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Piezoelectric ceramics are used more in the active control of noise and vibration with sensors and actuators. As a result, a one-
dimensional homogeneous thermoelastic fixed piezoelectric rod subjected to a moving heat flow has been considered.(e heating
rod is affected by three fields, namely, thermal, mechanical, and electric potential. In order to design a reliable smart structure, this
study is necessary and the thermopiezoelectric behavior of piezoelectric ceramics must be understood clearly. (e Laplace
transform method is applied to acquire the distributions of stress, deformation, and temperature fields. (e effect of heat source
velocity and phase lag parameters on the considered physical fields is displayed graphically, and the results are compared with
other models of thermoelasticity. (e present findings could find possible applications for designing receiving portions of
transformers of Rosen type for voltage magnification.

1. Introduction

Normally, in recent decades, more consideration has been
given to the thermoelasticity field due to its applied aspects in
various fields, especially geology, geophysics, structures, bi-
ology, physics, acoustics, plasma, and so forth.(e generalized
thermoelasticity theory is one of the improved forms of the
classical thermoelasticity and has beenmodified to remove the
defects of the classical coupled thermoelasticity. (e modified
thermoelasticity models were introduced by Lord and Shul-
man [1], Green and Lindsay [2], and Green and Naghdi [3] as
well as by Tzou [4], Tzou [5], and Tzou [6]. On the other hand,
many works, in literature, have applied generalized thermo-
elasticity theories to investigate the thermoelastic response of
solid materials [7–12].

Piezoelectric materials are an important kind of smart
material, as they are able to cause strain or generate electrical
energy. Piezoelectric materials are essential materials that
have the ability to convert electrical energy into mechanical
energy to stimulate strain and act as an engine when these
materials are powered by an electric field. Mostly, piezo-
electric devices operate in a thermoelastic coupling medium.
Often, piezoelectric devices and piezoelectric materials
operate in a medium with pyroelectric and thermoelastic
coupling.

To illustrate the thermopiezoelectric interaction, various
works have been carried out [13–25]. Abo-Dahab et al. [26]
discussed the electromagnetothermoelastic medium with
diffusion and voids in the context of Lord-Shulman or dual-
phase-lag models under influence of rotation and gravity.

Hindawi
Complexity
Volume 2021, Article ID 5547566, 11 pages
https://doi.org/10.1155/2021/5547566

mailto:arabyatef@yahoo.com
https://orcid.org/0000-0002-7088-9912
https://orcid.org/0000-0003-3363-7924
https://orcid.org/0000-0001-7690-0900
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5547566


A reverse problem of including interfaces in a piezo-
electric structure was proposed by Nanthakumar et al. [27]
in order to overcome this algorithm. (e material interfaces
are implied by the level sets defined by regularization with
total variation penalty words. (e reverse issue is iteratively
solved, and, for the study of each iteration, the extended
finite element approach is used. For three-dimensional
structures, the wording is presented, and inclusions of
different materials are recognized by multiple level sets.

In order to mathematically model various phenomena in
science and engineering, partial differential equations
(PDEs) are important. To solve these problems is a key step
in achieving accurate understanding of the conduct of
natural and engineered structures. In general, analytical
methods are typically not sufficient to solve PDEs repre-
senting real systems to an appropriate degree. One must use
methods of choice. (e most popular alternative is likely the
finite element approach for engineering problems (FEM).
But strong alternatives are also available, such as mesh-free
methods and the Isogeometric Analysis (IGA). (e basic
idea is to approximate the PDE solution with specially
constructed functions with desired properties. Samaniego
et al. [28] have explored an alternative for approximation
Deep Neural Networks (DNNs). In that work, the emphasis
is on mechanical problems, and the PDE energy format is
analyzed. For a computer learning to solve a mechanical
problem, the energy of a mechanical system seems to be a
normal loss function.

Hamdia et al. [29] have used sensitivity analysis to define
crucial parameters affecting flexoelectric materialsʼ energy
conversion factor (ECF). (e governing flexoelectricity
equations are modeled on a NURBS-based IGA formula that
uses their higher-order continuity and thus avoids a complex
combined formulation. (e input parameters examined
include model and material characteristics, and sampling
has taken place in the likelihood region using the Latin
hypercube sampling (LHS) method. Khalil et al. [30] in-
vestigated electromagnetic field and initial stress on a
photothermal semiconducting voids medium under ther-
moelasticity theories. Abo-Dahab et al. [33–37] studied the
effect of relaxation times in different mediums with several
variables. Alotaibi et al. [38] used fractional calculus of
thermoelastic P-Waves reflection under influence of gravity
and electromagnetic fields. Abd-Alla et al. [39] illustrated the
effect of several fields on a generalized thermoelastic me-
dium with voids in the context of Lord-Shulman or dual-
phase-lag models.

(e Laplace transform method is simple to describe.
Given an initial value problem (IVP), apply the Laplace

transform operator to both sides of the differential equation.
(is will transform the differential equation into an algebraic
equation whose unknown, F (s), is the Laplace transform of
the desired solution. Once you solve this algebraic equation
for F (s), take the inverse Laplace transform of both sides; the
result is the solution to the original IVP.

In addition, the method used in this research is con-
ceptually simple and easy to program. (is method is ef-
fective in meeting the requirements of automatic digital
computation in an efficient manner for two reasons. First, it
is fast (economical) on digital computers now available in
contrast to other more complicated methods of numerical
quadrature. Second, the method is conceptually simple and
requires a minimum of programming effort because the
resultant inverse function is given as a Fourier cosine series
with the coefficients being appropriate values of the forward
transform. (erefore, one avoids the use of involved algo-
rithms which are encountered in methods using orthogonal
functions.

In the current investigation, the response of a thermo-
elastic piezoelectric fixed rod is investigated. Also, the rod
exposed to a heat source moves over its axis. (e problem is
expressed in the context of Tzou [5] model. By using the
Laplace transform and the Laplace numerical inversion, we
solved the problem. (e influence of speed of the moving
heat source and the phase lags on displacement, stress, and
temperature is explained.

2. Basic Equations

(e governing equations of thermopiezoelectric materials
without body forces and free charge are as follows [16, 21]:

Strain-displacement relations:

εij �
1

2
ui,j + uj,i( ), i, j � 1, 2, 3. (1)

Stress-strain-temperature and electric field relations:

σij � cijklεkl − cij T − T0( ) − ejikDk, (2)

Ei � eijkεkj + ϵikDk + pi T − T0( ), i, j, k � 1, 2, 3.

(3)

(e motion equation:

σji,j � ρu
..

i, i, j � 1, 2, 3. (4)

(e heat equation proposed by Tzou [6]:

1 + τθ
z

zt
( ) KijTj( )

i
� δ + τq

z

zt
( ) ρCE

zT

zt
+ T0cij

zui,j

zt
− T0pi

zϕi
zt
− Q( ). (5)

Electric and Gauss equations:
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Di,i � 0,

Ei � − _ϕi,
(6)

where σij represents the stress tensor components, εij
represents the strain tensor components,Ei represents the
electric field vector components, Kij represents the
thermal conductivity tensor, cijkl represents the elastic
constants, cij represents the thermal moduli, ϕ represents
the function of electric potential, ejik represents the pi-
ezoelectric moduli, T represents the temperature incre-
ment, T0 represents the initial temperature,Di represents
the electric displacement components, ui represents the
displacement vector components, ρ represents the mass
density, and εik represents the electric permittivity. Also,
CE refers to the specific heat, Q refers to the applied heat
source, pi refers to the pyroelectric constants, τq refers to
the phase lag of heat flux, and τθ refers to the dual-phase-
lag parameter. Equations (1)–(5) are the field equations of
the generalized linear thermoelastic-piezoelectric appli-
cable for the following:

(i) Dynamical coupled thermoelastic-piezoelectric (CD
theory), when τθ � 0 � τq

(ii) Generalized piezothermoelasticity (LS), when
τθ � 0, τq � τ0 > 0, where τ0 is the relaxation time

(iii) Generalized linear piezothermoelasticity without
energy dissipation (GN model), when τq � 1 and
τθ � δ � 0

(iv) Generalized piezothermoelasticity with two differ-
ent phase lags (DPL model), when τq ≥ τθ > 0

3. Problem Formulation

We consider the direction of polarization of a piezo-
electric rod finite length L that is parallel to the axial
direction of the rod. Also, the two ends of rod are as-
sumed to be fixed and thermally insulated. Initially, the
rod is not deformed and at rest. (e x-axis coincides with
the axial of the rod. (e temperature T and the dis-
placement component u, for a one-dimensional problem,
can be written as

T � T(x, t),

ux � u(x, t).
(7)

(e strain component e is given by

e � exx �
zu

zx
. (8)

We consider that there are no free charges within the
piezoelectric rod. (en, Gauss’s law gives

div(D) � 0, (9)

which can be rewritten as

zD

zx
� 0. (10)

(is leads to D � D(t). For simplification, we will
considerD as constant along the piezoelectric rod. Equations
(2), (3), and (5) may be reduced to

σxx � σ �(λ + 2μ)
zu

zx
− c T − T0( ) − e1D,

(11)

(λ + 2μ)
z2u

zx2
− c

zT

zx
� ρ

z2u

zt2
, (12)

K 1 + τθ
z

zt
( ) z2T

zx2
� 1 + τq

z

zt
( ) ρCE

zT

zt
+ T0c

zu

zx zt
− Q( ),
(13)

where c � (3λ + 2μ)αt, αt is the thermal expansion coeffi-
cient, K is the thermal conductivity, and e1 is the piezo-
electric constant. To obtain the dimensionless form of the
basic equations, we introduce the following variables:

x∗, u∗{ } � c0η x, u{ },

t∗ � c20ηt,

τ∗q , τ
∗
θ{ } � c20η τq, τθ{ },
T∗ �

T − T0

T0

,

σ∗ �
σ

λ + 2μ
,

D∗ �
e1D

λ + 2μ
,

η �
ρCE
K

Q∗ �
cQ

Kc20η
2
(λ + 2μ)

,

c20 �
λ + 2μ

ρ
.

(14)

Introducing equation (14) into (11)–(13), we get
(dropping the asterisks)

σ �
zu

zx
− bT − D,

z2u

zx2
− b

zT

zx
�
z2u

zt2
,

1 + τθ
z

zt
( ) z2T

zx2
� 1 + τq

z

zt
( ) zT

zt
+ g

zu

zx zt
− Q( ),

(15)

where
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b �
cT0

λ + 2μ
,

g �
c

ρCE
.

(16)

(e nondimensional form of the moving heat source Q
can be taken as

Q � Q0δ(x − vt), (17)

where δ is the delta function, Q0 is the heat source strength,
and v is the velocity of Q along the positive direction of the
x-axis.

4. Initial and Boundary Conditions

We consider the initial conditions to be

u(x, t)|t�0 �
zu(x, t)

zt
|t�0 � 0, 0≤x≤ l,

T(x, t)|t�0 �
zT(x, t)

zt
|t�0 � 0, t � 0, 0≤ x≤ l.

(18)

As the rod is fixed and thermally insulated, the boundary
conditions are as follows:

u(0, t) � u(l, t) � 0, (19)

zT(0, t)

zx
�
zT(l, t)

zx
� 0. (20)

5. Laplace Transform

(e Laplace transform of any function f(t) is given by

£ f(t){ } � f(s) � ∫∞
0
e− stf(t)dt, Re(s)> 0. (21)

After using the Laplace transform, we obtain

σ �
du

dx
− bT −

D

s
, (22)

d2

dx2
− s2( )u � b dT

dx
, (23)

d2

dx2
− qs( )T � qsg du

dx
− αq exp −

s

v
x( ), (24)

where

α �
Q0

v
,

q �
1 + τqs( )
1 + τθs( ).

(25)

(e boundary conditions (19) and (20) are also trans-
formed to

u(0, s) � u(l, s) � 0, (26)

dT(0, s)

dx
�
dT(l, s)

dx
� 0. (27)

6. Solution in the Transformed Field

Eliminating T between (23) and (24), we have

d4

dx4
− s2 + sq(1 + gb)( ) d2

dx2
+ qs3( )u bαsq

v
exp −

s

v
x( ).
(28)

(e characteristic equation of (28) takes the form

m4
− s2 + sq(1 + gb)( )m2

+ qs3 � 0. (29)

(e rootsm2
1 andm

2
2 of equation (29) satisfy the relations

m2
1 +m

2
2 � s2 + sq(1 + gb)( ),

m2
1m

2
2 � qs

3,
(30)

where m1 and m2 are given by

m2
1,2 �

1

2
s2 + sq(1 + gb)( ) ±

��������������������
s2 + sq(1 + gb)( )2 − 4qs3

√
( ).

(31)
Solving equation (28), we get

u � A1e
− m1x + A2e

m1x + A3e
− m2x + A4e

m2x + A5 exp −
s

v
x( ),
(32)

where Ai, (i � 1, 2, 3, 4) all are parameters and

A5 �
bαsqv3

s4 − s2 + sq(1 + gb)( )s2 + v4qs3. (33)

Likewise, the function T satisfies the following equation:

d4

dx4
− s2 + sq(1 + gb)( ) d2

dx2
+ qs3( )T � αs2q 1 − v2( )

v2
exp −

s

v
x( ).
(34)

(e solution to T is given from (34) as

T � B1e
− m1x + B2e

m1x+1B3e
− m2x +1B4e

m2x + B5 exp −
s

v
x( ),
(35)

where Bi, (i � 1, 2, 3, 4) are some parameters that can be
determined from the boundary conditions.

Substituting u from equation (32) and T from equation
(35) into (23), we can find the following relationship:

Bi �(− 1)
im

2
i − s

2

mib
Ai, i � 1, 2, 3, 4,

B5 � −
s 1 − v2( )

bv
A5.

(36)
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In order to determine the parameters Ai, (i � 1, 2, 3, 4),
we need to apply boundary conditions (26) and (27).

A1 + A2 + A3 + A4 � − A5, (37)

A1e
− m1l + A2e

m1l + A3e
− m2l + A4e

m2l � − A5 exp −
s

v
l( ), (38)

− m1B1 +m1B2 − m2B3 +m2B4 �
s

v
B5, (39)

− m1B1e
− m1l +m1B2e

m1l − m2B3e
− m2l +m2B4e

m2l �
s

v
B5 exp −

s

v
l( ). (40)

Solving equations (40)–(43), Ai(i � 1, 2, 3, 4) can be
expressed as

A1 �
m2

2 − (s/v)
2( ) exp m1l( ) − exp(− (s/v)xl)( )

2 m2
1 − m

2
2( )sinh mil( ) A5,

A2 � −
m2

2 − (s/v)
2( ) exp − m1l( ) − exp(− (s/v)xl)( )
2 m2

1 − m
2
2( )sinh m1l( ) A5,

A3 � −
m2

1 − (s/v)
2( ) exp m2l( ) − exp(− (s/v)xl)( )

2 m2
1 − m

2
2( )sinh m2l( ) A5,

A4 �
m2

1 − (s/v)
2( ) exp − m2l( ) − exp(− (s/v)xl)( )
2 m2

1 − m
2
2( )sinh m2l( ) A5.

(41)
Substituting u and T into equation (22), we obtain

σ � −
s2

m1

A1e
− m1x +

s2

m1

A2e
m1x + −

s2

m2

A3e
− m2x +

s2

m2

A4e
m2x

− svA5 exp −
s

v
x( ) − D

s
.

(42)

7. Laplace Transform Inversion

We will apply a numerical technique to calculate the in-
version of Laplace transform to get the physical fields of the
problem in the actual field. To reverse the Laplace transform
of various fields, we espouse a method based on the ex-
pansion of the Fourier series [31]. In this technique, any field
g(x, s) in the inverse field of the Laplace transform is re-
versed in the physical domain using the relation

g(x, t) �
ect

T1

g(x, c)

2
+ Re∑N

k�1

exp
ikπt

T1

( )g x, c +
ikπ

T1

( ) ,
2t≥T1 ≥ 0,

(43)

whereN is a sufficiently large integer which was chosen such
that

ectRe exp
ikπt

T1

( )g c +
ikπ

T1

( )( )≤ ε1, (44)

where ε1 is a small positive and the parameter c is positive-
free as stated by Honig [31].

8. Numerical Results and Discussion

To illustrate the above results, the material constants of the
piezoelectric rod were taken as follows given in Table 1 [8].

(e numerical calculation and the discussion of the
problem are carried out in two different groups for different
positions of x and time t. (e first group is studying how the
variations of displacement, temperature, and stress differ
with various velocities of the heat source v when the other
parameters are constants.(e second case shows the study of
variations of different fields in models of thermoelasticity
and the numerical results were also compared in different
models. (e last case is the study of the dependence of
different physical distributions on the time when the pa-
rameter v remains constant.(e figures display that there are
two separate phases in the history of electrical potential:
before and after heat source leaves the rod. (e effect of a
heat source prevails in the first stage, while the relation
between electrical power and displacement plays an im-
portant role in the second stage and contributes to the vi-
bration of the electrical potential as shown in Figure 1.

Figures 2–4 display the variants of temperature, dis-
placement, and pressure with various values of the pa-
rameter v (v � 1, 2, 3) in which we detect the following.

Figure 2 displays that when the parameter v increases,
there is an increase in the profile of temperature.

(e distribution of temperature T begins at its greatest
value at x � 0 and gradually decreases until the zero wave
reaches the direction of propagation of the heat wave.

As Figure 2 shows, although still the wavefront of the
simplified solution travels to the right end of the pole, the
wave front is on its way back to the left end of the rod. (is
means that the thermal wave speed is greater than the
simplified solution in the current solution. More

Complexity 5



importantly, while in [32] the authors believed thermal wave
fronts were present, they did not actually exist for a longer
rod with L� 10, as shown in [32].

From Figure 3, we can observe that the distribution of
displacement u decreases with increasing the parameter v.
(is results in a reduction in the density of thermal energy
along the length of the rod.

It can also be found from Figure 3 that the displacement
at x � 0, 5 is kept at a zero value, which corresponds to the
boundary conditions of the problem where the piezoelectric
rod is fixed.

(e displacement variation u increases monotonically
and it reaches a peak value at another wave front.

From Figure 4, it is clear to us that the absolute stress
decreases with increasing speed due to the decrease in the
energy of the applied heat source along the axial of the rod.

(e distributions of physical fields are graphically
depicted in Figures 5–7 for different theories of thermal
elasticity. (is group illustrates the influence of two-phase-
lag parameters on the numerical results, and we observed a
slight difference in the value of the distributions in the three
models.

Figures 8–10 are presented to illustrate the distributions
of the physical fields at various values of time t to show the
influence of time in each field. We note the following:

(e temperature profile increases with increasing value
of time during certain periods.

(e maximum values of the distributions of displace-
ment and stress increase as time increases.

Finally, through Figures 2–10, it becomes clear that once
the immediate time is given, the nonzero values of tem-
perature, displacement, and thermal stress are only in a
limited region and, beyond this area, gradually fade away.
(is explains why the heat dissipation speed is limited in the
piezoelectric rod, as this is completely different as compared
to the classical thermal models, which predict unlimited
velocity. Due to the limited heat diffusion, the heat-dis-
turbed region is limited when the appropriate time is given,
resulting in the pressure and displacement caused by the
heat also in a specific region.

From Figure 3, we can observe that the distribution of
displacement u decreases with increasing the parameter v.
(is results in a reduction in the density of thermal energy
along the length of the rod.

It can also be found from Figure 3 that the displacement
at x � 0, 5 is kept at a zero value which corresponds to the
boundary conditions of the problem where the piezoelectric
rod is fixed.

(e displacement variation u increases monotonically
and it reaches a peak value at another wave front.

From Figure 4, it is clear to us that the absolute stress
decreases with increasing speed due to the decrease in the
energy of the applied heat source along the axial of the rod.

(e temperature field stabilizes as the heat source moves
away from the rod, contrary to the acceleration, electrical
potential, and stress fields. (ere can, however, be some
variations before the temperature achieves a constant value,
depending on the thermal rest time.

(e distributions of physical fields are graphically
depicted in Figures 5–7 for different theories of thermal
elasticity. (is group illustrates the influence of two-phase-
lag parameters on the numerical results, and we observed a
slight difference in the value of the distributions in the three
models. (e propagation of thermal waves is very sensitive
to the speed of heat sources. Higher speed allows the thermal
disturbance to spread more rapidly. (e magnitudes of the
nondimensional variables increase as the speed of the
moving heat resource increases. As the largest values of
curves indicate obviously, the effect of the thermal source
transmission speed on all considered quantities is quite high.

Table 1: Physical constants of piezoelectric material.

Parameter Value

K 386NK− 1s− 1

μ 3.86 × 1010Nm− 2

ρ 8954 kgm− 3

αt 1.78 × 10− 5 K− 1

T0 293K
ε 0.0168
l 5
η 0.003887
Q0 10
D 10− 6

α 0.0104
λ 7.76 × 1010 Nm− 2

v

x

L

Q (x, t) Moving heat source

Ground, zero voltage

Figure 1: Schematic diagram for the piezoelectric finite rod.
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Figure 2: (e variation of temperature distribution Twith moving
heat source velocity v.
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Figure 3: (e variation of displacement distribution u with moving heat source velocity v.
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Figure 4: (e variation of stress distribution σ with moving heat source velocity v.
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Figure 5: Temperature distribution for different theory of thermoelasticity.
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DPL model

L-S theory

C-D theory
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Figure 6: Displacement distribution for different theory of thermoelasticity.
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Figure 7: Stress distribution for different theory of thermoelasticity.
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Figure 8: Temperature distribution for different values of time.
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(e influence of the heat source is an inherent consideration
not to be overlooked in the evaluation of heat stress and
fields at the heat source.

Figures 8–10 are presented to illustrate the distributions
of the physical fields at various values of time t to show the
influence of time in each field. We note the following:

(e temperature profile increases with increasing value
of time during certain periods.

(e maximum values of the distributions of displace-
ment and stress increase as time increases.

Finally, through Figures 2–10, it becomes clear that once
the immediate time is given, the nonzero values of tem-
perature, displacement, and thermal stress are only in a
limited region and, beyond this area, gradually fade away.
(is explains why the heat dissipation speed is limited in the

piezoelectric rod, as this is completely different as compared
to the classical thermal models, which predict unlimited
velocity. Due to the limited heat diffusion, the heat-dis-
turbed region is limited when the appropriate time is given,
resulting in the pressure and displacement caused by the
heat also in a specific region.

9. Conclusion

(e response of a thermoelastic piezoelectric rod exposed to
a heat source is studied using the model of thermoelasticity
with phase lags. (e coupled governing equations of pie-
zoelectricity and thermoelasticity are expressed. Based on
the Laplace transform and an approximation inversion
technique, the system of equations is solved. (e results of
the physical variables are displayed graphically and
discussed.

From the graphs and theoretical discussion, we can
conclude the following: With a comparison between the
different models of thermoelasticity, that is, coupled theory
(CD), Lord and Shulman (LS), and Tzou (DPL) models,
there are differences in the results between different models.

(e phenomenon of limited propagation speeds is
manifested in all these forms. (e heat wave interface is
moving forward at a limited speed over time. (is indicates
that the mechanism of heat wave propagation in the case of
generalized theories of thermoelasticity differs from that in
the classical theory.

(e values of temperature, exclusion, and nondimen-
sional stress increase with the increase of the moving heat
source. (e value of v has a significant impact on all areas of
distribution in the case of the three theories.
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