model to study the solidification of single material, and by Anderson & McFadden
(1996) who used a phase-field model to study a single compressible fluid with different
phases near its critical point. In addition, a non-classical energy flux term mCµC∇µC

appears in our energy balance equation (3.40). The same energy flux term was obtained
by Gurtin et al. (1996) (see Eq.(28)), who re-derived the Model H in the framework
of classical continuum mechanics. A “counterpart” entropy flux term was identified by
Lowengrub & Truskinovsky (1998) when deriving a phase-field model for binary com-
pressible fluid, where this term is required to keep the model compatible with the second
law of thermodynamics. In the latter work, the isothermal fluid flow was studied, so that
the temperature T in the entropy flux was treated as constant, whereas in our work, the
temperature is not a constant as the thermocapillary effects are considered here. They
identified this non-classical as the entropy flux transported through the boundary by
chemical diffusion. Our model agrees with these works well and therefore we identify this
non-classical energy flux term as the energy that carried into the control volume by the
chemical diffusion. Note that several phase-field models (e.g., Blesgen 1999; Allaire et al.
2002; Abels & Feireisl 2008) have been presented to study the binary compressible fluids,
where the specifications of free energy (Eq.(3.37)) that contribute to the compressibility
of the binary compressible fluids are discussed and provided.
Similar to the approach that defines the variable density ρ(c) (2.5), we define the variable
viscosity µ(c) and the variable thermal diffusivity k(c) for the mixture in the form of the
harmonic average,

µ(c) =
µ1µ2

(µ2 − µ1)c+ µ1
, k(c) =

k1k2
(k2 − k1)c+ k1

, (3.44)

where µi,and ki are the viscosity and thermal conductivity of the ith fluid.

3.2. Thermodynamic consistency and Galilean invariance

As our phase-field model (3.38)-(3.43) is derived within a thermodynamic framework,
it implies that the first and second thermodynamic laws are naturally underlying the
model. However, from the numerical point of view, thermodynamic consistency can be
further served as a criterion to design the numerical methods. In our phase-field model,
the Navier-Stokes equations are coupled with the Cahn-Hilliard equations and energy
balance equation, which leads to a nonlinear system. Moreover, as the rapid variations in
the solutions of the phase variable occur near the interfacial region, the energy stability
of the numerical method is critical. Recently, the preservation of the thermodynamic laws
at discrete level has been reported to play an important role in the designing of numerical
methods (e.g. Lin & Liu 2006; Lin et al. 2007 for liquid crystal models, Hua et al. 2011;
Guo et al. 2014a for phase-field models), which not only immediately implies the stability
of the numerical scheme, but also ensures the correctness of the solutions. Hence, in
contrast to the derivations, we now show that the first and second laws of thermodynamics
can be derived from the system of equations (3.38)-(3.43), which can be further used
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to design the numerical methods. In addition, important modelling properties Onsager
reciprocal relations and Galilean invariance will be verified as well.

3.2.1. The laws of thermodynamic

Multiplying Eqs. (3.38), (3.39) and (3.41)-(3.43) by p/ρ + v · v/2 + u, v, T , µC and
ρDc/Dt, and summing them up, we can obtain the first law of thermodynamics (3.19)
that we used to derive the model. By substituting the terms, m, qE , q

nc
E , qnc

S and qC

into the entropy generation (3.32), we obtain the second law of thermodynamics,

Sgen =
1

T
τ : ∇v − qE

∇T
T 2

− qC

1

T
∇µC

=
1

T
τ : ∇v + k(c)|∇T

T
|2 + mC

T
|∇µC |2 > 0, (3.45)

where we see that the viscous dissipation, heat transfer and chemical potential (the
variation of the phase variable) all contribute to the entropy generation of our phase-
field model. Note that the same entropy generation equation was obtained by Lowengrub
& Truskinovsky (1998) when deriving the phase-field model for the binary compressible
fluid.

3.2.2. Onsager reciprocal relations

From Eq.(3.45), we observe that the entropy generation can be seen as the sum of terms
each being a product of a flux (τ , qE , qC) and thermodynamic forces (∇v, ∇T , ∇µC).
The simplest model, based on the linear thermodynamics of non-equilibrium processes
(Groot & Mazur 1985), assumes linear relations between the fluxes and thermodynamic
forces, such that

τ = L11∇v + L12∇T + L13∇µC ,

qE = L21∇v + L22∇T + L23∇µC ,

qC = L31∇v + L32∇T + L33∇µC , (3.46)

where the coefficients Lij are chosen to guarantee the non-negativity of Sgen. Moreover,
microscopic reversibility requires the Onsager reciprocal relations Lij = Lji (Groot &
Mazur 1985, and see, for examples, Qian et al. 2006; Eck et al. 2009). From Eqs.(3.37),
(3.33) and (3.35), we see that our choices of τ ,qE and qC satisfy the linear relation
(3.46) and also the reciprocal relations. Moreover, the entropy generation (3.45) is zero
when the thermodynamic equilibrium conditions are satisfied within the system (i.e.
thermodynamic forces are zero at equilibrium).

3.2.3. Galilean invariance

Another requirement which the entropy generation (3.45) should satisfy is that it be
invariant under a Galilei transformation (Groot & Mazur 1985), since the notions of
reversible and irreversible behaviour must be invariant under such a transformation. It
can be seen that the entropy generation (3.45) satisfies automatically this requirement.
Moreover, the model equations must be Galilean invariant as well, where, according to
the classical mechanics, the balance equations must be the same in the inertia frames.
It can be observed that our system equations satisfy this requirement. Note that, in
another phase-field model (Abels et al. 2010), the volume-averaged velocity is employed,
which leads to a non-objective scalar term appearing in the chemical potential equation.
Therefore a particular formulation for the convective terms is needed to keep the Galilean
invariance of their model equations. In our model equations, on the other hand, the
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mass-averaged velocity is employed for the mixture, therefore no non-objective terms are
involved. The system equations satisfy the Galilean invariance automatically.

4. Phase-field model for quasi-incompressible fluid with

thermocapillary effects

In this section, we develop a model of a binary Cahn-Hilliard fluids with thermocapil-
lary effects in which both components are incompressible.

4.1. Derivation of the model

In order to study situations in which the density in each phase is uniform, it is convenient
to adopt a thermodynamic formation which does not employ the density as an indepen-
dent variable, as in the model of quasi-incompressible flow considered by Lowengrub &
Truskinovsky (1998). Following their work, we choose the pressure and temperature as
independent variables, and work with the Gibbs free energy. In addition, for a binary
incompressible fluid system, the free energy density can appear as the per unit mass
quantity or per unit volume quantity. In most phase-field models for two-phase flows
(e.g. Hohenberg & Halperin 1977; Liu & Shen 2002), the density of two components are
assumed to be constant and equal, and the per unit mass and per unit volume specifica-
tion of the free energy density are equivalent. However, in the situation we study here,
the densities of two fluids of the mixture may not be matched and thus the per unit mass
and per unit volume forms are not equivalent. As we mentioned above, several models
have been developed for the binary incompressible fluid with different densities, in which
the per unit volume form of free energy density was employed by Boyer (2002); Ding
et al. (2007); Shen & Yang (2010); Abels et al. (2012) and the per unit mass form by
Lowengrub & Truskinovsky (1998). Here we concentrate on the Gibbs free energy density
in the per unit mass form, and denote it by ĝ(T, p, c,∇c). Again, similar to the definition
of the free energy (3.9) for binary compressible fluid, we introduce the gradient terms
(gradient energy) into the Gibbs free energy of our model, which can then be given in
the form

ĝ(T, p, c,∇c) = g(T, p, c) + ggrad(T,∇c), ggrad = fgrad = λf (T )
1
2 |∇c|2, (4.1)

where g is the classical parts of the Gibbs free energy density, and λf (T ) is a temperature
dependent coefficient and will lead to the thermocapillary effects along the interface (see
§4.3 for details). For the classical part of the internal energy defined by (3.7), we have
the following thermodynamic relation

u(s, ρ, c) = g(T, p, c) + Ts− p

ρ
. (4.2)

Using the thermodynamic relation (3.10) leads to

dg(T, p, c) = du(s, ρ, c)− d(sT ) + d

(

p

ρ

)

= −sdT +
1

ρ
dp+

∂u

∂c

∣

∣

∣

∣

ρ,s

dc, (4.3)

where we note the relations

∂g(T, p, c)

∂T

∣

∣

∣

∣

p,c

= −s, ∂g(T, p, c)

∂p

∣

∣

∣

∣

T,c

=
1

ρ
and

∂g(T, p, c)

∂c

∣

∣

∣

∣

T,p

=
∂u

∂c

∣

∣

∣

∣

ρ,s

. (4.4)

Here as we notice that the variable density is independent of temperature and pressure
(See (2.5)), the condition of the incompressibility can then be written in the terms of the
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Gibbs free energy

∂2g(T, p, c)

∂2p
= 0, (4.5)

where the second condition in (4.4) is used. Condition (4.5) implies that Gibbs free energy
is a linear function of pressure, (e.g. Lowengrub & Truskinovsky 1998)

g(T, p, c) = g0(T, c) +
p

ρ(c)
. (4.6)

We then re-define the classical internal energy as a function of T , p and c,

ũ(T, p, c) = u(s, ρ, c) = g(T, p, c) + Ts− p

ρ(c)
, (4.7)

where the relations (4.3) and (4.4) still hold. Similarly to the definition of the internal
energy (3.7) and entropy (3.8) for the binary compressible fluid model, the specific inter-
nal energy û and the specific entropy ŝ for binary incompressible fluids can be re-defined
in the form

û(T, p, c,∇c) = ũ(T, p, c) + ugrad(∇c), ugrad = λu
1

2
|∇c|2, (4.8)

ŝ(T, c,∇c) = s̃(T, c) + sgrad(∇c), sgrad = λs
1

2
|∇c|2, (4.9)

where ũ and s̃ are the classical parts of the specific internal energy and entropy associated
with the Gibbs free energy, λu and λs are constant. In addition to these classical contri-
butions, we assume that the same thermodynamics relations that hold for the classical
terms also hold for the total terms, such that

ĝ = û− T ŝ+
p

ρ
= f̂ +

p

ρ
,

∂ĝ

∂T

∣

∣

∣

∣

p,c,∇c

= −ŝ. (4.10)

Thus, from (4.1), (4.7)-(4.9), the relation for the coefficients (3.16) holds as well. The
specifications of these three coefficients will be discussed in §4.2. Note that λu, λs together
with λf (T ) (in Eq.(4.1)) can be further used to relate the surface tension of phase-field
model to that of sharp-interface model when our phase-field model reduces to its sharp-
interface limit (see §5.4 for details).
Now we derive the system of equations for the quasi-incompressible phase-field model.
We still use (3.1)-(3.5) to define the total properties, namely mass M , momentum P,
energy E, entropy S and mass constituent C in a material control volume V (t) of the
domain Ω. We further assume that the corresponding general balance laws (3.17)-(3.21)
that hold for the binary compressible fluid also hold for the quasi-incompressible fluid,
which can then be written as

Dρ

Dt
= −ρ(∇ · v), (4.11)

ρ
Dv

Dt
= ∇ ·m− ρgẑ, (4.12)

ρ
Dũ

Dt
= −∇ · (ρλu

Dc

Dt
∇c) + ρλu∆c

Dc

Dt
+ (m− ρλu|∇c|2I+ ρλuT) : ∇v −∇ · qE

−∇ · qnc
E , (4.13)

ρ
Ds̃

Dt
= −∇ · (ρλs

Dc

Dt
∇c) + ρλs∆c

Dc

Dt
− (ρλs|∇c|2I− ρλsT) : ∇v −∇ · (qE

T
)−∇ · qnc

S

+Sgen, (4.14)
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ρ
Dc

Dt
= −∇ · qC , (4.15)

where, as the pressure p is not defined in the traditional way, the general stress tensor
m is not defined explicitly.
Note that, in contrast to the case of binary compressible fluid, the classical part of
internal energy ũ we defined here does not depend on the entropy s̃ directly. However,
as the derivations are carried out within the thermodynamic framework that is based
on the entropy generation, a thermodynamic relation between the internal energy and
entropy is still needed. Having in mind the definition of the internal energy (4.7) and
using the relations (4.3) and (4.4), we obtain the following relation between the classical
part of internal energy ũ, Gibbs free energy g and entropy s̃

ρ
Dũ

Dt
= ρ

∂g0
∂c

Dc

Dt
+ ρT

Ds̃(T, c)

Dt
. (4.16)

Then similar to the method used for the binary compressible fluid model, we use the
unknowns, including m, qE , q

nc
E , qnc

S to express the entropy generation in the form

Sgen =
1

T

(

m− ρλf (T )|∇c|2I+ ρλf (T )T

)

: ∇v +∇ 1

T
·
(

ρλu
Dc

Dt
∇c+ qE + qnc

E

−µ̃CqC

)

−∇ ·
[

1

T

(

ρλf (T )
Dc

Dt
∇c+ qnc

E − µ̃CqC − Tqnc
S

)]

− 1

T
qC · ∇µ̃C , (4.17)

where we have used Eqs.(4.11)-(4.16). µ̃C = ∂g0(c)/∂c−λf (T )∆c is a potential term. As
the pressure is no longer defined by the thermodynamic formulas in this model, we now
derive the pressure in an alternative way that used by Lowengrub & Truskinovsky (1998),
where the pressure was obtained from the non-dissipated part of the general stress m.
Considering a dissipative process, we denote the general stress tensor by m = m0 + τ ,
in which τ is the deviatoric stress tensor with zero trace, and m0 is the unknown part
to be defined later. We then denote Dv = ∇v − (∇ · v)I/3 as the deviatoric part of ∇v

(tr Dv = 0). The entropy expression (4.17) can be rewritten as:

Sgen =
1

T

(

m0 − ρλf (T )|∇c|2I+ ρλf (T )T

)

: Dv +
1

T
τ : ∇v +∇ 1

T
·
{

ρλu
Dc

Dt
∇c+ qE

+qnc
E −

(

µ̃C +
(1

3
tr m0 −

2

3
ρλf (T )|∇c|2

) 1

ρ2
dρ

dc

)

qC

}

−∇ ·
{

1

T

[

ρλf (T )
Dc

Dt
∇c

+qnc
E −

(

µ̃C +
(1

3
tr m0 −

2

3
ρλf (T )|∇c|2

) 1

ρ2
dρ

dc

)

qC − Tqnc
S

]}

− 1

T
qC · ∇

(

µ̃C

+
(1

3
tr m0 −

2

3
ρλf (T )|∇c|2

) 1

ρ2
dρ

dc

)

, (4.18)

where we have used the mass balance (4.11) and the following identity

(

m0 − ρλf (T )|∇c|2I+ ρλf (T )T

)

:
1

3
(∇ · v)I

=
1

3

(

tr m0 − ρλf (T )tr |∇c|2I+ ρλf (T )tr T

)

(∇ · v)

=

(

1

3
tr m0 −

2

3
ρλf (T )|∇c|2

)

(∇ · v). (4.19)
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Now we assume that the first two terms on the right-hand side of (4.18) are non-
dissipative and define the pressure p by

−p =
1

3
tr m =

1

3
tr

(

m0 − ρλf (T )|∇c|2I+ ρλf (T )T

)

=
1

3
tr m0 −

2

3
ρλf (T )|∇c|2,

(4.20)

such that

−pI = m0 − ρλf (T )|∇c|2I+ ρλf (T )T, (4.21)

in which the way we use to define the pressure in Eq.(4.20) is analogous to the way that
defines the kinematic pressure for the classical Navier-Stokes equations (Batchelor 2000).
To ensure our model is consistent with the second law of thermodynamics (Sgen > 0),
we specify the unknown terms as the following

qE = −k(c)∇T, qnc
E = −ρλu

Dc

Dt
+ µCqC , (4.22)

qnc
S = −ρλs

Dc

Dt
∇c, m0 = −pI+ ρλf (T )|∇c|2I− ρλf (T )T, (4.23)

µC =
∂g0
∂c

− p

ρ2
dρ

dc
− λf (T )∆c, qC = −mC∇µC , (4.24)

T = ∇c⊗∇c, τ = µ(c)(∇v +∇vT )− 2

3
µ(c)(∇ · v)I. (4.25)

Here m = m0+τ . Note that, comparing to the model developed by Lowengrub & Truski-
novsky (1998), an extra term, ρλf (T )|∇c|2I, appears in the stress tensor m0 (Eq.(4.23)).
This term could be absorbed into the pressure for convenience (see, Hua et al. (2011); Liu
& Shen (2002) for examples). However, we still keep this term in order that the surface
gradient of the surface tension in the sharp interface limit can be recovered (See §5.4 for
details). This treatment is similar to that used by Guo et al. (2014b) and Garcke et al.
(2014), where in Garcke et al. (2014) this term is also required to recover the surface
gradient term in the asymptotic analysis. Besides the momentum equation, the pressure
appears in the chemical potential equation as well, which is different with the chemi-
cal potential (3.43) for the binary compressible fluid model. By substituting the above
terms into Eqs.(4.11)-(4.15), we obtain the system of equations for the phase-field model
governing the quasi-incompressible fluid with thermocapillary effects

Dρ

Dt
= −ρ(∇ · v), (4.26)

ρ
Dv

Dt
= ∇ ·m− ρgẑ, (4.27)

ρ
Dũ

Dt
= λu∇ · (ρ∇c)Dc

Dt
+ (−pI− ρTλs|∇c|2I+ ρTλsT+ τ ) : ∇v +∇ · (k(c)∇T

+mCµC∇µC), (4.28)

ρ
Ds̃

Dt
= λs∇ · (ρ∇c)Dc

Dt
+

1

T
(−ρTλs|∇c|2I+ ρTλsT+ τ ) : ∇v +

1

T
∇ · (k(c)∇T ),

(4.29)

ρ
Dc

Dt
= mC∆µC , (4.30)

µC =
∂g0
∂c

− p

ρ2
dρ

dc
− λf (T )∆c. (4.31)
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Multiplying Eqs.(4.26), (4.27) and (4.29)-(4.31) by p/ρ+v·v/2+u, v, T , µC and ρDc/Dt,
and summing them up, we can obtain the first law of thermodynamics (3.19) that we
used to derive the model. By substituting the terms, including m, qE , q

nc
E , qnc

S and qC

into the entropy generation (4.18), we obtain the second law of thermodynamics for our
phase-field model,

Sgen =
1

T
τ : ∇v + k(c)|∇T

T
|2 + mC

T
|∇µC |2 > 0. (4.32)

Similar to the binary compressible model, the choices of the terms τ ,qE and qC satisfy
the linear relation (3.46) and the Onsager reciprocal relations (§3.2.2). Moreover, it can
be observed that the entropy generation (4.32) and the system equations are Galilean
invariant.
As mentioned above, several phase-field models have been developed for two-phase flows
with thermocapillary effects. However, in most of these models, the classical energy bal-
ance equation

ρchc
DT

Dt
= ∇ · (k∇T ), (4.33)

was incorporated directly into the phase-field model, where thermodynamic consistency
can be hardly maintained. Comparing with the classical energy balance equation (4.33),
several extra terms appear in our energy balance equation (4.28), which guarantee ther-
modynamic consistency (see §4.2).
Note that, if we define a new pressure as p̄ = p − ρλf (T )|∇c|2, and substitute it into
the system equations (4.26)-(4.31), our model, in the isothermal case, reduces to the
quasi-incompressible NSCH model developed by Lowengrub & Truskinovsky (1998).
By using the variable mass density (2.5), the mass balance equation (4.26) can be further
rewritten as

∇ · v = −1

ρ

Dρ

Dt
= αρ

Dc

Dt
= αmC∆µC , (4.34)

where we have used Cahn-Hilliard equation (4.30) and let α = (ρ2 − ρ1)/ρ2ρ1.
The initial conditions are given by

v|t=0 = v0, c|t=0 = c0, and T |t=0 = T0. (4.35)

For the velocity, the usual no-slip boundary conditions can be posed on ∂Ω

v = vb. (4.36)

For the phase field, it is normal to employ Neumann boundary conditions on ∂Ω

∇c · n̂ = hc, and ∇µC · n̂ = hµ. (4.37)

For the temperature, Dirichlet and Neumann boundary conditions can be posed on ∂Ω

T = Tb, or ∇T · n̂ = qb (4.38)

for the specified temperature and heat flux on the boundary ∂Ω respectively, and Robin
boundary conditions can be posed as well.

4.2. Specifications of the model

We now specify the properties including the Gibbs free energy, entropy and internal
energy for our phase-field model (4.26)-(4.31). In Anderson et al. 2000, a phase-field
model for the solidification of a pure material that includes convection in the liquid
phase was developed, in which the case of the quasi-incompressibility (assuming that the
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density in each phase is uniform) was discussed. In their work, the Gibbs free energy was
suggested in the form

ĝ(T, p, c,∇c) = g0(T, c) +
p

ρ(c)
+ λf (T )

1

2
|∇c|2, (4.39)

g0(T, c) =
(

u0 − chcT0
)

(1− T

T0
)− chcT ln(

T

T0
) + γf (T )h(c), (4.40)

which we have adopted for the present work. Here, chc is the heat capacity, T0 is the
reference temperature, ũ0 is the reference internal energy corresponding to T0, and γ(T )
is a temperature dependent parameter that will be discussed later in this section. The
free energy function h(c) is a double-well potential and is given by

h(c) =
c2(c− 1)2

4
, (4.41)

where the wells define the phases, and lead to an interfacial layer with large variations
for c (e.g. Gurtin et al. 1996). Note that the form for ĝ (4.39) is consistent with the
incompressible condition (4.6), which is a linear function of pressure. Moreover, this form
for ĝ is consistent with an internal energy û, which is a linear function of temperature and
leads to the classical heat equation in the bulk liquid (Wang et al. 1993; Anderson et al.
2001). The corresponding expressions for the entropy and internal energy are assumed
in the form

ŝ = s̃+ snc =
1

T0
u0 + chcln(

T

T0
) + γsh(c) + λs

1

2
|∇c|2, (4.42)

û = ũ+ unc = ũ0 + chc(T − T0) + γuh(c) + λu
1

2
|∇c|2, (4.43)

where ũ0 is the reference internal energy corresponds to T0.
We now specify those coefficients, including λf (T ), λs, λu, γf (T ), γs and γu, which are
used to define the internal energy, entropy and free energy of the system (Eqs.(4.39)-
(4.43)). In the sharp-interface model for the thermocapillary flow, the interface is usually
represented as a surface of zero thickness with the surface tension as its physical property.
An equation of state is required to relate the surface tension to the temperature, where
for the sake of simplicity, we only consider a linear relation in this study,

σ(T ) = σ0 − σT (T − T0), (4.44)

where σ0 is the interfacial tension at the reference temperature T0, σT is the rate of change
of interfacial tension with temperature, defined as σT = ∂σ(T )/∂T . In our phase-field
model, however, the interface has finite thickness and the extra reactive stress (Ericksen’s
stress) T (Eq.(4.25)) appears in Navier-Stokes equation to mimic the surface tension,
where the coefficient of T,

λf (T ) = λu − Tλs, (4.45)

is a linear function of temperature. We then try to relate σ(T ) and λ(T ) by introducing
two parameters: the first parameter is ǫ with respect to the diffuse interface thickness, and
the second one η, a ratio parameter that relates the two surface tensions. As the interface
thickness goes to zero, our phase-field model reduces to its sharp-interface limit, and the
value of η can then be determined (see §5.4 for details). The corresponding coefficients
can then be given as

λf (T ) = ηǫσ(T ) = ηǫσ0 − ηǫσT (T − T0), γf (T ) =
η

ǫ
σ(T ) =

η

ǫ
σ0 −

η

ǫ
σT (T − T0),
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λs = ηǫσT , γs =
η

ǫ
σT ,

λu = ηǫσ0 + ηǫσTT0, γu =
η

ǫ
σ0 +

η

ǫ
σTT0. (4.46)

Here the coefficients λf (T ), λs and λu for the gradient terms are of O(ǫ2) of those
coefficients γf (T ), γs and γu for the corresponding classical terms, which agrees with the
definition of the Cahn-Hilliard free energy (e.g. Lowengrub & Truskinovsky 1998; Liu &
Shen 2002). With the specifications above, the total energy E of our phase-field model
can now be written as

E =

∫

V (t)

(

1

2
ρ|v|2 + ρgz + ρũ0 + ρchc(T − T0) + ργuh(c) + ρλu

1

2
|∇c|2

)

dV.

4.3. Non-dimensionalization

With the help of the specification in Eq.(4.46), we non-dimensionalize the phase-field
model (4.26)-(4.28), (4.30) and (4.31) as follows: we let L⋆, V ⋆ and T ⋆ denote the char-
acteric scales of length, velocity and temperature. Then introduce the dimensionless vari-
ables x̄ = x/L⋆, t̄ = V ⋆t/L⋆, and also ǭ = ǫ/L⋆, v̄ = v/V ⋆, p̄ = pρ1µ

⋆
C , µ̄C = µC/µ

⋆
C .

For the variable density ρ(c), viscosity µ(c) and thermal conductivity k(c) (Eqs.(2.5)
and (3.44)), we let ρi, µi and ki (i=1,2) denote the corresponding properties of the
ith fluid, and introduce the dimensionless variables ρ̄r = ρ(c)/ρ1, µ̄r = µ(c)/µ1 and
k̄r = k(c)/k1. Moreover, for the temperature field, we introduce a new dimensionless
variable T̄ = (T −T0)/T ⋆. The surface tension σ(T ) (Eq.(4.44)) is scaled by σ0 such that
σ̄(T ) = σ(T )/σ0. σT is then scaled by σ0/T

⋆, such that σ̄T = σTT
⋆/σ0. Omitting the

bar notation, our phase-field model can now be rewritten as

∇ · v = − 1

ρr

∂ρr
∂c

Dc

Dt
, (4.47)

ρr
Dv

Dt
= − 1

M

[

∇p− Ca∇
(

ρrσ(T )|∇c|2
)

+ Ca∇ ·
(

ρrσ(T )T
)]

+
1

Re
∇ ·

(

µr(∇v +∇vT )− 2

3
µr(∇ · v)I

)

− ρr
Fr2

ẑ, (4.48)

ρ
Dc

Dt
=

1

Pe
∆µC , (4.49)

µC =
Ca

ǫ2
σ(T )

dh(c)

dc
− p

ρ2r

dρr
dc

− Ca

ρr
σ(T )∆c, (4.50)

ρrchc
DT

Dt
=
EcCa

M
(1 + σTT0)∇ · (ρr∇c)

Dc

Dt
+
Ec

M
(−pI− CaρrTσT |∇c|2I+ CaρrTσTT

+
1

Re
τ ) : ∇v +∇ ·

( 1

Ma
kr∇T +

Ec

MPe
µC∇µC

)

, (4.51)

where M = V 2/µC is an analogue of the Mach number, Ca = ηǫσ0/µCL is the Capillary
number that measures the thickness of the interface, Re = µ1/ρ1V L is the Reynolds
number, Fr = V 2/gL is the Froude number, Pe = ρLV /mCµC is the diffusional Peclet
number, Ec = V 2/cchT is the Eckert number that characterizes energy dissipation, and
Ma = ρcchV L/k1 is the Marangoni number. Note that this non-dimensional system equa-
tions will be computed to study the effects of Marangoni number through the example
of thermocapillary migration of a drop. See §6.5 for details.
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Figure 1. A schematic diagram showing a diffuse interface between two fluids intersecting
with a pillbox shaped control volume. n̂T , n̂B and n̂S stand for the unit normal vector of the
pillbox boundary on its top, bottom and side, respectively. The dotted lines represent the diffuse
interface with thickness O(ǫ). 2δ is the thickness of the pillbox. In the limit ǫ ≪ δ ≪ L, the
interface thickness goes to zero, and the interface has constant density. n̂I and m̂I stand for the
unit normal and tangent vector of the interface.

5. Sharp-interface limits

Theoretically, there are usually two ways to validate the phase-field model. The first,
as mentioned above, is to show thermodynamic consistency of the model. The second is
to relate the phase-field model to its sharp-interface counterpart. Based on the assump-
tion that a given sharp-interface formulation is the correct description of the physics
under consideration, the phase-field model can be justified by simply showing that it
is asymptotic to the classical sharp-interface description. In the isothermal case, some
sharp-interface limit analyses have been carried out for the phase-field model of two-
phase flow to show that the corresponding sharp-interface equations and jump condi-
tions across the interface can be recovered from the phase-field model (e.g. Lowengrub &
Truskinovsky 1998; Wang & Wang 2007; Abels et al. 2012). However, much less attention
has been paid on the asymptotic analysis of the phase-field model for two-phase flows in
the non-isothermal case, (e.g. thermocapillary flows, solidifications). Antanovskii (1995)
presented a phase-field model to study the thermocapillary flow, and showed that the
hydrostatic equilibrium condition for the case of a flat interface and the Laplace-Young
condition for the case of a drop in equilibrium can be recovered from his phase-field
model. Jasnow & Vinals (1996) extended Model-H to study the thermocapillary flow,
including the migration of a drop and spinodal decomposition of a binary fluid under a
constant temperature gradient. In the corresponding sharp-interface limit, they showed
that the additional stress term in the Navier-Stokes equation of their phase-field model is
equivalent to the tangential and normal force of the appropriate sharp-interface model.
Anderson et al. (2000) developed a phase-field model of solidification with convection in
the melt, in which the two phases are considered as viscous liquids. In the sharp-interface
analysis (Anderson et al. 2001), they used the matched asymptotic expansions to show
that the standard boundary conditions, including Young-Laplace and Stefan conditions
can be recovered from their phase-field model.

5.1. Pillbox argument

In this section, we apply a pillbox argument to our phase-field model (4.26)-(4.31). In
contrast to sharp-interface model, the interface of the phase-field model is diffusive with
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finite thickness O(ǫ). The phase variable (here is mass concentration c) is chosen to char-
acterize the different phases, which takes distinct values (here c = 0, 1) for the different
phases, and changes rapidly through the interfacial region. Within this interfacial region,
we chose a contour line of c (here c = 0.5) to represent the dividing surface Γ for the
following derivations (See Gibbs (1928); Everett (1972); Rowlinson & Widom (1982) for
details of the dividing surface). Moreover, as the largest variations of the phase vari-
able occur in the direction normal to the interface, the side faces of the pillbox need to
be treated carefully. Figure 1 shows the pillbox shaped control volume designed for our
phase-field model, where the surface is divided into three parts, namely the top Stop,
bottom Sbot and side Sside surfaces with their unit normal vector n̂T , n̂B and n̂S re-
spectively. V = V1 + V2 is the volume of the pillbox, where Vi is the volume of single
component. The pillbox has thickness of 2δ, where the top of the pillbox is above the
dividing surface Γ at a height ζ = δ and the bottom is below Γ at a height ζ = −δ.
Here, ζ is a local coordinate normal to the interface Γ. In addition, the pillbox contains
a portion of the diffuse interface with thickness O(ǫ), in which Γ stands for the dividing
surface with its normal and tangent unit vector n̂I and m̂I . The key limit in the pillbox
argument is that ǫ ≪ δ ≪ L, where L is a length scale associated with the outer flow.
In this limit, the volume of the pillbox becomes negligible on the outer scales, but the
variations in the concentration variable c that define the interfacial region, occur over a
region fully contained within the pillbox. Also in this limit, the top (Stop) and bottom
surface (Sbot) of the pillbox collapse onto the interface Γ, and have the normal vectors
with opposite directions

Stop = Sbot = Γ, n̂T = n̂I , n̂B = −n̂I and n̂S = m̂I . (5.1)

Moreover, we assume that the dividing interface is moving with the velocity vI(Anderson
& McFadden 1996; Anderson et al. 1998).

5.2. Governing equations in sharp-interface limit

We first derive the system of equations in bulk regions away from the interfacial region.
Here we only concentrate on the equations of mass, momentum and energy balance. The
system of equations (4.26)-(4.28) reduce to the classical equations appropriate for the
incompressible flows in bulk regions

∇ · v = 0, (5.2)

ρi
Dv

Dt
= −∇p+∇ ·

(

µi(∇v +∇vT )
)

− ρigẑ, (5.3)

ρichc
DT

Dt
= ∇ · (ki∇T ) + µi(∇v +∇vT ) : ∇v, (5.4)

where ρi, µi and ki are the corresponding physical properties for the ith fluid. We now
seek to derive the jump conditions for Eqs.(5.2)-(5.4) at the interface from our phase-field
model (4.26)-(4.31).

5.3. Jump condition for mass balance

In the limit ǫ≪ δ ≪ L, we have the properties (Anderson & McFadden 1996; Anderson
et al. 1998)

∫

V

∂ρ

∂t
dV ∼ −

∫

S

ρvI · n̂dS, (5.5)

∫

V

∂(ρv)

∂t
dV ∼ −

∫

S

ρv ⊗ vI · n̂dS. (5.6)
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Substituting Eq.(5.5) into the integral of Eq.(4.11), and using the divergence theorem we
obtain

∫

S

ρ(v − vI) · n̂dS = 0. (5.7)

According to our pillbox argument, we break up the above surface integral into pieces
for the top, bottom and side surfaces to obtain

∫

Stop

ρ(v − vI) · n̂TdS +

∫

Sbot

ρ(v − vI) · n̂BdS +

∮

C

∫ δ

−δ

ρ(v − vI) · n̂Sdζdl = 0.

(5.8)

Here the surface integral of side portion is further written in term of a line integral on the
surface and an integral in the normal direction n̂S , where the line is a closed curve at the
side of the control volume that parallel to the interface. For viscous fluid under normal
operating conditions, it is an experimentally observed fact (like the no-slip boundary
conditions at solid walls) that no slip takes place at the interface (Tryggvason et al.
2011). Therefore, in the limit ǫ≪ δ ≪ L, we have

v · m̂I ∼ vI · m̂I . (5.9)

This condition implies that the third left term in Eq.(5.8) is bounded and does not
contribute to the integral. Eq.(5.8) can be reduced to

∫

Γ

[

ρ(v − vI)
]

· n̂IdS = 0, (5.10)

where [χ] = χ2 − χ1 refers to the jump of the quantity χ across the singular interface.
Since the pillbox control volume V that contains a portion of the diffuse interface is
arbitrary, the integrand in Eq.(5.10) must be zero. This then yields the mass balance
jump condition at the interface in a two-phase fluid system

[

ρ(v − vI)
]

· n̂I = 0. (5.11)

Further if we assume that there is no phase change (i.e. no flux) across the interface,
Eq.(5.11) reduces to the jump condition that

[

v
]

· n̂I = 0. (5.12)

5.4. Jump condition for momentum balance

Substituting Eq.(5.6) into the integral of momentum equation (4.27), we obtain
∫

S

(

ρv ⊗ (v − vI) + pI− ηǫσ(T )ρ|∇c|2I+ ηǫσ(T )ρT− µ(∇v +∇vT )

+
2

3
µ(∇ · v)I

)

· n̂dS = 0, (5.13)

where we have used the mass balance equation (4.26), such that

ρ
Dv

Dt
= ρ

Dv

Dt
+

(Dρ

Dt
+ ρ(∇ · v)

)

v =
∂(ρv)

∂t
+∇ · (ρv ⊗ v). (5.14)

Moreover, in the limit ǫ≪ δ ≪ L, we assume that the gravitational term ρgẑ is bounded
and thus does not contribute to the volume integral. We then break up the above surface
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integral into pieces for the top, bottom and sides of the pillbox to obtain

∫

Stop

(

ρv ⊗ (v − vI) + pI− ηǫσ(T )ρ|∇c|2I+ ηǫσ(T )ρT− µ(∇v +∇vT )

+
2

3
µ(∇ · v)I

)

· n̂TdS

+

∫

Sbot

(

ρv ⊗ (v − vI) + pI− ηǫσ(T )ρ|∇c|2I+ ηǫσ(T )ρT− µ(∇v +∇vT )

+
2

3
µ(∇ · v)I

)

· n̂BdS

+

∮

C

∫ δ

−δ

(

ρv ⊗ (v − vI) + pI− ηǫσ(T )ρ|∇c|2I+ ηǫσ(T )ρT− µ(∇v +∇vT )

+
2

3
µ(∇ · v)I

)

· n̂Sdζdl = 0. (5.15)

We assume that the most rapid variations in the phase field take place across the interfa-
cial region with the direction normal to the interface Γ. In the limit ǫ≪ δ ≪ L, local to
the interface we have (Anderson & McFadden 1996; Lowengrub & Truskinovsky 1998):

∇ ∼ ∂

∂ζ
n̂I , ∇c ∼ ∂c

∂ζ
n̂I and ∆c ∼ ∂2c

∂ζ2
, (5.16)

such that

T = ∇c⊗∇c ∼ ∂c

∂ζ
n̂I

∂c

∂ζ
n̂I , T · n̂I ∼ ∂c

∂ζ

∂c

∂ζ
n̂I , and T · m̂I ∼ 0. (5.17)

Condition (5.9) implies that the fluid velocity term ρv⊗(v−vI) ·n̂S is bounded and does
not contribute to the integral over the side surface of the pillbox. The terms −µ(∇v +
∇vT ) · n̂S are bounded and do not contribute to the side integral. We argue that the
term 2/3µ(∇·v) is bounded across the interfacial region, and thus does not contribute to
the side integral. The pressure p is bounded and does not contribute to the side integral.
Further, the non-classical stress term T dose not contribute to the integral over the top
and bottom surfaces. Eq.(5.15) reduces to

∫

Γ

(

[

ρv(v − vI)
]

· n̂I +
[

pI
]

· n̂I +
[

− µ(∇v +∇vT )
]

· n̂I

)

dS

−
∮

C

∫ δ

−δ

ηǫσ(T )ρ(
∂c

∂ζ
)2m̂Idζdl = 0, (5.18)

where the condition (5.1) is used. Here, for our pillbox argument to make sense, we
require that within the pillbox the temperature is continuous and the variations are
small over a small distance (of order of the pillbox thickness δ). In the limit ǫ≪ δ ≪ L,
the temperature T is approximately uniform along the direction normal to the interface.
Note that the similar assumption for the temperature was also suggested by Jasnow &
Vinals (1996), where a surface tension term with thermocapillary effects was identified
from a phase-field model in its sharp-interface limit. Denoting the surface tension by

σ̃(T ) = ησ(T ) lim
ǫ→0

∫ δ

−δ

(

ǫρ(
∂c

∂ζ
)2
)

dζ, (5.19)
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and substituting into (5.18), we obtain
∫

Γ

(

[

ρv(v − vI)
]

· n̂I +
[

pI
]

· n̂I +
[

− µ(∇v +∇vT )
]

· n̂I

)

dS −
∮

C

σ̃m̂Idl = 0,

(5.20)

where, in the limit ǫ ≪ δ ≪ L, we assume that the tangential unit vector m̂I is inde-
pendent of ζ and thus can be taken out of the line integral. Using the surface divergence
theorem (Weatherburn 1939) leads to

∮

C

σ̃m̂Idl =

∫

Γ

∇sσ̃dS −
∫

Γ

(∇s · n̂I)σ̃n̂IdS. (5.21)

Substituting Eq.(5.21) into Eq.(5.20), we obtain
[

ρv(v − vI)
]

· n̂I +
[

pI
]

· n̂I +
[

− µ(∇v +∇vT )
]

· n̂I = ∇sσ̃ + κσ̃n̂I . (5.22)

Here ∇s is the surface gradient, κ = −∇s · n̂I is the mean curvature of the surface (e.g.
Weatherburn 1939). The first right term is the tangential thermocapillary (Marangoni)
force that accounts for the non-uniform surface tension, while the second is the normal
surface tension force. Again if we assume that there is no phase change (i.e. no flux)
across the interface, Eq.(5.22) reduces to the jump condition that

[

pI
]

· n̂I +
[

− µ(∇v +∇vT )
]

· n̂I = ∇sσ̃ + κσ̃n̂I , (5.23)

which is the classical momentum balance jump conditions at the interface for two-phase
incompressible fluid with thermocapillary effects.
Note that, we can relate the surface tension of our phase-field model σ̃(T ) (identified in
Eq.(5.19)) to that of the sharp-interface model σ(T ) (defined in Eq.(4.44)) by letting

σ̃(T ) = ησ(T )

∫ +δ

−δ

ǫρ(c)(
dc

dζ
)2dζ = σ(T ). (5.24)

The value of the ratio parameter η can then be determined through the following equation

η =
1

∫ +δ

−δ
ǫρ(c)( dcdζ )

2dζ
. (5.25)

It has been argued by Chella & Vinals (1996) that in the limit of gently curved interface,
and when the motion of the interface is slow, the phase variable c can be approximated by
its 1D stationary solution c0 along the direction normal to the interface. For simplicity,
we now assume that the local coordinate ζ coincide with the y direction, and the position
of the dividing surface is y0 = 0. In 1D case, we have the following stationary solution c0
near the interfacial region,

c0(y) =
1

2
+

1

2
tanh

( y

2
√
2ǫ

)

, for y ∈ [−δ, δ], (5.26)

which is shown in Figure 2. Here y = δ and y = −δ are the positions of the top and
bottom surface of the pillbox separately. In the limit ǫ≪ δ ≪ L, we note the conditions

c = 0 for y = δ, and c = 1 for y = −δ. (5.27)

Substituting Eq.(5.26) and the variable density (2.5) into (5.25) we obtain

η =
2
√
2(ρ2 − ρ1)

3

ρ1ρ2
[

ρ22 − ρ21 − 2ρ1ρ2ln(
ρ2

ρ1

)
] , (5.28)
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Figure 2. The stationary solution c0 (black solid line) for the phase field. A is a point on
dividing surface Γ, δ and −δ are positions of the top and bottom surfaces of the pillbox (blue
dotted line).

where the condition (5.27) is used. Note that for the density matched case (ρ1 = ρ2),
Eq.(5.25) leads to a simpler expression for η, which is

η = 6
√
2. (5.29)

This agrees with the result obtained by Rowlinson & Widom (1982), Yue et al. (2004)
and Aland (2012). In §6, we will compute some examples by using our phase-field model
for quasi-incompressible fluids (4.26)-(4.31).

5.5. Jump condition for energy balance

To derive the jump condition for energy balance at the interface, we first substitute
the terms E, m, qE and qnc

E ((3.3), (4.22), (4.23) and (4.25)) into the energy balance
equation (3.19). In the integral form, we obtain
∫

S

(

ρû(v − vI) + ρ
1

2
|v|2(v − vI) +

(

pI− ηǫσ(T )ρ|∇c|2I+ ηǫσ(T )ρT− µ(∇v +∇vT )

+
2

3
µ(∇ · v)I

)

· v − λu(ρ∇c
Dc

Dt
)− k∇T −mCµC∇µC

)

· nIdS = 0, (5.30)

where we have used the identities

ρ
Dû

Dt
=
∂(ρû)

∂t
+∇ · (ρûv), (5.31)

ρ
D

Dt

1

2
|v|2 =

∂

∂t
(ρ

1

2
|v|2) +∇ · (ρ1

2
|v|2v), (5.32)

and the following properties which are similar to (5.5) and (5.6),
∫

V

∂(ρû)

∂t
dV ∼ −

∫

S

ρûvI · n̂dS, (5.33)

∫

V

∂

∂t
(ρ

1

2
|v|2)dV ∼ −

∫

S

ρ
1

2
|v|2vI · n̂dS. (5.34)

We then break up the above integral (5.30) into pieces for the top, bottom and sides of
the pillbox to obtain
∫

Stop

(

ρû(v − vI) + ρ
1

2
|v|2(v − vI) +

(

pI− ηǫσ(T )ρ|∇c|2I+ ηǫσ(T )ρT

−µ(∇v +∇vT ) +
2

3
µ(∇ · v)I

)

· v − λu(ρ∇c
Dc

Dt
)− k∇T −mCµC∇µC

)

· n̂TdS



A thermodynamically consistent phase-field model for thermocapillary effects 27

+

∫

Sbot

(

ρû(v − vI) + ρ
1

2
|v|2(v − vI) +

(

pI− ηǫσ(T )ρ|∇c|2I+ ηǫσ(T )ρT

−µ(∇v +∇vT ) +
2

3
µ(∇ · v)I

)

· v − λu(ρ∇c
Dc

Dt
)− k∇T −mCµC∇µC

)

· n̂BdS

+

∮

C

∫ δ

−δ

(

ρû(v − vI) + ρ
1

2
|v|2(v − vI) +

(

pI− ηǫσ(T )ρ|∇c|2I+ ηǫσ(T )ρT

−µ(∇v +∇vT ) +
2

3
µ(∇ · v)I

)

· v − λu(ρ∇c
Dc

Dt
)− k∇T −mCµC∇µC

)

· n̂Sdζdl = 0,

(5.35)

where we assume that the heat capacity chc is a constant. In the limit ǫ ≪ δ ≪ L, the
non-classical terms of the internal energy û (Eq.(4.43)), T, λu(ρ∇cDc

Dt
) and mCµC∇µC

do not contribute to the top and the bottom surface integrals. The non-classical term
mCµC∇µC and the energy term k∇T are bounded in the tangential direction and do
not contribute to the side integral. Eq.(5.35) then reduces to

∫

Γ

(

[

ρchcT (v − vI)
]

+
[

ρ
1

2
|v|2(v − vI)

]

+
[

pI · v
]

−
[

µ(∇v +∇vT ) · v
]

−
[

k∇T
]

)

· n̂IdS −
∮

C

(
∫ δ

−δ

ηǫσ(T )ρ(
dc

dζ
)2dζ

)

vI · m̂Idl = 0, (5.36)

where in the last term of Eq.(5.36), we argue that the interface velocity vI is independent
of the local coordinate ζ and thus can be taken out of the integral in the normal direction.
By using Eq.(5.19) and the surface divergence theorem, we obtain

[

k∇T
]

· n̂I =

(

[

ρchcT (v − vI)
]

+
[

ρ
1

2
|v|2(v − vI)

]

+
[

pI · v
]

−
[

µ(∇v +∇vT ) · v
]

)

· n̂I −∇s · (σ̃vI)− κσ̃n̂I · vI , (5.37)

where the energy spent by the interface deformation and the effects of the interface
curvature are taken into account in our jump condition for energy balance at the interface.
Eq.(5.37) agrees with the result obtained by Andrea (2011), where the energy balance
condition at the interface is derived by using a pillbox for sharp interface model. Again
if we assume that there is no phase change across the interface, Eq.(5.37) then reduces
to

[

k∇T
]

· n̂I =

(

[

pI · v
]

−
[

µ(∇v +∇vT ) · v
]

)

· n̂I −∇s · (σ̃vI)− κσ̃n̂I · vI .

(5.38)

If we further ignore the energy spent by the interface deformation and the effects of
interface curvature, we can obtain the classical jump condition for the energy equation,

[

k∇T
]

· n̂I = 0, (5.39)

which is widely used for the computations of sharp-interface model (e.g. Tavener & Cliffe
2002).

6. Computational methods and results

In this section, we investigate numerically our phase-field model through three exam-
ples. One is the thermocapillary convection in a micro-channel with two-layer superim-
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posed fluid, and the second (third) one is the thermocapillary migration of a drop with
zero (finite, respectively) Marangoni number. All examples will be computed by using
continuous finite element methods. The numerical results of the first and second examples
will be compared to the existing analytical solutions and numerical results.

6.1. Simplified model and the weak form

For the sake of simplicity, we assume that the densities of the two fluids are matched.
The system equations (4.26)-(4.31) can then be simplified in the form

∇ · v = 0, (6.1)

Dv

Dt
= −∇p+∇

[

λf (T )|∇c|2
]

−∇ ·
[

λf (T )(∇c⊗∇c)
]

+∇ · (µ∇v), (6.2)

Dû

Dt
= λu∇ · (∇cDc

Dt
) +

(

− pI+ λf (T )|∇c|2I− λf (T )(∇c⊗∇c) + µ∇v
)

: ∇v

+∇ · (k∇T +mCµC∇µC), (6.3)

Dc

Dt
= mC∆µC , (6.4)

µC = γf (T )
dh(c)

dc
− λf (T )∆c, (6.5)

where the variable thermal conductivity (3.44) is employed. Here we employed the energy
balance equation (3.19) instead of (4.28). The reason is that in the weak formulation of
Eq.(4.28), the second order derivative is involved implying that more reductive C1 finite
elements are needed for the conformity. However in the weak formulation of (6.3) ( (6.8)
below) we find that only first order derivatives of c are involved, so that the C0 finite
element method may be used for our computations. The benefits of using C0 elements
are obvious, that the method can have more choices of elements and many existing codes
can be incorporated to reduce various complications. Note that Eqs.(6.1)-(6.3) of the
system will be computed for the example of thermocapillary convection, Eqs.(6.1)-(6.5)
will be computed for the example of thermocapillary migration with zero Marangoni
number, and the non-dimensional system equations (4.47)-(4.51) will be computed for
the example of thermocapillary migration with finite Marangoni number. For simplicity,
we only present the numerical scheme for dimensional system equations (6.1)-(6.5). The
numerical method for the non-dimensional system (4.47)-(4.51) can be obtained corre-
spondingly. By multiplying the system (6.1)-(6.5) with the test functions q, u, χ, φ and
ψ respectively and using integration by parts, the weak form can be derived straight-
forwardly (where v, p, û, c, µ and test functions u, q, χ, φ and ψ are in appropriate
spaces),

∫

Ω

(

∇ · vq
)

dx = 0, (6.6)

∫

Ω

(

vt · u+ (v · ∇)v · u− p∇ · u+ λf (T )(∇c · ∇c)∇ · u− λf (T )(∇c⊗∇c) : ∇u

+µ∇v : ∇u

)

dx = 0, (6.7)

∫

Ω

(

ûtχ+ (v · ∇)ûχ+ λu
Dc

Dt
∇c · ∇χ− λf (T )(∇c · ∇c)(∇ · v)χ− µ∇v : ∇vχ

+λf (T )(∇c⊗∇c) : ∇vχ+ pI : ∇vχ+ k∇T · ∇χ+mCµC∇µC · ∇χ
)

dx = 0, (6.8)
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∫

Ω

(

ctφ+ (v · ∇)cφ+mC∇µC · ∇φ
)

dx = 0, (6.9)

∫

Ω

(

µCψ − γf (T )
dh(c)

dc
ψ −∇λf (T ) · ∇cψ − λf (T )∇c · ∇ψ

)

dx = 0. (6.10)

6.2. Temporal schemes and implement issue

The solution of the weak form (6.6)-(6.10) is approximated by a finite difference scheme
in time and a conformal C0 finite element method in space. To ensure the stability of
our numerical method, we adopt the fully implicit backward Euler scheme to compute
the problem.
We let ∆t > 0 represent a time step size, and (vn

h , p
n
h, û

n
h, c

n
h, µC

n
h) (in a finite dimensional

space given by a finite element discretization of the computational domain Ω) is an
approximation of (v, p, û, c, µ) at time tn = n∆t, where vn

h = v(n∆t), pnh = p(n∆t),
ûnh = û(n∆t), cnh = c(n∆t) and µC

n
h = µC(n∆t). Then the approximation at time tn+1 is

denoted as (vn+1
h , pn+1

h , ûn+1
h , cn+1

h , µC
n+1
h ) and computed by the following finite element

scheme
∫

Ω

(

∇ · vn+1
h q + δpn+1

h q

)

dx = 0, (6.11)

∫

Ω

(

vn+1
t̄

· u+ (vn+1
h · ∇)vn+1

h · u− pn+1
h ∇ · u+ λf (T

n+1
h )(∇cn+1

h · ∇cn+1
h )∇ · u

−λf (Tn+1
h )(∇cn+1

h ⊗∇cn+1
h ) : ∇u+ µ∇vn+1

h : ∇u

)

dx = 0, (6.12)

∫

Ω

(

ûn+1
t̄

χ+ (vn+1
h · ∇)ûn+1

h χ+ λu(c
n+1
t̄

+ (vn+1
h · ∇)cn+1

h )∇cn+1
h · ∇χ

−λf (Tn+1
h )(∇cn+1

h · ∇cn+1
h )(∇ · vn+1

h )χ+ λf (T
n+1
h )(∇cn+1

h ⊗∇cn+1
h ) : ∇vn+1

h χ

−µ∇vn+1
h : ∇vn+1

h χ+ k∇Tn+1
h · ∇χ+mCµC

n+1
h ∇µC

n+1
h · ∇χ

)

dx = 0, (6.13)

∫

Ω

(

cn+1
t̄

φ+ (vn+1
h · ∇)cn+1

h φ+mC∇µC
n+1
h · ∇φ

)

dx = 0, (6.14)

∫

Ω

(

µC
n+1
h ψ − γf (T

n+1
h )h′(cn+1

h )ψ −∇λf (Tn+1
h ) · ∇cn+1

h ψ

−λf (Tn+1
h )∇cn+1

h · ∇ψ
)

dx = 0, (6.15)

where vn+1
t̄

= (vn+1
h − vn

h)/∆t, û
n+1
t̄

= (ûn+1
h − ûnh)/∆t and cn+1

t̄
= (cn+1

h − cnh)/∆t.
Note that the divergence free equation needs to be treated carefully in incompressible
flow computations. Here we rewrite Eq.(6.11) in the penalty formulation, where δ is a
relatively small parameter and is set to be δ = 10−6 for all the computations. Note that
for every time step, Tn+1 can be obtained by using Eq.(4.43), such that

chcT
n+1
h = ûn+1

h − γuh(c
n+1
h )− λu

1

2
∇cn+1

h · ∇cn+1
h . (6.16)

Since the scheme is nonlinearly implicit we need to do the linearization and then solve
a linear system iteratively at each time step. We follow the numerical methods designed
by Hua et al. (2011), where the linear system is symmetric and does not depend on time.
Therefore, we only need to do the Cholesky factorization for the symmetric linear system
at the initial time step. After the initial time we do not need to factorize the linear system
again since the coefficient matrix is independent of time.
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❧ ❧

Figure 3. The schematic diagram showing two immiscible fluids in a microchannel. The tem-
peratures of the lower and upper plates are T b(x,−b) = Th + T0cos(kx) and T a(x, a) = Tc,
respectively, where Th > Tc > T0 and k = 2π/l is the wave number, and a and b are the heights
of the fluid A and B respectively.

For a phase-field model, it is sufficient to finely resolve only the interfacial region, and
a fixed grid meshing represents a waste of computational resources. Therefore, efficient
adapting mesh that resolves the thin interfacial region is desirable. For the examples
of the thermocapillary convection, we design a mesh that has relatively high-resolution
grids near the flat interface. For the example of the thermocapillary migration, since the
interface moves as the drop rises, an adaptive mesh is designed, in which there is a smaller
frame that moves with the drop. Within the frame, the resolution of grids is much higher
than those outside the moving frame, so that the moving interface of the drop can be
resolved purposely. Here, only the meshes for the example of thermocapillary migration
are shown.

6.3. Thermocapillary convection in a two-layer fluid system

We now investigate the thermocapillary convection in a heated micro-channel with two-
layer superimposed fluids with a planar interface (Pendse & Esmaeeli 2010). Considering
two-layer fluids (Figure 3), where the heights of the fluid A (upper) and fluid B (lower)
are a and b, respectively, and the fluids are of infinite extension in the horizontal direction.
The physical properties of the fluids are their densities, viscosities and heat conductivities.
The temperature variations in the present study are considered to be small enough so
that the thermophysical properties of each fluid are assumed to remain constant, with
the exception of surface tension. The temperature of the lower and upper plates are

T b(x,−b) = Th + T0 cos(ωx) and T a(x, a) = Tc (6.17)

respectively, where Th > Tc > T0 > 0, and ω = 2π/l is a wave number with l being the
channel length. The above temperature boundary conditions establish a temperature field
that is periodic in the horizontal direction with a period of l. Therefore, it is only sufficient
to focus on the solution in one period, i.e.,−l/2 < x < l/2. In the limit of zero Marangoni
number and small Reynolds number, it is possible to ignore the convective transport of
momentum and energy. In addition, we assume that the interface is to remain flat. By
solving the simplified sharp-interface governing equations with the corresponding jump
boundary conditions at the interface, Pendse & Esmaeeli (2010) obtained the analytical
solutions for temperature field T̄ (x, y) and stream-function ψ̄(x, y), where for the upper
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µA = µB = 0.2, kB = 0.2, σ0 = 2.5× 10−1,

k̃ = kA/kB (thermal conductivity ratio), σT = −5× 10−3 (at Tref = Tc),

Table 1. The physical properties of two fluids for example of thermocapillary convection (A
and B stand for the fluid A and B separately).

fluid

T̄A(x, y) =
(Tc − Th)y + k̃Tcb+ Tha

a+ k̃b
+ T0f(α, β, k̃) sinh(α− ωy) cos(ωx), (6.18)

ψ̄A(x, y) =
Umax

ω

1

sinh2(α)− α2

{

ωy sinh2(α)cosh(ωy)

−1

2

[

2α2 + ωy
(

sinh(2α)− 2α
)]

sinh(ωy)
}

sin(ωx), (6.19)

and for the lower fluid

T̄B(x, y) =
k̃(Tc − Th)y + k̃Tcb+ Tha

a+ k̃b
+ T0f(α, β, k̃)

[

sinh(α)cosh(ωy)

−k̃sinh(ωy)cosh(α)
]

cos(ωx), (6.20)

ψ̄B(x, y) =
Umax

ω

1

sinh2(β)− β2

{

ωy sinh2(β)cosh(ωy)

−1

2

[

2β2 − ωy
(

sinh(2β)− 2β
)]

sinh(ωy)
}

sin(ωx). (6.21)

In the above equations the unknowns are defined by k̃ = kA/kB , α = aω, β = bω,
f(α, β, k̃) = 1/(k̃sinh(β)coshα+ sinh(α)coshβ), g(α, β, k̃) = sinh(α)f(α, β, k̃) and

Umax = −
(

T0σT
µB

)

g(α, β, k̃)h(α, β, µ̃),

h(α, β, µ̃) =

(

sinh2(α)− α2
)(

sinh2(β)− β2
)

k̃
(

sinh2(β)− β2
)(

sinh(2α)− 2α
)

+
(

sinh2(α)− α2
)(

sinh(2β)− 2β
) .

Based on their work, the simulations for our phase-field model are carried out in a 2D
domain [−l/2, l/2]× [−b, a] with l = 1.6× 10−4, and a = b = 4× 10−5. As the interface
between the two fluids is assumed to be flat and rigid, the initial conditions for the phase
variable are only depending on y, and can be given in the form

c(y) =
1

2
+

1

2
tanh

( y

2
√
2ǫ

)

, for y ∈ (−b, a). (6.22)

The periodic boundary conditions are applied on the left and right sides of the domain.
On the top and bottom walls, the no-slip boundary conditions are imposed such that

v = 0 for y = a,−b. (6.23)

Eq.(6.17) are used as the boundary conditions for temperature with Th = 20, Tc = 10
and T0 = 4. We let the ratio parameter η = 6

√
2 (Eq. (5.29)). Moreover, the fluid

properties are shown in Table 1. To show the influences of the thermal conductivity ratio
on the stream-function and temperature fields, the simulations are carried out for two
cases with different values of k̃, where k̃ = 0.1 for case 1, and k̃ = 0.5 for case 2. Here
the variable thermal conductivity k(c) (Eq. (3.44)) is employed, where we fix kB(= 0.2),
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Figure 4. Isotherms of the numerical results and analytical solutions for the example of ther-
mocapillary convection in a two-layer fluid system with the different thermal diffusivity ratios,
k̃ = 0.1 and k̃ = 0.5.
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-1.836
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-0.835
-0.501
-0.167
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0.501
0.835
1.168
1.502
1.836
2.170
2.504
2.838
3.172
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-2.822
-2.490
-2.158
-1.826
-1.494
-1.162
-0.830
-0.498
-0.166
0.166
0.498
0.830
1.162
1.494
1.826
2.158
2.490
2.822
3.154

-2.305
-2.062
-1.819
-1.577
-1.334
-1.092
-0.849
-0.607
-0.364
-0.121
0.121
0.364
0.607
0.849
1.092
1.334
1.577
1.819
2.062
2.305

-2.313
-2.069
-1.826
-1.582
-1.339
-1.095
-0.852
-0.609
-0.365
-0.122
0.122
0.365
0.609
0.852
1.095
1.339
1.582
1.826
2.069
2.313

Figure 5. Streamlines of the numerical results and analytical solutions for the example of
thermocapillary convection in two-layer fluid system with different thermal diffusivity ratios,
k̃ = 0.1 and k̃ = 0.5. Positive (negative) values of the stream-function indicate the clockwise
(the counterclockwise) circulation.

and change the value of kA for the two cases. The contours of temperature fields and
stream function for two cases at ǫ = 0.002 are shown in Figure 4 and 5 respectively.
It can be seen that our numerical results are in good agreement with the analytical
solutions. In order to show that our phase-field model approaches to the sharp-interface
model as the thickness of diffuse interface goes to zero, the computations are carried out
by using five different values of ǫ(= 0.02, 0.01, 0.005, 0.002, 0.001). The L2 norm of the
relative differences between the numerical results and analytical solutions are shown in
Table 2. We can observe that as the value of ǫ decreases, the L2 norm of the relative
differences decreases for both temperature field and stream functions. We also note that
there are slightly differences between our numerical results and the analytical predictions.
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ǫ = 0.02 ǫ = 0.01 ǫ = 0.005 ǫ = 0.002 ǫ = 0.001

k=0.1
||T−T̄ ||

L2

||T̄ ||
L2

5.445× 10−3 2.503× 10−3 1.189× 10−3 4.551× 10−4 2.200× 10−4

||ψ−ψ̄||
L2

||ψ̄||
L2

4.309× 10−2 2.668× 10−2 1.614× 10−2 6.94× 10−3 6.44× 10−3

k=0.5
||T−T̄ ||

L2

||T̄ ||
L2

1.585× 10−3 5.748× 10−4 2.098× 10−4 5.167× 10−5 1.815× 10−5

||ψ−ψ̄||
L2

||ψ̄||
L2

6.796× 10−2 2.208× 10−2 8.682× 10−3 3.688× 10−3 7.318× 10−4

Table 2. L2 norm of the relative differences between the numerical results and the analytical
solutions for §6.3.

The reason is two-fold. For one, and most importantly, the thickness of the interface of
our model is finite, and the thermal diffusivity changes across it. The second reason is
that the viscous heating term is considered in our energy balance equation (6.3). As
can be observed from the isotherms in Figure 4, the cosine like boundary condition
for temperature leads to the non-uniform distributions of the temperature along the
interface. This results in a shear force along the interface that is from the centre to both
sides of the domain. The fluids are set to motion by this shear force and move from
the middle toward both sides of the domain. It is then replaced by the fluid flowing
downwards (upward) from the top (bottom) boundary. Also as the domain is periodic
in the horizontal, the velocities of fluid that moves towards both sides decrease and the
fluids are forced to move upward (downward) to the top (bottom) of the domain. This
mechanism results in the formation of the circulation patterns that can be observed in
the stream function fields (Figure 5), where the fluid flow consists of four counter-rotating
circulation that divide the domain into four parts. Moreover, in the context of the thermal
conductivity ratio, we find that the decrease of k̃ leads to a more non-uniform distribution
of temperature along the interface, and thus strengthens the thermocapillary convection.
This result agrees with the recent result obtained by Liu et al. (2014), where the same
thermocapillary convection in a two-layer fluid system was investigated numerically by
using a lattice Boltzmann phase-field method.

6.4. Thermocapillary migration in the limit of zero Marangoni number

The thermocapillary migration of a drop was first examined experimentally by Young
et al. (1959), who derived an analytical expression for the terminal velocity (also known
as YGB velocity) of the drop in an infinite domain. In his study, both the Marangoni and
Reynolds numbers are assumed to be infinite small, such that the convective transport of
momentum and energy are negligible. Instead, the terminal velocity of the drop is derived
in an infinite domain with constant temperature gradient fields, and can be given in the
form

VY GB =
2U

(2 + k̃)(2 + 3µ̃)
, (6.24)

where U = −σTGTR/µB is chosen as the velocity scale, R is the radius of the drop and
GT stands for the constant temperature gradient, k̃ = kA/kB is the thermal conductivity
ratio and µ̃ = µA/µB is the viscosity ratio between the two fluids. In our simulation, we
consider a 2D domain Ω of size [0, 7.5R] × [0, 15R] where a planar 2D circular drop of
fluid A with radius R = 0.1 is placed inside the medium of fluid B, with the drop’s centre
located at the centre of the box (xc, yc) = (3.75R, 7.5R). We set the initial condition for
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σ0 = 5× 10−2, σT = 1.25× 10−3 (at Tref = Tb), µA = µB = 0.2, mC = 0.1ǫ.

Table 3. The physical properties of two fluids for example of thermocapillary migration (A
and B stand for the fluid A and B separately).

the phase field as

c(x, y) =
1

2
tanh

(

R−
[

(x− xc)
2 + (y − yc)

2
]

1

2

2
√
2ǫ

)

+
1

2
. (6.25)

In Figure 6 we present the initial condition (6.25) for the whole domain (left hand side),
and for fixed x = 3.75R (right hand side), where it can be observed that the area with
c = 1 represents the drop (fluid A) and the area with c = 0 represents the medium
(fluid B), between which the value of c varies rapidly resulting in a diffuse interface with
finite thickness. Within this transition layer, the dotted contour line is at level c = 0.5
representing the dividing surface Γ. No-slip boundary conditions are imposed on the
top and bottom wall, and periodic boundary conditions are imposed in the horizontal
direction. A linear temperature field is imposed in y direction

T (x, y) = Tb +
Tt − Tb
15R

y = Tb +GT y, (6.26)

with Tb = 10 on the bottom wall and Tt = 25 on the top wall, resulting in a constant
temperature gradient, GT = 10. Again, we let the ratio parameter η = 6

√
2 (Eq.(5.29)).

Moreover, the fluid properties are shown in Table 3. Using these values, the theoretical
terminal velocity of a spherical drop can be given as

VY GB = 8.333× 10−4. (6.27)

Numerically, we use the following equation to calculate the rise velocity vr of the drop
for our phase-field model,

vr =

∫

Ω
cv · ĵ dV
∫

Ω
c dV

, (6.28)

where ĵ is the component of the unit vector in y direction.
Figure 7 shows the temporal evolution of the drop velocity normalized by VY GB between
two different interface capturing methods, phase-field method and level set method (Her-
rmann et al. 2008). Similar to the previous example in §6.3, we compute our model by
using two different interfacial thickness corresponding to ǫ = 0.002 and 0.001. Both the
phase-field method and level-set method seem to converge to a value of vr/VY GB = 0.8,
roughly 20% different from the theoretical prediction. The reason for this discrepancy is
two-fold. For one, and most importantly, the theoretical rise velocity is for an axisym-
metric sphere, whereas our simulations are carried out for a planar 2D drop. The second
reason is that the simulations include small blockage effects from the finite computational
domain size as well as minute deformations of the drop, whereas the theoretical formula
assumes an infinite domain and a non-deformable drop. As the thickness of the diffuse
interface decreases, our results seem to coverage to the that obtained by level-set method
(Herrmann et al. 2008). For the case ǫ = 0.001, we present the streamlines together
with the moving interface at t = 1 and t = 50 in Figure 8, where we observe that the
streamlines for both cases exhibit the similar patterns, with two asymmetric recirculation
around the drop. Figure 8 shows the meshes together with the drop interface at t = 1
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✤

Figure 6. Initial condition of the phase variable c for the example of the thermocapillary
migration of a drop. Dotted line stands for the dividing surface.
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Figure 7. The time evolution of normalized migration velocity of a drop. The dashed lines are
our numerical results for a 2D planar drop (vr), while the solid line represents the numerical
results by using level-set method.

and t = 50. Here the size of the smaller frame is set to be [3R × 3R], in which we take
the shortest edge of the grids inside the frame as 15R/1000 = ǫ, so that at least 7-9
grid cell (corresponding to the definition of the interfacial thickness) is located across
the interface to ensure accuracy of our computations. In addition, the moving velocity of
the frame is set to be equal to the drop rising velocity vframe = vr, such that, through
this relative long-term behavior, the rising drop is always kept inside the smaller moving
frame.

6.5. Thermocapillary migration with finite Marangoni number

We now compute the example of the thermocapillary motion of a drop with finite
Marangoni numbers. Due to the finite Marangoni numbers, the energy equation (6.3)
is coupled with the momentum equation (6.2). This is expected to result in a reduction
of the tangential temperature gradients at the drop interface due to the interfacial flow
driven by the Marangoni stress, which in turn will also be reduced. In this simulation,
we consider a 2D domain Ω of size [0, 10R]× [0, 15R], where a planar 2D circular drop of
fluid A with radius R = 0.5 is placed inside the medium of fluid B, with the drop’s centre
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IsoValue
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Figure 8. The drop interface (black) and the streamlines (colorful lines, left), and the meshes
(grey lines, right) at t = 1 and t = 50. Positive values of the stream-function indicate the
clockwise circulation and negative values of the stream-function indicate the counterclockwise
circulation.

located at the centre of the box (xc, yc) = (0, 1.5R). At t = 0, Eq.(6.25) is employed as
the initial condition for the phase variable, and a linear temperature distribution from
Tb = 0 at the bottom to Tt = 1 at the top is imposed for the bulk liquid, and we
assume that the drop has the same initial linear temperature distribution as the bulk
liquid. Again, no slip boundary conditions are imposed on the top and bottom bound-
aries, and periodic boundary conditions are imposed in the horizontal direction. The
two fluids are assumed to have the same densities and viscosities. We set the thermal
conductivity k1 = 0.1 for the drop and k2 = 1 for the bulk fluid. In this section, the
non-dimensionalized system equations (4.47)-(4.51) are computed, where we set the non-
dimensional parameters as ǫ = 0.002, Re = 10, M = 1, Pe = 100/ǫ, Ca = 1, Ec = 1.
Five different values of Marangoni number are employed for the computations, such that
Ma = 50, 100, 500, 1000, 1500.
Figure 9 shows the velocity of the drop versus time for the five cases. As the time pro-
cesses, the rise velocity reduces in all five cases, where we can observe that the increase
in Ma leads to the decrease in the rise velocity, which is consistent with the simulations
by Herrmann et al. (2008); Yin et al. (2008); Zhao et al. (2010).
Figure 10 shows snapshots of the isotherms at 4 different times for the corresponding
three cases, where the dependence of the migration velocity on the Marangoni number
can be easily explained. Obviously, the enhanced convective transport of momentum
and heat with the increase of the Marangoni number results in more disturbances of
the temperature field. Inside the drop, as we increase the Marangoni number, the larger
variations can be observed, leading to a substantial reduction in the surface temperature
gradient and the corresponding rise velocities.

7. Conclusion and future work

In this paper, we present a thermodynamically consistent phase-field model for two-
phase flows with thermocapillary effects, which allows the binary incompressible fluid
(quasi-incompressible fluid) to have different physical properties for each component, in-
cluding densities, viscosities and thermal conductivities. To the best of our knowledge,
such a phase-field model is new. We chose the mass concentration as the phase variable,
where the corresponding variable density and mass-averaged velocity lead to a quasi-
incompressible formulation for the binary incompressible fluid. As the thermocapillary
effects are produced by the non-homogenous distribution of a temperature dependent
(linearly) surface tension, we introduce the square-gradient (Cahn-Hilliard) term into
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Figure 9. The time evolution of rise velocity of a drop with different finite Marangoni number.

the internal energy and entropy of our phase-field model, so that the interfacial free en-
ergy that is associated with the surface tension in our model can be linearly dependent on
the temperature. Our model equations, including mass balance equation, Navier-Stokes
equation with extra stress term, advective Cahn-Hilliard equation, energy balance equa-
tion and entropy balance equation, are derived within a thermodynamic frame based
on entropy generation. Comparing with the classical energy balance equation employed
by other phase-field models, the non-classical terms associated with the square-gradient
term appear in our energy balance equation (4.28) accounting for the energy spent by the
variations of the phase field. In addition, we verify the first and second thermodynamic
laws from the system of equations to show that thermodynamic consistency is maintained
in our model. Moreover, we also verified that our system equations satisfy the important
modelling properties, namely the Onsager reciprocal relations and Galilean invariance.
In the sharp-interface analysis, we show that the system of equations and jump con-
ditions at the interface for the classical sharp-interface model are recovered from our
model, which reveals the underlying physical mechanisms of the phase-field model, and
provides a validation of our model. It is worth mentioning that, in the jump condition of
the momentum balance, we identify the square-gradient term of the free energy as the
surface tension (Eq.(5.19)) of our phase-field model. We further relate it to the physical
surface tension through a ratio parameter, where a relation (Eq.(5.25)) is provided to
determine the value of this parameter.
We also compute three examples, including thermocapillary convection in a two-layer
fluid system and thermocapillary migration of a drop. The results for the first two ex-
amples are in good agreement with the existing analytical and numerical solutions quan-
titatively, which validates our phase-field model. Thus, on the whole, we conclude that
the phase-field model can be very suitable for simulating multiphase flows with thermo-
capillary effects.
In the future work, besides exploring various applications and extensions of the model,
we intend to provide an asymptotic analysis of the solution of the model, and use it as a
further validation of our model. For the phase-field model developed here, we will present
a thermodynamic consistency preserving numerical method with the corresponding nu-
merical results in a forthcoming work (Guo & Lin 2014).
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Figure 10. The snapshots of drop interface (black) and isotherms (colorful lines) for different
time and different Ma as indicated.

Acknowledgement

Z. G. was partially supported by the Chinese Scholarship Council (No.2011646021) for
studying at the University of Dundee. P. L. was partially supported by the Fundamental
Research Funds for Central Universities (No.06108038 and No.06108137).

REFERENCES

Abels, H. & Feireisl, E. 2008 On a diffuse interface model for a two-phase flow of compressible
viscous fluids. Indiana University Mathematics Journal 57, 659–698.

Abels, H., Garcke, H. & Grun, G. 2010 Thermodynamically consistent diffuse interface
models for incompressible two-phase flows with different densities. arXiv:1011.0528 .

Abels, H., Garcke, H. & Grün, G. 2012 Thermodynamically consistent, frame invariant,



A thermodynamically consistent phase-field model for thermocapillary effects 39

diffuse interface models for incompressible two-phase flows with different densities. Math.
Models Methods Appl. Sci. 22 (3), 1150013.

Aki, G.L., Dreyer, W., Giesselmann, J. & Kraus, C. 2014 A quasi-incompressible diffuse
interface model with phase transition. Math. Models Methods Appl. Sci. .

Aland, S. 2012 Modelling of two-phase flow with surface active particles. PhD thesis, TU
Dresden.

Aland, S. & Voigt, A. 2012 Benchmark computations of diffuse interface models for two-
dimensional bubble dynamics. Int. J. Numer. Meth. Fluids 69, 747–761.

Allaire, G., Clerc, S. & Kokh, S. 2002 A five-equation model for the simulation of interface
between compressible fluids. J. Comput. Phys. 181, 577–616.

Andereck, C. D., Colovas, P. W., Degen, M. M. & Renardy, Y. Y. 1998 Instabilities in
two layer rayleigh-bénard convection: Overview and outlook. Int. J. Eng. Sci. 1451 (36).

Anderson, D. M. & McFadden, G. B. 1996 A diffuse-interface description of fluid systems.
NIST IR 5887 (National Institute of Standards and Technology) .

Anderson, D. M., McFadden, G. B. & Wheeler, A. A. 1998 Diffuse-interface methods in
fluid mechanics. Annu. Rev. Fluid Mech. 30, 139–165.

Anderson, D. M., McFadden, G. B. & Wheeler, A. A. 2000 A phase-field model of solid-
ification with convection. Phys. D 135, 175–194.

Anderson, D. M., McFadden, G. B. & Wheeler, A. A. 2001 A phase-field model with
convection: sharp-interface asymptotics. Phys. D 151, 305–331.

Andrea, D. 2011 Equations for two-phase flows: a primer. arXiv:1101.5732v1 [physics.flu-dyn]
.

Antanovskii, L. K. 1995 A phase field model of capillarity. Phys. Fluids 7, 747–753.

Bénard, H. 1900 Les tourbillons cellulaires dans une nappe liquide. premiere partie: description.
Rev. Gen. Sci. Pure Appl. 11, 1261–1271.

Baldalassi, V., Ceniceros, H. & Banerjee, S. 2004 Computation of multiphase systems
with phase field models. J. Comput. Phys. 190 (371–397).

Bao, K., Shi, Y., Sun, S. & Wang, X.-P. 2012 A finite element method for the numerical
solution of the coupled cahn–hilliard and navier–stokes system for moving contact line
problems. J. Comput. Phys. 231, 8083–8099.

Batchelor, G. K. 2000 An introduction to fluid dynamics. Cambridge University Press.

Berejnov, V., Lavrenteva, O. M. & Nir, A. 2001 Interaction of two deformable viscous
drops under external temperature gradient. J. Colloid. Interface Sci. 242, 202–213.

Blesgen, T. 1999 A generalization of the navier-stokes equations to two-phase flows. J. Phys.
D 32 (10), 1119.

Block, M. J. 1956 Surface tension as the cause of benard cells and surface deformation in a
liquid film. Nature 178, 650–651.

Blyth, M. G. & Pozrikidis, C. 2004 Effect of inertia on the marangoni instability of two-layer
channel flow, part ii: normal-mode analysis. J. Eng. Math. 50, 329–341.

Borcia, R. & Bestehorn, M. 2003 Phase-field for marangoni convection in liquid-gas systems
with a deformable interface. Phys. Rev. E 67 (066307).

Borcia, R., Merkt, D. & Bestehorn, M. 2004 A phase-field description of surface-tension-
driven instability. Int. J. Bifurcat. Chaos 14 (12), 4105–4116.

Boyer, F. 2002 A theoretical and numerical model for the study of incompressible mixture
flows. Comput. Fluids 31, 41–68.

Cahn, J. W. & Allen, S. M. 1978 A microscopic theory for domain wall motion and its
experimental verication in fe-al alloy domain growth kinetics. J. Phys. Colloque C, 7–51.

Cahn, J. W. & Hilliard, J. E. 1958 Free energy of a nonuniform system i interfacial free
energy. J. Chem. Phys. 28, 258–267.

Chella, R. & Vinals, J. 1996 Mixing of a two-phase fluid by cavity flow. Phys. Rev. E 53,
3832–3840.

Darhuber, A. A. & Troian, S. M. 2005 Principles of microfluidic actuation by modulation
of surface stresses. Annu. Rev. Fluid Mech. .

Davis, S. H. 1987 Thermocapillary instabilities. Annu. Rev. Fluid Mech. 19, 403.

Ding, H., Spelt, P. D. M. & Shu, C. 2007 Diffuse interface model for incompressible two-phase
flows with large density ratios. J. Comput. Phys. 226, 2078 – 2095.



40 Z. Guo and P. Lin

Eck, C., Fontelos, M., Grun, G., Klingbeil, F. & Vantzos, O. 2009 On a phase-field
model for electrowetting. Interfaces Free Bound. 11 (2), 259–290.

Emmerich, H. 2008 Advances of and by phase-field modelling in condensed-matter physics.
Adv. Phys. 57 (1), 1–87.

Everett, D. H. 1972 Definitions terminology and symbols in colloid and surface chemistry.
Pure Appl. Chem. 31, 577.

Gambaryan-Roisman, T., Alexeev, A. & Stephan, P. 2005 Effect of the microscale wall
topography on the thermocapillary convection within a heated liquid film. Exp. Therm
Fluid Sci. 29, 765–772.

Gao, M. & Wang, X.-P. 2012 A gradient stable scheme for a phase field model for the moving
contact line problem. J. Comput. Phys. 231, 1372–1386.

Garcke, H., Hinze, M. & Kahle, C. 2014 A stable and linear time discretization for a
thermodynamically consistent model for two-phase incompressible flow. arXiv:1402.6524 .

Gibbs, J. W. 1875 On the equilibrium of heterogeneous substances. Trans. Connect. Acad. 111.
Gibbs, J. W. 1928 The Collected Works of J. W. Gibbs. Longmans and Green.
Giesselmann, J. & Pryer, T. 2013 Energy consistent discontinuous galerkin methods for a

quasi-incompressible diffuse two phase flow model. http://archiv.org/abs/1307.8248 .
Ginzburg, V. L. & Landau, L. D. 1950 Theory of superconductivity. Zh. Eksp. Teor. Fiz. 20,

1064–1082.
Groot, S. R. De & Mazur, P. 1985 Non-Equilibrium Thermodynamics. Dover Books on

Physics.
Grun, G. 2013 On convergent schemes for diffuse interface models for two-phase flow of incom-

pressible fluids with general mass densities. SIAM J. Num. Anal. 51 (6), 3036–3061.
Grun, G. & Klingbeil, F. 2014 Two-phase flow with mass density contrast: stable schemes

for a thermodynamic consistent and frame-indifferent diffuse interface model. J. Comput.
Phys. 257, 708–725.

Guo, Z. & Lin, P. 2014 A thermodynamic consistency preserving numerical method for a
phase-field model with thermocapillary effects. In preparation. .

Guo, Z., Lin, P. & Lowengrub, J. 2014a A numerical method for the quasi-incompressible
cahn-hilliard-navier-stokes equations for variable density flows with a discrete energy law.
J. Comput. Phys. in press. .

Guo, Z., Lin, P. & Wang, Y. 2014b Continuous finite element schemes for a phase field model
in two-layer fluid benark-marangoni convection computations. Comput. Phys. Comm. 185,
63–78.

Gurtin, M. E., Poligone, D. & Vinale, J. 1996 Two-phase fluids and immiscible fluids
described by an order parameter. Math. Models Methods Appl. Sci. 6, 815–831.

Haj-Hariri, H., Shi, Q. & Borhan, A. 1997 Thermocapillary motion of deformable drops at
finite reynolds and marangoni numbers. Phys. Fluids 9, 845–855.

He, Q., Glowinski, R. & Ping, X. 2011 A least-squares/finite element method for the numer-
ical solution of the navier–stokes-cahn–hilliard system modeling the motion of the contact
line. J. Comput. Phys. 230, 4991–5009.

Herrmann, M., Lopez, J. M., Brady, P. & Raessi, M. 2008 Thermocapillary motion of
deformable drops and bubbles. Center for Turbulence Research, Proceedings of the Summer
program pp. 155–170.

Hohenberg, P. C. & Halperin, B. I. 1977 Theory of dynamic critical phenomena. Rev. Mod.
Phys. 49, 435–479.

Hou, T. Y., Lowengrub, J. S. & Shelley, M. J. 2001 Boundary integral methods for mul-
ticomponent fluids and multiphase materials. J. Comput. Phys. 169 (302-362).

Hua, J., Lin, P., Liu, C. & Wang, Q. 2011 Energy law preserving C0 finite element schemes
for phase field models in two-phase flow computations. J. Comput. Phys. 230, 7115–7131.

Hua, J. S., Stene, J. F. & Lin, P. 2008 Numerical simulation of 3d bubbles rising in viscous
liquids using a front tracking method. J. Comput. Phys. 227 (6), 3358–3382.

Jacqmin, D. 1999 Calculation of two-phase Navier-Stokes flows using phase-field modeling. J.
Comput. Phys. 155, 96–127.

Jacqmin, D. 2000 Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 57–88.
Jasnow, D. & Vinals, J. 1996 Coarse-grained description of thermo-capillary flow. Phys.

Fluids 8, 660–669.



A thermodynamically consistent phase-field model for thermocapillary effects 41

Jiang, Y. & Lin, P. 2014 Numerical simulation for moving contact line with continuous finite
element schemes. In preparation .

Kim, J. 2005 A continuous surface tension force formulation for diffuse-interface models. J.
Comput. Phys. 204, 784–804.

Kim, J. 2012 Phase-field models for multi-component fluid flows. Commun. Comput. Phys.
12 (3), 613–661.

Kim, J., Kang, K. & Lowengrub, J. 2004 Conservative multigrid methods for cahn-hilliard
fluids. J. Comput. Phys. 193, 511–543.

Kim, J. & Lowengrub, J. 2005 Phase field modelling and simulation of three-phase flows.
Interface and Free Boundary 7 (435-466).

Lee, H. G., Lowengrub, J. & Goodman, J. 2002a Modeling pinchoff and reconnection in a
hele-shaw cell. i. the models and their calibration. Phys. Fluids 14 (2), 492.

Lee, H. G., Lowengrub, J. & Goodman, J. 2002b Modeling pinchoff and reconnection in a
hele-shaw cell. ii. analysis and simulation in the nonlinear regime. Phys. Fluids 14 (2), 514.

Levich, V. G. 1962 Physicochemical hydrodynamics. Englewood Cliffs, N. J., Prentice-Hall.

Lin, P. & Liu, C. 2006 Simulation of singularity dynamics in liquid crystal flows: a C0 finite
element approach. J. Comput. Phys. 215 (1), 348–362.

Lin, P., Liu, C. & Zhang, H. 2007 An energy law preserving C0 finite element scheme for
simulating the kinematic effects in liquid crystal flow dynamics. J. Comput. Phys. 227 (2),
1411–1427.

Liu, C. & Shen, J. 2002 A phase field model for the mixture of two incompressible fluids and
its approximation by a Fourier-Spectral method. Phys. D 179, 211–228.

Liu, H., Valocchi, A. J., Zhang, Y. & Kang, Q. 2014 Lattice boltzmann phase-field modeling
of thermocapillary flows in a confined microchannel. J. Comput. Phys. 256, 334–356.

Lowengrub, J. & Truskinovsky, L. 1998 Quasi-incompressible Cahn-Hilliard fluids and topo-
logical transitions. Proc. R. Soc. Lond. A 454, 2617–2654.

Ma, C. & Bothe, D. 2013 Numerical modeling of thermocapillary two-phase flows with evap-
oration using a two-scalar approach for heat transfer. J. Comput. Phys. 233, 552–573.

Mase, G. E. & Mase, G. T. 1999 Continuum Mechanics for Engineers, Second Edition. CRC
Press.

Mittal, R. & Iaccarino, G. 2005 Immersed boundary methods. Ann. Rev. Fluid Mech.
37 (239-361).

Moran, M. J., Shapiro, H. N., Boettner, D. D. & Bailey, M. 2010 Fundamentals of
Engineering Thermodynamics, 7th edn. Wiley.

Nas, S., Muradoglu, M. & Tryggvason, G. 2006 Pattern formation of drops in thermocap-
illary migration. Int. J. Heat Mass Transfer 49, 2265–2276.

Nas, S. & Tryggvason, G. 2003 Thermocapillary interaction of two bubbles or drops. Int. J.
Multiphase Flow 29, 1117–1135.

Osher, S. J. & Fedkiw, R. P. 2001 Level set methods: An overview and some recent results.
J. Comput. Phys. 169, 463–502.

Pearson, J. R. A. 1958 On convection cells induced by surface tension. J. Fluid Mech. 4,
489–500.

Pendse, B. & Esmaeeli, A. 2010 An analytical solution for thermocapillary-driven convection
of superimposed fluids at zero reynolds and marangoni numbers. Int. J. Therm. Sci. 49,
1147–1155.

Pozrikidis, C. 2004 Effect of inertia on the marangoni instability of two-layer channel flow,
part i: numerical simulations. J. Eng. Math. 50, 311–327.

Qian, T., Wang, X. & Sheng, P. 2006 Molecular hydrodynamics of the moving contact line
in two-phase immiscible flows. Comm. Comput. Phys. 1 (1), 1–52.

Rother, M. A., Zinchenko, A. Z. & Davis, R. H. 2002 A three-dimensional boundary-
integral algorithm for thermocapillary motion of deformable drops. J. Colloid Interface
Sci. 245, 356–364.

Rowlinson, J. S. & Widom, B. 1982 Molecular Theory of Capillarity . Dover Publications,
INC. Mineola, New York.

Scardovelli, R. & Zaleski, S. 1999 Direct numerical simulation of free surface and interfacial
flows. Ann. Rev. Fluid Mech. 31 (567-603).



42 Z. Guo and P. Lin

Schatz, M. F. & Neitzel, G. P. 2001 Experiments on thermocapillary instabilities. Annu.
Rev. Fluid Mech. 33, 93–127.

Scriven, L. E. & Sternling, C. V. 1964 On cellular convection driven by surface tension
gradient: effects of mean surface tension and viscousity. J. Fluid Mech. 19, 321–340.

Sekerka, R. F. 1993 Notes on entropy production in mutlicomponent fluids. unpublished .
Sethian, J. A. & Smereka, P. 2003 Level set methods for fluid interfaces. Annu. Rev. Fluid

Mech. 35, 341–372.
Shen, J. & Yang, X. 2009 An efficient moving mesh spectral method for the phase-field model

of two-phase flows. J. Comput. Phys. 228, 2978–2992.
Shen, J. & Yang, X. 2010 A phase-field model and its numerical approximation for two-phase

incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 33, 1159
– 1179.

van der Sman, R. G. M. & van der Graaf, S. 2006 Diffuse interface model of surfactant
adsorption onto flat and droplet interfaces. Rheol. Acta. 46, 3–11.

Sternling, C. V. & Scriven, L. E. 1959 Interfacial turbulence: hydrodynamic instability and
the marangoni effect. AIChE J. 5, 514–523.

Subramanian, R. S. & Balasubramaniam, R. 2001 The motion of Bubbles and Drops in
Reduced Gravity . Cambridge University Press.

Sun, P., Liu, C. & Xu, J. 2009 Phase field model of thermo-induced marangoni effects in
the mixtures and its numerical simulations with mixed finite element method. Commun.
Comput. Phys. 6, 1095–1117.

Tavener, S. J. & Cliffe, K. A. 2002 Two-fluid marangoni–bénard convection with a de-
formable interface. J. Comput. Phys. 182, 277–300.

Teigen, K. E., Song, P., Lowengrub, J. & Voigt, A. 2011 A diffuse-interface method for
two-phase flows with soluble surfactants. J. Comput. Phys. 230, 375–393.

Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han,
J., Nas, S. & Jan, Y. J. 2001 Front tracking method for the computation of multiphase
flow. J. Comput. Phys. 169 (708-759).

Tryggvason, Gretar, Scardovelli, Ruben & Zaleski, Stephane 2011 Direct Numerical
Simulations of Gas-Liquid Multiphase Flows. Cambridge University Press.

Verschueren, M., van de Vosse, F. N. & Meijer, H. E. H. 2001 Diffuse-interface modelling
of thermo-capillary flow instabilities in a hele-shaw cell. J. Fluid Mech. 434, 153–166.

van der Waals, J. D. 1979 The thermodynamic theory of capilliary flow under the hypothesis
of a continuous variation of density, english translaion. J. Statist. Phys. 20, 197.

Wang, S. L., Sekerka, R. F., Wheeler, A. A., Murray, B. T., Coriell, S. R., Braun,
R. J. & McFadden, G. B. 1993 Thermodynamically-consistent phase-field models for
solidification. Phys. D 69, 189–200.

Wang, X.-P. & Wang, Y.-G. 2007 The sharp interface limit of a phase field model for moving
contact line problem. Methods Appl. Anal. 14 (3), 285–292.

Weatherburn, C. E. 1939 Differential Geometry of Three Dimensions. Cambridge University
Press.

Yin, Z., Gao, P., Hu, W. & Chang, L. 2008 Thermocapillary migration of nondeformable
drops. Phys. Fluids 20, 082101.

Young, N. O., Goldstein, J. S. & Block, M. J. 1959 The motion of bubbles in a vertical
temperature gradient. J. Fluid Mech. 6, 350–356.

Yue, P. & Feng, J. J. 2012 Phase-field simulations of dynamic wetting of viscoelastic fluids.
J Non-Newton Fluid 189, 8–13.

Yue, P., Feng, J. J., Liu, C. & Shen, J. 2004 A diffuse interface method for simulating two
phase flows of complex fluids. J. Fluid Mech. 515 (293-317).

Yue, P., Zhou, C. F., Feng, J. J., Ollivier-Gooch, C. F. & Hu, H. H. 2006 Phase-field
simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive
meshing. J. Comput. Phys. 219 (1), 47–67.

Zhao, J., Li, Z., Li, H. & Li, J. 2010 Thermocapillary migration of deformable bubbles at
moderate to large marangoni number in microgravity. Microgravity Sci. Technol. 22, 295–
303.

Zhou, H. & Davis, R. H. 1996 Axisymmetric thermocapillary migration of two deformable
viscous drops. J. Colloid Interface Sci. 181, 60–72.


