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Summary. We construct a new third-order semi-discrete genuinely mul-

tidimensional central scheme for systems of conservation laws and related

convection-diffusion equations. This construction is based on amultidimen-

sional extension of the idea, introduced in [17] – the use of more precise

information about the local speeds of propagation, and integration over

nonuniform control volumes, which contain Riemann fans.

As in the one-dimensional case, the small numerical dissipation, which

is independent of O( 1
∆t), allows us to pass to a limit as∆t ↓ 0. This results

in a particularly simple genuinely multidimensional semi-discrete scheme.

The high resolution of the proposed scheme is ensured by the new two-

dimensional piecewise quadratic non-oscillatory reconstruction. First, we

introduce a less dissipative modification of the reconstruction, proposed in

[29]. Then, we generalize it for the computation of the two-dimensional

numerical fluxes.

Our scheme enjoys the main advantage of the Godunov-type central

schemes – simplicity, namely it does not employ Riemann solvers and char-

acteristic decomposition.Thismakes it a universalmethod,which canbe eas-

ily implemented to a wide variety of problems. In this paper, the developed

scheme is applied to the Euler equations of gas dynamics, a convection-

diffusion equation with strongly degenerate diffusion, the incompressible

Euler and Navier-Stokes equations. These numerical experiments demon-

strate the desired accuracy and high resolution of our scheme.
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1 Introduction

We are interested in Godunov-type schemes for solving the multidimen-

sional system of conservation laws

ut + ∇x · f(u) = 0, x ∈ IRd,(1.1)

and the closely related convection-diffusion equations

ut + ∇x · f(u) = ∇xQ(u,∇xu), x ∈ IRd,(1.2)

subject to the initial data

u(x, 0) = u0(x).(1.3)

Here Q satisfies the weak parabolicity condition ∇sQ(u, s) ≥ 0 for all

(u, s).
Godunov-type schemes are projection-evolutionmethods,which at every

time step consist of three consecutive stages – reconstruction, evolution and

projection. First, a piecewise polynomial interpolant is reconstructed from

the piecewise constant data (the cell-averages), computed at the previous

time step. Then, the interpolant is evolved in time according to (1.1). Finally,

the solution is projected onto a space of piecewise constants. Depending on

the projection step, we distinguish two kinds of Godunov-type schemes –

central and upwind.

The Godunov-type central schemes are based on exact evolution and

averaging over Riemann fans. Therefore, in contrast to the Godunov-type

upwind schemes, no characteristic decomposition or Riemann solvers are

involved. This makes the central schemes simple, and they can be imple-

mented as a ‘black box solver’ for the general multidimensional systems

(1.1) and (1.2).

In the one-dimensional case, examples of such schemes are the first-order

(staggered) Lax-Friedrichs scheme [19,7], the second-order Nessyahu-

Tadmor scheme [31], and their higher-order generalizations [29,4,21].

Second-order multidimensional central schemes were introduced in [11,

2], and their higher-order extensions were developed in [22,23]. The advan-

tage of the higher-order schemes is that they reduce the excessive numerical

viscosity, typical for the Lax-Friedrichs scheme, and give much sharper

resolution of the shocks and rarefactions.

We would also like to mention the central schemes for the Hamilton-

Jacobi equations, recently developed in [25,26,18], the central schemes for

incompressible flows in [12–14,16,24], and their applications to various

systems, for example, [6,1,33].

Unfortunately, the aforementioned staggered central schemes may not

provide a satisfactory resolution when small time steps are enforced by sta-

bility restrictions (e.g., this may occur when one applies these schemes to
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the (degenerate) parabolic systems (1.2)). Another disadvantage of these

schemes is that they cannot be used for steady-state computations, or equiv-

alently, they do not admit semi-discrete form. The reason is in the accumu-

lation of numerical dissipation, which is of order O( (∆x)2r

∆t ), where r is the
formal order of the scheme.

These problems have been recently resolved in [17],where a new second-

order Godunov-type central scheme is introduced. The proposed scheme has

smaller dissipation (∼ (∆t)2r−1
), and thus it can be efficiently used with

time steps as small as required. In the new construction, the evolution step is

performed by integrating over non-equal control volumes, whose sizes are

proportional to the local speeds of propagation. The evolved solution is then

projected back onto the original grid in a more complicated manner, which

requires an additional piecewise polynomial reconstruction. In this way, a

non-staggered fully-discrete central scheme is derived. It can be naturally

reduced to a particularly simple semi-discrete form (for details see [17]).

The same ideawas used in [16] to develop a third-order semi-discrete central

scheme.

Both in [17] and [16], the multidimensional semi-discrete schemes were

obtained by using a ‘dimension-by-dimension’ approach – the one-dimen-

sional numerical flux was straightforwardly applied in all coordinate direc-

tions. In this paper, we present new high-order genuinely multidimensional

semi-discrete central schemes. They are based on a multidimensional gen-

eralization of the one-dimensional construction, used in [17,16], namely we

first integrate over non-equal volumes to derive a fully-discrete scheme, and

then we pass to a semi-discrete limit (we let ∆t ↓ 0, keeping ∆x fixed).

Semi-discrete central schemes consist of three independent building

blocks – a piecewise polynomial reconstruction, a spatial flux discretization

and an ODE solver. Our genuinely multidimensional recipe provides the

numerical fluxes. For the other two blocks one can pick any non-oscillatory

reconstruction and an efficient ODE solver.

For second-order schemes one uses a piecewise linear reconstruction –

a library of such (essentially) non-oscillatory reconstructions is available

(see e.g. [8,9,15,20,31,32]). To achieve a third-order accuracy, a piecewise

quadratic approximation is needed. However, to build a third-order non-

oscillatory interpolant is a highly nontrivial problem. In the one-dimensional

case, one of the possibilities is to use the essentially non-oscillatory (ENO)

reconstruction [9,35], or its weighted generalizations [28,10,21,23]. Mul-

tidimensional ENO-type reconstructions were introduced in [22,23]. A dis-

advantage of this approach is that it employs smoothness indicators, which

require a certain a-priori information about the solution.

Alternative one-dimensional non-oscillatory piecewise quadratic recon-

structionswere proposed in [27,29]. Theyboth satisfy the number of extrema
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diminishing (NED) property and do not require the use of smoothness indi-

cators. In this work, we present a less dissipative one-dimensional modifica-

tion of the reconstruction from [29].We also generalize the one-dimensional

reconstruction for the computation of the two-dimensional numerical fluxes

in our scheme.

The paper is organized as follows. In Sect. 2, we briefly describe the re-

cent development of Godunov-type central schemes. Next, in Sect. 3.1, we

present the one-dimensional modification of the non-oscillatory piecewise

quadratic reconstruction from [29]. In Sects. 3.2 and 3.3, we develop our

new genuinely multidimensional central scheme, which employs the multi-

dimensional third-order reconstruction, introduced in Sect. 3.4. The results

from our numerical experiments are shown in Sect. 4. We apply our third-

order scheme to a variety of one- and two-dimensional problems, including

the compressible Euler equations of gas dynamics, a convection-diffusion

equation with a nonlinear degenerate diffusion, the incompressible Euler

and Navier-Stokes equations. These numerical examples demonstrate the

expected third-order accuracy and the high resolution of our scheme.

2 Godunov-type central schemes – an overview

In this section, we discuss Godunov-type central schemes. In Sect. 2.1, we

recall the construction of staggered central schemes. Then, in Sect. 2.2,

we review the recently proposed [17,16] semi-discrete central schemes.

Finally, in Sect. 2.3, we briefly describe the one-dimensional non-oscillatory

piecewise parabolic reconstruction from [29].

For the sake of simplicity, wewill consider only uniform grids. Through-

out this paper, we will use the following notation. Let xj := j∆x, xj± 1

2

:=

(j ± 1/2)∆x, tn := n∆t, un
j := u(xj , t

n), where ∆x and ∆t are small

spatial and time scales, respectively.

2.1 Central schemes for conservation laws

We begin with the definition of the sliding average of u(·, t),

ū(x, t) :=
1

∆x

∫

I(x)

u(ξ, t) dξ, I(x) = {ξ : |ξ − x| < ∆x

2
}.(2.1)

We then integrate (1.1) over I(x) × [t, t+∆t], and arrive at the equivalent
formulation of the system (1.1),

ū(x, t+∆t) = ū(x, t) − 1

∆x
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×
[ t+∆t∫

τ=t

f(u(x+
∆x

2
, τ)) dτ −

t+∆t∫

τ=t

f(u(x − ∆x

2
, τ)) dτ

]
.(2.2)

This is the starting point for the construction of Godunov-type schemes,

which consists of three steps – reconstruction,evolution and projection.

Reconstruction. At time level t = tn a piecewise polynomial function

ũ(x, tn),

ũ(x, tn) = pn
j (x), xj− 1

2

< x < xj+ 1

2

, ∀j,(2.3)

is reconstructed from the data ūn
j := ū(xj , t

n), computed at the previous

time step. Here, {pn
j } are algebraic polynomials, and therefore ũ(·, tn)may

be discontinuous only at xj± 1

2

. The reconstruction is required to satisfy two

basic properties –

• conservation of the given cell averges :

x
j+1

2∫

x
j−

1
2

ũ(ξ, tn) dξ = ūn
j , ∀j;

• accuracy (for smooth u(x, t)):

ũ(x, tn) = u(x, tn) + O((∆x)r),

where r is the (formal) order of the scheme to be constructed.

Evolution. The piecewise polynomial ũ(·, tn) is evolved exactly according
to the integral equation (2.2), and the solution at time t = tn+1 is obtained

in terms of its sliding averages.

Projection. An evaluation of these sliding averages at particular grid points

provides the approximate cell averages of the solution at the next time level,

{ūn+1}.
Choosing x = xj in (2.2) results in an upwind Godunov-type scheme.

In this case, the solution of the initial value problem (1.1),(1.3) with initial

data u0(x) = ũ(x, tn), prescribed at t = tn, may be non-smooth in the

neighborhood of the points {xj+ 1

2

}. Therefore, the evaluation of the flux

integrals in (2.2) requires the use of a computationally expensive (approxi-

mate) Riemann solver and chraracteristic decomposition.

An alternative staggered grid approach, namely the choice of x = xj+ 1

2

in (2.2), was proposed by Nessyahu and Tadmor [31]. In this case, (2.2)
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leads to the Godunov-type central scheme

ūn+1
j+ 1

2

=
1

∆x

[ x
j+1

2∫

xj

pn
j (x) dx+

xj+1∫

x
j+1

2

pn
j+1(x) dx

]
−

− λ

∆t

[ tn+1∫

tn

f(u(xj+1, t)) dt −
tn+1∫

tn

f(u(xj , t)) dt

]
, λ :=

∆t

∆x
.(2.4)

In contrast to the upwind schemes, the RHS of (2.4) can be easily evaluated.

The spatial integrals can be computed exactly for a given reconstruction

{pn
j }. Also, due to the finite speed of propagation, the solution of (1.1),(1.3)

with u0(x) = ũ(x, tn) is smooth in (xj − ε, xj + ε) × [tn, tn+1), under
an appropriate CFL restriction on ∆t. Hence, the flux integrals in (2.4)

can be approximated by a quadrature formula of order ≥ r. Notice that the
function values, needed in the quadrature, may be computed either by Taylor

expansion, or by a Runge-Kutta method ([29,4]).

For example, if we use the second-order reconstruction

pn
j (x) = ūn

j + sn
j (x − xj),

and the midpoint quadrature rule

tn+1∫

tn

f(u(xj , t)) dt = ∆tf(u(xj , t
n+1/2)) + O((∆t)2),

we arrive at the Nessyahu-Tadmor (NT) staggered central scheme

ūn+1
j+ 1

2

=
1

2
(ūn

j + ūn
j+1) − 1

8
(sn

j − sn
j+1) − λ

[
f(u

n+ 1

2

j+1 ) − f(u
n+ 1

2

j )

]
,

where u
n+ 1

2

j are evaluated, for example, by the Taylor expansion

u
n+ 1

2

j = ūn
j − ∆t

2
(fx)

n
j .

To ensure the non-oscillatory nature of the NT scheme, one should apply

a nonlinear limiter while computing the slopes {sn
j }. In the original NT

scheme [31] the so-called minmod limiter [20,8,32] is used, namely, the

slopes are determined by

sn
j = minmod

(
ūn

j − ūn
j−1

∆x
,
ūn

j+1 − ūn
j

∆x

)
,(2.5)

where

minmod(a, b) :=
sgn(a) + sgn(b)

2
min(|a|, |b|).
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2.2 Semi-discrete central schemes

Asmentioned in the Introduction, the staggered central schemes donot admit

semi-discrete formulation. This makes them inappropriate for steady state

computations or for solving the diffusion dominated convection-diffusion

systems (1.2). The encountered difficulties were recently resolved by the

non-staggered central schemes, proposed in [17]. Next, we give a brief

overview of these schemes.

We begin with a piecewise polynomial reconstruction {pn
j }, which may

be discontinuous at the interface points {xj+ 1

2

}. This discontinuities prop-
agate with different speeds, whose upper bounds are

an
j+ 1

2

:= max
ω∈C(un−

j+1
2

,un+

j+1
2

)
ρ
(∂f
∂u

(ω)
)
.

Here,C(un−

j+ 1

2

, un+
j+ 1

2

) is the curve in the phase space that connects un−

j+ 1

2

:=

pn
j (xj+ 1

2

) and un+
j+ 1

2

:= pn
j+1(xj+ 1

2

), and ρ
(

∂f
∂u

)
is the spectral radius of the

Jacobian ∂f
∂u . For example, in the genuinely nonlinear or linearly degenerate

case, we have

an
j+ 1

2

= max

{
ρ
(∂f
∂u

(un−

j+ 1

2

)
)
, ρ
(∂f
∂u

(un+
j+ 1

2

)
)}

.

The main idea in the constrtuction of the schemes in [17] is based on

utilizing these CFL related local speeds of propagation. We consider the

domains

[xn
j− 1

2
,r
, xn

j+ 1

2
,l
] × [tn, tn+1] and [xn

j+ 1

2
,l
, xn

j+ 1

2
,r
] × [tn, tn+1],(2.6)

with xn
j+ 1

2
,l

:= xj+ 1

2

− ∆tan
j+ 1

2

, and xn
j+ 1

2
,r

:= xj+ 1

2

+ ∆tan
j+ 1

2

, where

the solution of (1.1),(1.3) with u0(x) = ũ(x, tn) is smooth and nonsmooth,

respectively.

Given the reconstruction {pn
j (x)}, we integrate over these domains and

obtain the cell averages

w̄n+1
j =

1

xn
j+ 1

2
,l

− xn
j− 1

2
,r

[ xn

j+1
2

,l∫

xn

j−
1
2

,r

pn
j (x) dx

−
tn+1∫

tn

(
f(u(xn

j+ 1

2
,l
, t)) − f(u(xn

j− 1

2
,r
, t))

)
dt

]
,(2.7)
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x j-1 jx

x j+3/2,l
n

n
j+1u

n+1
j+1/2w

n+1
j+1w

n
u j

n+1
jw

n+1
u j

j-1
n+1

w

j-1/2
n+1

w

x
n
j-1/2,l

x
x x x xj+1/2j-1/2 j+1 j+3/2

x x x xj+1/2,l j+1/2,r
n n n n

n
u

j-1/2,rj-3/2,r

j-1

Fig. 2.1. Modified central differencing

and

w̄n+1
j+ 1

2

=
1

xn
j+ 1

2
,r

− xn
j+ 1

2
,l

[ x
j+1

2∫

xn

j+1
2

,l

pn
j (x) dx+

xn

j+1
2

,r∫

x
j+1

2

pn
j+1(x) dx

−
tn+1∫

tn

(
f(u(xn

j+ 1

2
,r
, t)) − f(u(xn

j+ 1

2
,l
, t))

)
dt

]
(2.8)

over the corresponding non-equal spatial cells (see Fig. 2.1).

The spatial integrals in (2.7) and (2.8) can be computed explicitly. For

the approximation of the flux integrals an appropriate quadrature rule can

be used, since the solution is smooth along the vertical lines x = xn
j+ 1

2
,l

and x = xn
j+ 1

2
,r

for tn ≤ t < tn+1. Further, for the construction of a

fully-discrete scheme, we need to project the computed intermediate data

{w̄n+1} onto the original grid. To keep the high order of accuracy, we use

another non-oscillatory piecewise polynomial reconstruction, this time over

the nonuniform grid (for details see [17,16]).

We would like to emphasize that the resulting fully-discrete scheme is

still Godunov-type central scheme, which does not employ any Riemann

solver or characteristic decomposition. Moreover, it admits an extremely

simple semi-discrete formulation, which can be achieved in the following

way. We substitute ūn+1
j from the fully-discrete scheme in



Genuinely multidimensional central scheme 691

d

dt
ūj(t) = lim

∆t→0

ūn+1
j − ūn

j

∆t
,

and take a limit as ∆t → 0, with ∆x fixed. This was done in [17] and

[16] for the second- and the third-order schemes, respectively. Actually, in

a similar way, we derive the rth-order semi-discrete scheme

d

dt
ūj(t) = −

Hj+ 1

2

(t) − Hj− 1

2

(t)

∆x
,(2.9)

with the numerical flux

Hj+ 1

2

(t) :=
f(u+

j+ 1

2

(t)) + f(u−

j+ 1

2

(t))

2

−
aj+ 1

2

(t)

2

[
u+

j+ 1

2

(t) − u−

j+ 1

2

(t)
]
.(2.10)

The intermediate values u±

j+ 1

2

are given by

u+
j+ 1

2

:= pj+1(xj+ 1

2

), u−

j+ 1

2

:= pj(xj+ 1

2

),(2.11)

where {pj} is the rth-order piecewise polynomial reconstruction at time t.
We leave for the reader the details of the calculations.

Remark 2.1 The semi-discrete scheme (2.9)–(2.11) is a system of time de-

pendent ODEs, which can be solved by an ODE solver of an appropriate

order (see the discussion in [17]).

In contrast to the staggered central schemes, described in the previous

section, the semi-discrete central schemes can be efficiently applied to the

convection-diffusion equations (1.2). The resulting scheme is

d

dt
ūj(t) = −

Hj+ 1

2

(t) − Hj− 1

2

(t)

∆x
+

Qj+ 1

2

(t) − Qj− 1

2

(t)

∆x
,(2.12)

whereQj+ 1

2

is a reasonable approximation to the diffusion flux at x = xj+ 1

2

(for example, one may use a standard central differencing, see [16]).

This technique can also be directly applied tomultidimensional problems

if one uses the so-called ‘dimension-by-dimension’ approach (see [17,16]).

For instance, in the two-dimensional case, the corresponding semi-discrete

scheme for the system

ut + f(u)x + g(u)y = 0(2.13)
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is

d

dt
ūj,k(t) = −

Hx
j+ 1

2
,k
(t) − Hx

j− 1

2
,k
(t)

∆x

−
Hy

j,k+ 1

2

(t) − Hy

j,k− 1

2

(t)

∆y
.(2.14)

Here, the numerical fluxes are a straightforward generalization of the one-

dimensional numerical flux (2.10),

Hx
j+ 1

2
,k
(t) :=

f(u+
j+ 1

2
,k
(t)) + f(u−

j+ 1

2
,k
(t))

2

−
ax

j+ 1

2
,k
(t)

2

[
u+

j+ 1

2
,k
(t) − u−

j+ 1

2
,k
(t)
]
,(2.15)

and

Hy

j,k+ 1

2

(t) :=
g(u+

j,k+ 1

2

(t)) + g(u−

j,k+ 1

2

(t))

2

−
ay

j,k+ 1

2

(t)

2

[
u+

j,k+ 1

2

(t) − u−

j,k+ 1

2

(t)
]
.(2.16)

For more details, we refer the reader to [17] and [16].

In this paper (Sect. 3.2), we present an alternative genuienly multidi-

mensional extension of the scheme (2.9)–(2.11), which is different from

(2.14)–(2.16) for third- and higher-order schemes. Our numerical experi-

ments demonstrate the advantage of our genuienly multidimensional con-

struction over the straightforward ‘dimension-by-dimension’ approach.

2.3 A piecewise quadratic non-oscillatory reconstruction

In this section, we give a brief description of the third-order non-oscillatory

reconstruction of Liu and Tadmor [29]. Later on, in Sect. 3.1, we propose a

new, less dissipative modification of this reconstriction.

Let us denote by D± and D0 the one-sided and the central divided dif-

ferences

D±v(x) := ±v(x ± ∆x) − v(x)

∆x
,

D0v(x) :=
v(x+∆x) − v(x − ∆x)

2∆x
.
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We start with the basic piecewise quadratic reconstruction

qn
j (x) = (ūn

j − (∆x)2

24
D+D−ū

n
j ) +D0ū

n
j (x − xj)

+
1

2
D+D−ū

n
j (x − xj)

2,(2.17)

which obeys the requirements of conservation and accuracy. Moreover, it

satisfies a shape-preserving property, namely

• qn
j (x) is monotone on (xj− 1

2

, xj+ 1

2

) if and only if the sequence ūn
j−1, ū

n
j ,

ūn
j+1 is monotone,

• qn
j (x) has extremum in the interior of (xj− 1

2

, xj+ 1

2

) if and only if ūn
j is a

local extremum.

This property implies that in the process of reconstruction no new extrema

are created at the interior of the intervals (xj− 1

2

, xj+ 1

2

). The only places

where any newextremamay appear are the interface points{xj± 1

2

}. To avoid
this, one should use new quadratic polynomials {pn

j }, which are convex

combination of the basic parabolas qn
j and the cell averages ūn

j , this is

pn
j (x) = (1 − θn

j )ū
n
j + θn

j q
n
j (x), 0 < θn

j < 1.(2.18)

Here, θn
j are determined from the formula

θn
j :=





min

{
Mn

j+ 1

2

− ūn
j

Mn
j − ūn

j

,
mn

j− 1

2

− ūn
j

mn
j − ūn

j

, 1

}
, if ūn

j−1 < ūn
j < ūn

j+1,

min

{
Mn

j− 1

2

− ūn
j

Mn
j − ūn

j

,
mn

j+ 1

2

− ūn
j

mn
j − ūn

j

, 1

}
, if ūn

j−1 > ūn
j > ūn

j+1,

1, otherwise,
(2.19)

where

Mn
j = max

{
qn
j (xj+ 1

2

), qn
j (xj− 1

2

)
}
,

mn
j = min

{
qn
j (xj+ 1

2

), qn
j (xj− 1

2

)
}
,

and

Mn
j± 1

2

= max
{1

2

(
ūn

j + ūn
j±1

)
, qn

j±1(xj± 1

2

)
}
,

mn
j± 1

2

= min
{1

2

(
ūn

j + ūn
j±1

)
, qn

j±1(xj± 1

2

)
}
.
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As it was proved in [29], such a choice of the limiter θn
j ensures that in

smooth regions 1 − θn
j ∼ (∆x)3. Thus, the reconstruction {pn

j } is a third-

order accurate. The polynomials {pn
j } also inherit the conservation and the

shape-preserving properties of {qn
j }. Moreover, the limiters θn

j are designed

to prevent oscillations at the interface points in the sense that new extrema

are created neither at the interior of the intervals (xj− 1

2

, xj+ 1

2

), nor at their

endpoints. We refer the reader to [29] for details.

3 New genuine multidimensional semi-discrete central scheme

In this section, we introduce a new semi-discrete central scheme, which is a

genuine multidimensional extension of the scheme (2.9)–(2.11). It employs

amultidimensional generalization (Sect. 3.4) of the new piecewise quadratic

reconstruction (Sect. 3.1).

3.1 A new one-dimensional reconstruction

As in Sect. 2.3 (see also [29]), we use the basic piecewise quadratic function

{qn
j }, defined in (2.17). The new reconstruction pn

j is obtained as a convex

combination of qn
j and the piecewise linear interpolantLn

j ( – vs. the convex

combination of qn
j and the piecewise constant function ūn

j in (2.18)),

pn
j (x) = (1 − θn

j )L
n
j (x) + θn

j q
n
j (x), 0 < θn

j < 1,(3.1)

where

Ln
j (x) = ūn

j + sn
j (x − xj).(3.2)

The non-oscillatory property of the new piecewise quadratic reconstruc-

tion {pn
j } is ensured by an appropriate choice of {θn

j } and by a non-

oscillatory property of {Ln
j } (which depends on the choice of the slopes

{sn
j }). We take {θn

j } to be

θn
j :=





min

{
Mn

j+ 1

2

− Ln
j (xj+ 1

2

)

Mn
j − Ln

j (xj+ 1

2

)
,
mn

j− 1

2

− Ln
j (xj− 1

2

)

mn
j − Ln

j (xj− 1

2

)
, 1

}
,

if ūn
j−1 < ūn

j < ūn
j+1,

min

{
Mn

j− 1

2

− Ln
j (xj− 1

2

)

Mn
j − Ln

j (xj− 1

2

)
,
mn

j+ 1

2

− Ln
j (xj+ 1

2

)

mn
j − Ln

j (xj+ 1

2

)
, 1

}
,

if ūn
j−1 > ūn

j > ūn
j+1,

1, otherwise,

(3.3)
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where

Mn
j = max

{
qn
j (xj+ 1

2

), qn
j (xj− 1

2

)
}
,

mn
j = min

{
qn
j (xj+ 1

2

), qn
j (xj− 1

2

)
}
,

and

Mn
j± 1

2

= max
{1

2

(
Ln

j (xj± 1

2

) + Ln
j±1(xj± 1

2

)
)
, qn

j±1(xj± 1

2

)
}
,

mn
j± 1

2

= min
{1

2

(
Ln

j (xj± 1

2

) + Ln
j±1(xj± 1

2

)
)
, qn

j±1(xj± 1

2

)
}
.

In this paper, we use the non-oscillatory TVD minmod interpolant {Ln
j },

defined in (3.2),(2.5). This guarantees that the number of local extrema of

{pn
j } does not exceed the number of extrema of {ūn

j } (NED property). The

proof of the NED property is the same as in [29], and we omit the details.

One can also easily check that our new reconstruction (3.1)–(3.3) possesses

all the properties of the basic parabolas {qn
j } – conservation, accuracy and

shape-preserving.

Remark 3.1 The new reconstruction (3.1)–(3.3) is a less dissipative gener-

alization of (2.17)–(2.19). This fact allows us to achieve a better resolution,

as illustrated in the numerical examples in Sect. 4. At the same time, the

modified reconstruction (3.1)–(3.3) is only slightly more computationally

expensive than the original one.

Notice, that if one sets all slopes sn
j to be zero, then (3.1)–(3.3) is reduced

to (2.17)–(2.19).

In summary, the resulting piecewise parabolic reconstruction has the form

pn
j (x) =

(
ūn

j − θn
j

(∆x)2

24
D+D−ū

n
j

)
+
(
θn
j D0ū

n
j + (1 − θn

j )s
n
j

)

×(x − xj) +
θn
j

2
D+D−ū

n
j (x − xj)

2,(3.4)

where θn
j and sn

j are given by (3.3) and (2.5), respectively.

3.2 A genuinely multidimensional approach – fully-discrete set up

In this section, we generalize the idea of the one-dimensional construc-

tion, described in Sect. 2.1 (see Fig. 2.1) for the multidimensional case. For

simplicity, we will discuss only the two-dimensional system of hyperbolic

conservation laws (2.13).
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Let xj := j∆x, yk := k∆y, xj± 1

2

:= xj ± ∆x
2 , yk± 1

2

:= yk ± ∆y
2 .

Assume that at time t = tn we have already constructed a conservative

piecewise polynomial interpolant of an appropriate order

ũn(x, y) :=
∑

j,k

pn
j,k(x, y)χj,k(x, y),

with possible discontinuities along the interface lines x = xj± 1

2

and y =

yk± 1

2

. Later on, in Sect. 3.4, we present a new piecewise quadratic recon-

struction, especially designed for the purposes of this scheme. We denote

the corresponding point values by

uj,k := pn
j,k(xj , yk), uN

j,k := pn
j,k(xj , yk+ 1

2

),

uS
j,k := pn

j,k(xj , yk− 1

2

), uE
j,k := pn

j,k(xj+ 1

2

, yk),

uW
j,k := pn

j,k(xj− 1

2

, yk), uNE
j,k := pn

j,k(xj+ 1

2

, yk+ 1

2

),

uNW
j,k := pn

j,k(xj− 1

2

, yk+ 1

2

), uSE
j,k := pn

j,k(xj+ 1

2

, yk− 1

2

),

uSW
j,k := pn

j,k(xj− 1

2

, yk− 1

2

),(3.5)

and the cell average by

ūj,k :=
1

∆x∆y

x
j+1

2∫

x
j−

1
2

y
k+1

2∫

y
k−

1
2

pn
j,k(x, y) dxdy.

As in the one-dimensional case, our construction employs the CFL related

maximal local speeds of propagation of the discontinuities, and we denote

these speeds by {ax
j± 1

2
,k

} and {ay

j,k± 1

2

}. They are not easy to compute, but

in practice one may use, for example, the values

ax
j+ 1

2
,k

:= max
{
ρ
(∂f
∂u

(uW
j+1,k)

)
, ρ
(∂f
∂u

(uE
j,k)

)}
,

ay

j,k+ 1

2

:= max
{
ρ
(∂g
∂u

(uS
j,k+1)

)
, ρ
(∂g
∂u

(uN
j,k)

)}
.(3.6)

Further, we consider the nonuniform domains

Dj,k × [tn, tn+1], Dj± 1

2
,k × [tn, tn+1],

Dj,k± 1

2

× [tn, tn+1], Dj± 1

2
,k± 1

2

× [tn, tn+1],
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x
j-1

x x x
j-1/2 j+1/2 j+1

x
j

k+1/2
y

y

y

y

k+1

k-1/2

k-1

y
k Djk

Fig. 3.1. Two-dimensional modified central differencing

outlined in Fig. 3.1. They are determined by the corresponding local speeds,

Dj,k+ 1

2

:= [xj− 1

2

+Ax
j− 1

2
,k+ 1

2

∆t, xj+ 1

2

− Ax
j+ 1

2
,k+ 1

2

∆t]

×[yk+ 1

2

− ay

j,k+ 1

2

∆t, yk+ 1

2

+ ay

j,k+ 1

2

∆t],

Dj+ 1

2
,k := [xj+ 1

2

− ax
j+ 1

2
,k
∆t, xj+ 1

2

+ ax
j+ 1

2
,k
∆t]

×[yk− 1

2

+Ay

j+ 1

2
,k− 1

2

∆t, yk+ 1

2

− Ay

j+ 1

2
,k+ 1

2

∆t],

Dj+ 1

2
,k+ 1

2

:= [xj+ 1

2

− Ax
j+ 1

2
,k+ 1

2

∆t, xj+ 1

2

+Ax
j+ 1

2
,k+ 1

2

∆t]

×[yk+ 1

2

− Ay

j+ 1

2
,k+ 1

2

∆t, yk+ 1

2

+Ay

j+ 1

2
,k+ 1

2

∆t],

where

Ax
j+ 1

2
,k+ 1

2

:= max
{
ax

j+ 1

2
,k
, ax

j+ 1

2
,k+1

}
,

Ay

j+ 1

2
,k+ 1

2

:= max
{
ay

j,k+ 1

2

, ay

j+1,k+ 1

2

}
.

Under an appropriate CFL restriction, the solution of the system (2.13),

subject to the initial data u(x, y, 0) = ũn(x, y), is smooth in Dj,k (which

is, in general, a nonrectangular domain inside the (j, k)-cell, see Fig. 3.1),
and may be nonsmooth in the other domains.

Given the reconstruction ũn, we integrate the system (2.13) over these

domains, and obtain the corresponding cell averages

w̄n+1
j,k+ 1

2

=
1

2ay

j,k+ 1

2

∆t
(
∆x − (Ax

j+ 1

2
,k+ 1

2

+Ax
j− 1

2
,k+ 1

2

)∆t
)

×
( ∫∫

D
j,k+1

2

ũn(x, y) dx dy −
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−
tn+1∫

tn

y
k+1

2

+ay

j,k+1
2

∆t
∫

y
k+1

2

−ay

j,k+1
2

∆t

f(u(x, y, t))

∣∣∣∣∣

x
j+1

2

−Ax

j+1
2

,k+1
2

∆t

x=x
j−

1
2

+Ax

j−
1
2

,k+1
2

∆t

dy dt −

−
tn+1∫

tn

x
j+1

2

−Ax

j+1
2

,k+1
2

∆t
∫

x
j−

1
2

+Ax

j−
1
2

,k+1
2

∆t

g(u(x, y, t))

∣∣∣∣∣

y
k+1

2

+ay

j,k+1
2

∆t

y=y
k+1

2

−ay

j,k+1
2

∆t

dx dt

)
,(3.7)

w̄n+1
j+ 1

2
,k

=
1

2ax
j+ 1

2
,k
∆t
(
∆y − (Ay

j+ 1

2
,k+ 1

2

+Ay

j+ 1

2
,k− 1

2

)∆t
)

×
( ∫∫

D
j+1

2
,k

ũn(x, y) dx dy −

−
tn+1∫

tn

y
k+1

2

−Ay

j+1
2

,k+1
2

∆t
∫

y
k−

1
2

+Ay

j+1
2

,k−
1
2

∆t

f(u(x, y, t))

∣∣∣∣∣

x
j+1

2

+ax

j+1
2

,k
∆t

x=x
j+1

2

−ax

j+1
2

,k
∆t

dy dt −

−
tn+1∫

tn

x
j+1

2

+ax

j+1
2

,k
∆t

∫

x
j+1

2

−ax

j+1
2

,k
∆t

g(u(x, y, t))

∣∣∣∣∣

y
k+1

2

−Ay

j+1
2

,k+1
2

∆t

y=y
k−

1
2

+Ay

j+1
2

,k−
1
2

∆t

dx dt

)
,(3.8)

w̄n+1
j+ 1

2
,k+ 1

2

=
1

4Ax
j+ 1

2
,k+ 1

2

Ay

j+ 1

2
,k+ 1

2

(∆t)2

( ∫ ∫

D
j+1

2
,k+1

2

ũn(x, y) dx dy −

−
tn+1∫

tn

y
k+1

2

+Ay

j+1
2

,k+1
2

∆t
∫

y
k+1

2

−Ay

j+1
2

,k+1
2

∆t

f(u(x, y, t))

∣∣∣∣∣

x
j+1

2

+Ax

j+1
2

,k+1
2

∆t

x=x
j+1

2

−Ax

j+1
2

,k+1
2

∆t

dy dt −

−
tn+1∫

tn

x
j+1

2

+Ax

j+1
2

,k+1
2

∆t
∫

x
j+1

2

−Ax

j+1
2

,k+1
2

∆t

g(u(x, y, t))

∣∣∣∣∣

y
k+1

2

+Ay

j+1
2

,k+1
2

∆t

y=y
k+1

2

−Ay

j+1
2

,k+1
2

∆t

dx dt

)
.(3.9)
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The computation of w̄n+1
j,k is more complicated, but it can be handled in a

similar way. The spatial integrals in (3.7)–(3.9) can be computed exactly

and for the flux integrals one may use an appropriate quadrature formula

(following the approach in [11,22]).

As in the one-dimensional case, we complete the construction of the

fully-discrete scheme in two steps.Wefirst build a newpiecewise polynomial

reconstruction

w̃n+1(x, y) :=
∑

j,k

[
w̃n+1

j,k χ̃j,k + w̃n+1
j+ 1

2
,k
χ̃j+ 1

2
,k + w̃n+1

j,k+ 1

2

χ̃j,k+ 1

2

+w̃n+1
j+ 1

2
,k+ 1

2

χ̃j+ 1

2
,k+ 1

2

]
,

where the χ̃’s are the characteristic functions of the corresponding D’s.

Then, we project w̃n+1 back onto the original grid and obtain the new cell

averages

ūn+1
j,k =

1

∆x∆y

x
j+1

2∫

x
j−

1
2

y
k+1

2∫

y
k−

1
2

w̃n+1(x, y) dxdy.(3.10)

The explicit form of the resulting fully-discrete scheme is extremely com-

plicated, and is of no practical use. Fortunately, all the computations, which

have been omitted in this section, are drastically simplified if they are made

in a semi-discrete context (as ∆t −→ 0).

3.3 A genuinely multidimensional third-order semi-discrete scheme

In this section, we derive our new genuinelymultidimensional semi-discrete

scheme. We proceed as in Sect. 2.2 (see also [17,16]). Using (3.10), we

obtain

d

dt
ūj,k(t) = lim

∆t→0

ūn+1
j,k − ūn

j,k

∆t

= lim
∆t→0

1

∆t

[
1

∆x∆y

x
j+1

2∫

x
j−

1
2

y
k+1

2∫

y
k−

1
2

w̃n+1(x, y) dxdy − ūn
j,k

]
.(3.11)

The following notation for the intersections of the cell [xj− 1

2

, xj+ 1

2

] ×
[yk− 1

2

, yk+ 1

2

] with the D-domains is used: Cj± 1

2
,k± 1

2

for the four corners,

Sj± 1

2
,k, Sj,k± 1

2

for the four side domains and Dj,k for the center. Notice,
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that since the size of the C-domains is proportional to (∆t)2, and the size

of the S-domains ∼ ∆t, we have

w̃n+1
j± 1

2
,k± 1

2

(x, y) = w̄n+1
j± 1

2
,k± 1

2

+ O((∆t)2),(3.12)

w̃n+1
j± 1

2
,k
(x, y) = w̄n+1

j± 1

2
,k

+ O(∆t),

w̃n+1
j,k± 1

2

(x, y) = w̄n+1
j,k± 1

2

+ O(∆t),(3.13)

and due to the conservation property of the reconstruction

1

|Dj,k|

∫ ∫

Dj,k

w̃n+1
j,k (x, y) dxdy = w̄n+1

j,k .(3.14)

The substitution of (3.12)–(3.14) in (3.11) yields

d

dt
ūj,k(t) = lim

∆t→0

1

∆t∆x∆y

(
∑

±

∫ ∫

C
j±

1
2

,k±
1
2

w̄n+1
j± 1

2
,k± 1

2

dxdy

+
∑

±

∫ ∫

S
j,k±

1
2

w̄n+1
j,k± 1

2

dxdy

+
∑

±

∫ ∫

S
j±

1
2

,k

w̄n+1
j± 1

2
,k
dxdy

)

+ lim
∆t→0

1

∆t

[
|Dj,k|
∆x∆y

w̄n+1
j,k − ūn

j,k

]
.(3.15)

The first sum in (3.15) tends to zero as ∆t → 0, since |Cj± 1

2
,k± 1

2

| =

O((∆t)2). To pass to the limit in the second sum, we use the fact that

|Sj,k+ 1

2

| = ay

j,k+ 1

2

∆t∆x+ O((∆t)2), and obtain

lim
∆t→0

1

∆t∆x∆y

∫ ∫

S
j,k+1

2

w̄n+1
j,k+ 1

2

dxdy =
ay

j,k+ 1

2

∆y
lim

∆t→0
w̄n+1

j,k+ 1

2

.(3.16)

It follows from (3.7) that the value of lim
∆t→0

w̄n+1
j,k+ 1

2

is

1

2∆x

[ x
j+1

2∫

x
j−

1
2

{
pn

j,k+1(x, yk+ 1

2

) + pn
j,k(x, yk+ 1

2

)
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−
g(pn

j,k+1(x, yk+ 1

2

)) − g(pn
j,k(x, yk+ 1

2

))

ay

j,k+ 1

2

}
dx

]
.

We then apply the Simpson’s quadrature formula to the above integral, and

using (3.16), we arrive at

lim
∆t→0

1

∆t∆x∆y

∫∫

S
j,k+1

2

w̄n+1
j,k+ 1

2

dxdy

≈
ay

j,k+ 1

2

12∆y

[
uSW

j,k+1 + uNW
j,k + 4(uS

j,k+1 + uN
j,k) + uSE

j,k+1 + uNE
j,k

]

− 1

12∆y

[
g(uSW

j,k+1) − g(uNW
j,k ) + 4(g(uS

j,k+1) − g(uN
j,k))

+g(uSE
j,k+1) − g(uNE

j,k )
]
.(3.17)

A similar treatment of the third sum in (3.15) leads to

lim
∆t→0

1

∆t∆x∆y

∫∫

S
j+1

2
,k

w̄n+1
j+ 1

2
,k
dxdy

≈
ax

j+ 1

2
,k

12∆x

[
uNW

j+1,k + uNE
j,k + 4(uW

j+1,k + uE
j,k) + uSW

j+1,k + uSE
j,k

]

− 1

12∆x

[
f(uNW

j+1,k) − f(uNE
j,k ) + 4(f(uW

j+1,k) − f(uE
j,k))

+f(uSW
j+1,k) − f(uSE

j,k)
]
.(3.18)

Finally, we consider the last term in (3.15). Note, that in the limit as∆t → 0,
the domain Dj,k becomes rectangular, up to small corners of a negligible

size O((∆t)2) (see Fig. 3.1), and thus one can easily integrate equation

(2.13) overDj,k × [tn, tn +∆t]. This observation together with Simpson’s

rule give

lim
∆t→0

1

∆t

[
|Dj,k|
∆x∆y

w̄n+1
j,k − ūn

j,k

]

≈ −
ax

j+ 1

2
,k

6∆x

[
uNE

j,k + 4uE
j,k + uSE

j,k

]
−

ax
j− 1

2
,k

6∆x

[
uNW

j,k + 4uW
j,k + uSW

j,k

]

−
ay

j,k+ 1

2

6∆y

[
uNW

j,k + 4uN
j,k + uNE

j,k

]
−

ay

j,k− 1

2

6∆y

[
uSW

j,k + 4uS
j,k + uSE

j,k

]

− 1

6∆x

[
f(uNE

j,k ) − f(uNW
j,k ) + 4(f(uE

j,k) − f(uW
j,k))
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+f(uSE
j,k) − f(uSW

j,k )
]

− 1

6∆y

[
g(uNW

j,k ) − g(uSW
j,k ) + 4(g(uN

j,k)

−g(uS
j,k)) + g(uNE

j,k ) − g(uSE
j,k)

]
.(3.19)

At the end, plugging (3.17)–(3.19) into (3.15), we arrive at our new

semi-discrete scheme, which can be presented in the conservative form

d

dt
ūj,k(t) = −

Hx
j+ 1

2
,k
(t) − Hx

j− 1

2
,k
(t)

∆x

−
Hy

j,k+ 1

2

(t) − Hy

j,k− 1

2

(t)

∆y
,(3.20)

with the numerical fluxes

Hx
j+ 1

2
,k
(t) :=

{
f(uNW

j+1,k(t)) + f(uNE
j,k (t)) + 4(f(uW

j+1,k(t)) + f(uE
j,k(t)))

+f(uSW
j+1,k(t)) + f(uSE

j,k(t))

}/{
12

}
−

ax
j+ 1

2
,k
(t)

12

×
[
uNW

j+1,k(t) − uNE
j,k (t) + 4(uW

j,k+1(t) − uE
j,k(t))

+uSW
j+1,k(t) − uSE

j,k(t)
]
,(3.21)

and

Hy

j,k+ 1

2

(t) :=

{
g(uSW

j,k+1(t)) + g(uNW
j,k (t)) + 4(g(uS

j,k+1(t)) + g(uN
j,k(t)))

+g(uSE
j,k+1(t)) + g(uNE

j,k (t))

}/{
12

}
−

ay

j,k+ 1

2

(t)

12

×
[
uSW

j,k+1(t) − uNW
j,k (t) + 4(uS

j,k+1(t) − uN
j,k(t))

+uSE
j,k+1(t) − uNE

j,k (t)
]
.(3.22)

Here, ax
j+ 1

2
,k
(t), ay

j,k+ 1

2

(t) are given in (3.6), and the u’s are determined by

the corresponding values of the piecewise quadratic reconstruction {pj,k}
at time t, see (3.5).

Remark 3.2 1. We would like to point out that the scheme (3.20)–(3.22)

has been constructed as a genuinely two-dimensional Godunov-type central

scheme. Our numerical experiments demonstrate that it has sharper reso-

lution, in comparison to the ‘dimension-by-dimension’ third-order central

semi-discrete scheme in [16].
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At the same time, our new scheme enjoys all the main advantages of

central schemes, the most important of which is simplicity. Namely, it does

not involve Riemann solvers and does not require any information about

the eigenstructure of the Jacobians ∂f
∂u and ∂g

∂u beyond the CFL-related local

speeds {ax
j+ 1

2
,k

} and {ay

j,k+ 1

2

}.
2. If in the derivation of (3.20)–(3.22), we use piecewise linear recon-

struction and the second-order midpoint rule (instead of Simpson’s rule),

we arrive exactly at the scheme (2.14)–(2.16), obtained in [17], where the

‘dimension-by-dimension’ approach was used.

3. The scheme (3.20) can be generalized for the convection-diffusion

equation

ut + f(u)x + g(u)y = Qx(u, ux, uy)x +Qy(u, ux, uy)y,

as follows

d

dt
ūj,k(t) = −

Hx
j+ 1

2
,k

− Hx
j− 1

2
,k

∆x
−

Hy

j,k+ 1

2

− Hy

j,k− 1

2

∆y

+
Qx

j+ 1

2
,k

− Qx
j− 1

2
,k

∆x
+

Qy

j,k+ 1

2

− Qy

j,k− 1

2

∆y
.(3.23)

Here, the numerical convection fluxes Hx, Hy are given by (3.21),(3.22)

and, as in the one-dimensional case, Qx
j+ 1

2
,k

and Qy

j,k+ 1

2

are appropriate

approximations to the diffusion fluxes.

4. Our semi-discrete approach can be easily extended to the multidimen-

sional case, d ≥ 3.

3.4 A new two-dimensional reconstruction

via “dimension-by-dimension” approach

We generalize the idea from Sect. 3.1 for the two-dimensional case – we

construct a piecewise quadratic reconstruction {pn
j,k} as a convex combina-

tion of the basic parabolas {qn
j,k} and the linear functions {Ln

j,k}. The basic
parabolas are given by

qn
j,k(x, y) =

(
ūn

j,k − (∆x)2

24
Dx

+D
x
−ū

n
j,k − (∆y)2

24
Dy

+D
y
−ū

n
j,k

)

+Dx
0 ū

n
j,k(x − xj) +Dy

0 ū
n
j,k(y − yk)

+
1

2
Dx

+D
x
−ū

n
j,k(x − xj)

2 +Dx
0D

y
0 ū

n
j,k(x − xj)(y − yk)

+
1

2
Dy

+D
y
−ū

n
j,k(y − yk)

2,(3.24)
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where the corresponding divided differences are

Dx
±v(x, y) := ±v(x ± ∆x, y) − v(x, y)

∆x
,

Dy
±v(x, y) := ±v(x, y ± ∆y) − v(x, y)

∆y
,

Dx
0v(x, y) :=

v(x+∆x, y) − v(x − ∆x, y)

2∆x
,

Dy
0v(x, y) :=

v(x, y +∆y) − v(x, y − ∆y)

2∆y
.

One can easily check that, as in the one-dimensional case, these parabolas

satisfy the requirements of conservation and accuracy.

The piecewise linear functions have the form

Ln
j,k(x, y) = ūn

j,k + sx
j,k(x − xj) + sy

j,k(y − yk),(3.25)

where the slopes {sx
j,k, s

y
j,k} may be computed, for example, using the min-

mod limiter

sx
j,k = minmod

(
ūn

j,k − ūn
j−1,k

∆x
,
ūn

j+1,k − ūn
j,k

∆x

)
,

sy
j,k = minmod

(
ūn

j,k − ūn
j,k−1

∆y
,
ūn

j,k+1 − ūn
j,k

∆y

)
.(3.26)

Then the reconstruction is

pn
j,k(x, y) = (1 − θn

j,k)L
n
j,k(x, y) + θn

j,kq
n
j,k(x, y),

0 < θn
j,k < 1.(3.27)

In general, the purpose of the limiters {θn
j,k} is to guarantee a non-oscillatory

nature of the reconstruction (3.27). Unfortunately, in the two-dimensional

case, we do not know how such θ’s can be chosen. Moreover, it is not even

clear what the definition of a non-oscillatory propery should be.

Notice, that we do not need to recover the whole reconstruction – only

the eight point values uN
j,k, u

E
j,k, u

S
j,k, u

W
j,k,u

NE
j,k , u

NW
j,k , uSE

j,k, and uSW
j,k in

each (j, k)-cell are required to compute the numerical fluxes in (3.21)–

(3.22). These values may be computed using the ‘dimension-by-dimension’

approach, applied in two steps.

First, we use the reconstruction (3.24)–(3.27) with

θn
j,k = min{θx

j,k, θ
y
j,k},(3.28)

to compute the point values in the coordinate directions – uN
j,k, u

E
j,k, u

S
j,k and

uW
j,k (see Fig. 3.2). The limiters {θx

j,k} and {θy
j,k} are determined by (3.3)

with

Ln
j (·) = Ln

j,k(·, yk), qj(·) = qn
j,k(·, yk),
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N

E

S

W

x

y
k

j

Fig. 3.2. Reconstruction in x- and y-directions

x

y
k

j

NW            NE

SW             SE

dd +-

Fig. 3.3. Reconstruction in the diagonal directions

and

Ln
j (·) = Ln

j,k(xk, ·), qn
j (·) = Ln

j,k(xk, ·).

The choice of {θn
j,k} is based on the one-dimensional non-oscillatory recon-

struction, described in Sect. 3.1. This guarantees the third-order accuracy

and the lack of oscillations in the x- and y-directions.

To ensure that there are no oscillations in the diagonal directions, the

point values uNE
j,k , u

NW
j,k , uSE

j,k and uSW
j,k should be computed by another re-

construction (see Fig. 3.3). This additional reconstruction is determined as a

convex combination of different basic parabolas {q̂n
j,k} and linear functions

{L̂n
j,k}, adjusted to the diagonal directions d− and d+,

p̂n
j,k(x, y) = (1 − θ̂n

j,k)L̂
n
j,k(x, y) + θ̂n

j,kq̂
n
j,k(x, y),

0 < θ̂n
j,k < 1.(3.29)
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The adjusted basic parabolas are

q̂n
j,k(x, y) =

(
ūn

j,k − ∆2

48
Dd+

+ Dd+

− ūn
j,k − ∆2

48
Dd−

+ Dd−

− ūn
j,k

)

+Dd+

0 ūn
j,k

[ ∆

2∆y
(y − yk) +

∆

2∆x
(x − xj)

]

+Dd−

0 ūn
j,k

[ ∆

2∆y
(y − yk) − ∆

2∆x
(x − xj)

]

+Dd+

0 Dd−

0 ūn
j,k

[ ∆2

4(∆y)2
(y − yk)

2 − ∆2

4(∆x)2
(x − xj)

2
]

+
1

2
Dd+

+ Dd+

− ūn
j,k

[ ∆

2∆y
(y − yk) +

∆

2∆x
(x − xj)

]2

+
1

2
Dd−

+ Dd−

− ūn
j,k

[ ∆

2∆y
(y − yk) − ∆

2∆x
(x − xj)

]2
,(3.30)

where∆ :=
√

(∆x)2 + (∆y)2, and the divided differences in the diagonal
directions are

Dd+

± v(x, y) := ±v(x ± ∆x, y ± ∆y) − v(x, y)

∆
,

Dd+

0 v(x, y) :=
v(x+∆x, y +∆y) − v(x − ∆x, y − ∆y)

2∆
,

Dd−

± v(x, y) := ±v(x ∓ ∆x, y ± ∆y) − v(x, y)

∆
,

Dd−

0 v(x, y) :=
v(x − ∆x, y +∆y) − v(x+∆x, y − ∆y)

2∆
.

The corresponding linear functions are given by

L̂n
j,k(x, y) = ūn

j,k + ŝ+
j,k

[ ∆

2∆y
(y − yk) +

∆

2∆x
(x − xj)

]

+ŝ−
j,k

[ ∆

2∆y
(y − yk) − ∆

2∆x
(x − xj)

]
,(3.31)

where the slopes are computed using the minmod limiter, applied in the

diagonal directions, that is,

ŝ+
j,k = minmod

(
ūn

j,k − ūn
j−1,k−1

∆
,
ūn

j+1,k+1 − ūn
j,k

∆

)
,(3.32)

ŝ−
j,k = minmod

(
ūn

j,k − ūn
j+1,k−1

∆
,
ūn

j−1,k+1 − ūn
j,k

∆

)
.(3.33)

The parameter θ̂n
j,k in (3.29) is determined by

θ̂n
j,k = min{θ̂+

j,k, θ̂
−
j,k},(3.34)
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where θ̂+
j,k and θ̂−

j,k are designed to prevent oscillations in the diagonal di-

rections d+ and d−, respectively. The θ̂’s are computed similarly to (3.3),

namely

θ±
j,k :=





min

{
M±

j± 1

2
,k+ 1

2

− L̂n
j,k(xj± 1

2

, yk+ 1

2

)

M±
j,k − L̂n

j,k(xj± 1

2

, yk+ 1

2

)
,

m±

j∓ 1

2
,k− 1

2

− L̂n
j,k(xj∓ 1

2

, yk− 1

2

)

m±
j,k − L̂n

j,k(xj∓ 1

2

, yk− 1

2

)
, 1

}
,

if ūn
j∓1,k−1 < ūn

j,k < ūn
j±1,k+1,

min

{
M±

j∓ 1

2
,k− 1

2

− L̂n
j,k(xj∓ 1

2

, yk− 1

2

)

M±
j,k − L̂n

j,k(xj∓ 1

2

, yk− 1

2

)
,

m±

j± 1

2
,k+ 1

2

− L̂n
j,k(xj± 1

2

, yk+ 1

2

)

m±
j,k − L̂n

j,k(xj± 1

2

, yk+ 1

2

)
, 1

}
,

if ūn
j∓1,k−1 > ūn

j,k > ūn
j±1,k+1,

1, otherwise,

(3.35)

where

M±
j,k = max

{
q̂n
j,k(xj± 1

2

, yk+ 1

2

), q̂n
j,k(xj∓ 1

2

, yk− 1

2

)
}
,

m±
j,k = min

{
q̂n
j,k(xj± 1

2

, yk+ 1

2

), q̂n
j,k(xj∓ 1

2

, yk− 1

2

)
}
,

and

M+
j± 1

2
,k± 1

2

= max
{1

2

(
L̂n

j,k(xj± 1

2

, yk± 1

2

) + L̂n
j±1,k±1(xj± 1

2

, yk± 1

2

)
)
,

q̂n
j±1,k±1(xj± 1

2

, yk± 1

2

)
}
,

m+
j± 1

2
,k± 1

2

= min
{1

2

(
L̂n

j,k(xj± 1

2

, yk± 1

2

) + L̂n
j±1,k±1(xj± 1

2

, yk± 1

2

)
)
,

q̂n
j±1,k±1(xj± 1

2

, yk± 1

2

)
}
,

M−

j∓ 1

2
,k± 1

2

= max
{1

2

(
L̂n

j,k(xj∓ 1

2

, yk± 1

2

) + L̂n
j∓1,k±1(xj∓ 1

2

, yk± 1

2

)
)
,

q̂n
j∓1,k±1(xj∓ 1

2

, yk± 1

2

)
}
,

m−

j∓ 1

2
,k± 1

2

= min
{1

2

(
L̂n

j,k(xj∓ 1

2

, yk± 1

2

) + L̂n
j∓1,k±1(xj∓ 1

2

, yk± 1

2

)
)
,
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q̂n
j∓1,k±1(xj∓ 1

2

, yk± 1

2

)
}
.

Remark 3.3 1. Direct calculations show that the reconstruction p̂n
j,k(x, y)

conserves the original cell averages, that is

1

∆x∆y

x
j+1

2∫

x
j−

1
2

y
k+1

2∫

y
k−

1
2

p̂n
j,k(x, y) dx dy = ūn

j,k.

2. We would like to emphasize that we have actually used two differ-

ent piecewise quadratic reconstructions, (3.24)–(3.28) and (3.29)–(3.35),

in order to compute the eight point values along the inner boundary of

the (j, k)-cell. In the derivation of our genuinely two-dimensional scheme

(3.20)–(3.22) we use Simpson’s rule, which is applied to a single smooth

function, defined on the (j, k)-cell. For example, this smooth function can

be viewed as the following convex combination,

(1 − ϕ(x, y))pn
j,k(x, y) + ϕ(x, y)p̂n

j,k(x, y),

where the weight function ϕ can be any smooth function satisfying

ϕ(xj± 1

2

, yk) = ϕ(xj , yk± 1

2

) = 1,

ϕ(xj± 1

2

, yk± 1

2

) = 0, 0 ≤ ϕ(x, y) ≤ 1.

In summary, the values uN
j,k, u

S
j,k, u

E
j,k and uW

j,k are computed as the

corresponding point values of

pn
j,k(x, y)

=
(
ūn

j,k − θn
j,k

(∆x)2

24
Dx

+D
x
−ū

n
j,k − θn

j,k

(∆y)2

24
Dy

+D
y
−ū

n
j,k

)

+
(
θn
j,kD

x
0 ū

n
j,k + (1 − θn

j,k)s
x
j,k

)
(x − xj)

+
(
θn
j,kD

y
0 ū

n
j,k + (1 − θn

j,k)s
y
j,k

)
(y − yk)

+
θn
j,k

2
Dx

+D
x
−ū

n
j,k(x − xj)

2 + θn
j,kD

x
0D

y
0 ū

n
j,k(x − xj)(y − yk)

+
θn
j,k

2
Dy

+D
y
−ū

n
j,k(y − yk)

2,(3.36)

where θn
j,k, s

x
j,k and sy

j,k are given by (3.28) and (3.26), respectively. To

evaluate the corner values uNE
j,k , u

NW
j,k , uSE

j,k and uSW
j,k , we use

p̂n
j,k(x, y)
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=
(
ūn

j,k − θ̂n
j,k

∆2

48
(Dd+

+ Dd+

− +Dd−

+ Dd−

− )ūn
j,k

)

+
∆

2∆x

(
θ̂n
j,k(D

d+

0 − Dd−

0 )ūn
j,k + (1 − θ̂n

j,k)(ŝ
+
j,k − ŝ−

j,k)
)
(x − xj)

+
∆

2∆y

(
θ̂n
j,k(D

d+

0 +Dd−

0 )ūn
j,k + (1 − θ̂n

j,k)(ŝ
+
j,k + ŝ−

j,k)
)
(y − yk)

+θ̂n
j,k

∆2

8(∆x)2

(
Dd+

+ Dd+

− − 2Dd+

0 Dd−

0 +Dd−

+ Dd−

−

)
ūn

j,k(x − xj)
2

+θ̂n
j,k

∆2

4∆x∆y

(
Dd+

+ Dd+

− − Dd−

+ Dd−

−

)
ūn

j,k(x − xj)(y − yk)

+θ̂n
j,k

∆2

8(∆y)2

(
Dd+

+ Dd+

− + 2Dd+

0 Dd−

0 +Dd−

+ Dd−

−

)
ūn

j,k(y − yk)
2,(3.37)

with θ̂n
j,k, ŝ+

j,k and ŝ−
j,k, given by (3.34), (3.32) and (3.33), respectively.

4 Numerical examples

In this section, we present a number of numerical experiments that have been

performed using the one-dimensional scheme (2.9)–(2.11) together with

the new reconstruction (3.4), and our genuinely two-dimensional scheme

(3.20)–(3.22), coupled with the new piecewise quadratic reconstruction

(3.36), (3.37).

The third-order semi-discrete methods, presented in this paper, require

at least a third-order time discretization scheme. In the numerical exam-

ples, shown below, we have used the third-order TVDRunge-Kutta method,

proposed in [34,36]. Our choice is based on the stability properties of this

method, each time step of which can be viewed as a convex combination of

small forward Euler steps.

To solve problem (1.2), we may use either an implicit or an explicit

time discretization for the parabolic term. To ensure stability of the explicit

method, an additional restriction on the time step is imposed by the parabolic

term, namely ∆t must be proportional to (∆x)2. One may accelerate the

computations by using an implicit, or explicit-implicit ODE solver. These

methods are unconditionally stable, but they require inverting of nonlinear

operators (in the case of nonlinear diffusion), which is a computationally

expensive and analytically complicated procedure. Alternatively, the accel-

erationmay be achieved by employing an efficient explicit Runge-Kutta type

ODE solver with larger stability domain (in comparison with the standard

Runge-Kutta methods), see [30] and the references therein.

In all the numerical experiments below, the CFL number is equal to

0.475.
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4.1 Linear accuracy tests

Example 1 – One-dimensional transport equation. First, we test the accu-

racy of the scheme (2.9)–(2.11) with the reconstruction (3.4) on the initial

boundary value problem (IBVP) for the linear transport equation
{
ut + ux = 0, x ∈ [0, 2π],
u(x, 0) = sinx,

(4.1)

with periodic boundary conditions. This problem has a global classical so-

lution, which is computed at time T = 1. We consider N grid points,

N = 40, 80, . . . , 1280, and measure the L1- and L∞-errors, respectively.

To calculate the errors, we use the computed values {ūj} at the final time,

and the sliding averages {ū(xj , 1)} of the exact solution of (4.1), namely

‖ū − ū(·, 1)‖L1 := ∆x
∑

j

|ūj − ū(xj , 1)|,

‖ū − ū(·, 1)‖L∞ := max
j

|ūj − ū(xj , 1)|.

The results of these computations are presented in Table 4.1. They clearly

demonstrate that the scheme is third-order.

Example 2 – Two-dimensional transport equation. Second, we apply our

two-dimensional scheme (3.20)–(3.22) with the reconstruction (3.36)–

(3.37) to the IBVP for the two-dimensional linear transport equation
{
ut + ux + uy = 0, (x, y) ∈ [0, 2] × [0, 1],
u(x, y, 0) = sin[π(x+ 2y)],

(4.2)

subject to periodic boundary conditions.We again calculate theL1- andL∞-

errors at time T = 1, using the cell averages of the computed and the exact

solutions of (4.2). As in the one-dimensional case, the results, presented in

Table 4.2, indicate the third-order convergence rate.

Table 4.1. Accuracy test for the linear advection problem (4.1), T=1

N L1-error rate L∞-error rate

40 1.355e-03 – 3.384e-04 –

80 1.699e-04 3.00 4.245e-05 3.00

160 2.125e-05 3.00 5.313e-06 3.00

320 2.658e-06 3.00 6.645e-07 3.00

640 3.323e-07 3.00 8.307e-08 3.00

1280 4.154e-08 3.00 1.038e-08 3.00
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Table 4.2. Accuracy test for the linear advection problem (4.2), T=1

Grid L1-error rate L∞-error rate

16 × 16 1.206e-01 – 9.400e-02 –

32 × 32 1.623e-02 2.89 1.272e-02 2.89

64 × 64 2.056e-03 2.98 1.614e-03 2.98

128 × 128 2.577e-04 3.00 2.024e-04 3.00

256 × 256 3.224e-05 3.00 2.532e-05 3.00

4.2 One-dimensional problems

Example 3 – Burgers’ equation. In this example, we solve the IBVP for the

one-dimensional Burgers’ equation





ut +
(u2

2

)

x
= 0, x ∈ [0, 2π],

u(x, 0) = 0.5 + sinx,

(4.3)

with periodic boundary conditions. It is known that the unique entropy so-

lution of (4.3) develops a shock discontinuity at time t = 1. In Fig. 4.1 we

present the approximate solution at the post-shock time T = 2, computed

by the scheme (2.9)–(2.11) with the reconstruction (3.4).

Notice, that even though the method provides a high resolution of the

shock, one can observe the over- and undershootings near the discontinuity.

This happens because the limiter θn
j , defined in (3.3), is switched off (i.e.,

θn
j = 1) at the local extrema.

It is possible to reduce these oscillations with the following recipe – we

choose θn
j to be

θn
j = max

{
min

(
1 −

|qn
j (xj+ 1

2

) − ūn
j |α+3

(∆x)α
,

1 −
|qn

j (xj− 1

2

) − ūn
j |α+3

(∆x)α

)
, 0

}
, α ≥ 1,(4.4)

when ūn
j > ūn

j±1, or ū
n
j < ūn

j±1. The modified reconstruction (3.4),(4.4)

is still third-order in smooth regions, and at the same time, it reduces the

oscillations near the discontinuities.

In general, any α ≥ 1 can be used in (4.4). Our numerical experiments

have not indicated which value of α is optimal. Our experience shows that

largerα’s lead to smaller oscillations, but increase the numerical dissipation.

In this example (see Fig. 4.2) and in the examples below, we have used

α = 10.
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Fig. 4.1. Burgers equation (4.3); using reconstruction (3.4)
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Fig. 4.2. Burgers equation (4.3); using reconstruction (3.4),(4.4)

Example 4 – One-dimensional Euler equations of gas dynamics. Here we

consider the one-dimensional Euler system,

∂

∂t



ρ
m
E


+

∂

∂x




m
ρu2 + p
u(E + p)


 = 0, p = (γ−1) ·

(
E − ρ

2
u2
)
,(4.5)

where ρ, u, m = ρu, p and E are the density, velocity, momentum, pres-

sure and the total energy, respectively, and γ = 1.4. We solve this system

with the initial data

u(x, 0) =





uL = (1, 0, 2500)T, 0 ≤ x < 0.1,

uM = (1, 0, 0.025)T, 0.1 ≤ x < 0.9,

uR = (1, 0, 250)T, 0.9 ≤ x < 1,

(4.6)
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Fig. 4.3. Problem (4.5)–(4.6), density at T=0.01; using reconstruction (3.4)
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Fig. 4.4. Problem (4.5)–(4.6), density at T=0.01; using reconstruction (3.4), (4.4)

and solid boundary conditions, applied to both ends. The example describes

the interaction of blast waves and was proposed by Woodward and Colella

in [37].

To compute the approximate solution of (4.5)–(4.6), we use the scheme

(2.9)–(2.11) with the reconstruction (3.4). The computations are done, using

N = 400 grid points, and the solution is plotted together with a reference

solution, obtained by the same method with N = 1600.
Figures 4.3, 4.5, and 4.7 show the density, the velocity, and the pressure

at time T = .01. Notice, that if we use 400 grid points, the second density

spike has a height of ∼ 5.75, which is better in comparison with the heights

of ∼ 5.2 obtained by the third-order staggered central scheme in [29], and

∼ 3.7, obtained by the second-order Nessyahu-Tadmor scheme in [31].

This illustrates the higher resolution and smaller numerical dissipation of

our method.
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Fig. 4.5. Problem (4.5)–(4.6), velocity at T=0.01; using reconstruction (3.4)
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Fig. 4.6. Problem (4.5)–(4.6), velocity at T=0.01; using reconstruction (3.4), (4.4)

Figures 4.4, 4.6, and 4.8 show the solution of the same problem, com-

puted again by the scheme (2.9)–(2.11), but this time coupled with the mod-

ified reconstruction (3.4),(4.4). The height of the second density spike here

is ∼ 5.5 which, as we have mentioned above, is due to the more dissipative

nature of the modified reconstruction. The advantage of this approach is that

it reduces the oscillations, as one can see on Figs. 4.15 and 4.16.

We also perform the computations at time T = 0.03. The results are

presented in Figs. 4.9–4.16. We would like to point out that for 400 grid

points the maximum value of the density is ∼ 23 (see Fig. 4.9), and it is

∼ 21 (see Fig. 4.9), if we apply the limiter (4.4) at local extrema. Notice,

that for the more dissipative third-order staggered central scheme in [29]

this height is ∼ 20.
Finally, we compute the solution of (4.5)–(4.6) at timeT = 0.038, shown

in Figs. 4.17–4.22. Here, the value of the second density spike is ∼ 5.5 (see
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Fig. 4.7. Problem (4.5)–(4.6), pressure at T=0.01; using reconstruction (3.4)
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Fig. 4.8. Problem (4.5)–(4.6), pressure at T=0.01; using reconstruction (3.4), (4.4).

Fig. 4.17), and ∼ 5.2, if we apply (4.4) (see Fig. 4.18). The corresponding

number from [29] is ∼ 5.

4.3 Two-dimensional problems

Example 5 – Two-dimensional convection-diffusion problem. We consider

the two-dimensional Burgers-type equation

ut + (u2)x + (u2)y = ε(ν(u)ux)x + ε(ν(u)uy)y,

(x, y) ∈ [−1.5, 1.5] × [−1.5, 1.5],(4.7)

with a strongly degenerate diffusion coefficient

ν(u) =

{
0, |u| ≤ 0.25,
1, |u| > 0.25.
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Fig. 4.9. Problem (4.5)–(4.6), density at T=0.03; using reconstruction (3.4)
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Fig. 4.10. Problem (4.5)–(4.6), density at T=0.03; using reconstruction (3.4), (4.4)
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Fig. 4.11. Problem (4.5)–(4.6), velocity at T=0.03; using reconstruction (3.4)
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Fig. 4.12. Problem (4.5)–(4.6), velocity at T=0.03; using reconstruction (3.4), (4.4)
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Fig. 4.13. Problem (4.5)–(4.6), pressure at T=0.03; using reconstruction (3.4)
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Fig. 4.14. Problem (4.5)–(4.6), pressure at T=0.03; using reconstruction (3.4), (4.4)
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Fig. 4.15. Problem (4.5)–(4.6), pressure at T=0.03; using reconstruction (3.4); zoom at

[0.65, 0.75]
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Fig. 4.16. Problem (4.5)–(4.6), pressure at T=0.03; using reconstruction (3.4), (4.4); zoom

at [0.65, 0.75]
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Fig. 4.17. Problem (4.5)–(4.6), density at T=0.038; using reconstruction (3.4)
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Fig. 4.18. Problem (4.5)–(4.6), density at T=0.038; using reconstruction (3.4), (4.4).
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Fig. 4.19. Problem (4.5)–(4.6), velocity at T=0.038; using reconstruction (3.4)
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Fig. 4.20. Problem (4.5)–(4.6), velocity at T=0.038; using reconstruction (3.4), (4.4)
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Fig. 4.21. Problem (4.5)–(4.6), pressure at T=0.038; using reconstruction (3.4)
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Fig. 4.22. Problem (4.5)–(4.6), pressure at T=0.038; using reconstruction (3.4), (4.4)

This equation is of hyperbolic nature when u ∈ [−0.25, 0.25], and is

parabolic elsewhere.

We solve (4.7), subject to the initial data

u(x, y, 0) =





−1, if (x − 0.5)2 + (y − 0.5)2 ≤ 0.16,
1, if (x+ 0.5)2 + (y + 0.5)2 ≤ 0.16,
0, otherwise.

The numerical experiments are performed for ε = 0.1, and for ε = 0. In
the first case we use the scheme (3.23), and in the second, pure hyperbolic

case, we apply the scheme (3.20)–(3.22), coupled with the reconstruction

(3.36)–(3.37).

Figures 4.23 and 4.24 show the computed solutions at timeT = 0.5 in the
hyperbolic and the hyperbolic-parabolic case, respectively. We would like

to emphasize, that in both cases the resolution of the shock discontinuities is

very high, and the transition between the hyperbolic and parabolic regions
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Fig. 4.23. Pure hyperbolic problem (4.7) with ε = 0, T=0.5; 60 × 60 grid
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Fig. 4.24. Degenerate parabolic problem (4.7) with ε = 0.1, T=0.5; 60 × 60 grid
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Fig. 4.25. Cross-section along the line y = x
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Fig. 4.26. Equation (4.8), density; T=0.5, 128 × 64 grid, 30 contours

is accurate. This can be clearly seen on the one-dimensional cross-section

along the diagonal y = x (see Fig. 4.25).

Example 6 – Two-dimensional Euler equations of gas dynamics. In this

example, we consider the two-dimensional compressible Euler equations

∂

∂t




ρ
ρu
ρv
E


+

∂

∂x




ρu
ρu2 + p
ρuv

u(E + p)


+

∂

∂y




ρv
ρuv

ρv2 + p
v(E + p)


 = 0,

p = (γ − 1) ·
[
E − ρ

2
(u2 + v2)

]
,(4.8)

where ρ, u, v, p and E are the density, thex- and y-velocities, the pressure
and the total energy, respectively. We solve (4.8) for an ideal gas (γ =
1.4) in the domain [0, 2] × [0, 0.5] ∪ [0, 1] × [0.5, 1], with the initial data

corresponding to a vertical left-moving Mach 1.65 shock, positioned at x =
1.375. The initial shock propagates and then diffracts around a solid corner.
We compute the solution at time T = 0.5, using the scheme (3.20)–(3.22)

together with the reconstruction (3.36)–(3.37). Figures 4.26, 4.27, and 4.28

are contour plots of the density for 128×64, 256×128, and 512×256 grid
points, respectively. The speed,

√
u2 + v2, and the pressure, computed for

512 × 256 grid points, are shown in Figs. 4.29 and 4.30.

We would like to point out the remarkable resolution, achieved by our

genuinely two-dimensional third-order central scheme, where none of the

characteristic decomposition, dimensional splitting or evolution of noncon-

servative quantities is used.
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Fig. 4.27. Equation (4.8), density; T=0.5, 256 × 128 grid, 30 contours
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Fig. 4.28. Equation (4.8), density; T=0.5, 512 × 256 grid, 30 contours
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Fig. 4.29. Equation (4.8), speed; T=0.5, 512 × 256 grid, 20 contours

4.4 Two-dimensional incompressible Euler and Navier-Stokes equations

In this example, we consider the two-dimensional equation

ωt + (uω)x + (vω)y = ν∆ω,(4.9)
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Fig. 4.30. Equation (4.8), pressure; T=0.5, 512 × 256 grid, 30 contours

whereω := vx−uy is the vorticity, and the velocity field (u, v) is divergence-
free, that is

ux + vy = 0.(4.10)

The system (4.9)–(4.10) is a vorticity formulation of the incompressible

Euler (for ν = 0) or Navier-Stokes (for ν > 0) equations. The equation

(4.9) can be viewed as the two-dimensional conservation law

ωt + f(ω)x + g(ω)y = ν∆ω,(4.11)

with a global flux (f, g) := (uω, vω).
Our scheme (3.23), applied to (4.11), has the form

d

dt
w̄j,k(t) = −

Hx
j+ 1

2
,k
(t) − Hx

j− 1

2
,k
(t)

∆x

−
Hy

j,k+ 1

2

(t) − Hy

j,k− 1

2

(t)

∆y
+ νQj,k(t),(4.12)

with the numerical convection fluxes

Hx
j+ 1

2
,k

:=

{
uj+ 1

2
,k+ 1

2

(ωNW
j+1,k + ωNE

j,k ) + 4uj+ 1

2
,k(ω

W
j+1,k + ωE

j,k)

+uj+ 1

2
,k− 1

2

(ωSW
j+1,k + ωSE

j,k)

}/{
12

}
−

ax
j+ 1

2
,k

12

×
[
ωNW

j+1,k − ωNE
j,k + 4(ωW

j+1,k − ωE
j,k) + ωSW

j+1,k − ωSE
j,k

]
,(4.13)

and

Hy

j,k+ 1

2

:=

{
vj− 1

2
,k+ 1

2

(ωSW
j,k+1 + ωNW

j,k ) + 4vj,k+ 1

2

(ωS
j,k+1 + ωN

j,k)
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+vj+ 1

2
,k+ 1

2

(ωSE
j,k+1 + ωNE

j,k )

}/{
12

}
−

ay

j,k+ 1

2

12

×
[
ωSW

j,k+1 − ωNW
j,k + 4(ωS

j,k+1 − ωN
j,k) + ωSE

j,k+1 − ωNE
j,k

]
.(4.14)

The local speeds can be chosen, for example, as

ax
j+ 1

2
,k

:= |uj+ 1

2
,k|, ay

j,k+ 1

2

:= |vj,k+ 1

2

|,(4.15)

and the diffusion flux Qj,k can be approximated by the fourth-order central

differencing,

Qj,k =
−ω̄j+2,k + 16ω̄j+1,k − 30ω̄j,k + 16ω̄j−1,k − ω̄j−2,k

12(∆x)2

+
−ω̄j,k+2 + 16ω̄j,k+1 − 30ω̄j,k + 16ω̄j,k−1 − ω̄j,k−2

12(∆y)2
.(4.16)

The intermediate values of the velocities, which appear in (4.13) and (4.14),

are computed by the fourth-order formula

uj+ 1

2
,k =

−uj+2,k + 9uj+1,k + 9uj,k − uj−1,k

16
,

vj,k+ 1

2

=
−vj,k+2 + 9vj,k+1 + 9vj,k − vj,k−1

16
.(4.17)

To perform these computations, we need to recover the values of the veloc-

ities at the grid points {uj,k, vj,k} from the known vorticity {ωj,k} at every

time step. There are a lot of methods of the velocity recovery (see, e.g., [24]

and the references therein). In this example, we use the stream-function

ψ, where u = ψy, v = −ψx, and ψ is a solution of the Poisson equation

∆ψ = −ω. We solve the nine-points Laplacian ∆ψj,k = −ωj,k, and we

substitute the computed values of the stream-function in

uj,k =
−ψj,k+2 + 8ψj,k+1 − 8ψj,k−1 + ψj,k−2

12∆y
,

vj,k =
ψj+2,k − 8ψj+1,k + 8ψj−1,k − ψj−2,k

12∆x
.(4.18)

We now apply our scheme (4.12)–(4.18), coupledwith the reconstruction

(3.36)–(3.37), to the Navier-Stokes equation (4.9)–(4.10)) with ν = 0.05,
subject to the smooth periodic initial data (taken from [5]),

u(x, y, 0) = − cosx sin y, v(x, y, 0) = sinx cos y,(4.19)

The exact solution to this problem is given by

u(x, y, t) = −e−2νt cosx sin y, v(x, y, t) = e−2νt sinx cos y.
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Table 4.3. Accuracy test for the Navier-Stokes equation (4.9)–(4.10),(4.19), ν = 0.05;
errors at T = 2

Nx × Ny L∞-error rate L1-error rate L2-error rate

32 × 32 2.104e-03 – 2.762e-02 – 5.625e-03 –

64 × 64 2.788e-04 2.92 3.653e-03 2.92 7.404e-04 2.93

128 × 128 3.556e-05 2.97 4.634e-04 2.98 9.391e-05 2.98

256 × 256 4.444e-06 3.00 5.811e-05 3.00 1.176e-05 3.00

x

y

Fig. 4.31. Incompressible Euler equation (4.9)–(4.10),(4.20); T=10, 64 × 64 grid

x

y

Fig. 4.32. Incompressible Euler equation (4.9)–(4.10),(4.20); T=10, 128 × 128 grid

The purpose of this numerical experiment is to check the accuracy of our

scheme. The approximate solution is computed at time T = 2, and the errors
for the vorticity are measured in theL∞-,L1- andL2-norms. The results are

presented in Table 4.3. We would like to point out that due to the genuinely

multidimensional nature of our scheme, the convergence rate is higher than

the convergence rate reported in [16], where the ‘dimension-by-dimension’

approach was used.
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Fig. 4.33. Incompressible Euler equation (4.9)–(4.10),(4.20); T=10, 64 × 64 grid
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Fig. 4.34. Incompressible Euler equation (4.9)–(4.10),(4.20); T=10, 128 × 128 grid

Next, the scheme (4.12)–(4.18) together with the reconstruction (3.36)–

(3.37) is implemented for the periodic double shear-layer model problem

(taken from [3]). We solve the Euler equation, (4.9)–(4.10) with ν = 0,
subject to the (2π, 2π)-periodic initial data,

u(x, y, 0)=





tanh(1
ρ(y − π/2)), y ≤ π,

tanh(1
ρ(3π/2 − y)), y > π,

v(x, y, 0) = δ · sinx.(4.20)

We use the value π/15 for the ”thick” shear-layer width parameter ρ, and
the value 0.05 for the perturbation parameter δ. Figures 4.31 and 4.32 are

the contour plots of the solution at time T = 10with 64×64 and 128×128
grid points, respectively. The three-dimensional plots of the same results

are shown in Figs. 4.33 and 4.34. The performed numerical experiments

demonstrate that our scheme provides sharper resolution than the third-

order ‘dimension-by-dimension’ central scheme in [16]. This is due to the

genuinely multidimensional nature of our method.
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