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A THIRD ORDER BOUNDARY VALUE PROBLEM ARISING IN AEROELASTIC

WING THEORY*

By GEORGE SEIFERT** (Cornell University)

The differential equation arising in the problems of chordwise divergence or swept-

forvvard wing bending divergence [1] is of the type

~ EI(x) fx - \c(x)z = 0 (la)

where X is a parameter. The boundary conditions are z(0) = z'il) = (EI(x)z'(x))'x= 0.

Since this represents a non self-adjoint boundary value problem, the ordinary Rayleigh-

Ritz variational method for approximating its characteristic values is not applicable.

Formal extensions of this variational approach have been suggested by Flax [1] and

used by Cheng [2] but no mathematical evidence for their validity is at present avail-

able. In this connection, two questions have been raised [1],

(A) Under what conditions on EI(x) and c(x) are all the characteristic values of

(la) real?

(B) Under what conditions on EI(x), c(x) and fix) can the solution zx(x) of

[EI{x)z'{x)]" — \c(x)z(x) = f{x), z(0) = z'il) = (Elz')'i = 0

be expanded in terms of the biorthogonal system of functions arising from the system

(la) and its adjoint?

Although this paper concerns itself chiefly with (A), it may be pointed out that the

investigations of expansions in terms of characteristic functions of (la) for EI = 1,

c(x) = — 1, I = tt carried out by L. E. Ward [3] indicate difficulties inherent in such

irregular boundary-value expansion problems as (B).

Part I of this paper deals with the characteristic values of the system

u'"(x) + p(x)u'( x) + [qix) + X]m(x) = 0, u{ 0) = u'{ 0) = u"{ 1) = 0, (1)

where p and q are real-valued functions analytic on 0 < x < 1. It is found that:

(a) this system has an infinite number of real characteristic values (Theorem 1);

(b) if the upper bounds of | pit) \ and | qif) |, and the positive numbers | p(l) |,

Jo I p(t) | dt, fo I r(t) | dt, where r(t) = qit) — p'(t), are small enough, then all char-

acteristic values of (1) are real (Theorem 3).

Just how small these positive quantities in (b) must be, in order that all the char-

acteristic values of (1) be real, is not explicitly considered. For specific functions p and

q, however, the details of the proofs of (a) and (b) enable one to answer this question by

means of simple numerical computations.

Much of the method of proof and notation is similar to that used by Ward [4] in

his study of the system:

u"'{x) + [p3 + r(x)]u{x) — 0, w(0) = u'{ 0) = u(x) = 0.

Here rix) is of a special form which permits Ward to obtain an expansion theorem. It
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is hoped that Ward's approach will also suggest an expansion theorem associated with

(1) and perhaps also provide an answer to (B).

Part II indicates a pair of transformations which takes the system

lf(t)y"W + \g(t)y(t) = 0, 2/(0) = y'( 0) = y"{ 1) = 0, (2)

where /(f) > 0, g(t) > 0, are real and analytic on 0 < f < 1, over into a system of the

form of (1). Note that the adjoint of (2) is of the form of (la), and consequently the

characteristic values of (2), being identical with those of its adjoint, are of interest in

aeroelastic wing theory.

PART I

We consider the system (1). Define

(a) 5,(0 = e"1' + e""' + e"s<

3/ i\ 0) it Wit co a t
2\t) = e — co 36 — co2e

5/*\ *****
3{t) = e — co2e —

where

1 ( T t)/3 — { 5T i)/3
coi = — 1, cj2 = e , CO3 — e ,

(b) the complex number p by p3 = X, | arg p | < x/3;

(c) the regions and S2 of the p plane by 0 < arg p < t/3 and — t/3 < arg p < 0

respectively.

Lemma 1. A necessary and sufficient condition that u(x, p) satisfy the equation in

(1) and u{0, p) = u'(0, p) = 01 is that

u(x, p) = 83(px) — (3p2)-1 f {53[p(a: — f)]r(<) — p52[p(a; — t)]p(t)}u(t, p) dt (1.1)
Jo

where r(t) = q(t) — p'(t).

The proof of this lemma is completely analogous to that of Theorem 1 of Ward's

paper2 and is omitted here.

Lemma 2. A solution u(x, p) of the equation in (1) such that «(0, p) = u'(0, p) = 0

is given by

u(x, p) = e"-pi[-W3 - + z(x, p)] (1.2)

where | z(x, p) | < m, m being independent of x and p, provided peSi and \ p | sufficiently

large.

'Unless otherwise indicated, the prime will always denote differentiation with respect to the first

variable.

2L. E. Ward, |4], p. 418.
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Proof. Substituting (1.2) into (1.1) one obtains

e"""'[A(x, p) + z{x, p)]

= 83(px) - (3p2)-1 [ {53[p(a; — t)]r{t) - p82[p{x - t)\p{t)}[A{t, p) + z{t, p)]e""" dt,
Jo

where A{t, p) — — oia — w2 exp [(co2 — co3)p<]. Hence

z(x, p) = "■

(L3)

- (3p2)'1 f {53[p(x - - pS2[p(x - <)]p(01U(<, p) + z(t, p)]e-"'p(1-" dt.
Jo

Now for fixed ptSj | z(x, p) | attains its upper bound m(p) on 0 < x < 1; hence by (1.3)

m(p) < 1 + (3 | p I2)"1 f | 53[p{x - p)e--^-,)r(t)
Jo

dt

where

Hence

+ (3 | p I2)"1 f' | S3[P(x - t)]z(t, p)e-""(l-'V«) |
Jo

+ (3 | P I)-1 f | S2[P(x ~ t)]A(t, p)e-u'^-np(t)
Jo

+ (3 | p I)"1 f | SMx - P)e-">ix-"P(t) |
Jo

< 1 + m(p)(]yp + |7|) + 2(|77 + 77|)

r = [ | r(t) | dt, p = f | p(i) |
«/o ^0

m(p) < 1 + 2M P I2 + P/\ P 1)
m(p)- 1 - (r/l P |2 + p/| p |)

dt

dt

dt

for | p | sufficiently large, from which the lemma follows.

Theorem 1. There exist an infinite number of real characteristic values X„ for the system

(1); more precisely, there exists a real \k such that all X„ with R(\„) > Xt are necessarily

real.3

Proof. From (1.1) by differentiation,

u"(x, p) = p25i(px) — | {5i[p(z — 0M0 — pS3[p(x — t))p(t)\u(t, p) dt

- p(x)u(x, p),

3If z = x + iy, then R(z) = x defines the notation R(z) which will be used throughout.



1951] GEORGE SEIFERT 213

and the characteristic equation, u"{ 1, p) = 0, becomes

p25i(p) — | {5i[p(l - t)]r(t) — pS3[p( 1 — p) + p)]e"'" dt

- p(l)[A(l, P) + z( 1, p)]eu" = 0.

Define

E(P) = (3pT1 f {5,[pU - t)r(t) - p53[p(l - t)]p(t)}[A(t, p) + z(t, p]dt
Jo

+ p(l)[^.(l> p) + ^(l, p)]p 2.

It is easily verified that the zeros of o,(p) are the zeros of exp (— 3p/2) + 2 cos [31/2p/2]

and are all real for peSi .

It will now be shown that | p2o,(p) | > | p2 e""E(p) | for p on any one of a set of

contours C„ in the p plane which are trapezoids whose bases are the segments

R(p) = 2{n + 1) ^5 , | arg p | < | ;

R(p) = 2(n + 2)^2 , | arg p | < | ;

n = k, k + 1, •••, k sufficiently large. It is sufficient to show this inequality for the

upper half of the contour C„ ; namely C'n = G'„ C\ <S\ . This is true because u{x, p) is

real for real p and hence u(x, p*) = [u{x, p)]*, the star denoting the complex conjugate.

Hence u"(x, p*) = [u"{x, p)]*, and consequently p2[5i(p) — e""E(p)] takes on values

on C" = C„ P\ <S*2 , the lower half of C„ , which are the complex conjugates of those

taken on on CI, , the upper half. Set F(p) = p2d1(p), G(p) = —p2e""E(p)] then since

F(p*) + G(p*) = [F(p)]* + [<?(p)]* and F(P*) = [Ftp)]*, we have G(p*) = [(?(P)]*, and

hence p2e">pZ?(p) assumes values on C'„' which are the complex conjugates of those it

takes on on C'n . It clearly suffices, then, to show that

I e~",p51(p) | > [ E{p) | for p on C'n . (1.4)

On p = a(l + 31/2i) we have

| e~"'"Si(p) | = | 2e~3" cos (31/2a) + 1 |;

I h | < -^2 3(2 + m) | r(t) | dt = (2 + m)r,

where

h = 3^2 Jg {exp [(co, - w3)p(l - t)]

+ exp [(a>2 - cd3)p(l - <)] + 1}[4(«, p) + z(t, p)]r(t) dt;

I I2 | < ^3(2 + m) £ | p{t) | dt = £ (2 + m)p,
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where

1 r1

12 = 3p Jo '6XP ^"'1 ~~ ~ ^

- co2 exp [(«a - w3)p(l ~ <)] - C03} [A(«, p) + z(t, p)]p(<) dt;

I /, I < (1 + e"3° + m),

where

I3 = p(l)[^(l, p) +2(1, p)]p"2.

On p = 2(n + l)7r/31/2 + i/3, /3 > 0, we have

e ",p5i(p) | = exp ~ 2 j^n ^ 3175 ^ 2~" [^(n ^ 3

+ exp |31/2^2(n + 1) ^ + i/sjj

p [ — 31/2(n + 1)tt] exp (- | i^(-l)n exp

+ exp ( —31/2/3) + 1

hence | e~""'8l(p) | > 1 — exp (31/2tt); also

I , 9 (2 + m)r

Ml 1 S 4 [2(n + 1)tt]2 + 3/32

i,, i <51- a + "V
2 J [2(fi + l)jr] -t- 3(3 j '

3 1 p(l) | (1 + exp ( —31/2|8) + m)

' 7s ' - [2(n + 1)tt]2 + 3/32

Now | Z?(p) | < ] /, | + 112 | + | I.t |, and clearly for | p | large enough there exists

k such that for n = k, k + 1, • • • , (1.4) holds. We have then | p2Sl(p) \ > \ p2e""E{p) \

on C„ . Now it is easily verified that there is just one zero of 8, (p) inside Cn . Hence,

by Rouche's theorem, there is just one root of the characteristic equation inside C„ ,

and since these roots must occur in complex conjugate pairs, this root is real. This

proves the theorem.

By a suitable modification of the choice of contours C„ in the proof of the preceding

theorem, the following result may be obtained.

Theorem 2. Let the zeros of 5, (p) be denoted by pi!" such that po0> < pj0' < • • • . Let

8 > 0 be given, and define Rn to be the circle | p — pi"' \ < 8. Then for k large enough, each

root p„ of the characteristic equation of (1) such that R(pn) > 2kir/31 /2 lies inside one of

the circles Rn , n = k, k + 1, • • • , there being exactly one p„ , necessarily real, in each

such Rn .
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The proof will be omitted.4

From the details of the proof of Theorem 1, it may be seen that for r, p, and | p(l) |

small enough, k may be chosen equal zero. The question of whether or not in this case

all characteristic values of (1) are real, then, reduces to the question of whether or not

all roots pn of the characteristic equation for which R(pn) < 2x/31/2 are real. By means

of the following lemma, we obtain a lower bound on | X„ |; e.g., | p„ |; and then by means

of the subsequent theorem, apply the arguments of Theorem 1 to a supplementary

contour which borders on C0 and extends to the region for which no pn can occur.

Lemma. Let X be a characteristic value of (1). Then | X |2 > 6 — + m2) where

I p(t) |2 < m1 , | q(t) \2 < m2 .

Proof. Let v(x) = u'(x). Then by (1)

v"{x) = — [p(x)u\x) + q(x)u(x) + Xw(a:)], v(0) = i/(l) = 0.

Hence

V(x) = ZCn + hn + Xa^Ux) (1.5)
n Mra

where 4>n(x) and n„ are the characteristic functions and numbers respectively of the

system

4>"(x) + n<t>(x) = 0, 0(0) = *'(1) = 0
and

an = [ u(t)<pn(t) dt, bn = [ u(t)q(t)<j>„(t) dt, cn = f u'(t)p(t)</>„(t) dt.
J 0 Jo Jo

Hence by (1.5) and integration from 0 to x, one obtains

u(x) = Z C" ^ ^a~ zjx) where z„(x) = f <f>n(t) dt.
n Mn J 0

Multiplying by <f>k(x) and integrating from 0 to 1 one obtains

ak = f 4>k(x)u{x) dx = c" A- + Xa" I" Zn(x)<f,k(x) dx.
"0 n Mn J0

Hence, using Schwarz's inequality,

| ak |2 < M (| c„ |2 + | bn |2 + ] X |2 | an |2) [ zn(x)</>k(x) dx
n | •'O

where

H/T 1 1m = J2 -2 = 7 •
» Mn 6

Summing over h and using Parseval's theorem:

Z I a* I2 < M E (I c„ I2 + | 6. I2 + | X I2 I a„ |2) £ I f' z»(x)Mx) dx
k n k | *0

= M D (| c„ |2 + | 6, |2 + | X |2 | a. |2) f | zn(x) |2 dx.
n Jq

(1.6)

4See L. E. Ward, [4] pp. 419-420.
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However, since

£ | zn{x) |2 dx < | 4>n(t) |2 dx = 1,

and since we may assume

[ | u(x) |2 da: = 1,
Jo

another application of Parseval's theorem to (1.6) gives

1 < I p{t)u'{t) I2 dt + £ I q(t)u(t) I2 d< + I X I2}. (1.7)

Let | p(t) |2 < , | q(t) |a < m2 ; then from (1.7) one has

1 < m\w,1 J | u'{t) |2 dt + m2 + | X |2j.

Multiplying (1.5) by <t>k(x) and integrating from 0 to 1, one obtains

Ck + bh + Xa*

(1.8)

[ <t>k(x)u'(x)
Jo

dx
2 < \ck\°+\bk |2 + | X |2 | ak

2

and summing over k and applying Parseval's theorem again:

J | u'{x) |2 dx < M^rth J | u'(x) |2 dx + m2 + | X |2^,

from which it follows that

(1 - Mm,) [ | u'(x) |2 dx < M(m2 + | X |2). (1-9)
Jo

Hence, by (1.8) and (1.9):

(1 — tfrnj) < M[m1M{m2 + | X |2) + (m2 + | X |2)(1 — Mm,)] = M{m2 + | X |2).

From this one obtains

1 - M(mt + m2) < - ,2

M _ I I •

Since M = 1/6, the proof of the lemma is complete.

Theorem 3. Let p, r, mi , m2 be defined as in previous theorems and lemmas. Then if

these constants and \ p( 1) | are sufficiently small, all characteristic values of the system (1)

are real.

Proof. It has already been noted that for sufficiently small values of p, r, and | p(l) |,

k may be chosen equal zero. We now consider the supplementary contour C_! , a trape-

zoid whose bases are the segments:

R(p) = jp72 , | arg p | < | ;

R(p) = f , I arg p | < | ;
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where R = [6 — (m, + m2)]I/6. By Theorem 1 and the lemma all non-real characteristic

values A„ = pi must be such that p„ is in or on C_i . However, for sufficiently small p,

r, TOi , m2 , and | p(l) |, the argument used to prove Theorem 1 is applicable to C_,

and we conclude that there is just one root p_j , necessarily real, inside C_, . This proves

the theorem.

PART II

Consider the system

[/(%"(«)]' + = o, 2/(0) = y'( 0) = y"(X) = 0, (2)

/ and g real and analytic on 0 < t < 1, f(t) > 0, g(t) > 0. The transformation

x = ^ J h(s) ds where h(s) = > d — J K&) ds,

has an inverse t = t(x). This inverse transforms (2) into

^3 y[t{x)] + Pi (a:) y[t{x)] + p2(x) ■— y[t{x)] + y[t{x)] = 0,

2/(0) = y\ 0) = y"{ 1) = 0,
where

(2.1)

Pl(x) = -d {mtixwm] + h2[t(x)]

P>(x) = l{h3[Kx)]h"[t(x)] + /*'[<(*)]},

the notation /'[<(x)] meaning that the substitution I = t(x) has been made in the func-

tion of t : fit).

Next, the substitution

y[t{x)] = u{x) exp - | ^ p,(s) rfsj

and subsequent multiplication by

exp L Pl®

reduces (2.1) to u"'{x) + p(x)u'(x) + [q{x) + X]u(x) = 0, u(0) = u'{0) = w"(l) = 0,

where

pix) = P2(x) - - p',(x),

Hence the results of Part I apply to the system (2).
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Noting the structure of p and q; e.g., p, and p2, in terms of/ and g, we state an obvious

corollary of Theorem 3.

Corollary. Let |/<n)(0 | < e, | g'n) (t) | < e for n = 1, 2, 3, 4. Then for t sufficiently

small, all the characteristic values of (2) are real.

It is also clear from the structure of p and q that less restrictive, although perhaps

more complicated, conditions on / and g than those in the hypothesis of the above

corollary will yield the same conclusion.

The author wishes to thank Professors W. Feller and W. R. Sears for suggesting the

problem and for helpful suggestions toward its solution.
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ON AN EQUATION OCCURRING IN THE HARMONIC ANALYSIS OF

VISCOUS FLUID FLOW*

By RICHARD BELLMAN (Stanford University)

1. Introduction. It was shown by J. Kamp6 de Feriet1 that the Fourier transform

z{wl , w2 , t) = ~2 J J f(z, y) exp + w2y)] dx dy (1)

of the vorticity, $(x, y), associated with the two-dimensional flow of an incompressible

fluid extending over the entire (.c,?/)-plane, under mild conditions, satisfies the non-

linear integro-differential equation

— z(wt ,w2,t)= -v(w\ + w\)z{wx ,w2,t)

(2a)

+ 2 [ J (—^2 ~ g2—)z(0i, 02, t)z(ei + w,, e2 + w2, t) de, de2,

and the boundary condition

z(wi , w2 , 0) = <£(10! , w2). (2b)

*Received November 8, 1950. The results contained in this paper were obtained in connection with

research sponsored by the Rand Corporation.

'J. Kampe de Feriet, Harmonic analysis of the two-dimensional flow of an incompressible viscous fluid,

Q. Appl. Math. 6, 1-13 (1948).


