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A thermomechanical analysis of a family of soil models

I. F. COLLINS� and P. A. KELLY�

Techniques of thermomechanics, based upon the use of
internal variables, are used to develop a systematic pro-
cedure for deriving elastic/plastic models of soils and
granular materials. Fundamental thermodynamic state
variables are defined and used to formulate free energy
and dissipation potentials. These are used to determine
yield conditions and flow rules. It is demonstrated that it
is necessary to distinguish between plastic work and
plastic energy dissipation. It is suggested that the stored
energy associated with the plastic deformations is due to
the fact that only a proportion of the intergrain contacts
are actually plastic in a plastically deforming continuum
element. The stored plastic energy of the continuum
model arises from locked-in elastic energy on the micro
scale. Some well-known existing critical-state models are
re-examined and some of their shortcomings are high-
lighted. New models are proposed that overcome some of
these objections. These models are able to predict non-
associated flow rules, contractive behaviour and pre-peak
failure for ‘loose’ soils, and aspects of static liquefaction,
and can predict the position of the failure, phase change,
instability and ultimate state lines. In some extreme cases
the yield surfaces are found to contain concave segments,
and dilatant behaviour can occur below the critical
(characteristic) state line.

KEYWORDS: constitutive relations; numerical modelling and
analysis; plasticity; sands; theoretical analysis

Nous utilisons des techniques de thermomécanique, basées
sur l’utilisation de variables internes, pour développer une
procédure systématique permettant de dériver des modèles
élastiques/plastiques de sols et de matières granulaires. Les
variables fondamentales d’état thermodynamique sont dé-
finies et utilisées pour formuler des potentiels d’énergie
libre et de dissipation. Ceux-ci sont utilisés pour détermi-
ner les conditions de limite élastique et les règles d’écoule-
ment. Nous démontrons qu’il est nécessaire de faire la
distinction entre travail plastique et dissipation de l’énergie
plastique. Nous suggérons que l’énergie emmagasinée asso-
ciée à la déformation plastique est due au fait que seule une
proportion des contacts entre grains est plastique dans un
élément de continuum à déformation plastique. L’énergie
plastique emmagasinée du modèle de continuum vient
d’une énergie élastique contenue sur l’échelle micro. Nous
examinons à nouveau certains modèles d’état critique
existants et bien connus et nous montrons leurs défauts.
Nous proposons de nouveaux modèles qui viennent à bout
de certaines de ces objections. Ces modèles sont capables
de prédire les règles d’écoulement non associées, le com-
portement contre-actif et la rupture de pré-crête pour des
sols ‘meubles’ et les aspects de liquéfaction statique ; nous
pouvons ainsi prévoir la position de la faille, le changement
de phase, l’instabilité et les lignes d’état ultime. Dans
certains cas extrêmes, nous avons trouvé que les surfaces
d’écoulement contiennent des segments concaves et que le
comportement dilatant peut se produire en dessous de la
ligne (caractéristique) d’état critique.

INTRODUCTION
There are a variety of ways of constructing mathematical

models of the mechanical behaviour of soils. One is to
curve-fit experimental data and formulate the basic equations
needed to describe the model in terms of these empirically
derived functions. However, even in this empirical approach,
it is necessary to have some underlying theoretical frame-
work that enables the model to have the necessary predictive
qualities. The well-developed theory of rate-independent
elastic/plastic materials is by far the most popular such
background framework currently in use, and the theory
developed by Lade and co-workers is one of the best known
of such empirically based models (e.g. Lade, 1975).

A second approach to modelling is to start with some
specific theoretical assumptions, such as a dilatancy law, an
expression for ‘plastic work’ or ‘energy dissipation’, as in
the original Cam clay studies (Schofield & Wroth, 1968;
Gens & Potts, 1988; Wood, 1990), or to make some other
micro-mechanical assumptions, as in the recently developed
models involving particle crushing by McDowell & Bolton
(1998) and McDowell (2000). These Cam clay, critical-state
models and the vast hierarchy of extensions are excellent
examples of this approach to modelling. Because these

theories are based on conceptual models of macro or micro
behaviour, such models are capable of giving deep physical
insights into the engineering behaviour of soils, although
quite frequently at the expense of detailed numerical accu-
racy. The pedagogical merits of this approach are elegantly
argued in Wood (2000). The choice of complexity of the
model depends on the practical purpose underlying the
model construction. There are now some very complex
models available, involving large numbers of material para-
meters, but, as pointed out by Kolymbas (2000), such
models are seldom ‘transportable’ from one research group
to another.

A basic requirement of all such models is that they satisfy
the basic laws of physics. For example, any equations
describing the properties of isotropic materials must be
expressed in terms of the invariants of stress, strain, strain
increment, etc. The second law of thermodynamics is one of
these basic laws that govern the dissipative behaviour of
materials, but it is seldom invoked in geomechanical the-
ories. Until recently thermodynamics and ‘heat flow’ were
seldom seen as relevant to geotechnical problems. A notice-
able exception is the overview paper by Mitchell (1991).
However, this situation is now changing, particularly as a
result of the development of geo-environmental engineering:
see Smith (2000) for a recent review of some of the
application areas. In the early days of the development of
the theory of elastic/plastic materials, quasi-thermodynamic
postulates were introduced in an effort to ensure that the
dissipation of energy was always positive in a closed cycle
of stress (Drucker’s postulate) or strain (Il’iushin’s postulate).
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However, it was soon realised that these postulates were
actually classifications of types of material behaviour and
not, in any sense, equivalent to the second law (Drucker,
1988; Lubliner, 1990).

In the last 20 years, however, there have been major
developments in the theory of thermomechanics of continua,
which have thrown new light on many long-standing issues
in a number of application areas. In the case of isothermal
deformations of rate-independent elastic/plastic solids, the
new theories have shown that, under certain minimal as-
sumptions, knowledge of the material’s free energy and
dissipation rate potentials is sufficient to uniquely determine
the elasticity law, the yield function, the flow rule and the
hardening rules (both isotropic and kinematic) of the materi-
al. The simultaneous determination of both the yield func-
tion and the plastic potential is particularly significant, since,
in geomechanics, these two functions are normally chosen
independently. (A notable exception to this is the modelling
process used by Chandler (1985, 1988) and Chandler &
Song (1990), whose approach using the theory of envelopes
has several similarities to the more general thermomechani-
cal procedure.)

The early developments of these general ideas were due
to Ziegler (1983) and Ziegler & Wehrli (1987), who noted
some applications of their general theory to the classical
Coulomb model. A rigorous general theory was then devel-
oped by a number of researchers in France, accounts of
which can be found in the books by Maugin (1992, 1999),
Maugin et al. (2000), Besseling & van der Giessen (1994)
and Lemaitre & Chaboche (1990). Applications of these
ideas to soil mechanics were pioneered by Houlsby (1981,
1982, 1993). A comprehensive analysis of the isothermal
thermomechanics of geomaterials was given by Collins &
Houlsby (1997), who demonstrated that a non-associated
flow rule is a necessary property of a ‘frictional material’,
in which the plastic deformations are governed by stress
ratios rather than by the magnitudes of certain yield stresses.
Houlsby & Puzrin (2000) generalised some aspects of this
work to non-isothermal conditions, and in a series of papers
have developed a family of sophisticated models, based on
the use of internal functions (e.g. Puzrin & Houlsby, 2001b,
2001c). These authors have proposed the term ‘hyperplasti-
city’ to describe theories in which the irreversible plastic
behaviour is determined by a dissipation potential function,
by analogy with the well-established term ‘hyperelasticity’
used in the analogous situation in elasticity theory.

The object of this paper is to present a systematic
procedure for establishing a hierarchy of models, starting
from the familiar Cam clay models, which include internal
friction, non-associated flow rules and a variety of biased
volumetric/shear hardening laws. These models have the
advantage of automatically satisfying the second law of
thermodynamics. This is not as trivial an exercise as may at
first be thought, since, as will be seen, the well-known
original Cam clay model actually violates the second law,
even though it satisfies Drucker’s postulate. It will also be
shown that some models with significant amounts of internal
friction actually have yield surfaces parts of which are
concave, a property that violates Drucker’s postulate but not
the second law.

In the next section the basic thermodynamic concepts of
state and state variable are discussed in a geomechanics
context. The following section is a brief outline of the
procedure for constructing the yield function and flow rule
of the material from a known dissipation function. A key
step in this procedure is the use of the intermediate dissipa-
tive stress space. The well-known elementary models for
isotropic compression, Coulomb friction and original and
modified Cam clay are then reviewed in the light of this

new procedure. This review suggests ways in which the
original dissipation functions for these simple models can be
modified to include internal friction and shear hardening.
Some illustrative examples are given in the final section.

VOLUME FRACTIONS AND ELASTIC/PLASTIC
STRAINS: OBSERVABLE STATE PARAMETERS

There are several differences between the fundamental
properties of metals and soils, which require a number of
modifications to be made to the standard elastic/plastic
theories for metals, if they are to be extended to soils. Here
we concentrate on two of these factors:

(a) A soil does not have a ‘natural state’ to which it returns
when all the stresses are removed. Here we shall adopt
the convention of introducing an effective pressure, p9R,
which is the pressure in an arbitrarily chosen reference
state.

(b) Since a soil is a two-phase material, any description of
the ‘state’ of a soil must include some volume fraction
parameter, such as voids ratio, e, or specific volume, v.
However, knowledge of v alone is not sufficient to
determine the state uniquely. Another state variable is
needed. This is frequently taken to be the effective
pressure, so that a state is defined by knowledge of
both v and p9 – the coordinates of a point in the
standard isotropic compression diagram.

When constructing thermomechanical descriptions of states,
it is usual to start with ‘observable’ quantities such as
volumes or strains, which are directly measurable geometric
quantities, as the fundamental, independent state variables.
Other state variables such as pressure and stress, which
describe ‘what is being done to the specimen’, are viewed,
at least initially, as the dependent state variables. These
variables are frequently interchanged in the subsequent theo-
ry development, the general theory of which is most ele-
gantly expressed in terms of Legendre transformations
(Callen, 1960; Collins, 1996; Wilmanski, 1998). There are,
however, rules governing these interchanges. Most impor-
tantly, it is impossible to have a geometric variable and its
work conjugate force variable as a pair of independent state
variables. By work conjugate variables we mean those vari-
ables whose product gives the work done. For example, the
product of pressure and volume strain increment give the
work done, so that pressure and volume strain are conjugate
variables, as indeed are p9 and v, since p9�v is also the
work increment, under the standard assumption that the solid
phase of the material is incompressible. These work conju-
gate variables are related through a constitutive equation, or
equation of state, and cannot both be chosen as the primary
independent state variables.

In a thermomechanical formulation of geomaterials we
cannot therefore choose v and p9 as our initial independent
state variables. In the standard development of isotropic
compression of soils p9 is frequently replaced by pc, the
normal consolidation pressure, and v and pc are taken as the
fundamental pair of state variables. The variables in this
formulation are still mixed, however. A completely geo-
metric description requires us to find a geometric parameter
that defines the position of the elastic swelling line in place
of pc. Iwan & Chelvakumar (1988) use the voids ratio
corresponding to pc in their strain-space formulation of
clays. Here, however, we prefer to follow Hashiguchi (1995)
and introduce the reference, plastic specific volume, vp,
defined to be the specific volume of the sample, attained
when it is unloaded from its current state to the reference
pressure, p9R. This is an example of an internal variable, as
it is ‘observable’, but not ‘controllable’. We hence take v
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and vp as the defining independent volume fraction vari-
ables. This is in line with modern thermomechanical devel-
opments of plasticity theory, where the total and plastic
strains are taken as the defining state variables.

We shall use the finite logarithmic (or Hencky) measure
of strain, so that the volume strain is ev ¼ ln (V0=V ), and
the corresponding volumetric strain increment is �ev ¼
��V=V . Assuming that the lid phase is incompressible,
these relations are equally valid when the total volumes are
replaced by specific volumes. The corresponding finite shear
strain can be defined by

eª ¼ 2
3
(e1 � e2) ¼ 2

3
[ln(L0=L) � ln(R0=R)] ¼ ln(¸0=¸)

(1)

where the aspect ratio of the cylindrical specimen is defined
to be ¸ ¼ (L=R)2=3. This definition ensures that the shear
strain is work conjugate to q, as conventionally defined in
the analysis of triaxial tests. An advantage of the use of
logarithmic strains is that the total strain can be expressed as
the sum of the elastic and plastic strains, just as for small
strains. Consider the deformation, which transforms the
sample from state A to state B in Fig. 1. The total strain is

ev ¼ ln(v0=v1) ¼ ln(v0=v
p
0) þ ln(v

p
0=v

p
1) þ ln(v

p
1=v1) (2)

The first term is the elastic strain from A to X. The second
term is ep

v, the plastic strain from A to B (that is, the actual
strain between the unloaded states, from X to Y), and the
last term is the elastic strain from Y to B. The sum of
the first and last terms is hence ee

v, the elastic component of
the total strain.

If we further assume that the material is decoupled, by
which we mean that the elastic moduli are independent of
the accumulated plastic strain, the elastic loading/unloading
lines are now parallel curves, so that their slopes are
independent of v. That is,

d(ln v)

d p9
¼ F( p9) (3)

The function F has the dimensions of (stress)�1, so that in a
purely frictional or cohesionless material, which has no
material parameter with the dimensions of stress, this func-
tion can only be of the form of (constant= p9), so that on the
elastic line

d(ln v)

d p9
¼ � k

p9

and hence

ln v þ k�� ln p9 ¼ constant (4)

This is the slightly modified form of the standard equation,
with v having been replaced by ln v. However, here we have
proved this result for decoupled, frictional materials by
appealing to the principles of dimensional analysis. Argu-
ments for favouring this ln v � ln p9 relation over the tradi-
tional v � ln p9 relation have been advanced by Hashiguchi
(1974, 1995), Butterfield (1979) and Houlsby (1981). Pestana
& Whittle (1995) have presented an overview of various
models, and argue the merits of a ln e–ln p9 relation. Of
course, once one departs from the decoupled and frictional
assumptions, the above proof breaks down.

Since the reference pressure is arbitrary, we can choose it
to be the initial pressure, so that v

p
0 ¼ v0, in which case

equation (2) can be rewritten in the more useful form

ev ¼ ln(v0=v) ¼ ee
v þ ep

v ¼ ln(vp=v) þ ln(v0=vp) (5)

THE THERMOMECHANICAL PROCEDURE FOR
ESTABLISHING ELASTIC/PLASTIC CONSTITUTIVE
LAWS

The general procedure for establishing constitutive laws
for rate-independent materials, starting from the principles
of thermodynamics, will be illustrated here. For textbook
accounts, see the books cited in the introduction. The papers
by Collins & Houlsby (1997), Houlsby & Puzrin (2000) and
Collins (2002) contain accounts particularly relevant to
geomechanics. When the deformation is isothermal, the
incremental work done by the applied stresses is the sum of
the increment in the free energy function, �, and the
increment in the dissipation function, �, all these functions
being defined per unit volume. Here we use the notation
appropriate for analysing triaxial tests. The basic energy
relation equates the incremental work done by the applied
stresses p9 and q to the increase in free energy plus the
energy that is dissipated:

p9�ev þ q�eª ¼ ��þ ��, where �� > 0 (6)

This inequality is the statement of the second law of thermo-
dynamics appropriate for isothermal deformations, and is a
strict ‘greater than’ whenever any irreversible plastic defor-
mations occur (Callen, 1960; Dugdale, 1996; Wilmanski;
1998). (Note that Collins & Houlsby (1997) and Houlsby
(2000) drew attention to the possibility of adding part of the
free energy function to the dissipation function and still
keeping �� non-negative. However, these modified dissipa-
tion functions do not satisfy the stronger converse statement
of the second law, namely that �� must be strictly positive
when any plastic deformation occurs.)

The free energy is a function of the observable kinematic
state variables, e.g. the total and plastic strains ev, eª and
ep

v, ep
ª respectively. Instead of using these volumetric strains,

one could use the logarithm of the total and plastic specific
volumes, as described above. Here, however, we shall con-
tinue to use strains as the independent variables. Hence the
increment in the free energy is

�� ¼ (@�=@ev)�ev þ (@�=@eª)�eª þ (@�=@ep
v)�ep

v

þ (@�=@ep
ª)�ep

ª (7)

The dissipation function is not a state function, as it depends
on the increments in the plastic strains as well as the strains
themselves. It cannot depend on the total strain increments,
since otherwise a purely elastic deformation would produce
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Fig. 1. Loading/unloading lines in ln v–ln p9 space; definition of
reference, plastic specific volume
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dissipation. Hence the dissipation increment function is of
the form ��(ep

v, ep
ª; �ep

v, �ep
ª). In the case of rate-indepen-

dent, elastic/plastic materials, this function is homogeneous
of degree 1 in the plastic strain increments. It follows from
Euler’s theorem for such functions that

�� ¼ [@(��)=@(�ep
v)]�ep

v þ [@(��)=@(�ep
ª)]�ep

ª (8)

In the case of frictional materials it has been shown by
Collins & Houlsby (1997) that �� depends, in addition, on
the effective pressure, or equivalently on the total volumetric
strain (Collins, 1998). This does not affect the validity of
equation (8), however. Eliminating �� and �� between
equations (6)–(8), and equating the four independent strain
increment terms, gives the fundamental relations

p9 ¼ @�=@ev and q ¼ @�=@eª (9)

and

�9 ¼ �@�=@ep
v ¼ @(��)=@(�ep

v) and � ¼ �@�=@ep
ª

¼ @(��)=@(�ep
ª) (10)

Equations (9) show that the effective stresses can be deduced
from the free-energy function, whereas equations (10) define
the dissipative (thermodynamic or generalised) effective
pressure, �9, and dissipative shear invariant, �, in terms of
the free energy function, and show that they can also be
derived from the dissipation function. The dissipative stres-
ses are the work conjugate stresses to the plastic strains, just
as the effective stresses are conjugate to the total strains.
The exact conditions, which are very weak, under which the
deductions of equations (9) and (10) are valid are fully
discussed in the books and papers cited above.

It is important to distinguish between dissipation and
plastic work. Using equations (8) and (10) the dissipation
increment is given by

�� ¼ �9�ep
v þ ��ep

ª (11)

and the plastic work increment is defined by

�W p ¼ p9�ep
v þ q�ep

ª (12)

The second law states that �� can never be negative, but
the sign of the plastic work increment is not restricted
(Mroz, 1973; Lubliner, 1990). Since �� is homogeneous of
degree 1 in the plastic strain increments, the two derivatives
of �� occurring in equations (10) are homogeneous of
degree zero: that is, they depend just on the ratio of the
plastic strain increments, namely the plastic dilation:

�p � ��ep
v=�ep

ª (13)

This ratio can then be eliminated from these two equations,
giving a relation between �9 and � which is the yield
condition in dissipative stress space (Maugin, 1992, 1999;
Collins & Houlsby, 1997; Houlsby & Puzrin, 2000). More-
over, the general theory shows that the plastic strain incre-
ments are always given by the normal flow rule in this stress
space. Several examples of the construction of such yield
surfaces will be given below.

The relationship between the true stresses p9 and q and
the dissipative stresses �9 and � depends on the form of the
free-energy function. It follows from equations (9) and (10)
that if the free energy function depends only on the elastic
strains—that is, just on the difference between the total and
plastic strains—then the dissipative and true stresses are
identical. The yield surface and flow rule can hence be
readily transferred to true stress space. However, Collins &
Houlsby (1997) showed that in the special case of a fric-
tional material, where the dissipation function and hence the
yield function in (�9, �) space also depend explicitly on p9,

the normality property of the flow rule is lost when it is
transferred to true stress space.

In the case of a decoupled material � is the sum of two
functions: one is dependent only on the elastic strains, and
the other depends only on the plastic strains, as shown by
Collins & Houlsby (1997):

� ¼ �1(ee
v, ee

ª) þ�2(ep
v:e

p
ª) (14)

In this case equations (9) and (10) give the relations between
the two sets of stress variables:

p9 ¼ r9þ �9 and q ¼ �þ �, where r9 ¼ @�2=@ep
v

and � ¼ @�2=@ep
ª (15)

The stresses r9 and � are termed the shift stresses. These
stresses have the effect of translating the yield surfaces
without change of shape. These shift (or back) stresses play
an important role in linear, anisotropic, kinematic hardening
models, where they represent the stress at the ‘centre’ of the
shifted yield surface (Lemaitre & Chaboche, 1990; Puzrin &
Houlsby, 2001a). However, it does not seem to have been
fully appreciated that they also play an important role in
formulating isotropic models of geomaterials with different
strengths in tension and compression, as will be shown
below. These shift stresses may be thought of as arising
from recoverable (elastic) deformations, which are triggered
only by the occurrence of plastic strains. They can be
represented by a spring in parallel with the plastic slider, as
described in Puzrin & Houlsby (2001a). Such models have
been developed by Walton & Braun (1986), in order to
describe the elastic/plastic deformations of the contacts be-
tween individual granular particles. However, perhaps a more
satisfying conceptual model, which is relevant to geomater-
ials, and which demonstrates the natural occurrence of such
shift stresses, is that described in the books by Mroz (1973)
and Besseling & van der Giessen (1994). In this model it is
recognised that although a macro-continuum element is
assumed to be deforming plastically, some micro-elements
within this continuum element will not be plastically
stressed, but will still be deforming elastically. This recover-
able energy, ‘locked’ into the macro-deformation, gives rise
to the second free energy function, �2, and its associated
shift stress. This energy can be released only when the
plastic strains are reversed. In the case of isotropic compres-
sion, the macroscopic plastic deformations are normally
assumed to be due to the plastic deformation of the inter-
particle contacts. However, in reality only a fraction of the
particle contacts will be plastically stressed, as is graphically
illustrated in the well-known, discrete element simulations,
such as those of Cundall & Strack (1979). The applied
continuum stresses are transmitted through ‘force chains’
joining only a subset of all the possible particle contacts.
The remaining elastically stressed contacts can provide the
locked-in elastic energy represented by the second part of
the free energy function. The effect of the ratio of the
number of plastic/elastic contacts on the stress–strain curves
has been studied in the simulations of Thornton (2000).

Once the yield function and flow rule have been deter-
mined, the incremental form of the constitutive equations
needed for modelling drained and undrained stress and strain
paths can be found by the well-established procedures. The
yield condition is differentiated to give the consistency equa-
tion. The flow rule is then used to determine the hardening
modulus and the magnitude of the strain increments and
their relation to the stress increments (Wood, 1990; Lubliner,
1990). An overview of the structure of this theory, indicating
the steps needed to deduce the form of the yield function,
flow rule, incremental form etc. from the free energy and
dissipation functions, is given in Fig. 2.
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A REVIEW OF EXISTING MODELS
Here we examine a number of the standard one- and two-

dimensional models in the light of the above thermomecha-
nical considerations. We shall consider only cohesionless
materials, so that the effective pressure is always positive.

Isotropic compression
In isotropic compression the only non-zero strains are the

volumetric components, and the only effective stress is the
effective pressure, p9. The standard linear elastic model,
with constant bulk modulus K , is obtained by taking the first
part of the free energy function to be �1 ¼ 1

2
Kee2

v , so that,
using equation (9), we obtain p9 ¼ Kee

v, and hence �p9
¼ K�ee

v. If the material is frictional, however, the material
does not possess a characterising modulus. Nevertheless, the
free energy has the dimensions of stress, and the only stress
variable available is the reference pressure, p9R. A possible
form for the free energy is hence

�1 ¼ kp9R exp(ee
v=k) (16)

where k is a dimensionless constant. The corresponding
effective pressure and effective pressure increment are ob-
tained by differentiation:

p9 ¼ p9R exp(ee
v=k), and �p9¼ ( p9R=k) exp(ee

v=k)�ee
v

¼ �( p9=k)(�v=v) (17)

This last equation integrates back to give the linear swelling
line (equation (4)) once more.

Since the dissipation increment function has the dimen-
sions of stress/time and is non-negative, in the case of
normal compression we can take it to be of the form

��(ep
v, �ep

v) ¼ �c(ep
v)j�ep

vj (18)

so that from equation (10), when plastic flow occurs:

�9 ¼ @(��)=@(�ep
v) ¼ ��c(ep

v) (19)

It follows that the yield condition in dissipative stress space
is �9 ¼ ��c(ep

v), according as �ep
v . or , 0, and �c(ep

v) can
be interpreted as the volumetric hardening yield function. It
is clear that, if we want to model a material with no strength
in tension, we must choose the second part of the free
energy function �2, so that the shift stress, r9, is also
�c(ep

v), and the effective pressure is p9 ¼ �9þ �c. Hence in
true stress space, yield occurs when p9 ¼ 0 or pc(ep

v), where
pc � 2�c is, of course, the normal consolidation pressure.
This situation is illustrated in Fig. 3(a). The shifting opera-
tion has the effect of shifting the elastic interval from
(��c, �c) in dissipative stress space, to (0, pc) in true stress
space. As the material hardens under compression, its tensile
strength remains at zero. This is a kind of ‘passive’
Bauschinger effect.

The presence of this shift stress in the modified Cam clay
model was noted by Houlsby (1981) and Collins & Houlsby
(1997). Here it has been shown to be a natural part of any
model with different yield stresses in isotropic tension and
compression. (It is not, however, a feature of the original
Cam clay model, as was also noted in these two references.
This apparent contradiction will be resolved below.) If the
model is desired to have a non-zero tensile strength, ts say,
the shift stress must be chosen to be r9 ¼ �c � ts, in which
case pc ¼ 2�c � ts.

The second part of the free energy, and the incremental
dissipation functions, are

�2 ¼ 1
2

ð
pc(ep

v)dep
v, so that ��2 ¼ 1

2
pc(ep

v)�ep
v, and

�� ¼ 1
2
pc(ep

v)j�ep
vj (20)

The plastic work increment, which is the sum of ��2 and
��, is hence pc(ep

v)�ep
v in compression, but zero in tension.

The introduction of the shift stress hence explains how it is
possible to induce plastic dissipation during plastic flow
taking place at constant zero effective pressure. The stored
elastic energy released is exactly equal to the plastically
dissipated energy. We can hence expect that the pressure
component of the shift stress will always be equal to half of
the consolidation pressure, in any model in which plastic
yielding is assumed to occur at constant, zero effective
pressure. A generalisation of this result has been given by
Collins and Hilder (2003). These remarks, of course, apply
only to ‘single surface’ models. This loading/unloading
process can be modelled much more accurately with ‘multi-
ple surface’ or ‘internal function’ models. Houlsby (1981)
also shows that this theory, involving the additional energy
terms that arise in an internal variable formulation, is very
similar to the early energy theory for clays developed by
Palmer (1967).

Free energy
function 

Dissipation
increment
function

Shift
stress

Elastic
law

Incremental (rate)
formulation

Yield surface and
flow rule in
dissipative

stress space

Yield surface and
flow rule in
true stress

space

Fig. 2. Flow chart illustrating the steps in constructing the
incremental form of the elastic/plastic constitutive law, starting
with the free energy and dissipation functions
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Fig. 3. Transformation from dissipative stress space to true
stress space for: (a) isotropic compression; (b) pure friction
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For frictionless materials, the linear isotropic consolidation
line in ln(v) � ln( p9) space is generated by choosing the
hardening function to be pc ¼ p9R exp(ep

v=ª), where the
strains are measured from the state where v ¼ vp ¼ vR,
namely the point on the normal consolidation line where the
effective pressure is the reference value p9R (Fig. 1).

The linear friction model
This familiar model has been discussed, in a thermome-

chanical context, before by Ziegler & Wehrli (1987),
Houlsby (1981) and Collins & Houlsby (1997). We recall
the basic results here, as they are needed for the develop-
ment of new models. Consider a material whose dissipation
function increment is proportional to the plastic shear incre-
ment and the mean effective pressure, Mp9j�ep

ªj, so that
from equation (11):

�9�ep
v þ ��ep

ª ¼ �� ¼ Mp9j�ep
ªj (21)

This is the simplest model that attempts to model Coulomb’s
law of dry friction. From equations (10) and (21) it follows
that the shear component of the dissipative stress is given
by: j�j ¼ Mp9, and either �9 is identically zero, and/or the
volumetric plastic strain rates are identically zero. It is clear
that this dissipation function is meaningful only if the plastic
volume strains are identically zero, since otherwise, accord-
ing to equation (21), a plastic volume change can occur
without producing any energy dissipation. If we now transfer
to true stress space, by simply equating the true and
dissipative stress (no shift stress), we deduce the classical
linear, Drucker–Prager version of the model, but with a
non-associated, incompressible flow rule as illustrated in
Fig. 3(b):

q ¼ Mp9 and dep
v ¼ 0 (22)

Original Cam clay
Although this model is the precursor of many important

developments, it is a pathological example from a thermo-
mechanics viewpoint. The dissipation function is the same
as in equation (21). The standard argument is then to equate
the plastic work-rate to this dissipation function,
p9�ep

v þ q�ep
ª ¼ Mp9j�ep

ªj, set up a differential equation for
the plastic potential q ¼ q( p9), by noting that dq=d p9
¼ ��ep

v=�ep
ª, and integrate to derive the potential function

q ¼ Mp9 ln( p9c=p9). An associated flow rule is then assumed,
so that the yield surface and potential are identical. From
the thermomechanics viewpoint this argument is flawed in
many respects. It fails to draw the distinction between
dissipation and plastic work, and it assumes a normal flow
rule, whereas in fact the thermomechanical potentials un-
iquely determine both the flow rule and yield condition.
Most importantly of all, however, is the fact that, if we use
the dissipation function �� ¼ Mp9j�ep

ªj, then isotropic plas-
tic compression cannot be modelled, since these irreversible
deformations would occur without producing any dissipation,
which is in violation of the second law. The simple linear
model above is the true model associated with this dissipa-
tion function. The original Cam clay model may satisfy
Drucker’s postulate, but it nevertheless violates the laws of
thermodynamics. This model is of course well known to be
unsatisfactory, as it predicts shear strains at the vertex on the
pressure axis (Roscoe and Burland, 1968). The argument
presented here is perhaps a slightly more fundamental way
of making the same objection. According to Schofield
(2000) the original Cam clay model was developed as a
result of the experimental observation that, in the absence of
volume changes, the dissipative energy increment was found

to be always given by Mp9j�ep
ªj. In this restricted context the

model is free from these objections.
As will now be seen, the modified Cam clay model is not

open to these objections. However, in this modification the
frictional mechanisms of energy dissipation, as embodied in
the original model, are abandoned. This was not of course
the intention of its originators, Roscoe & Burland (1968),
and the correct relationship between a dissipation function
and the yield condition and flow rule had not been devel-
oped at that time. It will be argued that a more natural
generalisation of the original Cam clay model, which pre-
serves the frictional mechanism for energy dissipation, is the
new ‘alpha’ model described below.

Modified Cam clay
This model stems from a dissipation function that is

proportional to the isotropic consolidation, volumetric hard-
ening function, and is the natural extension of that for
normal compression used in equation (18):

�9�ep
v þ ��ep

ª ¼ �� ¼ �c(ep
v)[(�ep

v)2 þ M2(�ep
ª)]1=2 (23)

The dissipative stresses are obtained directly by differentiat-
ing equation (23) with respect to the plastic strain incre-
ments and using equation (10):

�9 ¼ � 2
c�ep

v=�� and � ¼ M2� 2
c�ep

ª=�� (24)

so that, eliminating the strain increments between equations
(23) and (24), we obtain the family of elliptical yield surface
in dissipative stress space:

(�9=�c)2 þ (�=M�c)2 ¼ 1 (25)

Introducing the same shift stress as for isotropic compres-
sion, r9 ¼ �c ¼ pc=2, so �9 ¼ p9� pc=2, the yield locus in
true stress space is

( p9� pc=2)2=( pc=2)2 þ q2=M2( pc=2)2 ¼ 1

or q ¼ M[ p9( pc � p9)]1=2 (26)

The familiar family of yield loci is shown in Fig. 4. The
essential point being made here is that this construction is a
two-stage process. The dissipative stress picture is a neces-
sary intermediate step. Appreciation of this procedure
makes it possible to generalise this model in a number of
directions.

The flow rule is necessarily associated, since the dissipa-
tion function does not involve the true stresses:

�ep
v ¼ ��( p9� 1

2
pc) and �ep

ª ¼ ��q=M2 (27)

and the corresponding increments in plastic work and plastic
dissipation are

�W p ¼ ��1
2
p9pc and �� ¼ ��1

4
p2

c (28)
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Fig. 4. Transformation from dissipative stress space to true
stress space for modified Cam clay
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A NON-ASSOCIATED MODEL (THE ALPHA MODEL)
A feature of the above models is that, in the dissipative

stress plane, the critical-state line, defined to be the line on
which the volumetric plastic strain increment is zero, is
always a segment of the �-axis (Figs 3 and 4). This is
because of the symmetry of the yield loci and the fact that
the flow rule is always associated in this plane. When we
transform to the true stress plane, the critical-state line is
now q ¼ Mp9. In the case of modified Cam clay, this
transformation is accomplished by the addition of the shift
stress 1

2
pc, which varies linearly with distance along the �-

axis. However, for the linear frictional model this same
transformation is accomplished, as a result of the fact that
the yield condition in (�9, �) space involves p9 as a para-
meter. As a result the yield surface is ‘sheared’ when �9 and
� are identified with p9 and q. In addition the flow rule is
no longer associated. This immediately suggests a procedure
for generalising the modified Cam clay model to one invol-
ving non-associated flow rules, by superposing these two
types of model.

We choose the dissipation increment function to be

��(ep
v, p9; �ep

v, �ep
ª) ¼ �c(ep

v)f(�ep
v)2

þM2[Æþ (1 � Æ)( p9=�c)]2(�ep
ª)2g1=2 (29)

where Æ is a parameter lying between 0 and 1. This
dissipation function reduces to that for modified Cam clay
model when Æ ¼ 1, and to the linear friction model when
�c ¼ 0. This model hence combines the volumetric harden-
ing behaviour of modified Cam clay and the ‘Coulomb
frictional’ shearing of the linear frictional and original Cam
clay models. The smaller the value of Æ, the more dominant
are the frictional effects. The corresponding dissipative
stresses are hence, using the standard procedure in equation
(10),

�9 ¼ � 2
c�ep

v=�� and � ¼ � 2
c M2—2�ep

y=�� (30)

where

— � [Æþ (1 � Æ)( p9=�c)]

Eliminating the strain increments between equations (29)
and (30) gives the family of concentric, elliptical yield loci,
with semi-axes of length �c and M—�c, in dissipative stress
space (Fig. 5):

�92=� 2
c þ �2=(� 2

c M2—2) ¼ 1 (31)

When this is transformed to true stress space, by using the
standard shift stress �c(ep

v) ¼ 1
2
pc(ep

v), so that �9 ¼ p9� 1
2
pc,

the resulting yield condition is

( p9� p9c=2)2=( p9c=2)2 þ q2=[M2( p9c=2)2—2] ¼ 1 (32)

or

q ¼ M—[ p9( p9c � p)]1=2 (33)

where now we can write — � Æþ (1 � Æ)(2 p9=pc). This
expression only differs from that for the modified Cam clay
yield loci by the addition of the factor —. Representative
graphs of these yield loci are shown in Fig. 6, where it is to
be noted that for sufficiently small values of Æ the loci have
concave segments.

The plastic strain increments are given by the normal flow
rule in dissipative stress space:

�ep
v ¼ ���9 and �ep

ª ¼ ���=M2—2 (34)

which, when transferred to true stress space, gives

�ep
v ¼ ��( p9� pc=2) and �ep

ª ¼ ��q=M2—2 (35)

so that the plastic dilation is

�p ¼ � _eep
v

_eep
ª
¼ � M2—2( p9� p9c=2)

q
� q( p9� pc=2)

p9( pc � p9)
(36)

Note that when p9 ¼ pc=2 then — ¼ 1 and q ¼ Mp9 from
equation (33), so that the plastic volume strain and the
dilation are still zero on this critical-state line. This essential
feature of the modified Cam clay model is hence preserved.
However, the flow rule is no longer associated. The equa-
tions for the plastic potentials in ( p9, q) space are complex
and not useful. The present procedure of deriving the plastic
strain increments from the normal flow rule in dissipative
stress space, and then transforming to the true stress space,
is algebraically much more straightforward.

This model has much in common with those proposed by
Nova & Wood (1979) and Chandler (1985). Two primary
mechanisms of producing plastic deformations are envisaged

(a) compaction, dominating at low stress ratios, involving
the deformation of contact bonds between the particles
and eventually bond fracture and particle crushing

(b) particle rearrangement, which dominates at high stress
ratios, resulting from the sliding and rolling of the soil
particles.

In both these papers yield surfaces and flow rules were
proposed for both regimes. However, these surfaces had to
be joined together in an artificial manner at a certain
transitional stress ratio. One advantage of the present ap-
proach is that the presence of the shift stress, which has
emerged naturally from the thermomechanical formulation,
gives rise to a model in which this transition is continuous.
The relative importance of the two mechanisms is deter-
mined by the value of the parameter Æ.
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The limiting situation where Æ ¼ 0 is of particular inter-
est. The dissipation increment function is now

��(ep
v, p9; �ep

v, �ep
ª) ¼ [� 2

c(�ep
v)2 þ M2 p92(�ep

ª)2]1=2

(37)

In this case all the energy dissipation associated with the
increment in plastic shear strain, �ep

ª, is due to friction and
is given by Mp9j�ep

ªj, as in the linear frictional, or original
Cam clay models. However, here, in addition, the model
includes the dissipation associated with the volumetric plas-
tic strain increment. The yield loci always lie below the
critical-state line, which they touch at p9 ¼ pc=2. The yield
loci are concave when p9 , pc=2. It is frequently stated that
yield surfaces must always be convex. This is not true,
however. The positive dissipation inequality implies only that
the plastic potentials must be convex surfaces (Lemaitre &
Chaboche, 1990). The yield surfaces will hence also be
convex when the flow rule is associated, but this does not
have to be so when this rule is non-associated, as discussed
by Mroz (1963) for example. It is, of course, very difficult
to obtain reliable experimental results at low stress levels.
Lade (2001, personal communication), however, reports that
concave yield loci could possibly explain the apparent
curvature of the instability lines observed at low stress levels
on sands with significant fines content, as discussed in
Yamamuro & Lade (1997, 1998) and Lade & Yamamuro
(1997).

From the flow rule (equation (35)) we observe that, in the
‘dense region’ where p9 , pc=2, the plastic volume strains
are dilatant, even though the yield locus lies below the
critical-state line. In this model therefore it is possible to
have plastic dilation below the critical-state line. As the
value of Æ is increased, at least part of the yield curve in
this ‘dense region’, p9 < pc=2, lies above the critical-state
line. For values of Æ in the interval 0 to 0·172 there are two
such arcs, necessarily convex, separated by a concave arc,
which still lies below the critical-state line. For higher values
of Æ the whole of the yield locus in the ‘dense’ region, lies
above q ¼ Mp9, as in the classical models.

Before discussing the predicted form of the drained and
undrained stress paths, we discuss a modification to the
classical volumetric hardening model, which includes the
effect of shear strains.

A BIASED WORK-HARDENING MODEL (THE BETA
MODEL)

The volumetric hardening model used in modified Cam
clay is now generalised to include contributions from the
shear strains. Specifically we use a law in which the incre-
ment in the hardening parameter pc is a weighted average of
the work done by the volumetric and shear strains:

�pc ¼ ( p9�ep
v þ 	q�e)=ª (38)

Similar approaches have been used by Nova (1977) and
Nova & Wood (1979), who used a weighted average of the
volumetric and shear strain increments, rather than of the
associated work increments. In using work increments we
are following the suggestion of Krenk (1996, 2000). Work
would seem to be a more natural choice than strain, in a
thermomechanical formulation. This model does reduce to
the standard volumetric strain law under isotropic compres-
sion conditions, with p9 ¼ pc. However, when 	 ¼ 0 it does
not reduce to the standard volumetric strain-hardening model
of critical-state soil mechanics, which would have
�pc ¼ pc�ep

v=ª. Lade (1975, 1988) has developed models in
which the total plastic work is taken as the hardening
parameter. This corresponds to a value of 	 ¼ 1 in the

current model. Lade’s procedure is open to the objection that
it is then possible to deduce the hardening behaviour over
the full range of normal and shear stresses just from a series
of isotropic, consolidation tests (q ¼ 0). This seems an
unlikely possibility, as the microscopic mechanisms dominat-
ing in normal compaction are very different from those at
high stress ratios. In support of this viewpoint it will be seen
below that some of the observed features of sand deforma-
tions can be simulated with this model only when 	 , 1

2
.

Here we are principally interested in the effect on the
incremental form of the constitutive law of the inclusion of
the plastic shear strains in the hardening law. Application of
the standard procedure for constructing such a law, by using
the consistency equation, flow rule and hardening rule, in
the case of modified Cam clay, leads to the incremental
plastic strain–stress relations:

�ep
v ¼ (ªø=2�)(ø�p9=p9þ 2�2�q=q)

and �ep
ª ¼ (ª�=M�)(ø�p9=p9þ 2�2�q=q) (39)

where

� ¼ q=Mp9, ø ¼ 1 � �2 � 1 � (q=Mp9)2,

and � ¼ 1 � (1 � 2	)�2 (40)

Drained tests
In a standard drained test, the ratio of the stress incre-

ments is kept constant. The volume strain increment is zero
on the characteristic (critical) state line—that is, when � ¼ 1
and ø ¼ 0, but the shear strain increment is non-zero. The
peak stress is reached when �, which is essentially the
hardening modulus, vanishes: that is, when

� � q=Mp9 ¼ [1=(1 � 2	)]1=2 (41)

This defines the failure line (f.l.) for such stress-controlled
drained tests. Note that we get such peaks only when 	 , 1

2
,

and that the peak stress always occurs above the critical-state
line. The unweighted plastic work model (	 ¼ 1) would not
predict failure, at least with this elliptic yield condition.

Undrained tests
In an undrained test, the sum of the volumetric elastic and

plastic strain increments is zero, so that

�ep
v ¼ ��ee

v ¼ �k�p9=p9 (42)

The characteristic ‘kink’ on the undrained path occurs when
�p9 ¼ 0. This is the phase transition or characteristic state
line (c.s.l.), at which the shear strains start to dominate and
on which the elastic, plastic and total volumetric strain
increments are all zero (Ishihara, 1996; Zienkiewicz et al.,
1998; Krenk, 2000). This line is identical with the classical
critical-state line of the classical models, if that line is
regarded as the line on which the plastic volumetric strain
increment vanishes, rather than the ultimate state line.

It follows from equation (39) that the stress increments
defining the loading path are given by

�p9=�ep
ª ¼ �p9Mø=2k�

and �q=�ep
ª ¼ qM(ªø2 þ k�)=4kª�3 (43)

If the undrained effective stress path has a peak, this will
occur where �q ¼ 0: that is, where

ªø2 þ k� ¼ 0 (44)

This equation defines the instability line. This stress path
becomes asymptotic to a radial line through the origin when
��=� � �q=q � �p9=p9 ¼ 0. The slope of this ‘ultimate’ or
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steady-state line is given by � ¼ �ss say, where �ss is the
root of

ª(1 � � 4) þ k� ¼ 0 (45)

Some sample undrained paths for various values of 	 are
shown in Fig 7. Since the yield loci are geometrically self-
similar, the various possible types of behaviour can be
illustrated by starting the undrained paths at various points
on a normalised yield locus. When 	 ¼ 0 the paths termi-
nate on the c.s.l., but for higher values of 	 paths starting
on the ‘loose’ side of critical cross this line and become
tangential to the u.s.l., as do paths starting in the ‘dense’
zone.

THE ALPHA-BETA MODEL
Drained tests

Equation (41) for the failure line now becomes

� � q=Mp9 ¼ [(1 þ Æ	� 2	)=(1 � 	)][1=(1 � 2	)]1=2

(46)

The presence of internal friction (Æ , 1) reduces this peak
stress ratio slightly.

Undrained tests
The undrained paths can be readily found by numerical

integration. For each increment �p9 the corresponding incre-
ment in pc is obtained from

ª�pc þ [1 þ 2	( pc � p9)=(2 p � pc)]k�p9 ¼ 0 (47)

which follows from the flow rule (equation (36)), the hard-
ening law (equation (38)) and the basic property of an
undrained path (equation (42)). The updated value of q is
then obtained from the yield condition (equation (33)).
Representative paths are shown in Fig. 8. When Æ ¼ 0 the
yield locus touches the c.s.l. only once, so that all paths go
to this point (Fig. 8(a)). The undrained paths cannot cross
this line, since there is no segment of yield surface above
the c.s.l. Instead the paths continue up the c.s.l., which
hence coincides with the u.s.l., irrespective of the value of
	. Paths starting in the ‘loose’ region show a marked drop in
strength before the c.s.l. is reached. This pre-failure soft-
ening behaviour is typical of loose contractive sands. This
softening behaviour is less marked when the value of Æ is
increased, as shown in Fig. 8(b), but now the paths can cross
the c.s.l. and bend upwards and asymptotic to the u.s.l. In
both cases paths starting in the ‘dense’ region follow paths
going away from the origin, with both p9 and q increasing.
The paths lie close to the c.s.l. and eventually merge with
the u.s.l. This is true even for paths starting below the c.s.l

Fig. 7. Undrained stress paths for modified Cam clay with biased, work-hardening law (beta model): (a) � 0; (b) � 0·25;
(c) � 0·5 (M 1, kk 0·05, º 0·25)
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in the Æ ¼ 0 model, since the plastic volume strains are still
dilative.

The main object of this paper has been to demonstrate a
procedure for model construction, based upon the laws and
techniques of thermomechanics. The alpha and beta models
have been introduced to illustrate this general procedure. It
is appreciated that, to be useful, these models must be fully
validated against experimental data, and the results of such
comparisons will be discussed elsewhere. There is a particu-
lar difficulty in trying to use these types of model for sands,
owing to the problematic nature of the normal consolidation
line, as discussed in Pestana & Whittle (1995) and Jefferies
& Been (2000) for example. For sands it may well be
preferable to refer the thermomechanical state parameters to
the critical-state line, as in the analyses of Been & Jefferies
(1985).

SUMMARY AND CONCLUSIONS
Although modern developments in thermomechanics have

had a large influence on many branches of mechanics, this
is not yet true of geomechanics. Perhaps, in part at least,
this is due to the commonly held view that non-associated
flow rules are not covered by modern thermomechanics
theories. However, Collins & Houlsby (1997) showed that

this was not true, and that such flow rules arise naturally for
frictional materials, where the plastic dissipation depends on
the effective pressure. The main achievements and conclu-
sions of the present analysis are as follows:

(a) A set of thermodynamically consistent state variables,
which describe the state of the soil, has been
developed. In particular it has proved helpful to define
a reference, plastic specific volume, by analogy with
the plastic strain, which is used as a key internal state
variable in modern plasticity theories.

(b) The construction of the plasticity models from the free
energy and dissipation functions is a two-stage process.
The yield condition and plastic potential are first
constructed in dissipative stress space, where the flow
rule is always associated. The yield condition and flow
rule are then constructed in true stress space, either by
using a shift stress and/or by using the implicit
dependence of these functions on the true stress
variables, such as the effective pressure. It is important
to distinguish between plastic work and plastic energy
dissipation. Not all the plastic work is dissipated. The
stored plastic energy gives rise to these shift stresses.
These arise naturally when modelling isotropic com-
pression with single-surface models. This stored energy
can be interpreted on the micro scale as locked-in
elastic energy, which can accompany the macro-level
plastic deformations.

(c) The two-step process has been used to analyse a
number of the basic extant models, including Drucker–
Prager and the original and modified Cam clay models.
As a result of the understanding obtained from these
analyses, a family of new models has been proposed.
These incorporate some of the observed features of real
soils and granular materials, not predicted by the
classical models, such as non-associated flow behaviour
at high stress ratios, contractive behaviour at low stress
levels, static liquefaction and instability. Yet these
models maintain much of the familiar, simple structure
of the classical critical-state theories. They also
demonstrate that concave yield surfaces are possible
at low stress levels.

There are a large number of models, which have extended
the classical critical-state theories in a number of directions,
available in the literature. These include CANA Sand
(Poorooshasb, 1994), NOR Sand (Jefferies, 1993), Superior
Sand (Boukpeti & Drescher, 1999), Severn–Trent Sand
(Gajo & Muir Wood, 1999), CASM (Yu, 1998), and other
‘anonymous’ models due to Pender (1978), Krenk (2000)
and Manzari & Dafalias (1997) etc. The special feature of
the present approach is that the models are developed using
ideas of modern internal variable thermomechanics, and are
based on the fundamental physical concepts of work, energy
and dissipation. In many ways this procedure is closest to
the original ideas of critical-state soil mechanics.

For simplicity and relevance, this paper has dealt only
with the formulation of these models for the analysis of
triaxial tests. It is not difficult to generalise the general
theory to fully general three-dimensional situations. The
main limiting factor, however, is that the algebra of the
relationship between the yield function and the dissipation
function for specific models can become prohibitive, once
one departs from the simple quadratic form of the yield
locus. We have also been concerned only with single-surface
models. More realistic models using bounding surfaces,
multiple yield surfaces, or sub-loading surfaces can be
analysed in a similar fashion. They require the introduction
of multiple internal variables. The internal function models

Fig. 8. Undrained stress paths for alpha model with biased,
work-hardening law (alpha-beta model): (a) Æ 0, � 0·25; (b)
Æ 0·25, � 0·5 (M 1·34, kk 0·0054, º 0·181)
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of Puzrin & Houlsby (2001b, 2001c) represent one such
generalisation.
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NOTATION
e voids ratio

e1, e2, e3 principal components of logarithmic, finite, strain
tensor

ev, ee
v, ep

v total, elastic and plastic, volumetric, finite,
logarithmic strains

eª, e
e
ª, e

p
ª total, elastic and plastic, finite shear strains
L length of test specimen

M slope of critical-state line
N constant determining position of normal

consolidation line
p9 effective pressure
pc normal consolidation pressure
p9o initial effective pressure
p9R reference effective pressure

q shear stress invariant
R radius of test specimen
u pore pressure

U internal energy
V volume of test specimen
Vs volume of solid phase
V p plastic volume of test specimen

v specific volume
vp reference, plastic specific volume

�W work increment
Æ parameter in non-associated model
	 parameter in weighted work-hardening model
ª ¼ º� k
�p ¼ ��ep

v=�ep
ª, the plastic dilation

� ¼ q=p9, stress ratio
� ¼ q=Mp9
k slope of elastic loading/unloading line
º slope of normal consolidation line
¸ ¼ (L=R)2=3 aspect ratio
�� scale parameter in flow rule
�9 effective, dissipative pressure
�c normal consolidation pressure in dissipative stress

plane
� 91, � 92, � 93 principal effective stresses

� shear stress invariant of dissipative stress
� rate of dissipation function
� free energy function
� ¼ 1 � (1 � 2	)�2

ø ¼ 1 � �2 � 1 � (q=Mp9)2
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