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Received 1981 September 22; in original form 1980 December 17 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Summary. For the purposes of describing its large-scale and long-term defor- 
mation, the continental lithosphere is regarded as a continuum, obeying a 
Newtonian or a power law rheology. The flow of a thin sheet of power law 
material overlying an inviscid substrate is studied under the assumption that 
vertical gradients of the horizontal velocity are negligible. A numerical 
model is used to investigate the deformation of such a sheet under conditions 
approximating those of continent-continent collision. The material flows in 
response to forces applied to its boundaries (for example, the indenting of 
one continent by another) and to  forces in its interior arising from gradients 
in crustal thickness. The horizontal divergence of the flow produces changes 
in the crustal thickness and hence a time-dependent form to the flow itself. 
For a given set of boundary conditions, the flow depends on the stress expo- 
nent in the power law rheology, n, and on the Argand number& which is a 
measure of the ratio between the stress arising from crustal thickness 
contrasts and the stress required to deform the material at the ambient strain 
rates. When the effective viscosity of the medium is very high (Ar-+O), 
crustal thickness variations do not influence the flow. If the material is 
Newtonian (n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= l), the deformation associated with an influx of material 
(approximating an indenter) is of much greater lateral dimension than the 
width of the indenter, whereas when material has a power law rheology (n = 3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 are used), the deformation is confined to a region of lateral extent com- 
parable to that of the indenter. As Ar increases, the forces arising from crustal 
thickness contrasts exert more influence on the flow, and the maximum 
crustal thickness that can be sustained by a given influx of material is related 
by a simple expression to the effective viscosity of the medium at the 
ambient strain rates. In the limit of a very weak medium (Ar> 10) the litho- 
sphere is unable to sustain appreciable crustal elevation contrasts. The results 
of these numerical experiments show that systems in which the effective 
viscosities are such that the maximum deviatoric stresses are between 1 kbar 

*-sent address: Department of Geological Sciences, Harvard University, 20 Oxford Street, Cambridge., 
wurachusetts 02138, USA. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/7
0
/2

/2
9
5
/5

5
7
7
9
5
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



296 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. England zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand D. McKenzie 

and 100 bar have crustal thickness distributions comparable to that in the 
India-Asia collision zone. In addition, these systems have the characteristic 
that the forces arising from crustal thickness contrasts are great enough to 
produce net extension in the region of thick crust in front of the influx 
boundary, perpendicular to the direction of influx, as well as lateral move- 
ment away from the region of thickest crust. Observations of contemporary 
tectonics in Asia show phenomena very similar t o  these, in the active 
east-west extension of Tibet and the eastward motion of eastern Tibet. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 Introduction 

Plate tectonic theory has been successful in explaining much of the present and past defor- 
mation of the Earth. Certainly its fundamental tenet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- that the plates are essentially rigid 
bodies - describes well the behaviour of the oceanic regions; oceanic deformation occurs 
almost entirely within belts a few tens of kilometres wide that take up the differential move- 
ments between otherwise rigid plates. However, it has been recognized for several years that 
the deformation of the continents represents a significant departure from the principles of 
plate tectonics (McKenzie 1972, 1976; Molnar & Tapponnier 1975; Tapponnier & Molnar 
1976). For example the zone of collision between India and Asia is more than 2000km wide 
and that between Africa and Europe is up to lOOOkm wide. In both these zones there are 
regions with crust of one and a half times to twice the normal continental thickness and, 
although some of the seismicity and deformation appears to occur in narrow linear zones, 
much of it is diffuse in nature and cannot adequately be accounted for in terms of the 
relative motion of the large plates, or even of a greater number of small plates. 

One approach to the crustal deformation in continental convergence zones has been to 
treat the collision in terms of the deformation of a rigid-plastic medium by a rigid indenter 
(Molnar & Tapponnier 1975; Tapponnier & Molnar 1976, 1977). In this approach, a condi- 
tion of plane horizontal strain is assumed, and the slip lines calculated from the imposed 
boundary conditions are taken to indicate the approximate orientations expected for large- 
scale strike-slip faulting in the collision zone. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA measure of qualitative success has been 
attained in relating the slip lines obtained from this kind of modelling to the orientations of 
major faults in Asia, and in other less well constrained collision zones. 

However, as recognized by Molnar & Tapponnier, there are limitations to this approach 
which make it hard to apply in a quantitative way to the processes of continental deforma- 
tion. First, the slip lines calculated are only appropriate for the onset of yielding in the 
rigid-plastic medium and their orientations will change as deformation proceeds. Although it 
is possible in principle to calculate the finite deformation of a rigid-plastic medium, in 
practice it is laborious, except in the simple case where the geometry remains constant but 
the scale increases (e.g. indentation by a wedge). In the plastic/indenter approach, as in the 
present one, the problem addressed is of the finite deformation of a continuous medium - 
dip  lines are not faults - thus the relation between an instantaneous slip line and a major 
strike-slip fault which may have accommodated hundreds of kilometres of movement is 
problematic. 

Secondly, the assumption of plane horizontal strain breaks down in areas where the crust 
has been appreciably thickened or thinned, and regions such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas this extend more than 
1000 km north of the Himalayas. Ignoring strain in the vertical direction affects not only the 
geometry of the deformation: crustal elevation contrasts will exert forces within the deforrn- 
ing medium in addition to those directly imposed by the boundary conditions. As the 
former forces may be comparable with those estimated to be available to drive plate motion 
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(e.g. Richter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& McKenzie 1978) they ought not to be neglected in the treatment of zones of 
continental convergence. 

In this paper we present results of some numerical experiments on the deformation of 
Newtonian and non-Newtonian viscous materials in response to boundary conditions 
approximating those of continental collision. Our approach permits the calculation of the 
timedependent deformation and stress field, and - by taking account of the vertical strain 
- gives the development in time of crustal thickness variations. It also permits the calcula- 
tion of deformation fields for differing assumptions about the effective viscosity of the 
continental lithosphere. Comparison of the results of numerical experiments with the defor- 
mation in the India-Asia collision zone suggests that the forces arising from crustal 
thickness contrasts may play an important role in the deformation of the continents. 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAModel formulation 

in formulating a model for continental deformation it is necessary to make several assump- 
tions about the rheology appropriate to the large-scale deformation of the continents and 
about the manner in which this deformation takes place. These assumptions are discussed in 
Section 2.1 and the mathematical formulation to which they lead is presented in Section 2.2. 

2.1 ASSUMPTIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We assume that the variation with depth of the horizontal components of velocity within the 
lithosphere is negligible. This assumption is valid for the case of a thin viscous sheet overly- 
ing an inviscid fluid, provided that gradients of crustal thickness are small; these conditions 
are satisfied in the present case, as the lithosphere is underlain by asthenosphere much 
weaker than itself, and gradients of crustal thickness are small (see Section 4). It follows 
from this assumption that the rate at which the lithosphere strains in response to a given 
stress - or conversely the stress required to maintain a given strain rate - will be governed 
by the rheology of the strongest portion of the lithosphere. This formulation ignores the role 
of faulting in lithospheric deformation - something that is inevitable in any continuum 
approach to the problem. We discuss in Sections 4 and 5 some of the problems of relating 
the brittle deformation of the upper layers to the deformation of the lithosphere as a whole. 

There have been relatively few reliable determinations of the rheological properties of 
crustal rocks, but those that there are indicate that crustal rocks may be weaker than the 
upper mantle under the conditions of temperature, pressure and strain rate appropriate to 
continental collision (e.g. Tullis 1979; table 1). I t  should be emphasized that the relevant 
strength is that involved in strains of tens of per cent over tens of millions of years and thus 
that the brittle layer is not regarded as governing the strength zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the lithosphere. The formu- 
lation that follows does not depend on the detailed rheology of the continental lithosphere, 
but on some vertical average of it (Appendix A); we regard the question of what level, or 
levels, within the lithosphere control its strength as an open one, but in relating the 
numerical experiments described here to the properties of the continental lithosphere we 
shall use the uppermost mantle as aplausible exampZe of this layer, because the rheologies of 
olivine and of mantle rocks have been investigated more than those of crustal materials. 

Laboratory determinations of the rheology of olivine and other minerals representative of 
the crust and upper mantle indicate that they deform by power law creep according to a law 
like 

~ = C ( U , - U ~ ) ~  exp - 
( R 3  
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298 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. England and D. McKenzie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
in the range of conditions likely to apply to the deformation of the continental lithosphere. 
C is a constant of the material, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu1 and u3 are the greatest and least principal stresses, 0 is the 
absolute temperature, R is the gas constant and Q is the activation energy for the relevant 
deformation mechanism. There may also be a dependence of the strain rate on the lithostatic 
pressure, but this is much weaker than the temperature dependence and is neglected here. 
Application of the rheology of equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1) to the deformation of the continental litho- 
sphere under the assumption of negligible vertical gradients of horizontal velocity shows that 
equation (1) may be replaced by a relation of the form: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= B-"(u, - u3)" (2) 

where B now averages throughout the lithosphere the temperature-dependent parts of 
equation (1) (see Appendix A). B is to some extent sensitive to the thermal gradient assumed 
but it is principally dependent on the ratio Q / ~ M  (equation l), where eM is the absolute 
temperature at the top of the upper mantle. This simplification still applies if the strength of 
the lower crust is comparable with that of the upper mantle (see Appendix A), provided that 
n does not change within the strongest portion of the lithosphere. The problem may now be 
formulated in terms of the deformation of an homogeneous power law material that is 
assumed to be isotropic and incompressible. 

2.2 M A T  H E M  A T  I C A L F 0 R M U L AT I 0  N 

In describing the flow of rocks at geological strain rates we may neglect momentum terms 
and the Navier-Stokes equation reduces to 

where a = (0, 0, l), rij are elements of the deviatoric stress tensor and p is the pressure in the 
field. The usual convention of summation over repeated subscripts holds. A constitutive 
relation like equation (2) is usually generalized in the form: 

e = B-" T"-' rij- (4) 

Tis the second invariant of the deviatoric stress tensor 

and the strain rate tensor is defined by 

kij =-(- I aui zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+Z) 
2 axi 

where ui and uj are components of velocity in the directions of orthogonal coordinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi, X i .  

From equation (4) we have 

where 6 is the second invariant of the strain rate tensor (cf. equation 5). The independence 
of depth of the horizontal components of velocity gives us 

exz = izx = iyz = izv = 0 

izz = - (& + iyy). 
and the incompressibility of the fluid requires that 

(9) 
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A model for continental deformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA299 

The second invariant of the strain rate tensor may now be expressed entirely in terms of 
spatial derivatives of the horizontal components of velocity: 

Integration of the vertical pressure gradient obtained from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) yields p ,  and substitution of p 
and rii from (7) into (3) then gives 

where it is now understood that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj represent only the two horizontal coordinates, and 
the pressure, p ,  in equation (3) has been replaced by the average of the pressure over the 
whole depth, L ,  of the lithosphere 

If the crust is of thickness s and density p m  equation (12) gives 

Rearranging equation (1 l ) ,  and using equation (13), we obtain 

The natural non-dimensionalization is 

(x: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs') zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (x, s)/L ; U' = U/Uo ; t' = tL/uo 

where t is time (equation 18). Equation (15) may be written in the non-dimensional form 
(dropping primes): 

Vzu=-V(V-u) + 2 ( 1 - l / n ) ~ - ' V l ? ~  k t 2 A r ~ ( ' - ' ~ n ) s V s  (16) 

where all operators refer to horizontal derivates only, and 

The timedependence of s may be determined, once u is known, from the continuity equation 

as 
-=- v * (su) 
at 

with the nondimensionalization of equation (15). 
Equations (16) and (18), together with an initial condition on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, and boundary conditions 

onu and s completely specify the time and space dependence of the velocity field and the 
crustal thickness. Details of the numerical solution of these equations are given in Appendix B. 

3 Results 

The formulation of Section 2 leads to a simple parametrization in which the flow for a 
given set of boundary conditions depends only on two parameters directly related to the 
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300 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
constitutive relation assumed for the material. The first, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn,  defines the power law depen- 
dence of the strain rate on the stress, and the second, Ar, is linked to the effective viscosity 
of the medium. 

P. England zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand D. McKenzie 

3.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP A R A M E T E R  R A N G E S  

I t  seems likely from laboratory experiments on olivine and mantle-derived rocks, and from 
more general considerations of the deformation mechanisms of ceramics that, under the 
ambient conditions of temperature, pressure and strain rate, the deformation of the upper- 
most mantle is controlled by the movement of dislocations. This mode of deformation 
results in power law creep with a stress exponent that is inferred from laboratory experi- 
ments to be about 3 for Earth materials (e.g. Ashby zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Verrall 1978; Goetze 1978). However, 
the extrapolation of laboratory data to geological strain rates is notoriously uncertain, and it 
is also possible that diffusional flow (Newtonian, n = 1) or grain size-dependent flow (which 
could result in power law flows with stress exponents greater than 3 )  predominate in the 
uppermost mantle (Ashby & Verrall 1978; Goetze 1978). 

We have used values of '1, 3 and 5 for n; as will be seen below the principal modifications 
to the flow come in the transformation from n = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 to 3 ,  and raising n higher does not 
produce qualitatively different results. 

Application of laboratory data to geological conditions is also uncertain with regard to 
the constant of proportionality between strain and (stress)" - B in equation ( 2 )  -because 
of the exponential dependence of B on temperature (equations 1 and A3) and because of the 
extrapolation over several orders of magnitude that is necessary to relate laboratory strain 
rate data to geological processes. This uncertainty is expressed in the present formulation in 
terms of an uncertainty in Ar in equation (16). 

The physical significance ofAr may be seen by rewriting equation (17) as: 

where P ( L )  is an estimate of the excess pressure arising from a crustal thickness contrast of 
order L and ~ ( 6 ~ )  is the stress required to deform the medium at a strain rate characteristic 
of the system: 

6 ,  = U O l L .  (20) 

We propose the name Argand number for this measure of the tendency of the lithosphere 
to strain in response to the buoyancy forces generated by crustal thickness contrasts. If Ar is 
small - i.e. if the effective viscosity of the medium is large at the ambient strain rates - then 
the flow will be governed by the boundary conditions. At the other extreme, if Ar is very 
large, the forces arising from crustal thickness variations will be dominant and the effective 
viscosity of the medium will not be great enough to support appreciable elevation contrasts. 

The greater uncertainty in these models is the effective viscosity of the continental litho- 
sphere at geological strain rates, so it is desirable to investigate as large a part of the para- 
meter range as possible; it is found that the range of 0-30 in Argand number encompasses 
the extremes outlined in the previous paragraph. 

3.2 B O U N D A R Y  CONDIT IONS 

The means of solution of equation (16) restrict the geometry of the models to a rectangle or 
a system of overlapping rectangles; for the calculations described here we have chosen the 
simplest geometry rather than proceeding immediately to more complex configurations. 
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I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor continental deformation 30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

The deforming continental lithosphere is taken to be rectangular with rigid boundaries - 
zero normal and tangential velocity - except over part of one boundary where material 
identical to that of interior flows in at a rate that is a function of position but not, in these 
instances, of time. This flow is symmetrical and normal to the boundary, and solutions are 
obtained in one-half of the rectangle with the axis of symmetry as a free boundary. In all the 
experiments described below the rectangle has dimensions 64L by 32L and so solutions are 
found in a square of side 32L. In accordance with the velocity boundary conditions the 
crustal thickness has zero gradient normal to the edges; in the first set of experiments to be 
described below this condition is replaced by one of constant thickness on the influx 
boundaly. The geometry of the models is illustrated in Fig. 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.3 SCALING 

In presenting the results of the numerical experiments we have used the values of parameters 
given below: 

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. 

L = 100km zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u ,  =50mmyr- '  
g = 9 . 8 m P Z  
pc = 2.95 Mgm-3 
pm= 3.3Mgm-' 

Apart from variations in crustal thickness, two important points of comparison between the 
solutions described below and observations of the deformation of the continents are the 
magnitudes of the strain rates and the deviatoric stresses predicted by the numerical 
experiment. 

The relation of the stresses and strain rates to their non-dimensional equivalents are: 

where the dimensionless variables are primed. 
The solutions presented below are for fixed values of Argand number and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, and it is 

important to know to what extent the choices of values for the parameters in Table 1 
influence the magnitudes of the strain rates and stresses calculated from the solutions. The 
dependence of the strain rates on the choices of uo and L is clear from equation (2la), and it 
can be seen from equation (21c) that the stresses for fixed values of L, Ar and n are inde- 
pendent of the magnitude of the velocity used to dimensionalize the solution. It can also be 
seen from equations (21c) and (16) that for fixed uo, Ar and n, the stresses are proportional 
to the value of L. These two results are to be expected from the formulation of Section 2. 

3.4 MODELS W I T H  ZERO A R G A N D  N U M B E R  

When the Argand number is zero, the flow in the medium is independent of time, although 
the crustal thickness variations will develop provided that V . (su) is not everywhere zero. In 
this set of experiments, the velocity boundary conditions of Fig. 1 were applied with the 
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302 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. England and D. McKenzie 

N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

uy = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( x )  u,,uy=o 

~~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ds 
dY 

s=S, or - = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 1. Geometry of the numerical models described in the text. Finite difference solutions to equation 
(16) are obtained on a mesh within the box (Appendix B), subject to the boundary conditions shown. In 
the models described in this paper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX ,  = Ym = 32L.  The functionf(x) has the form: 

f(x) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu,, ; 

f ( x ) = u ,  cos2 [n/2(4x/Xm-1)] Xm/4<x<X,/2. 

For convenience of description, the points of the compass, as shown here, are used in the text when 
referring to different parts of the box. 

0 < x  < X,/4 

initial condition that the crust be 35 km thick everywhere in the box; the boundary condi- 
tions on crustal thickness were those of Fig. 1, with the requirement that the crust on the 
x-axis was always 3 5 km thick. 

Figs 2, 3 and 4 illustrate, for fluids with n = 1, 3 and 5 respectively, the flow fields, the 
principal strain rates and the orientations and relative magnitudes of the principal deviatoric 
stresses arising from the velocity boundary conditions. Figs 5 ,6  and 7 show the development 
with time of the crustal thickness, again for fluids with n = 1 , 3 , 5 .  

The velocity fields are plotted in Figs 2(d), 3(d) and 4(d) in the form of vectors having 
their origins at the positions of grid points in the finite difference mesh. The strain rate tensor 
corresponding to these fields is illustrated by contours of the isotropic strain rate (rate of 
extension or compression) and by crosses indicating the orientations and magnitudes of the 
principal shear strain rates (Figs 2a,c, 3a,c, 4a,c). Figs 2(b), 3(b) and 4(b) show the orienta- 
tions and the relative magnitudes of the principal stresses in the medium. Note that when the 
Argand number is zero the effective viscosity of the system is undefined (equation 2 lc) and 
the stresses have arbitrary absolute magnitudes. 
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A model for continental deformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. . . . . . . . . . . . .  . . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . .  . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA303 

. . . . . . . . . . . . . . .  . . . . . . . . . . . . . .  .....*.... . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

. . 8 b 4 4 I . . . .  . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

. 8 8 L S + + . . . .  . .  
. 

I 

. . . . . . . . . . . . . . .  

. . . . . . . . . . . . . .  . . . . . . . . . . . . . .  

. . . . . . . . . . . . . .  

. . . . . . . . . . . . . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
' a , , , . . . . .  . . . . .  

, 1 1 1 1 . .  . . . . . . . . .  
~ , , , , . , . . .  . . . . . .  

. . . . . . . . . . . . . . .  
I . . .  , . . . . . . . . . . .  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 

1 

a 

Figure 2. In this and all subsequent figures, the velocity, differential stress and strain rates at individual 
mesh points on the finite difference grid, when displayed, are at spacings of 2 L  (that is: at every second 
mesh point in x and y for a 32 X 32 grid and at every fourth point for a 64 X 64 grid). Contours are drawn 
by a standard contouring routine that uses values from all the mesh points. This figure illustrates the 
velocity, strain rate and differential stress fields for a Newtonian fluid subject to the boundary conditions 
shown in Fig. 1 and discussed in the text, with Ar = 0. (a) Isotropic strain rate field (contours of the 
instantaneous rate of thickening or thinning: - [SXx + C y y ] )  for the flow field. The contours are from 
- 1 X  lo-'' s-' (extension) in steps of 2 X s-' to  1.4 X 10-'5s-1. Addition and subtraction signs mark 
locations of the maximum and minimum of the isotropic strain rate, and the zero contour is labelled. 
(b) Directions and magnitudes of the principal horizontal deviatoric stresses produwd by the flow, the bar 
by the side of the figure shows the size of the symbol for the maximum stress. When Ar is zero, the 
absolute values of the stresses are arbitrary (see text) and this f m r e  shows the variation of the relative 
magnitudes with distance from the influx boundary. The origins for the symbols lie on the mesh points; 
thick tines indicate negative stress (compression) and the thin lines indicate positive stress (tension). 
(c) Directions and magnitudes of the principal shear strain rates for the flow, the bar by the side of the 
figure shows the size of the symbol for the maximum strain rate (1.15 X lW"s-'). The centres of the 
symbols lie on the mesh points; thick lines correspond to dextral shear and the thin lines to sinistral shear. 
(d) Velocity vectors for the flow at individual mesh points; the origins for the vectors being at those 
points. The maximum velocity, shown by the bar at the side of the figure, is 5 cm yr'l. 

b 

There are several features common to all the solutions shown. First, the flow (as indicated 
by the velocity vectors in Figs 2d, 3d and 4d) diverges from the influx portion of the southern 
boundary but, over most of the south-western portion of the box, it is still at a shallow angle 
to the y-axis; consequently the magnitude of uy decreases laterally to follow closely the 
velocity boundary condition on the x-axis. This flow gives three distinct regions within the 
box which may be seen from the plots of isotropic strain rate (Figs 2a, 3a and 4a) and shear 
strain rate (Figs 2c, 3c and 4c). First, in the south-western corner of the box immediately in 
front of the influx boundary, is a region of intense compressive strain while there is a more 
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304 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

. . .  I . . . . .  . . . . . . .  ...... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P. England and D. McKenzie 

. .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a C 

I 

I 

d b 
Figure 3. As for Fig. 2, except that the solutions are for a non-Newtonian power law fluid with n = 3 and 
Ar = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. (a) The strain rate contours are - 2  X 2.8 X 10'15s-1. (c) The maximum principal 
shear strain rate is 1.7 X 10-'5s-'. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2 X 

a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC 

d 

Figure 4. AsFig. 3,except thatn is5 andArzero. (a)ThestrainratecontoursareO(2 X 

(c) The maximum principal shear strain rate is 2.2 X loT1' s-'. 
3.6 XlO-"f'. 
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A model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor continental deformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA305 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

d 
Fire zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Plots of the crustal thickness as a function of time for the flow field of Fig. 2. Contours are at 
inte.rvals of 5 km thickness; the addition and subtraction signs give the positions of maxima and minima; 
the initial crustal thickness, and the thickness of crust entering over the influx boundary, is 35 km. The 
35 km contour is labelled. (a) Time is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7.9 Myr (tuo 400 km zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 4L) contours are from 30 km in steps of 
5 km to 40km. (b) Time is 15.8 Myr (tu, 800 km = 8L) contours are 30 (5) 45 km. (c) Time is 23.7 Myr 
(fuo120Okm = 12L) contours are 25 (5) 50km. (d) Time is 31.2Myr (tu,1600km = 16L) contours are 
25 (5) 55 km. 

a C 

Fiiure 6. Plots of crustal thickness as a function of time for the flow field of Fig. 3. As Fig. 5. (a) Time is 
7.9Myr; contours are 35 (5) 50km. (b) Time is 15.8Myr; contours are 35 (5) 65km. (c) Time is 
23.6 Myr; contours are 30 (5) 75 km. (d) Time is 31.2 Myr; contours are 30 (5) 90 km. 

11 
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306 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. England and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. McKenzie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

b d 

Figure 7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPlots of crustal thickness as a function of time for the flow field in Fig. 4. As Fig. 5 .  (a) Time is 
7.8Myr; contours are 35 (5) 55km. (b) Time is 15.6Myr; contours are 35 (5) 75km. (c) Time is 
23.4 Myr; contours are 35 (5) 95 km. (d) Time is 3 1.2 Myr; contours are 35 (5) 115 km. 

diffuse region of extensional strain in the south-eastern corner. These two regions are sepa- 
rated by a zone of shearing associated with the transition from influx to zero motion on the 
southern boundary. 

The origin of the extensional region can most readily be seen from the velocity field for 
y 1 =  1 (Fig. 2d), where there is an induced northward flow to the east of the influx boundary, 
which results in the tension near the fixed boundary to the south. 

Although the flows discussed above have steady state velocity fields, they result in crustal 
thickness distributions which are time dependent (Figs 5 ,  6 and 7). Again, the flows for 
different values of y1 have several characteristics in common. The principal one is that, 
although the area of greatest rate of crustal thickening does not move (Figs 2a. 3a, 4a) the 
area of greatest crustal thickness is advected into the box and the maximum crustal thickness 
continues to increase, although more slowly as the region of greatest crustal thickness moves 
away from the inflow boundary. 

The region of extension is associated with the rigid portion of the southern boundary and 
so does not move, and the total crustal thinning is very much less than the thickening in the 
compressive region of the flow. 

We now consider those aspects of the flow field which are influenced by changing the 
value of n in the power law rheology. In the absence of pressure terms from crustal thickness 
variations, equation (16) takes the familiar form of the Euler equations for momentum 
conservation. 
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307 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor continental deformation 

where the effective viscosity, qef f ,  is defined as 

(cf. equation 7). When the flow is Newtonian, the effective viscosity is constant, but in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cases where n is greater than unity the stress gradients have a contribution from the term in 
atl,ff/axj; equation (1 1) may be written: 

The second term on the rhs in equation (24) is equivalent to the second term on the rhs of 
equation (16), and is zero when n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0. In general the magnitude and sign of this term depend 
on the details of the flow, but its effect is to concentrate the flow into the regions of highest 
stress, that is of lowest viscosity. This property is usually referred to as 'shear thinning'. As 
the scale of the flow in the x-direction is fLved in the present case, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis concentration takes 
the form of diminishing the northward extent of the region of most intense deformation. 
Figs 2(a,c), 3(a,c), and 4(a,c) show that the maximum values of the isotropic and shear 
strain rates increase from 1.4 and 1.15 x 10-'5s-', respectively for n = 1 to 2.8 and 
1.5 x s-' for n = 3 and to 3.6 and 2.25 x 10-15s-1 for n = 5 .  This effect can be seen in 
the plots of the velocity vectors (Figs 2d, 3d and 4d) and in the plots of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuy along the y-axis 
(Fig. 8a). Fig. 8(a) shows that the most pronounced changes come between n = 1 and 3, 
although increasing n to 5 and 8 does further steepen the fall off of u,, with distance from 
the influx boundary. 

In a similar manner, the concentration of the flow into the region around the influx 
boundary also reduces the magnitude of u, (Figs 2d, 3d, 4d and 8b) as eastward motion 
away from the influx boundary is inhibited by the higher effective viscosity in the region of 
low strain rate. This is shown in the plots of u, along the SW-NE diagonal (Fig. 8b); note 
that in the Newtonian case u, is always positive near the influx boundary - in line with a 
general divergence of the flow from the source of material, but in the non-Newtonian cases 
the stress gradients discussed above produce small negative values of u, in this region. 

The changes in flow resulting from increasing n have a marked effect on the time develop- 
ment of the crustal thickness; the concentration of strain in front of the inflow boundary as 
n increases means that the crust reaches greater thicknesses there but the area of greatest 
thickness moves less far into the box because of the corresponding reduction of u,, (Fig. 8a). 

A convenient measure of the width of the zone of crustal thickening is given by the 
intersection of the contour 

s = (smax + 35 km)P (25) 

with the y-axis. Comparing the width of this cut at, for example, 24Myr shows that it 
changes from 1700 km wide for n = 1 to 750 and 550km for n = 3 and 5 respectively; 
correspondingly, the maximum crustal thickness after 24Myr increases from 50 km for 
n = 1 to 75 and 95 km for n = 3 and 5.  

3.5 MODELS W I T H  n = 3  A N D  A R G A N D  N U M B E R  G R E A T E R  T H A N  ZERO 

In this set of experiments, the velocity boundary conditions of Fig. 1 were used with the 
initial condition that the crust be 35 km thick everywhere in the box, but now the condition 
on the crustal thickness on the x-axis is that it has zero gradient normal to the boundary. 
'This condition was used because for A r  > 3, a fmed crustal thickness at the influx boundary 
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308 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. England and D. McKenzie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 

4 

0 800 1600 2400 3200 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Distance K m  

I I I I 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I V Y = *  
-0.1 

0 1131 2263 3394 45 25 

Distance Km zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 8. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) Plots of uy (northward velocity) with distance from the x-axis (south edge of box) along the 
y-axis for the boundary conditions illustrated in Fig. 1. The curves are for a Newtonian fluid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n = 1; see 
Fig. 2a) and for power law fluids with n = 3 (Fig. 3a). n = 5 (Fig. 4a) and n = 8 (not otherwise illustrated). 
(b) Plots of ux (eastward velocity) with distance from the origin along the south-west-northeast diagonal 
of the box for the boundary conditions illustrated in Fig. 1. The curves are as for Fig. 8(a). 

leads to very large gradients of crustal thickness near the boundary, which produce 
numerical instabilities. Figs 9-13 display the influence of increasing Argand number 
(decreasing effective viscosity) for n = 3 in the type of flow discussed in the previous 
subsection. 

We consider first the case where n = 3 and Ar = 1 (Figs 9 and 13a, b, c); because of the 
boundary condition on the x-axis, the area of thickest crust is now fixed on the inflow 
boundary, but the crustal thickness develops in a similar manner to that of Fig. 6 with an 
area of crustal thinning near the rest of the southern boundary (Fig. 9a, c, e and g). (The 
maximum crustal thickness is greater than in the case illustrated in Fig. 6 because the 
boundary condition requires more crustal material to enter the box as the crustal thickness 
builds up.) 

The principal difference lies in the behaviour of the isotropic strain rate (Fig. 9b, d, f and 
h); Fig. 9(b) resembles the isotropic strain rate plot for the case when Ar is 0 (Fig. 3a) but as 
the crustal thickness in front of the inflow boundary increases, the forces arising from 
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A model for continental deformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA309 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe 

b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 9. Contours of crustal thickness and isotropic strain rate for the boundary conditions of Fig. 1 
with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 3 and A r  = 1; initial crustal thickness everywhere is 35 km and the crustal thickness gradients are 
zero normal to each boundary. The crustal thickness is contoured at 5 km intervals and the strain rate at 
intervals of 2 X 6'. (a) Time is 7.87 Myr: crustal thickness contours are from 35 km in steps of 
5 km to 55 km. (b) Time is 7.87 Myr: isotropic strain rate contours are from - 2 X s-' in steps of 
2 X 10-'6s-' to 2.4 X 10-15s-1. (c) Time is 15.8 Myr: crustal thickness 35 (5) 85 km. (d) Time is 15.8 Myr: 
isotropic strain rate - 4 X 1.8 X 10-15s-1. (e) Time is 23.6 Myr: crustal thickness 30 (5). 
1lOkm. (f) Time is 23.6Myr: isotropic strain rate -6 X 1 O - I 6  (2X10-'") 1.0X10~'5s~1. (g) Time is 
31.5 Myr: crustal thickness 30 (5) 120 km. (h) Time is 31.5 Myr: isotropicstrain rate - 8 X 
8 X s-'. 

(2 X 

(2 X 

a 

b d 

e 

f 

Figure 10. As Fig. 9, with n = 3 and Ar = 3. (a) Time is 7.90 Myr: crustal thickness 35 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5 )  55 km. @) Time 
is 7.90Myr: isotropic strain rate -4X10-16 (2X 1.8X10-15s-'. (c) Time is 15.8Myr: crustal 
thickness 35 (5) 70 km. (d) Time is 15.8 Myr: isotropic strain rate - 6 X (2 X 1.0 X lO-"s-'. (e) 
Time is 31.6 Myr: crustal thickness 30 (5) 80 km. (f) Time is 31.6 Myr: isotropic strain rate - 6 X lo-'" 
(2 X 10-l6) 6 X lo-'" 6'. 
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3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEngland and D. McKenzie 

'1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

b ~ 

C 

T 
d f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 11. As Fig. 9, with n = 3 and Ar = 10. (a) Time is 7.92Myr: crustal thickness 35 (5) 45 km. (b) 
Time is 7.92Myr: isotropic strain rate - 6 X (2 X 1.2 X 10-'5s-'. (c) Time is 15.8 Myr: crustal 
thickness 35 (5) 50 km. (d) Time is 15.8 Myr: isotropic strain rate - 6 X (2 X 6 X s-'. 
(e) Time is 31.3 Myr: crustal thickness 35 (5) 55km. (f) Time is 31.3 Myr: isotropic strain rate 
-4X10-I6 (2X10-'6)6X10-16~-' .  

a 

b 

C e 

f 

Figure 12. As Fig. 9, with n = 3 and Ar = 30. (a) Time is 7.86 Myr: crustal thickness 35 (5) 40 km. (b) 
Time is 7.86 Myr: isotropic strain rate - 4  X C'.  (c) Time is 15.6 Myr: crustal 
thickness 35 (5) 40 km. (d) Time is 15.6 Myr: isotropic strain rate - 2 X 6 X s-'. 
(e) Time is 31.0 Myr: crustal thickness 35 (5) 40 km. (f) Time is 31.0Myr: isotropic strain rate - 2 X 
(2 X 6 X 10-l6s-'. 

(2 X 6 X 

(2 X 
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Figure 13. Plots of principal shear strain rates (Fig. 13a, d, g and j), principal deviatoric stresses (Fig. 13b, 
e, h and k), and of the velocity fields (Fig. 13c, f, i and 1) for the numerical experiments with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn = 3 and 
different values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAr. (a), (b) and (c): n = 3 and Ar = 1; plots at 31.5 Myr (see Fig. 9g and h). Maximum 
principal strain rates, principal deviatoric stresses and velocities, shown by bars at the sides of the figure, 
m 8.8X10-16s-1, 1040 bar and Scmyr-l. (d), (e) and (f); n =  3 and A r =  3; plots for 31.6Myr (see 
Fig. 10e and f): 8.9 X s-'; 340 bar and 5 an yf ' .  (g), (h) and (i); n = 3 and Ar = 10; plots for 
31.3 Myr (see Fig. l l e  and f): 9.3 X 10-16s-1 100 bar and 5 an yr-'. o), 6) and 0); n = 3 and Ar = 30; 
plotsfor31.0Myr(seeFig. 12eandf):9.5X10-'6s-131.8 barandScmyr-'. 
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crustal thickness gradients start to affect the strain rate field. In the region where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIsVsl is 
largest an area of decreased rate of thickening develops, which finally becomes an area of net 
extension after 32Myr (Fig. 9h). In addition, the region of appreciable crustal thickening 
extends only a distance comparable to the width of the influx boundary; in Fig. 9(b) the 
comparable region extends over more than half the width of the box. 

These effects are more pronounced when the Argand number is 3; the lower effective 
viscosity of the medium allows the region of thickened crust to expand over a greater area of 
the box, and results in more extension on the rhs of the lower boundary than is seen when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ar is 1. Increasing Ar to 10 (Fig. 11) and 30 (Fig. 12) gives solutions in which the rates of 
extension of front of the inflow boundary and to the east of it become still greater. 

There is also a striking change in the stress field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas Ar is increased for constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn;  Fig. 13 
shows the principal shear strain rates, principal stresses and velocity vectors for the models 
described with n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 3 and Ar = 1, 3, 10 and 30, at a time of 32 Myr (corresponding to 
Figs 9(g and h), lo(e and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf), 1 l(e and f), 12(e and f). 

When Ar = 0 (Fig. 3), the velocity vectors in front of the influx boundary are predomi- 
nantly in the y-direction (Fig. 3d). As Ar increases, the effective viscosity of the medium 
decreases and it is less able to support the stresses arising from crustal thickness contrasts. 
Even when Ar = 1, velocities comparable to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu,, are found over much of the western half of 
the box (Fig. 13c), rather than being restricted to the region close to the inflow boundaw 
(Fig. 3d), and there is now an appreciable component of eastward motion. The magnitudes 
of u, increase with Argand number, until when A r =  30, the strain associated with the 
injection of material over the inflow boundary is being accommodated to a large extent by 
motion of material eastwards in the eastern half of the box (Fig. 13). Shear strain rates com- 
parable with those at the edge of the influx boundary now occur over much of the westem 
half of the box (Fig. 13a, d, g and j ;  compare Fig. 3b) and the principal stresses are close to 
purely compressive only immediately in front of the influx boundary and near the eastern 
edge, where the rigid boundary stops the lateral flow (Fig. 13b, e, h and k; compare Fig. 3c). 

I? England and D. McKenzie 

4 Discussion 

The nature of the experiments and of the Earth preclude direct comparison of the fields 
illustrated in Section 3 with the patterns of motion at the Earth's surface in the region ofa 
continental collision zone. In the first place, the upper crust deforms in a discontinuous 
manner by faulting and the formulation of Section 2 assumes a continuous viscous fluid 
throughout. Although faults are prominent in the surface geological record, they represent 
only the failure of the outermost, brittle layer of the lithosphere, and not that of the litho- 
sphere as a whole. In addition, this brittle layer is likely to have an anisotropic fabric ona 
regional scale, owing to the alignment of faults and/or joints from previous tectonic events. 
Thus, the approach adopted in this paper will not predict explicitly the deformation of the 
outermost part of the lithosphere; we may expect, for example, thrust faulting in regions of 
shortening and normal faulting in regions of extension. 

Secondly, continental lithosphere is heterogeneous on the large scale, consisting as it does 
of terrains of differing tectonic styles and ages; this heterogeneity must extend to lateral 
variation in the rheological properties of the lithosphere. An example of the effect of this 
heterogeneity may be the Tarim Depression which has remained essentially underformed 
throughout the Cenozoic (Molnar & Tapponnier 1978) and may be seen in Fig. 14 as a topo- 
graphically low and seismically quiet region approximately 8" x 4' centred on 38" N 42" E. 
Such heterogeneities may only be treated in an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAad hoc fashion; their influence on the 
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geometry of deformation may well be significant if they are large enough (as has been sug- 
gested by Molnar zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Tapponnier 1981) but we do not consider them further here. 

Thirdly, the boundary conditions assumed for the numerical experiments are not neces- 
sarily those that apply during continental collision - and certainly the geometry does not 
correspond exactly to that of any real collision zone. 

However, the purpose of this paper is not to model in detail a specific orogen but rather, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
by carrying out numerical experiments on the behaviour of power law materials in geo- 
metrically simple configurations, to gain some understanding of the large-scale processes 
involved in continental deformation. Several conclusions may be drawn from this approach 
which are independent of the detailed geometry and which contribute to our understanding 
of these large-scale processes. 

The most dramatic example of continental collision at present is the convergence of the 
Indian subcontinent and Asia, and it is natural to compare the results of the numerical 
experiments with what is known of this collision. As outlined above, we shall be concerned 
with large-scale phenomena - principally crustal thickening - which have affected Asia since 
the collision with India 30-40Myr ago. We take no account of the complex Mesozoic 
collision events in the region which, though still apparent in the geological record, were 
probably eroded flat by the time the major collision occurred in the middle Tertiary. 

Figs 2-13 illustrate the deformation of fluids with power law rheologies over a wide 
range of conditions - from Newtonian to a rheology with stress exponent of 5, and from 
effective viscosities so high that the forces arising from crustal thickness variations do not 
affect the flow to ones so low that the crustal variations dominate the flow. It is of interest 
to know what portions of these parameter ranges produce models having similarities with 
real continental convergence zones. 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14 shows the topographic height averaged over 1" x 1" regions (Lee 1966) smoothed 
with a Gaussian filter of width 2" x 2", and the seismic activity over the interval 1961-79 
for the Indian subcontinent and Asia. Using the crust and upper mantle densities of Table 1, 
and assuming isostatic equilibrium, topographic height may be converted into excess crustal 
thickness by multiplying by a factor of 9.4. A thickness of 35 km will be assumed for crust 
with its surface at sea-level; thus maximum crustal thickness in Fig. 14 is taken to be about 
82 km in central Tibet. The crustal thicknesses estimated by this method agree well with the 
sparser crustal thickness data summarized by Soller, Roy & Brown (198 1). 

The zone of crustal thickening to the north of India is extensive, but it does not reach the 
northern edge of the Eurasian continent, though it does approach more closely the eastern 
seaboard of China. Similarly, the seismic evidence for deformation of the region is largely 
confmed to an area that has lateral dimensions about one and a half times to twice the width 
of the apparently rigid indenter - India (Fig. 14). In trying to assess what ranges of rheo- 
logical parameters are appropriate to the deformation of the continents, a reasonable starting 
point is to discard those numerical experiments giving solutions in which the rigid boundaries 
to the box are the major means of confining the deformation; these conditions may apply to 
other types of continental deformation, but they do not seem appropriate to the Indian- 
Asian collision. 

Figs 2-12 show that the smallest lateral extent of deformation (whether judged by 
crustal thickness or by the isotropic and shear strain rate fields) occurs when the Argand 
number is zero. Even in this case, the solutions for the Newtonian fluid exhibit deformation 
and crustal thickening that extend to the rigid boundaries of the region (Figs 2, 5 and 8); 
this situation would only be changed if the width of the indenter were very much less than 
the width of the box. The maximum crustal thickness produced by the flow is about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA55  km 
after 32 Myr; with the assumptions about density made above, the corresponding maximum 
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3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEngland zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand D. McKenzie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
60N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
30h 

60E 90 120E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 14. Average topographic elevation estimated over 1" X 1" elements (Lee 1966) and smoothed with 
a Gaussian fdter of width 2" X 2". The areas between 10" and 60" N and 60' and 125" E is contoured 
from 0 to 5 km in steps of 1 km. Superimposed on this are crosses which indicate the seismicity of the 
region around the Indian-Asian collision: each cross indicates an earthquake occurring between 1961 and 
1977 and reported by at least 50 stations (data from NOAA Preliminary Determination of Epicentre 
Reports). 

value in the Indian-Asian collision zone is 80 km. When a power law rheology is introduced 
the flow becomes much more restricted and the maximum crustal thicknesses after 32 Myr 
are 90 km (n = 3) and 1 15 km (n = 5) (Figs 6d and 7d). 

Thus, if the continents have homogeneous rheological properties on the scale of hundreds 
to thousands of kilometres, it seems that some form of non-Newtonian rheology is required 
to explain the main features of the crustal thickness in Asia; assuming different boundary 
conditions will not change the conclusion that for a Newtonian fluid the deformation 
extends over a region with much larger lateral dimension than the width of the influx 
boundary, whereas for the power law materials the deformation is confmed to a region of 
dimensions comparable with those of the indenter. 

Even when the strength of the medium is low enough for the forces arising from crustal 
thickness variations to become important, it is possible to reproduce these conditions of 
crustal thickness with a medium obeying a power law rheology. The solutions discussed 
below are all for n = 3, but the same conclusions hold when n is 5, which is not illustrated. 

Significant deformation does not occur on the distant edges of the box when the Argand 
number is equal to 1 or 3 (Figs 9, 10 and 13a-f), but forAr= 10 or 30 appreciable crustal 
thickening occurs at the edges of the boxes for all times (Figs 11, 12 and 13g-1). The 
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maximum crustal thickness attained is greater than 130 km for Ar zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 (more than 15Okm 
with n = 5), 80 km (95) for Ar = 3, 60 (65) for Ar = 10 and 50 (50) for Ar = 30. While the 
latter two cases exhibit maximum crustal thicknesses that match those in collision zones 
such as the Alps the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAform of the crustal thickness variation (Figs 11 and 12) bears little 
resemblance to that in such areas. 

The maximum deviatoric stresses produced by the flows at a time of 32 Myr (Fig. 13) are 
1 kbar, 340, 100 and 32 bar for A = 1, 3, 10 and 30 respectively. If the flow fields for Ar 
between 1 and 3 are representative of the deformation in the Himalayan-Tibet region, this 
implies that continental collision generates deviatoric stresses of half a kilobar to a kilobar 
within the lithosphere. 

Although the dominant mode of deformation is compressional when the continental litho- 
sphere is strong enough to maintain the kind of crustal thickness inferred for the Himalayas 
and Tibet (Ar is 1 or 3; Figs 9 and 10) it can be seen that after the crustal thickness exceeds 
about lOOkm (Ar is 1) or 80km (Ar is 3) a tensional regime develops in the area of 
maximum crustal thickness. The axes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof least compressive stress are aligned perpendicular to 
the convergence direction and this shows an interesting agreement with the inferences of 
Cenozoic stretching in Tibet that have been made by Molnar & Tapponnier (1978) and Ni & 
York (1978). Another similarity between the numerical experiments and observations of the 
deformation in Tibet lies in the eastward movement of material to the north and east of the 
influx boundary when Ar is 3 or greater. Although this flow may be influenced to some 
extent by the geometry assumed for the boundary conditions it too has its origin in the 
outflow of material from the region of thickened crust (compare Figs 3d and 13f, i and 1). 

These two observations Seem to be well established features of the Himalayan collision 
(Molnar & Tapponnier 1975, 1978;Ni & York 1978). The numerical experiments show that 
such a motion is the consequence of the flow of material away from a region of thickened 
crust in a lithosphere of finite viscosity. When the effective viscosity is infinite (zero Argand 
number, Figs 3 and 4) the strain of collision is accommodated almost entirely by com- 
pression parallel to the direction of convergence. The extension along strike when Ar is 
greater than zero is a direct consequence of the three-dimensional nature of the strain, which 
produces regions of elevated crust that spread outwards under their own weight and exert a 
lateral force on the surrounding continent. A mechanism like this was adumbrated by 
McKenzie (1972) in discussing the tectonics of the Mediterranean region. 

The maximum strain rates in the experiments described above are around 2 or 3 x lo-’’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s-’ (Figs 2, 3 and 4) but the isotropic strain rates (thickening) drop below lO-”s-’ once the 
limiting values of crustal thickness are approached at the influx boundary (Figs 9 and 10). 
These rates may be compared with the strain rates typical of the Himalayan collision if it is 
assumed that the present-day elevation of Tibet is largely the result of crustal thickening 
since India began to collide with Asia 30-40Myr ago; this gives an average strain rate of 
around lO-’’s-’ if the initial crustal thickness has been approximately doubled. 

The deviatoric stresses calculated for the models which have crustal thickness distribu- 
tions broadly similar to that in Asia are between 300 and 2000 bar (Figs 9 and 13b and e); 
although the deviatoric stresses required to maintain the crustal thickness contrasts are not 
as large as this (see above) the velocities imposed by the boundary conditions generate large 
shear stresses near the edge of the influx boundary (Figs 9 and 13a, b, d and e). 

This range of deviatoric stresses is comparable at its higher end to the static stresses 
estimated, for example, to be involved in the support of the outer rises, and at its lower end 
to the stresses regarded as typical for the dynamic stresses involved in plate motion and 
mantle convection. Near the lower end, the experiments in which stresses of around 300 bar 
are generated (Ar = 3) produce crustal thickness variations compatible with those seen in 
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3 16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Asia and are not obviously at variance with other estimates for the dynamic state of stress in 
the Earth. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEngland and D. McKenzie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 Conclusions 

We have modelled the deformation of the continental lithosphere in terms of the behaviour 
of a thin viscous sheet of material obeying a power law rheology. For fixed geometry zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis 
behaviour is governed by the value of a dimensionless number, which we have called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe 
Argand number, that is a measure of the tendency of the lithosphere to strain in response to 
the buoyancy forces that result from crustal thickness contrasts. 

The broad zone of elevated continental crust to the north ot the Indian-Asian collision 
suggests that the gross deformation of the continental lithosphere involves a considerable 
component of thickening to distances greater than 1000 km from the plate boundary. Thus, 
while instantaneous deformation may be most obvious at the surface as a fmite number of 
major faults, it is possible that the time- and space-averaged deformation of Asia has 
approximated more closely to that of the homogeneous viscous sheet we have considered 
here. 

In the numerical experiments described above, the large-scale deformation of the conti- 
nental lithosphere over geological time-spans is assumed to be governed by the strength of the 
uppermost mantle and/or lower crust, which deforms as a power law material. The detailed 
rheology of this material is unknown because of the uncertainties in extrapolating relations 
obtained at laboratory strain rates to geological strain rates perhaps six orders of magnitude 
slower. Over a wide range of values for the rheological parameters the models predict that 
thickening of the continental crust occurs over areas of dimension at least as great as the 
width of the indenting continent. This is an important departure from the condition of plane 
strain assumed in the rigid-plastic indenter models of Molnar zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Tapponnier (1975, 1978). 
Equally important is the result that, even when the lithosphere is able to support shear 
stresses of orders of a kilobar, the forces arising from crustal thickness contrasts play an 
important part in determining the flow field (Figs 9-12). The crustal thickness in front of 
the indenting continent is limited by the strength of the lithosphere; as the maximum crustal 
thickness is approached, stretching will begin to occur in the region of thickest crust. 

Although there are uncertainties involved in the detailed comparison of numerical experi- 
ments with the real collision zones of the world (see Section 4), several conclusions can be 
drawn which depend more on the nature of the deforming material than they do on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe 
geometry of the numerical experiments. 

If the deformation of an approximately homogeneous viscous shell is to result in a distri- 
bution of crustal thickness qualitatively similar to that of the Himalayan collision, the' 
requirement that crustal thickness contrasts of about 30 km should be maintained during 
collision implies that the continental lithosphere should be capable of sustaining shear 
stresses of about 300bar at strain rates of about 10-15s-'. Similar stresses are also requiredif 
the deformation of the medium is not to be confmed solely by the geometry of its margins. 
In addition, the medium should deform in a non-Newtonian fashion, for the deformation of 
a Newtonian fluid is far more diffuse than that of a power law material under the@ 
conditions (Figs 2,3  and 4). 

The stresses and strain rates in these numerical models, for boundary conditions appro- 
priate to continental collision, are consistent with those inferred for present-day collision 
zones. Extrapolation of the laboratory determinations of the flow law of olivine to these 
strain rates would predict stresses in the range 300 bar-l kbar for temperatures between 600 
and 900°C (e.g. Ashby & Verrall 1978; Goetze 1978) - reasonable temperatures for the 
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uppermost mantle in a tectonically active region. It is likely that the strength of mantle 
materials is strongly dependent on temperature and with current estimates of the activation 
energy for creep (e.g. Goetze 1978; Ashby zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Verrall 1978) a temperature change of 200°C 
at the top of the upper mantle would result in an order of magnitude change in the effective 
viscosity of the lithosphere. Consequently the type of regional deformation during conti- 
nental collision may depend critically on the thermal regimes of the continents before 
collision (compare Figs 9 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 for example and see Molnar & Tapponnier 1981). We may 
speculate that the differing styles of Phanerozoic orogenic belts (for example the Alpine and 
Hercynian events in Europe (Zwart 1967) or the Alpine and Himalayan orogenies at present) 
are due to differing balances between the force available to drive continental collision and 
the strength of the continental lithosphere, rather than to any fundamental contrast in 
orogenic processes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Appendix A: an average rheology for continental lithosphere 

The deformation of a thin sheet of material, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas discussed in this paper, will depend on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe 
rheological properties of its strongest part. Laboratory determinations of the properties of 
crustal rocks are too scant, at present, to determine whether the lower crust or the upper 
mantle is likely to be the more competent in the continental lithosphere, indeed the balance 
may change from place to place within the continent depending on the abundances of the 
stronger minerals such as pyroxenes and feldspars (which at present have poorly determined 
rheologies) in the lower crust. 

We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshall assume that the strongest part of the continental lithosphere obeys a power law 
relation with an exponential dependence on absolute temperature (equation I,, Section 2). 
The result below is independent of whether this section is in the crust or mantle, and it 
will also hold if more than one section of the lithosphere, each with different activation 
energies for creep, contributes significantly to its strength. The conclusions will not hold if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 
is a function of position or temperature within the zone which controls the deformation of 
the lithosphere as a whole. Note that the significant element in this rheology is its 'shear 
thinning' property - that is, its effective viscosity decreases with increasing deviatoric stress. 
This has the effect of concentrating flow into the regions of highest stress; we might expect 
qualitatively similar results to those obtained in this paper for other shear thinning 
rheologies, but for the reasons outlined above we have chosen a power law rheology as a 
simple approximation to our present-day understanding of the rheology of rocks in steady 
state flow. 

We have assumed (Section 2) that vertical gradients of horizontal velocity are negligible; 
consider a section of continental lithosphere undergoing shortening in the x-direction, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith 
no strain in the y-direction. Then, in the notation of Section 2: 

I? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEngland zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand D. McKenzie 

eyy = exy = exz = eyz = 0 

exx = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAezz (Al) 

and similarly for T, thus 

T=d217,,1 and&=d2[kXx1. 

Equation (1) may be written 

The required parameter in determining the deformation field is the stress averaged vertically 
,through the lithosphere, i.e. 

1 L  L 

L 7, dz = B6iY I0 exp (Q/nR 0 )  dz for 7, positive. 

If we assume that the stress involved in the long-term deformation of the upper crust is 
much less than that required to deform the uppermost mantle and/or lower crust (see 
above), then equation (A4) may be written: 
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where it is assumed that the temperature in the lithosphere is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e(z)=eo+oz (A61 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdm and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO L  are the temperatures at the top of the strong layer and at the base of the 
lithosphere respectively. Hence the average stress throughout the deforming lithosphere is 
related to the average strain rate by a relation of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7, =Be!& (A71 

provided that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn remains constant. The value of B in equation (A7) depends weakly on the 
geothermal gradient in the strong layer, 0, and strongly on the temperature at the top of the 
strong layer 8,. 

Appendix B: numerical solution of the equations 

The form of equation (16) makes it natural to take advantage of one of the efficient 
algorithms that are available for solving Poisson's equation. The routine used was written by 
R. A. Sweet (1974) and uses a generalization of the cyclic reduction method described by 
Buzbee, Golub & Nielson (1970) to solve the standard finite difference approximation to the 
equation 

on a rectangular mesh of spacing Ax in x and Ay iny.  In the form used here, r is 2 or % (see 
below). The derivatives in this equation and in equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(14) are approximated by their- 
standard spacecentred finite difference forms, e.g. 

aglax * 6,g= (hi+l,i - h ~ ~ , , ) / 2 A x  (B2) 

In this notation the finite differences (ax, 6$, etc.) are approximations to the derivatives 
@/ax, a2/ax2,. etc.) and hii is an approximation to g(xj, y j ) .  The finite difference approxi- 
mations to equation (1 6) are: 

26:u t 6 ; u  = - 6 & u  +2(1-1/n)E-' (~116 ,E t  g126,,@ + A r B  ( l - l / n ) ~ ~ x ~  (B 5) 

% S ~ U + ~ ; U = M [ - ~ $ , U  i- 2(1-I/n)E-' ( e 2 2 6 y B + i 1 2 S , B ) t A r B ( 1 - 1 ' " ) ~ 6 y ~ ] .  (B6) 

The requirement that the coefficient of 6;g be unity (equation B1) is responsible for the 
forms of (BS) and (B6). In these equations u and u are approximations to the x and y com- 
ponents of u; they are calculated on a rectangular mesh, as is the value of the crustal thick- 
ness, s. Note that E and the components of t+ are derivatives of velocity and appear in 
equations (B5) and (B6) as difference approximations to these derivatives. 

The equations are solved by an iterative procedure: initial guesses are made for u and u by 
setting the rhsof(B5) and (B6) to zero and using the Poisson-solving routine. These estimates 
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A model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor continental deformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA32 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

or completely, independent of time and the solution for the velocity field may be found 
from the initial guess in four iterations for n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, Ar = 0 and in 2 1 iterations for n = 3, Ar = 0. 
These figures are for a value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlU3 for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 in equation (B8); a further two and four iterations 
respectively are required for convergence to one part in 104. 

The efficiency of this scheme varies according to the type of solutions sought, and when 
the last two terms in equation (16) become large - particularly when Ar 2 3 and n 2 3 - 
values of ar as small as and several hundred iterations, may be required to reach a 
solution, and the solutions may be strongly time-dependent for Ar 2 1, requiring a lengthy 
computation for each time-step. Over-relaxation (a> 1) is not stable. A value of 2.5 x 
was usually taken for the indicator of convergence in equation (B7); lower values did not 
significantly affect solutions. 

For the geometries described in this paper, the solutions were obtained on a 32 x 32 
mesh; selected combinations of parameters were also run on a 64x 64 mesh to check that 
the solutions were adequately resolved. Fig. B 1 shows the comparison between solutions 
obtained on 32 x 32 and 64 x 64 meshes for the combination n = 5, Ar = 30; there is good 
agreement between the isotropic strain rates (illustrated) and the shear strain rates; these, as 
they involve derivatives of the velocity field, are particularly sensitive to differences between 
the solutions. An indication of the extent to which the crustal thickness is affected by 
moving to a finer mesh may be seen by comparing the rms difference between the crustal 
thickness at time 21 Myr and that at time 0 - where it is a uniform 35 km. In the 32 x 32 
calculation t h i s  rms difference is 6.28km and in the 64x 64 calculation it is 6.27 km; the 
difference is at the 0.2 per cent level. 

a 

Figure B1. Contours of the isotropic strain rates for n = 5,Ar = 30 after 21 Myr. (a) Solutions calculated 
on 32 X 32 mesh. Contours are - 4 x 10-16s-1 (2 x 10-l6) 6 X 10-16s-'. (b) Solutions calculated on 64 X 64 
mesh. Contours m - 2 X 10-'6s-' (2 X 4 X 10-16s-1. 
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