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Abstract: The adaptive landscape is an iconic metaphor that pervades evolutionary biology. It was mostly
applied in theoretical models until recent years, when empirical data began to allow partial landscape
reconstructions. Here, we exhaustively analyse 1,137 complete landscapes from 129 eukaryotic species,
each describing the binding affinity of a transcription factor to all possible short DNA sequences. We
find that the navigability of these landscapes through single mutations is intermediate to that of additive
and shuffled null models, suggesting that binding affinity—and thereby gene expression—is readily fine-
tuned via mutations in transcription factor binding sites. The landscapes have few peaks that vary in
their accessibility and in the number of sequences they contain. Binding sites in the mouse genome are
enriched in sequences found in the peaks of especially navigable landscapes and the genetic diversity
of binding sites in yeast increases with the number of sequences in a peak. Our findings suggest that
landscape navigability may have contributed to the enormous success of transcriptional regulation as a
source of evolutionary adaptations and innovations. An adaptive landscape is a mapping from a high-
dimensional space of genotypes onto fitness or some other related quantitative phenotype, which defines
the ‘elevation’ of each coordinate in genotype space 1 . Evolution can be viewed as a hill-climbing process
in an adaptive landscape, where populations tend to move towards peaks as a consequence of natural
selection. The ruggedness of an adaptive landscape has important evolutionary consequences, particularly
for the evolution of sex, reproductive isolation and mutational robustness, and for the predictability of
evolution 2 . An adaptive landscape that is smooth and single peaked does not pose any obstacle to
evolutionary exploration. It is therefore highly navigable, in that it is possible to reach the global peak
via positive selection through a series of small mutations that only move ‘uphill’. In contrast, a rugged
landscape can block the approach to the highest peak by entrapping populations on local suboptimal
peaks 3 . We know very little about the navigability of empirical adaptive landscapes, largely due to the
incompleteness of the landscapes that have been constructed to date. With few exceptions 4,5 , these
landscapes were built by assaying the phenotypes of only a small number of mutations in all possible
combinations within a single wild-type background 2 . These studies have helped form our intuition
about the structure and navigability of empirical adaptive landscapes, but their conclusions are limited
by the fact that they describe only a minute fraction of any complete landscape. An additional caveat of
earlier studies is their focus on just one or a few landscapes, which limits the generality of their findings.
To study the navigability of a large number of complete, empirical adaptive landscapes, we consider
data that describe the binding affinity of a transcription factor (TF)—a sequence-specific DNA-binding
protein that helps regulate gene expression—to all possible DNA sequences (TF binding sites) of eight
nucleotides in length. TFs are fundamental mediators of gene expression and are involved in numerous
evolutionary innovations 6 . Their regulatory effect can be modulated via mutations in TF binding sites,
which may alter a TF’s affinity for a site and thereby affect gene expression 7, 8, 9 . We describe the
mapping of DNA sequence to binding affinity as an adaptive landscape, where we can study selection for
TF binding. This is a common approach for exploring the evolution of TF binding sites 10, 11, 12, 13, 14
, other protein–DNA interactions 4,15,16 and protein–RNA interactions 17 . In this context, adaptive
evolution is an exploration of sequence space that attempts to optimize the capacity of a sequence to
bind a particular TF.
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Abstract  

The adaptive landscape is an iconic metaphor that pervades evolutionary biology. It has been applied 

mostly in theoretical models until recent years, when empirical data began to allow partial landscape 

reconstructions. Here, we exhaustively analyze 1,137 complete landscapes from 129 eukaryotic 

species, each describing the binding affinity of a transcription factor to all possible short DNA 

sequences. We find that the navigability of these landscapes through single mutations is intermediate 

to that of additive and shuffled null models, suggesting that binding affinity – and thereby gene 

expression – is readily fine-tuned via mutations in transcription factor binding sites. The landscapes 

have few peaks that vary in their accessibility and in the number of sequences they contain. Binding 

sites in the mouse genome are enriched in sequences found in the peaks of especially navigable 

landscapes, and the genetic diversity of binding sites in yeast increases with the number of sequences 

in a peak. Our findings suggest that landscape navigability may have contributed to the enormous 

success of transcriptional regulation as a source of evolutionary adaptations and innovations. 
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An adaptive landscape is a mapping from a high-dimensional space of genotypes onto fitness or some 

other related quantitative phenotype, which defines the “elevation” of each coordinate in genotype 

space1. Evolution can be viewed as a hill-climbing process in an adaptive landscape, where 

populations tend to move toward peaks as a consequence of natural selection. The ruggedness of an 

adaptive landscape has important evolutionary consequences, particularly for the evolution of sex, 

reproductive isolation, mutational robustness, and for the predictability of evolution2,3. An adaptive 

landscape that is smooth and single-peaked does not pose any obstacle to evolutionary exploration. It 

is therefore highly navigable, in that it is possible to reach the global peak via positive selection 

through a series of small mutations that only move “uphill.” In contrast, a rugged landscape can block 

the approach to the highest peak by entrapping populations on local suboptimal peaks4.  

We know very little about the navigability of empirical adaptive landscapes, due largely to the 

incompleteness of the landscapes that have been constructed to date. With few exceptions5,6, these 

landscapes were built by assaying the phenotypes of only a small number of mutations in all possible 

combinations within a single wild-type background2,3. These studies have helped form our intuition 

about the structure and navigability of empirical adaptive landscapes, but their conclusions are limited 

by the fact that they describe only a minute fraction of any complete landscape. An additional caveat 

of earlier studies is their focus on just one or a few landscapes, which limits the generality of their 

findings.  

To study the navigability of a large number of complete, empirical adaptive landscapes, we 

consider data that describe the binding affinity of a TF – a sequence-specific DNA-binding protein 

that helps regulate gene expression – to all possible DNA sequences (TF binding sites) of eight 

nucleotides in length. TFs are fundamental mediators of gene expression and are involved in 

numerous evolutionary innovations7,8. Their regulatory effect can be modulated via mutations in TF 

binding sites, which may alter a TF’s affinity for a site and thereby affect gene expression9–11. We 

describe the mapping of DNA sequence to binding affinity as an adaptive landscape, where we can 

study selection for TF binding. This is a common approach for exploring the evolution of TF binding 

sites12–16, other protein-DNA interactions5,17,18, and protein-RNA interactions19. In this context, 

adaptive evolution is an exploration of sequence space that attempts to optimize the capacity of a 
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sequence to bind a particular TF.  

Results 

Adaptive landscapes of transcription factor binding affinity 

We obtained protein-binding microarray (PBM) data for 1,137 TFs from the UniPROBE20 and CIS-

BP21 databases. These TFs represent 129 eukaryotic species and 62 different DNA binding domain 

structural classes. For each TF, we constructed an adaptive landscape from the enrichment score (E-

score) – a proxy for relative binding affinity22–24 – of each of the 32,896 possible sites that bind the TF 

(Materials and Methods). These landscapes are complete because they describe the affinity with 

which a TF binds all possible sites, in the absence of confounding factors such as epigenetic marks, 

chromatin context, local sequence context, or interactions with protein partners. We consider a 

sequence as “bound” if its E-score exceeds 0.3522,24–26 (Materials and Methods). We use this affinity 

threshold τ to differentiate sequences that are specifically bound by a TF via hydrogen bond donors 

and acceptors from those that are unspecifically bound by a TF, e.g., via its affinity for the DNA 

backbone. To facilitate the analysis of these landscapes, we represent each of them as a genotype 

network27, in which vertices represent bound DNA sequences and edges connect sequences that differ 

by a single point mutation or a short insertion/deletion24 (Fig. 1A, Materials and Methods). These 

networks sometimes comprise multiple disconnected components (Supplementary section 3.1, 

Supplementary Figs. 1-3); when this occurs, we consider only the largest component, which we refer 

to as the dominant genotype network. Each dominant genotype network forms the basis of an adaptive 

landscape, in which binding affinity defines the “elevation” of each coordinate (TF binding site) in 

genotype space. 

We define landscape navigability as the ability to access a global peak via an evolutionary 

exploration involving random mutation and natural selection. Landscape navigability is highest when 

all mutational paths to the global peak exhibit a monotonic increase in binding affinity, which implies 

a landscape that is smooth and single-peaked. Landscape navigability is lowest when no mutational 

paths to the global peak exhibit a monotonic increase in binding affinity. This implies a rugged 

landscape with many peaks. Our measures of landscape navigability depend on two parameters δ and 
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τ, which we use for noise filtering and for delineating bound from unbound sequences, respectively 

(Fig. 1B,C; Materials and Methods). We compare the navigability of the 1,137 empirical landscapes 

to landscapes generated via two different null models that provide lower and upper bounds on 

navigability (Materials and Methods). In the first null model (the additive model), we 

deterministically assign a binding affinity to each of the TF binding sites in the genotype network 

using the TF’s position weight matrix, which assumes additive interactions between nucleotides and 

therefore produces smooth and highly navigable landscapes. In the second null model (the shuffled 

model), we randomly permute the affinities of the TF binding sites in the genotype network, which 

yields a rugged landscape that hinders navigability. Due to the stochastic nature of the latter model, 

we generate 1,000 shuffled landscapes for each TF. These null models capture two opposing extremes 

of landscape navigability while maintaining the structure of the underlying genotype network, thus 

providing two points of reference for the empirical landscapes.  

Landscape navigability: The number of peaks 

The number of peaks in an adaptive landscape is an important indicator of its navigability. The more 

peaks a landscape has, the less navigable it becomes if these peaks are of unequal height. We find that 

42% of the empirically derived landscapes (478 of 1,137) have multiple peaks of unequal height 

(Supplementary Figs. 4 and 5), with peak numbers ranging from 2 to 36 (Fig. 2A). In comparison, 

only 4.5% of the additive landscapes (51 of 1,137) have multiple peaks, whereas 99% of the shuffled 

landscapes (1,125,800 of 1,137,000) have multiple peaks (Fig. 2A). One might think that larger 

landscapes with more binding sites also contain more peaks, and earlier theoretical work hints at that 

possibility4. However, the experimental data we analyse shows no such scaling relationship 

(Supplementary Fig. 6A). Thus, by the criterion of peak number, smaller landscapes are not 

necessarily more navigable than larger landscapes. Also, while one usually thinks of a peak as a single 

sequence, the data do not support this notion. Except for 36 landscapes, the global peaks – those 

containing the highest-affinity site – are plateaus. They contain between 2 and 121 sequences 

(Supplementary section 3.2, Supplementary Figs. 5 and 7).  
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Landscape navigability: Epistasis 

Epistasis28 – non-additive effects of different mutations on a quantitative phenotype (or fitness) – can 

increase the ruggedness of an adaptive landscape. In the absence of epistasis, adaptive landscapes are 

smooth and single-peaked, and thus do not hinder evolutionary exploration. Epistasis can be 

partitioned into three different classes – magnitude, simple sign and reciprocal sign – with 

increasingly detrimental effects on landscape navigability (Box 1)29. To study epistasis, we first 

identify all squares in a genotype network – a binding site, two of its one-mutant neighbours, as well 

as the double mutant that can be formed from the single mutants – and classify their affinity 

relationships according to the scheme in Box 1 (Materials and Methods). In the additive landscapes, 

on average no more than 0.1% of squares show either of the two kinds of epistasis – simple or 

reciprocal sign epistasis (here collectively referred to as sign epistasis) – that impede landscape 

navigability most severely (Supplementary section 3.3, Supplementary Fig. 8). In the experimental 

data, sign epistasis is somewhat more frequent, and affects 4.7% of squares, on average (Fig. 2B). 

However, its incidence is still 5 times lower than in the shuffled landscapes, where it affects 24.5% of 

the squares. In the experimental data only magnitude epistasis, which does not affect landscape 

navigability, approaches the levels observed in the shuffled landscape. We additionally find that sign 

epistasis preferentially occurs among nearby nucleotides in a binding site30, whereas magnitude 

epistasis shows no such preference (Supplementary section 3.4, Supplementary Fig. 9).  

Landscape navigability: Accessible mutational paths 

Another important indicator of landscape navigability is the fraction of accessible mutational paths to 

a given genotype from all other genotypes in the landscape (Supplementary Fig. 10). Here, a 

mutational path is considered accessible if each mutation in the path increases binding affinity 

monotonically31. Figure 2C shows the fraction of accessible paths to the highest-affinity binding site 

in a global peak (i.e., peak accessibility), in relation to the length of the mutational path, for the 

empirical data and both null models. In all three cases, the fraction of accessible mutational paths to 

the highest-affinity site decreases with the length of the path. However, the rate of decrease for the 



 6 

empirical data is intermediate to that of the additive and shuffled models, indicating that the empirical 

landscapes are always less navigable than the additive landscapes, but more navigable than the 

shuffled landscapes. Even for the longest mutational paths to the highest-affinity site, more than 20% 

of paths are accessible in the empirical landscapes. Moreover, even when unbound sequences are 

included in the landscapes – a modification that decreases landscape navigability – the global peak 

remains accessible for all but the longest mutational paths (Supplementary Fig. 11; Supplementary 

section 3.5).  

Taken together, these 3 measures of landscape navigability – number of peaks, epistasis, and 

peak accessibility – indicate that transcription factor binding affinity landscapes are more navigable 

than shuffled landscapes, but less navigable than additive landscapes, a conclusion that is robust to 

broadly varying parameter choices (δ and τ) and modelling assumptions (Supplementary section 3.6; 

Supplementary Figs. 12-30). While experiments are required to determine which parameters and 

assumptions best reflect the true binding affinity landscapes, the following in vivo analyses suggest 

that the baseline parameter combination studied here provides meaningful information about TF 

binding in both yeast and mouse, two highly diverged eukaryotic species. 

Navigability influences the in vivo abundance of binding sites  

Landscape navigability varies among TFs within the same species. This led us to reason that global 

peak sequences from more navigable landscapes might be more abundant in the regulatory regions of 

living organisms than global peak sequences from less navigable landscapes. The reason is that 

smooth landscapes pose fewer obstacles to the evolution of global peak sequences than rugged 

landscapes. To test this hypothesis, we considered two sources of in vivo data from 14 cell and tissue 

types in Mus musculus: RNA-seq transcript abundance estimates32 and maps of genome-wide DNase I 

footprints33. The RNA-seq data indicate which TFs are expressed in each of the 14 cell and tissue 

types, which is important because we only expect landscape navigability to impact the in vivo 

abundance of a binding site if its cognate TF is expressed in that cell or tissue type. The DNase I 

footprints demarcate DNA sequences in open chromatin that are bound by protein34 (Materials and 

Methods), and can therefore be used to predict TF binding sites. 
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For the 187 murine TFs in our dataset that were expressed in a given cell or tissue type 

(Materials and Methods, Supplementary Table 2), we determined the in vivo abundance of the TF’s 

highest-affinity binding site by counting the number of times the site appears in DNase I footprints 

that are predicted to bind the TF. We determined the statistical significance of each count by 

comparing it to the number of times the sequence is expected to appear in stretches of DNA that have 

the same length and the same mono- and di-nucleotide frequencies as the footprints (Materials and 

Methods). We find that the highest-affinity sites in landscapes with multiple peaks are less abundant 

in regulatory regions genome-wide than those from landscapes with a single peak across all of the 14 

cell and tissue types (Supplementary Fig. 31, Supplementary Table 3), as shown for heart tissue in 

Fig. 3A (Wilcoxon rank-sum test, P-value = 1.42 ×10-6). We also observe that highly accessible 

global peak sequences are more abundant in protein-bound regions of the mouse genome than are less 

accessible global peak sequences across 10 of the 14 cell and tissue types (Fig. 3B; Supplementary 

Table 3, Supplementary Fig. 32). As a negative control, we repeated the above analyses using the 

DNase I hypersensitive regions that flank the footprints, rather than the footprints themselves. For this 

control data, the abundance of the highest-affinity sites is not significantly associated with the number 

of peaks in any of the 14 cell and tissue types (Supplementary Table 4). Also for the control data, and 

in 13 of the 14 tissue types, the abundance of the highest-affinity sites is not significantly associated 

with peak accessibility, and in the remaining tissue, this association is only marginally significant 

(Heart; Spearman’s rank correlation coefficient = 0.27, P-value = 0.034; Supplementary Table 4). 

Importantly, the effects of landscape navigability on binding site abundance still hold after controlling 

for binding affinity (Supplementary section 3.7, Supplementary Tables 5 and 6), though statistical 

significance is lost in three tissues for peak accessibility. Moreover, our observations hold in all cell 

and tissue types after controlling for the information content of each TF’s position weight matrix 

(Supplementary section 3.7, Supplementary Tables 5 and 7). Taken together, these findings suggest 

that landscape navigability has influenced the evolution of TF binding sites in the mouse genome. 
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Gene expression reflects landscape topography 

Gene expression levels can be fine-tuned via affinity-altering mutations in TF binding sites9,11. 

Models of regulatory evolution commonly assume a direct mapping between binding affinity and 

gene expression35,36, such that monotonic changes in binding affinity lead to monotonic changes in 

gene expression. We tested this assumption with in vivo gene expression data from a recent high-

throughput promoter screen in Saccharomyces cerevisae11. These data comprise replicated in vivo 

gene expression measurements for every single-base-pair and many double- and triple-base-pair 

mutants of a TF’s consensus binding site (Materials and Methods). Protein-binding microarray data 

are available for two of these TFs (Gcn4 and Fhl1), facilitating the superposition of in vivo 

transcriptional output with in vitro binding affinity. For the subset of each TF’s genotype network 

where in vivo expression data are available, we determined whether gene expression levels increase 

monotonically along accessible mutational paths to the site with the highest affinity. For Gcn4, all 71 

accessible mutational paths exhibit monotonic increases in gene expression (P = 0.01, permutation 

test; Fig. 4A), and for Fhl1 all except one of the 37 accessible mutational paths exhibit monotonic 

increases in gene expression (P = 0.001, permutation test; Fig. 4B). These findings suggest that, at 

least for these two TFs, the navigability of the adaptive landscape of binding affinity facilitates the 

evolution of increased gene expression. 

We also compared the binding affinity landscapes of Gcn4 and Fhl1 to incomplete landscapes 

constructed using gene expression data from the high-throughput promoter screens. To do so, we 

developed a measure of similarity between the complete in vitro landscapes and the incomplete in 

vivo landscapes. This measure is simply the sum of the absolute differences between binding affinity 

and gene expression for each of the binding sites. We reasoned that if the in vitro binding affinity 

landscapes are truly informative of in vivo gene expression, then this sum would be significantly 

smaller than expected if instead the gene expression measurements were randomly permuted. To test 

this hypothesis, we compared the observed sum to a null distribution of sums obtained via 105 random 

permutations of the gene expression data. The fraction of permuted data sets in which the sum is 

smaller than that of the measured expression data yields an empirical P-value for each TF. Based on 

this test, in vitro binding affinity is indeed informative of in vivo gene expression (Gcn4: P-value = 
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0.0011; Fhl1: P-value = 0.0125; Fig. 4C,D), which provides additional validation of the binding 

affinity landscapes studied here. 

Global peak breadth affects the diversity of binding sites 

We have shown that global peaks typically comprise many different binding sites of similar affinity. 

The broader a peak is, the more of its sequences have mutant neighbours with approximately the same 

affinity. One would thus expect that sequences in broader peaks could evolve more freely by means of 

nucleotide changes and thus accumulate greater genetic diversity. In contrast, mutations in the binding 

sites of narrower peaks – those with fewer binding sites – will more often lead to a decrease in 

binding affinity and thus be eliminated. To find out if global peak breadth has any effect on binding 

site evolution, we asked whether global peak breadth affects genetic diversity in binding sites. Using 

single nucleotide polymorphism data across 19 strains of S. cerevisiae37, we calculated the diversity 

within binding sites38 of 23 different TFs as the average Shannon’s diversity index per site (Materials 

and Methods). Indeed, the broader the global peak of a TF’s affinity landscape, the greater is the 

average diversity of polymorphic sites that bind the TF (Spearman’s rank correlation coefficient = 

0.73, P-value = 8.9×10-5; Fig. 5). We emphasize that this trend is not driven by TF specificity, since 

the information content of the TFs’ position weight matrices exhibit no correlation with binding site 

diversity (Spearman’s rank correlation coefficient = -0.08, P-value = 0.71). This finding provides 

further validation that the topography of a binding affinity landscape can impact the evolution of TF 

binding sites. 

Discussion 

We have used measurements from protein-binding microarrays to construct and analyse more than 

one thousand complete, empirical adaptive landscapes, each describing the binding affinity of a TF to 

all possible short DNA sequences. Such landscapes are important objects of study, because changes in 

the level, location, or timing of gene expression commonly underlie evolutionary innovations39–41, and 

gene expression patterns are readily fine-tuned via small changes in binding affinity9,11. 

Understanding how an evolutionary process might navigate a TF binding affinity landscape is 

therefore an important step toward understanding how gene regulatory programs evolve. Here, we 
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have taken this step, demonstrating that the navigability of binding affinity landscapes is intermediate 

to that of additive and shuffled (rugged) landscapes, but closer to the additive expectation in terms of 

the number of peaks and the incidence of 3 forms of epistasis. 

Our measures of landscape navigability allow us to understand how individual binding sites can 

evolve toward higher binding affinity in the absence of confounding factors (such as chromatin 

context42), a pursuit that is motivated by earlier theoretical work12,15,35 and by several empirical 

observations which indicate that high-affinity sites are used preferentially in vivo. For example, 

studies of blastoderm patterning in Drosophila melanogaster have shown that high-affinity sites 

typically reside near probable functional targets, whereas low-affinity sites are more often found near 

genes that are not transcribed in the early embryo43, and that are less likely to drive expression in 

transgenic reporter assays44. Moreover, in both microbes and humans, affinity-decreasing mutations 

are predominately under negative selection, whereas affinity-increasing mutations are under positive 

selection45,46, consistent with the inferred monotonic increases in organismal fitness that accompany 

increased binding affinity15,16,47. Nevertheless, low-affinity sites do sometimes play important 

regulatory roles48–51 and it is therefore worth noting that, by symmetry, accessible paths to the highest-

affinity site are also accessible in the opposite direction by permitting only monotonically decreasing 

changes in binding affinity. More generally, the landscapes constructed here can easily be 

transformed to study selection for low or intermediate binding affinity, by assuming that the fitness 

conferred by a binding site is a decreasing function of the difference between the site’s affinity and an 

arbitrary optimal affinity35. Understanding how such transformations affect the navigability of TF 

binding affinity landscapes is an exciting direction for future work.  

To summarize, while our analyses of in vitro and in vivo measurements of TF-DNA interactions 

have some caveats (Supplementary section 4), they suggest that the navigability of transcription factor 

binding affinity landscapes has left a trace in the mouse and yeast genomes’ portfolio of regulatory 

DNA. Landscape navigability may therefore have contributed to the enormous success of 

transcriptional regulation as an evolutionary mechanism for generating variation and innovation. 
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Materials and Methods  

In vitro data 

The in vitro data we have studied come from protein-binding microarrays (PBM)23,52, which measure 

the binding affinity of a TF to all 32,896 possible eight-nucleotide, double-stranded DNA sequences. 

There are (48 - 44) / 2 + 44 = 32,896 sequences, rather than 48 = 65,536 sequences, because each 

sequence is merged with its reverse complement and because there are 44 sequences that are identical 

to their reverse complement and therefore cannot be merged.  

We had three criteria for including a TF in our dataset. First, it had to be analysed on two 

different PBM designs. Second, it had to bind at least one DNA sequence with an E-score above 0.45, 

as this indicates a high level of data quality21. Third, its genotype network (Fig. 1A) had to contain at 

least one square to permit the analysis of epistasis (Box 1). Based on these criteria, we obtained PBM 

data for 42 yeast25 and 104 mouse TFs22 from the UniPROBE database20 and for 991 TFs belonging to 

129 different eukaryotic species (including 4 additional TFs for S. cerevisiae and 83 for M. musculus) 

from the CIS-BP database21. In total, our dataset comprises 1,137 TFs, representing 129 eukaryotic 

species and 62 DNA binding domain structural classes (Supplementary Table 1). 

For each TF, the PBM data include a non-parametric, rank-based enrichment score (E-score) for 

each of the 32,896 DNA sequences. The E-score is a variant of the Wilcoxon-Mann-Whitney 

statistic23 and ranges from −0.5 (most disfavoured site) to 0.5 (most favoured site). E-scores correlate 

with the relative dissociation constants of TFs22,23 and can be used as a proxy for relative binding 

affinity. We therefore refer to this measure as binding affinity and use it to delineate bound from 

unbound sequences, and as the quantitative phenotype that defines the surface of our adaptive 

landscapes. Except for the 42 yeast TFs from Zhu et al.25, the data also includes a median signal 

intensity Z-score for each site. We use this score as an alternative proxy for binding affinity in 

Supplementary section 3.6.5. Following earlier work24,25, we only consider a sequence as bound by a 

TF if its E-score exceeds a threshold of 0.35. The reason for this threshold is that it has precedent22,26 

and, more importantly, an analysis of the relationship between E-score and false discovery rate (FDR) 

in 104 mouse TFs22 revealed that all sequences with an E-score exceeding 0.35 had an FDR below 
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0.001. This threshold can therefore be used to delineate sequences that are specifically bound by a TF 

from those that are unspecifically bound. In addition to the threshold τ  = 0.35, we conducted a 

sensitivity analysis of our results by broadly varying τ (see Supplementary section 3.6.2). 

In vivo data 

We collected DNase I footprints for 14 cell and tissue types in M. musculus33. These genome-wide 

data specify DNA sequences that are in open chromatin and bound by protein, at single nucleotide 

resolution. For each of the 187 murine TFs in our dataset, we used FIMO53 and the TF’s position 

weight matrix (obtained from UniPROBE20 and CIS-BP21) to scan these footprints for potential 

binding sites using a P < 1×10-4 threshold. We then counted the number of times that each eight-

nucleotide DNA sequence appeared in the predicted binding sites, considering both strands of the 

DNA. To determine the statistical significance of each count, we compared it to the number of times 

the same sequence is expected to appear in stretches of DNA that have the same length and mono- 

and di-nucleotide frequencies as the footprints of each cell and tissue type, thus controlling for the GC 

content of the footprints. Following van Helden et al.54, the statistical significance of each observed 

count was determined using the binomial formula, with a conservative significance threshold of P < 

1/32896 – the inverse of the number of possible DNA sequences of length eight. Across the 14 cell 

and tissue types, the counts for the highest-affinity sites of each of the 187 mouse TFs in our dataset 

ranged from zero to 73,174. 

       We also collected the DNase I hypersensitive regions that flank the footprints in each of the 14 

cell and tissue types. We used these regions to perform a negative control, in which we correlated our 

landscape navigability measures with in vivo binding site abundance within regions of open chromatin 

that do not show evidence of protein binding. Specifically, we counted the number of times that each 

eight-nucleotide DNA sequence appeared in the DNase I hypersensitive regions, after having 

removed the footprints of the 14 cell and tissue types. To determine the statistical significance of each 

count, we compared it to the number of times the same sequence is expected to appear in stretches of 

DNA that have the same length and mono- and di-nucleotide frequencies as the DNase I 

hypersensitive regions of each cell and tissue type, again using the binomial formula and a stringent 

significance threshold (P < 1/32896). 
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To determine which of the 187 TFs are expressed in each of the 14 cell and tissue types, we 

collected RNA-seq data for the same cell and tissue types32 and used cufflinks55 to calculate the 

FPKM (fragments per kilobase of transcript per million fragments mapped) for each TF. We 

considered a TF as expressed in a given cell or tissue type if its FPKM ≥ 1. Supplementary Table 2 

shows that the number of TFs expressed in a given cell or tissue type ranges from 89 to 133. This 

table also provides the file names of the DNase I hypersensitive regions, DNase I footprints, and the 

RNA-seq data that we analysed. 

For two yeast TFs (Gcn4 and Fhl1), we also collected gene expression data from high-throughput 

promoter screens11. These data include gene expression measurements from a large library of 

engineered promoters, each 150 nucleotides long. Each of these promoters contains between zero and 

three point mutations to the TF’s consensus sequence. For Gcn4, which binds a seven-nucleotide 

sequence, this library includes the consensus sequence (TGACTCA), all 21 single-mutants, 42 

double-mutants, and 10 triple-mutants (73 sequences in total). For Fhl1, which binds an eight-

nucleotide sequence, this library includes the consensus sequence (GACGCAAA), all 24 single-

mutants, 56 double-mutants, and 10 triple-mutants (90 sequences in total). For each promoter in the 

library, the data include gene expression measurements from two biological replicates. We used the 

average gene expression measurement per promoter. 

To map the gene expression measurements for the seven-nucleotide sequences bound by Gcn4 

onto the eight-nucleotide sequences for which we have protein-binding microarray data, we first 

located each of the 73 seven-nucleotide sequences within the 150-nucleotide promoters. We then 

padded each of the seven-nucleotide sequences with one nucleotide upstream and one nucleotide 

downstream from its respective promoter, forming two eight-nucleotide sequences. We assigned the 

gene expression measurement for the seven-nucleotide sequence to each of the eight-nucleotide 

sequences that were formed in this fashion. This procedure generated gene expression measurements 

for 132 eight-nucleotide sequences. 

For the subset of the sequences for which we have measurements of both in vitro binding affinity 

and in vivo gene expression, we determined the number of accessible mutational paths to the sequence 

with the highest level of binding affinity. For Gcn4, there are 71 accessible mutational paths: 30 of 
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length 3, 37 of length 2 and 14 of length 1. For Fhl1, there are 37 accessible mutational paths: 22 of 

length 2 and 15 of length 1. For each TF, we then determined the fraction of these accessible paths in 

which gene expression increased monotonically. To determine whether two gene expression levels 

truly differed from one another, we used a noise threshold that covered the same proportional range of 

expression levels as covered by the noise threshold δ in the range of affinity values. To calculate the 

statistical significance of the fraction of accessible paths in which gene expression increased 

monotonically, we performed a permutation test, in which we randomly permuted the sequences' gene 

expression measurements, while preserving their binding affinities. We repeated this process 1000 

times for both Gcn4 and Fhl1. 

We obtained the genomic coordinates of TF binding sites in S. cerevisae from a map of 

conserved regulatory sites38, and analysed binding sites detected with a stringent binding P-value cut-

off of 0.001, but no conservation cut-off. We obtained single nucleotides polymorphism (SNP) data 

for nineteen different strains from the Saccharomyces Genome Resequencing Project (SGRP)37. The 

TF binding sites were based on the January 2006 Saccharomyces Genome Database (SGD) version of 

the reference strain S. cerevisae S288c genome sequence, while the SNP data were based on the 

January 2010 version. We used liftOver to convert both sets of genomic coordinates to the coordinates 

in the February 2011 version. Then we used the intersect function from the BEDTools suite (version 

2.25.0)56 to determine the presence of SNPs within binding sites. Using these data, we calculated the 

genetic diversity of polymorphic TF binding sites across the nineteen yeast strains. For each position 

in a binding site we calculated Shannon’s diversity index (𝐻): 

 𝐻 = 	−∑ 𝑝' ln(𝑝'' ) (1) 

where 𝑝' is the frequency of allele i, which we computed as the fraction of strains with nucleotide i. 

We computed the diversity (D) of a binding site as the average of H over all L positions:  

𝐷 =	1𝐿.𝐻/
0

/12
 

(2) 
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Genotype networks 

The procedure for constructing genotype networks of TF binding sites has been described 

elsewhere24. In brief, for each TF, we first determined the set of sequences that were bound by the TF 

(E-score > 0.35). We then used an alignment algorithm to calculate the mutational distance between 

all pairs of bound sequences. Finally, we used these mutational distances to define the edges of the 

genotype network, connecting two sequences if they differed by a single small mutation. The 

mutations we considered are point mutations and small indels that shift an entire contiguous binding 

site by a single base24. 

Quantitative measures of landscape navigability 

We used several measures to quantify the navigability of an adaptive landscape. All of them are 

parameterized by δ, a threshold value that is used to determine whether two affinity values truly differ 

from one another. This parameter is necessary because PBM data are inherently noisy52. For each TF, 

we calculate δ as the residual standard error of a linear regression between the affinity values of all 

bound sequences from the two replicate PBMs. Thus, each TF has its own δ, which reflects the noise 

in the replicated PBM measurements for that particular TF (Supplementary Table 1). We say that the 

binding affinity Ei of site i is greater than the binding affinity Ej of site j if Ei > Ej + δ. Analogously, 

we say that the binding affinity Ei of site i is less than the binding affinity Ej of site j if Ei + δ < Ej. 

Otherwise, we say that we cannot differentiate between the two affinity values. The average empirical 

value of δ across the 1,137 TFs is 0.028, which covers 18.4% of the range of affinity values for bound 

sequences (0.35 < E-score ≤ 0.50). Our criterion for considering two affinity values as different is 

therefore highly conservative. In addition to these empirical values of δ, we conducted a sensitivity 

analysis of our results by broadly varying δ (0, 0.001, 0.01, 0.03 and 0.05), above and below the 

average empirical value (see Supplementary section 3.6.1). 

Our first measure of the navigability of an adaptive landscape is its number of peaks. To detect a 

peak, we follow a procedure similar to one previously described57. We categorize each sequence in a 

genotype network as belonging to a peak (either as an individual sequence or as a member of a 

plateau) or not. To do so, we select sequences in decreasing order of binding affinity to seed a 
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breadth-first search of the genotype network. Each iteration of the search considers sequences that are 

an additional mutational step away from the seed sequence. In the first iteration of the search, we 

determine whether the seed sequence is a peak or not: It is a peak if all of its neighbours in the 

genotype network have lower binding affinity. It is not a peak if at least one of its neighbours has 

higher binding affinity. If the seed sequence has at least one neighbour with an affinity that is neither 

greater nor lower, then these neighbours are retained as belonging to a plateau that may be a peak, and 

the breadth-first search continues. If at any subsequent iteration of the search a sequence is found that 

neighbours any of those on the plateau and has an affinity that is higher than the seed sequence, then 

the seed sequence does not belong to a peak and the search halts. If at any iteration of the search, all 

sequences that neighbour those on the plateau have lower affinity than the seed sequence, then the 

seed sequence belongs to a plateau that is a peak.  

Our second measure of landscape navigability is based on the concept of accessible mutational 

paths31,58,59. A mutational path is the shortest path that connects two bound sequences i and j on a 

genotype network, such that sequence i can be transformed into sequence j via a series of 

intermediates that are also on the genotype network. A mutational path from sequence i to sequence j 

is considered accessible if binding affinity increases monotonically along the path. We report the 

fraction of mutational paths that are accessible, starting from all sequences in the genotype network 

and ending at the highest-affinity site in the global peak. We refer to this fraction as peak 

accessibility. We note that, by symmetry, accessible paths to the highest-affinity site are also 

accessible in the opposite direction by permitting only monotonically decreasing changes in binding 

affinity. Accessibility of low-affinity binding sites is important, as such sites are known to play 

crucial roles in the regulation of certain genes49,51,60.  

Our final measures of landscape navigability pertain to epistasis, motivated by a recent debate 

over the significance of non-additive interactions between the individual bases of TF binding sites in 

their contribution to binding affinity61,62. Epistasis can have detrimental effects on landscape 

navigability. We quantify the incidence of three classes of epistasis for each of the 1,137 adaptive 

landscapes29. First, we detect all squares in each TF’s genotype network. A square is a quadruplet of 

sequences that contain a binding site, two of its one-mutant neighbours, and the double mutant that 
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can be formed from the single mutants (Box 1). Second, we designate the highest-affinity sequence as 

the “double mutant,” thus forcing the labelling of the other three sites as the wild-type or the single-

mutants. Third, we calculate the magnitude of epistasis as: 

 𝜀 = 𝛦56 + 𝛦89 − 𝛦59 − 𝛦86 (3) 

where 𝛦56 is the binding affinity of the double mutant, 𝛦89 is the binding affinity of the wild type and 

𝛦59 and 𝛦86 are the binding affinities of the single-mutants. We only consider a mutational pair to be 

epistatic if |𝜀| is greater than or equal to the noise threshold δ.  

If this condition is met, we classify the epistatic interaction as magnitude epistasis, simple sign 

epistasis, or reciprocal sign epistasis29. Magnitude epistasis occurs when the following relation holds: 

 |Δ𝛦89	→	59	 	+	Δ𝛦86	→	56	| = |Δ𝛦89	→	59	| + |Δ𝛦86	→	56	| (4) 

where Δ𝛦	is the mutational effect, i.e., the change in binding affinity caused by a mutation (e.g., 𝑎𝑏	 →
	𝐴𝑏). Simple sign epistasis occurs instead when the following relation holds: 

 |Δ𝛦89	→	59	 	+ 	Δ𝛦86	→	56| < |Δ𝛦89	→	59	| + |Δ𝛦86	→	56	| (5) 

Reciprocal sign epistasis occurs when both [3] and the following relation holds: 

 |Δ𝛦89	→	86 	+	Δ𝛦59	→	56| < |Δ𝛦89	→	86| + |Δ𝛦59	→	56| (6) 

If a mutational effect is smaller than δ, we assigned it a value of zero. If all mutational effects are 

smaller than δ, even despite |𝜀| ≥ 𝛿 being true, then we classify the interaction as non-epistatic. 

Taken together with the fact that we excluded unbound sequences from these calculations, our 

measures of epistasis are conservative (Supplementary section 3.8, Supplementary Fig. 33). 

Null models 

For each of the 1,137 TFs, we consider two null models. Both change the topography of the adaptive 

landscape, but maintain the structure of the underlying genotype network. The first null model (the 

additive model) is based on a TF’s position weight matrix (PWM)63. A PWM represents the binding 
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preferences of a TF as a 4 × L matrix, where each row corresponds to one of the four bases and each 

column corresponds to one of the L positions in the binding site. Each matrix entry fi,b is the frequency 

of base b at position i. We obtained the PWMs of the 1,137 TFs from the UniPROBE20 and CIS-BP21 

databases. 

Since the width L of a TF’s PWM may not equal eight, we use a sliding-window to assign a score 

(Spwm) to each of the eight-nucleotide sequences in each genotype network. Specifically, we slide each 

sequence on a genotype network through the corresponding TF’s PWM from left to right, assigning a 

score to each of the subsequences. The sliding-window procedure is carried out in such a way that the 

first scored subsequence is just the single right-most position of the sliding sequence and occupies the 

left-most column of the PWM. The procedure ends with a subsequence that just corresponds to the 

single left-most position in the sequence and occupies the right-most column of the PWM. We then 

repeat this process with the sequence’s reverse complement. We take the maximum of these scores as 

the score for the sequence. As an example, if L is equal to eight, then we take the maximum over 30 

separate scores: 15 for the sequence and another 15 for its reverse complement. Each of these scores 

is calculated as 

𝑆DEF =.𝑓',9
I

'12
𝐼(𝑖), 

(7) 

where l is the window length of the sliding sequence and I(i) is the information content at position i: 

𝐼(𝑖) = 2 +.𝑓',9
9

logP 𝑓',9 
(8) 

Base matches at positions with high information content thus contribute more to a sequence’s 

overall score than base matches at positions with low information content. Importantly, this scoring 

technique is purely additive, i.e., the contribution of each binding site position to the overall score is 

independent of the other positions in the binding site. To facilitate comparison among TFs, we 

normalize the scores by the maximum score in each genotype network. To analyse the navigability of 
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landscapes constructed with this model, we use a noise threshold d that covers the same range of 

scores as the d used for the empirical data. 

In the second null model (the shuffled model), we randomly permute the binding affinities of the 

sequences in the genotype network, yielding a rugged landscape topography. Since this process is 

stochastic, we repeat it 1000 times per TF. In these landscapes, we use the same d as used for the 

empirical landscapes, because unlike the additive model, the shuffled null model does not change the 

range of affinity values. 
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Figures 

 

Figure 1. Adaptive landscapes of transcription factor binding affinity. (A) The largest connected 

component of the genotype network for the yeast TF Gcn4, visualized using a force-directed 

algorithm. Each vertex corresponds to a DNA sequence bound by Gcn4 (E-score > 0.35). The colour 

of a vertex indicates its binding affinity (darker = higher), i.e., the “elevation” of the landscape, 

whereas vertex size corresponds to the number of neighbouring sequences (bigger = more). The inset 

shows that two vertices are connected by an edge if their corresponding sequences are separated by a 

single small mutation (Materials and Methods). (B). To determine whether two sequences differ in 

their binding affinity, that is if they differ in their “elevation”, we use a noise threshold δ, which 

accounts for experimental noise in the protein-binding microarray data. Increasing δ increases the 

“smoothness” of the landscape as shown here for a hypothetical landscape, where the xy plane 

represents genotype space, and the z axis represent binding affinity. (C) To delineate bound from 

unbound sequences we use a binding affinity threshold τ. As τ increases, the number of bound 

sequences decreases, thus reducing the size of the landscapes and pruning local peaks. In 

Supplementary sections 3.6.1 and 3.6.2, we assess the sensitivity of our main results to broadly 

varying δ and τ values. 
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Figure 2. The navigability of adaptive landscapes of transcription factor binding affinity. (A) 

The distribution of the number of peaks for the 1,137 empirical adaptive landscapes (yellow) and the 

additive (red) and shuffled (blue) null models. (B) Boxplots of the fraction of squares showing 

magnitude, simple sign, and reciprocal sign epistasis for 1,137 adaptive landscapes. The thick 

horizontal line in the middle of each box represents the median of the data, while the bottom and top 

of each box represent the 25th and 75th percentiles, respectively. For the shuffled model, the boxplot 

summarizes 1,137 data points, each of which is an average over 1000 shuffled landscapes. All 

pairwise differences are significant (Paired t-tests: P < 2.2 × 10-16). The inset shows the same data, but 

with a logarithmically scaled y-axis, which obscures the following numbers of data points with zero 

epistasis: magnitude epistasis (empirical: 9; additive: 184), simple sign epistasis (shuffled: 2; 

empirical: 53; additive: 681), and reciprocal sign epistasis (shuffled: 1; empirical: 98; additive: 853). 

The absence of the thick horizontal line indicates that the median of the distribution is below the 

lowest value of the logarithmically scaled y-axis. (C) For each of the 1,137 adaptive landscapes we 

show the mean (symbols) and standard deviation (error bars) of the fraction of accessible paths to the 

highest-affinity site in the landscape (i.e., peak accessibility). The histogram shows the distribution of 

mutational steps to the highest-affinity site for all sequences in all landscapes. For the shuffled model, 

each symbol represents the mean of 1,137 data points, each of which is an average over 1000 

landscapes. 
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Figure 3. In vivo binding site abundance correlates with landscape navigability. The vertical axis 

of each panel indicates the abundance of a TF’s highest-affinity site in protein-bound regions of the 

M. musculus genome in heart tissue (according to DNase I footprint data; Materials and Methods). In 

(A) the horizontal axis indicates the number of peaks, and the vertical axis classifies landscapes into 

two categories: single-peaked and multi-peaked. Global peak sequences from single-peaked 

landscapes are more abundant that those from multi-peaked landscapes (Wilcoxon rank-sum test, P-

value = 1.42 ×10-6). The thick horizontal line in the middle of each box represents the median of the 

data, while the bottom and top of each box represent the 25th and 75th percentiles, respectively. In (B) 

the horizontal axis shows peak accessibility through mutational paths of length 4 (Spearman’s rank 

correlation coefficient = 0.27, P-value = 9.2×10-3), which are the most abundant paths in our dataset 

(Fig. 2C). Each circle corresponds to a single TF expressed in heart tissue. Circle colour indicates the 

binding affinity of the TF’s highest-affinity site (darker = higher; colour bar). Circle size corresponds 

to the TF’s expression level (larger = higher, Materials and Methods). Note the logarithmic scale of 

the y-axis in both panels.  
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Figure 4. Gene expression increases along accessible mutational paths and reflects landscape 

topography. (A, B) Each line shows the expression levels of the sequences in an accessible 

mutational path to the highest-affinity sequence for the yeast TFs (A) Gcn4 and (B) Fhl1. Black lines 

denote accessible mutational paths in which gene expression increases monotonically. The red line 

denotes the single accessible mutational path in which gene expression does not increase 

monotonically. Note that while expression appears to decrease along some of the black lines in (B), it 

does not decrease beyond the noise threshold δ necessary to classify the trend as a true expression 

decrease (δ = 0.7 for Gcn4 and δ = 0.1 for Fhl1; Material and Methods). Note also that the highest-

affinity sequence does not necessarily correspond to the sequence with the highest level of expression 

(red line in (B)). (C, D) Vertical dashed lines indicate the observed sum of the absolute differences 

between binding affinity and gene expression, and the black bars show the null distribution of this 

sum for 105 random permutations of the gene expression values for the TFs (C) Gcn4 and (D) Fhl1.  
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Figure 5. Global peak breadth influences the diversity of TF binding sites in the yeast genome. 

Scatter-plot showing the relationship for 23 TFs between the number of binding sites in the global 

peak (i.e., global peak breadth) of a particular TF and the average diversity over all its polymorphic 

binding sites in nineteen strains of S. cerevisae (Materials and Methods; Spearman’s rank correlation 

coefficient = 0.73, P-value = 8.9×10-5). The dashed line represents the best linear-regression fit to the 

data. 
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Box 1. Epistasis. A square in a genotype network connects a “wild type” sequence (ab) to a double 

mutant (AB) through two single mutants (Ab and aB). The left-most panel shows an example with 

binding sites of length eight where there is no epistasis: The binding affinity of the double mutant is 

simply the addition of the affinity contributions of the two single mutants. That is, the mutation a to A 

has the same effect on binding affinity in the two different genetic backgrounds (b and B). Magnitude 

epistasis occurs when the magnitude (but not the sign) of a mutation’s effect on binding affinity 

depends on the genetic background. Simple sign epistasis occurs when one single mutant has a lower 

binding affinity than both the wild type and the double mutant, while the other single mutant has an 

affinity that is intermediate to the wild type and double mutant64. Reciprocal sign epistasis occurs 

when both mutations decrease affinity independently, but increase affinity in combination29. To 

account for the noise in our data, we only consider a single mutant’s binding affinity to be lower than 

that of the wild type if the affinity difference exceeds a threshold value δ, which is derived from the 

empirical data and is specific to each TF (Materials and Methods). We refer generically to both 

simple sign epistasis and reciprocal sign epistasis as sign epistasis. For all squares, we quantified 

epistasis along a single axis of the square by designating the highest-affinity sequence as the double 

mutant (Materials and Methods). The figure in this box has been adapted from Poelwijk et al.58. 
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1. Supplementary figures 
 

 
 

 
 

Supplementary Figure 1. Structural properties of the genotype networks of 1,137 TFs. The 

distribution of (A) the number of components and (B) the size of the largest (i.e., dominant) 

connected component in the genotype networks of 1,137 TFs. 
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Supplementary Figure 2. Cumulative distribution of the fraction of TFs in our dataset that have 

a dominant genotype network comprising at least x% of the bound sequences. This figure shows 

that for the vast majority of TFs, the vast majority of bound sequences are in the dominant genotype 

network. For example, 96% of the 1137 dominant genotype networks comprise at least 90% of the 

sequences that bind the TF. 
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Supplementary Figure 3. The number of sequences per non-dominant genotype network is very 

small. Black bars show the distribution of the number of sequences contained in the non-dominant 

genotype networks of 1,137 TFs. 87.8% of these networks comprise a single sequence. 
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Supplementary Figure 4. Multiple peaks of unequal height. The distribution of the average 

normalized difference in binding affinity between the highest-affinity sequence in a landscape and the 

mean binding affinity of the landscape’s local peaks, for 478 multi-peaked landscapes. This distance 

Di of a local peak i is calculated as 𝐸R −	 2ST∑ 𝐸'// , where Eg is the binding affinity of the highest-

affinity site in the global peak, Ni is the number of sites in local peak i, and Eij is the binding affinity 

of site j in local peak i. All values are normalized by 0.15, which is the maximum range of affinity 

when the binding threshold is τ  = 0.35. Non-normalized values range from 1.3×10-3 to 0.125.  
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Supplementary Figure 5. Visualization of adaptive landscapes that have different numbers of 

peaks. Representative examples of landscapes with (A) one, (B) two, (C) three, and (D) four peaks. 

Vertices represent bound sequences, vertex sizes represent binding affinity, and vertex colours 

represents peak membership. Red indicates a global peak and grey indicates bound sequences that do 

not belong to any peak. Notice that peaks are usually organized into broad plateaus comprising 

binding sites with similar binding affinity (Supplementary Fig. 7), that is with values in affinity above 

a threshold Eg - d, where Eg is the affinity of the highest-affinity site in the peak and d is the noise 

threshold (Material and Methods). 
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Supplementary Figure 6. Small landscapes are not necessarily more navigable than large 

landscapes. The relationship between the size of the dominant genotype network and (A) the number 

of peaks (Spearman’s rank correlation coefficient = -0.07, P-value < 1.9×10-2), and (B) the relative 

size of the global peak for 1,137 TFs (Spearman’s rank correlation coefficient = -0.34, P-value < 

2.2×10-16). 
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Supplementary Figure 7. Global peaks are usually organized into broad plateaus. The 

distribution of the number of binding sites per global peak for the 1,137 empirical adaptive landscapes 

(yellow) and the additive (red) and rugged (blue) null models.  
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Supplementary Figure 8. Why epistasis occasionally appears in the additive null model. (A) 

Sequence logo of (B) the position weight matrix (PWM) for the mouse TF Arid5a downloaded from 

UniPROBE20. The information content (Eq. 8, Materials and Methods) per position is also shown. 

Positions in bold face indicate the largest contiguous subset of positions with information content 

above 0.5, which we use to calculate the effective width of a PWM (Supplementary section 3.6.4). 

(C) A square that exhibits reciprocal sign epistasis due to the sliding-window approach for scoring 

sequences in the additive null model. Edge labels indicate the change in binding affinity between a 

pair of sequences. For the sequence AATTTTAA, the highest-scoring match occurs when it is aligned 

with positions 3 through 10 in the PWM, whereas for the other three sequences, the highest-scoring 

match occurs when they are aligned with positions 2 through 9 in the PWM. In this example, the noise 

threshold d is 0.09 and the magnitude of epistasis 𝜀 (Eq. 3, Materials and Methods) is 0.29. 
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Supplementary Figure 9. Sign epistasis preferentially occurs among nucleotides that are near 

one another in the binding site. Bar plots of the levels of (A) magnitude (B) simple sign, and (C) 

reciprocal sign epistasis as a function of the distance between the two mutations in the TF binding 

site. The height of the bars represents the median of the data, while the error bars represent the 

standard deviation. For each TF, the level of epistasis plotted for the random landscapes is an average 

of 1,000 shuffled landscapes. To facilitate a direct comparison with Jolma et al.30, squares that include 

indels are excluded from this analysis. 
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Supplementary Figure 10. Visualization of two global peaks that vary in their accessibility. The 

murine TFs (A) Sry and (B) Zbtb3 bind a similar number of sequences (356 and 352, respectively), 

but these sequences differ dramatically in their ability to evolve higher binding affinity through small 

mutations. Each visualization depicts the genotype networks of all bound sequences that are within 

four mutations of the highest-affinity site (centre vertex), i.e., the summit of the landscape, in a layout 

where each concentric ring corresponds to a distinct mutational distance from the summit. Edge width 

and vertex size indicate the number of accessible mutational paths (i.e., paths that access the summit 

via monotonic increases in binding affinity) that include the edge or vertex. Vertex color indicates 

binding affinity, as in Fig. 1A. 
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Supplementary Figure 11. Peak accessibility is reduced by the inclusion of unbound sequences. 

Data correspond to all 1,137 TFs. Symbols show the mean, and error bars show the standard 

deviation. The histogram shows the distribution of the lengths of the shortest mutational paths from 

bound sequences (i.e., τ  > 0.35) to the global peaks of the 1,137 TFs’ landscapes, when unbound 

sequences (i.e., τ ≤ 0.35) are considered. Note that there is no shortest mutational path longer than 6 

mutational steps in this case, in contrast to when unbound sequences are not considered (cf. Figure 

2C).  
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Supplementary Figure 12. The number of peaks per landscape decreases as the noise threshold 

increases. These data represent a sensitivity analysis of the trends presented in Fig. 2A. Each panel 

shows the distribution of the number of peaks per landscape for the additive model (left column), 

empirical data (middle column), and shuffled model (right column). Each row of panels corresponds 

to a different noise threshold d.  
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Supplementary Figure 13. Global peak breadth increases as the noise threshold increases.  

These data represent a sensitivity analysis of the trends presented in Supplementary Fig. 7. Each panel 

shows the distribution of the number of binding sites per global peak (i.e., global peak breadth) for the 

additive model (left column), empirical data (middle column), and shuffled model (right column). 

Each row of panels corresponds to a different noise threshold d.  
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Supplementary Figure 14. Sign epistasis in the empirical data is intermediate to that of the 

additive and shuffled models for all noise thresholds. These data represent a sensitivity analysis of 

the trends presented in Fig. 2B. Boxplots of (A) magnitude epistasis, (B) simple sign epistasis, and 

(C) reciprocal sign epistasis as a function of the binding affinity threshold τ. The thick horizontal line 

in the middle of each box represents the median of the data, while the bottom and top of each box 

represent the 25th and 75th percentiles, respectively. Note the logarithmic scale of the y-axes, which 

obscures data points with zero epistasis. The absence of the thick horizontal line indicates that the 

median of the distribution is below the lowest value of the y-axis. 
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Supplementary Figure 15. Accessibility of the highest affinity site increases as the noise 

threshold increases. These data represent a sensitivity analysis of the trends presented in Fig. 2C for 

mutational paths of length 4, which are the most abundant in our dataset. Data points depict the mean 

peak accessibility in the empirical data and the two null models (see legend) as a function of the noise 

threshold d. Error bars depict one standard deviation. 
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Supplementary Figure 16. The number of peaks per landscape decreases as the binding affinity 

threshold increases. These data represent a sensitivity analysis of the trends presented in Fig. 2A. 

Each panel shows the distribution of the number of peaks per landscape for the additive model (left 

column), empirical data (middle column), and shuffled model (right column). Each row of panels 

corresponds to a different binding affinity threshold τ.  
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Supplementary Figure 17. The empirical distribution of global peak breadth does not vary with 

the binding affinity threshold. These data represent a sensitivity analysis of the trends presented in 

Supplementary Fig. 7. Each panel shows the distribution of the number of binding sites per global 

peak (i.e., global peak breadth) for the additive model (left column), empirical data (middle column), 

and shuffled model (right column). Each row of panels corresponds to a different binding affinity 

threshold τ.  

0 500 1000

F
re

q
u

e
n

c
y

0

0.1

0.2

0.3

0.4
τ = 0.350

Additive model

0 100 200
0

0.1

0.2

0.3

0.4
Empirical data

0 50 100
0

0.2

0.4

0.6

0.8

1
Shuffled model

0 500 1000

F
re

q
u

e
n

c
y

0

0.1

0.2

0.3

0.4
τ = 0.375

0 100 200
0

0.1

0.2

0.3

0.4

0 50 100
0

0.2

0.4

0.6

0.8

1

0 500 1000

F
re

q
u

e
n

c
y

0

0.1

0.2

0.3

0.4
τ = 0.400

0 100 200
0

0.1

0.2

0.3

0.4

0 50 100
0

0.2

0.4

0.6

0.8

1

0 500 1000

F
re

q
u

e
n

c
y

0

0.1

0.2

0.3

0.4
τ = 0.425

0 100 200
0

0.1

0.2

0.3

0.4

0 50 100
0

0.2

0.4

0.6

0.8

1

0 500 1000

F
re

q
u

e
n

c
y

0

0.1

0.2

0.3

0.4
τ = 0.450

0 100 200
0

0.1

0.2

0.3

0.4

0 50 100
0

0.2

0.4

0.6

0.8

1

Number of binding sites in peak



 50

 

Supplementary Figure 18. Epistasis in the empirical data is intermediate to that of the additive 

and shuffled models for all affinity thresholds. These data represent a sensitivity analysis of the 

trends presented in Fig. 2B. Boxplots of (A) magnitude epistasis, (B) simple sign epistasis, and (C) 

reciprocal sign epistasis as a function of the binding affinity threshold τ. The thick line in the middle 

of each box represents the median of the data, while the bottom and top of each box represent the 25th 

and 75th percentiles, respectively. Note the logarithmic scale of the y-axes, which obscures data points 

with zero epistasis. The absence of the thick line indicates that the median of the distribution is below 

the lowest value of the y-axis. 
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Supplementary Figure 19. Accessibility of the highest-affinity site increases as the binding 

affinity threshold increases. The data shown represent a sensitivity analysis of the trends presented 

in Fig. 2C for mutational paths of length 4, which are the most abundant in our dataset. Data points 

depict the mean peak accessibility in the empirical data and the two null models (see legend), as a 

function of the binding affinity threshold τ. Error bars depict one standard deviation. 
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Supplementary Figure 20. The number of peaks is intermediate to that of the additive and 

shuffled models across DNA binding domains. These data represent a sensitivity analysis of the 

trends presented in Fig. 2A. Each panel shows the distribution of the number of peaks per landscape 

for the additive model (left column), empirical data (middle column), and shuffled model (right 

column). Each row of panels corresponds to a different DNA binding domain family, chosen because 

they are the five most prominent in our dataset. 
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Supplementary Figure 21. The size of the global peak is intermediate to that of the additive and 

shuffled models across DNA binding domains. These data represent a sensitivity analysis of the 

trends presented in Supplementary Fig. 7. Each panel shows the distribution of the number of binding 

sites in the highest peak (i.e. global peak breadth) for the additive model (left column), empirical data 

(middle column), and shuffled model (right column). Each row of panels corresponds to a different 

DNA binding domain family. 
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Supplementary Figure 22. Epistasis in the empirical data is intermediate to that of the additive 

and shuffled models, irrespective of DNA binding domain. These data represent a sensitivity 

analysis of the trends presented in Fig. 2B. Boxplots of magnitude epistasis, simple sign epistasis, and 

reciprocal sign epistasis for TFs from the 10 most prominent DNA binding domains in our dataset. 

The number of TFs in our dataset per DNA binding domain is shown in parentheses. Note the 

logarithmic scale of the y-axes. Note the logarithmic scale of the y-axes, which obscures data points 

with zero epistasis. The absence of the thick horizontal line indicates that the median of the 

distribution is below the lowest value of the y-axis. 
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Supplementary Figure 23. Peak accessibility in the empirical data is intermediate to that of the 

additive and shuffled models, irrespective of DNA binding domain. These data represent a 

sensitivity analysis of the trends presented in Fig. 2C. Data points depict the mean peak accessibility 

in the empirical data and the two null models (see legend), as a function of the mutational distance, 

for the 10 most prominent DNA binding domains in our dataset. The number of TFs in our dataset per 

DNA binding domain is shown in parentheses. Error bars depict one standard deviation. 
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Supplementary Figure 24. The number of peaks in the empirical data is intermediate to that of 

the additive and shuffled models for TFs that bind sequences that are shorter or longer than 

eight nucleotides. These data represent a sensitivity analysis of the trends presented in Fig. 2A. Each 

panel shows the distribution of the number of peaks per landscape for the additive model (left 

column), empirical data (middle column), and shuffled model (right column). Each row of panels 

corresponds to TFs that bind sequences that are shorter, equal to, or longer than 8 nucleotides. 
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Supplementary Figure 25. The global peak breadth in the empirical data is intermediate to that 

of the additive and shuffled models for TFs that bind sequences that are shorter or longer than 

eight nucleotides. These data represent a sensitivity analysis of the trends presented in 

Supplementary Fig. 7. Each panel shows the distribution of the number of binding sites in the highest 

peak (i.e. global peak breadth) for the additive model (left column), empirical data (middle column), 

and shuffled model (right column).  Each row of panels corresponds to TFs that bind sequences that 

are shorter, equal to, or longer than 8 nucleotides. 
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Supplementary Figure 26. Epistasis in the empirical data is intermediate to that of the additive 

and shuffled models for TFs that bind sequences that are shorter or longer than eight 

nucleotides. These data represent a sensitivity analysis of the trends presented in Fig. 2B. Boxplots of 

magnitude epistasis, simple sign epistasis, and reciprocal sign epistasis for TFs that bind sequences 

that are (A) shorter, (B) equal to, or (C) longer than 8 nucleotides. Note the logarithmic scale of the y-

axes, which obscures data points with zero epistasis. The absence of the thick horizontal line indicates 

that the median of the distribution is below the lowest value of the y-axis. 
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Supplementary Figure 27. Peak accessibility in the empirical data is intermediate to that of the 

additive and shuffled models for TFs that bind sequences that are shorter or longer than eight 

nucleotides. These data represent a sensitivity analysis of the trends presented in Fig. 2C. Data points 

depict the mean peak accessibility in the empirical data and the two null models (see legend), as a 

function of the mutational distance to the peak sequence, for TFs that bind sequences that are (A) 

shorter, (B) equal to, or (C) longer than 8 nucleotides. Error bars depict one standard deviation.  
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Supplementary Figure 28. The number of peaks in the empirical data is intermediate to that of 

the additive and shuffled models when using Z-scores as a proxy for binding affinity. The 

distribution of (A) the number of peaks, and (B) the number of binding sites per global peak for 1,095 

empirical adaptive landscapes (yellow) and the additive (red) and rugged (blue) null models. These 

data represent a sensitivity analysis of the trends presented in Fig. 2C and Supplementary Fig. 7, 

respectively. 
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Supplementary Figure 29. Epistasis in adaptive landscapes of transcription factor binding 

affinity when using Z-scores as a proxy for binding affinity. These data represent a sensitivity 

analysis of the trends presented in Fig. 2B. Boxplots of the fraction of squares showing magnitude, 

simple sign, and reciprocal sign epistasis for 1,095 adaptive landscapes. The thick horizontal line in 

the middle of each box represents the median of the data, while the bottom and top of each box 

represent the 25th and 75th percentiles, respectively. For the shuffled model, the boxplot summarizes 

1,095 data points, each of which is an average over 1,000 shuffled landscapes. The inset shows the 

same data, but with a logarithmically scaled y-axis. The absence of the thick line indicates that the 

median of the distribution is below the lowest value of the logarithmically scaled y-axis. 
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Supplementary Figure 30. Peak accessibility when using Z-scores as proxy for binding affinity. 

These data represent a sensitivity analysis of the trends presented in Fig. 2C. For each of the 1,095 

adaptive landscapes we show the mean (symbols) and standard deviation (error bars) of the fraction of 

accessible paths to the highest-affinity site in the landscape (i.e., peak accessibility). The histogram 

shows the distribution of mutational steps from the highest-affinity site for all sequences in all 

landscapes. For the shuffled model, each symbol represents the mean of 1,095 data points, each of 

which is an average over 1,000 shuffled landscapes. 
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Supplementary Figure 31. In vivo binding site abundance is higher for TFs with single-peaked 

landscapes than for TFs with multi-peaked landscapes. The vertical axis of each panel indicates 

the abundance of a TF’s highest-affinity site in protein-bound regions of the M. musculus genome in 

14 cell and tissue types (according to DNase I footprint data; Materials and Methods). The horizontal 

axis indicates the number of peaks. Landscapes are classified into two categories: single-peaked and 

multi-peaked. The thick horizontal line in the middle of each box represents the median of the data, 

while the bottom and top of each box represent the 25th and 75th percentiles, respectively. Each panel 

corresponds to a different cell or tissue type. Note the logarithmic scale of the y-axis for all the panels. 

Results of Wilcoxon rank-sum tests can be found in Supplementary Table 3. 
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Supplementary Figure 32. In vivo binding site abundance correlates with peak accessibility. The 

vertical axis of each panel indicates the abundance of a TF’s highest-affinity site in protein-bound 

regions of the M. musculus genome in 14 cell and tissue types (according to DNase I footprint data; 

Materials and Methods). The horizontal axes show peak accessibility through mutational paths of 

length 4, which are the most abundant paths in our dataset (Fig. 2C). Each panel corresponds to a 

different cell and tissue type, and each circle corresponds to a single TF that is expressed in that cell 

or tissue type. The colour of each circle indicates the binding affinity of the TF’s highest-affinity site 

(darker = higher; colour bar). The size of a circle corresponds to the TF’s expression level (larger = 

higher, Materials and Methods). Note the logarithmic scale of the y-axis for all the panels. The 

Spearman’s rank correlation coefficients and P-values can be found in Supplementary Table 3. 
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Supplementary Figure 33. Our measures of epistasis based only on bound sequences are 

conservative. Box plots of the fraction of squares showing magnitude, simple sign, and reciprocal 

sign epistasis for 1,137 adaptive landscapes. The thick horizontal line in the middle of each box 

represents the median of the data, while the bottom and top of each box represent the 25th and 75th 

percentiles, respectively. The inset shows the same data, but with a logarithmically scaled y-axis. 

Bound sequences are binding sites whose binding affinity is above an affinity threshold τ of 0.35  

(Materials and Methods). 
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2. Supplementary tables 

Supplementary Table 1. Information about the 1,137 transcription factors and their landscapes. 

Supplementary Table 2. Sources for the DNase I hypersensitive regions, footprints, and RNA-seq 

data for the 14 cell and tissue types analysed in this study. 

Supplementary Table 3. Spearman’s rank correlations between peak accessibility and the abundance 

of the highest-affinity site in DNase I footprints for the 14 cell and tissue types, in addition to 

Wilcoxon rank-sum tests comparing binding site abundance amongst single-peaked and multi-peaked 

landscapes. 

Supplementary Table 4. Spearman’s rank correlations between peak accessibility and the abundance 

of the highest-affinity site in DNase hypersensitive regions for 14 murine cell and tissue types, after 

having removed the DNase I footprints, in addition to Wilcoxon rank-sum tests comparing binding 

site abundance in the same hypersensitive regions amongst single-peaked and multi-peaked 

landscapes, This is a negative control. 

Supplementary Table 5. Analysis of covariance (ANCOVA) and its underlying assumptions. The 

best linear models (those with a higher coefficient of determination, R2) were obtained when the site 

abundance and information content were transformed logarithmically.  

Supplementary Table 6. Partial Spearman’s rank correlations with binding affinity between peak 

accessibility and the abundance of the highest-affinity site in DNase I footprints for the 14 cell and 

tissue types. 

Supplementary Table 7. Partial Spearman’s rank correlations with PWM information content 

between peak accessibility and the abundance of the highest-affinity site in DNase I footprints for 14 

murine cell and tissue types. 
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3. Supplementary results 

3.1. Summary statistics of genotype networks 

Here, we summarize some of the structural properties of the genotype networks that serve as the 

substrate of the adaptive landscapes we study. We observe that depending on the TF, between 9 and 

1,186 sites are bound (Supplementary Table 1). For 99.6% of the TFs (1,132 of 1,137), the majority 

of bound sites form a single connected component in this network, which we refer to as the dominant 

network, and for 53% of the TFs (600 of 1,137, Supplementary Fig. 1A), all of the bound sites belong 

to this dominant network (corroborating our previous findings based on fewer TFs24). For the vast 

majority of TFs, the vast majority of bound sequences are in the dominant genotype network 

(Supplementary Fig. 2), while many of the non-dominant networks comprise very few sequences, and 

predominantly only a single sequence (Supplementary Fig. 3).  Therefore, we carry out all of our 

analyses on the dominant genotype networks, which contain on average 392 sites but vary broadly in 

size among the TFs (Supplementary Fig. 1B).  

3.2. Global peaks are usually organized into broad plateaus 

We find that global peaks in binding affinity landscapes rarely comprise only a single sequence; 

rather they are plateaus typically made up of dozens to hundreds of sequences. The average plateau is 

large and comprises 10.4% of all binding sites in the landscape (Supplementary Fig. 7), many more 

than expected in the shuffled model, but far fewer than expected in the additive model. While larger 

landscapes also tend to have larger plateaus (Spearman’s rank correlation coefficient = 0.7, P-value < 

2.2×10-16), the fraction of a landscape’s binding sites falling on a plateau decreases with landscape 

size (Supplementary Fig. 6B; Spearman’s rank correlation coefficient = -0.35, P-value < 2.2×10-16). 

This observation of global peaks being organized into broad plateaus is in line with genome-wide 

assays of TF binding, which often find non-consensus sequences in bound regions of the genome43,65. 

We stress, however, that our measure of peak breadth is sensitive to the use of E-scores (rather than Z-

scores) as the quantitative phenotype in our landscapes (Supplementary section 3.6.5), and this 

sensitivity should be taken into account when interpreting our findings. 
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3.3. Why epistasis occasionally appears in the additive null model  

Epistasis appears at very low frequencies in the additive model. For example, an average of 0.036% 

of squares per genotype network exhibit simple sign epistasis, and 0.007% exhibit reciprocal sign 

epistasis. On the rare occasion where epistasis appears in the additive model, it stems directly from 

our sliding-window approach for scoring sequences (Materials and Methods). Supplementary Fig. 8 

shows an example. The mouse TF Arid5a has a PWM that is 14 nucleotides wide (Supplementary Fig. 

8A,B). The mutational pair AATTTTAA and AAATATAA exhibits reciprocal sign epistasis 

(Supplementary Fig. 8C), since both mutational intermediates have lower binding affinity. This 

results from the fact that the highest score for the sequence AATTTTAA occurs when it is aligned to 

positions 3 through 10 in the PWM, whereas the highest score for the other three sequences in the 

square occur when they are aligned to positions 2 through 9. If AATTTTAA were also aligned to 

positions 2 through 9, then this square would not exhibit epistasis. 

While our sliding-window approach is therefore responsible for a very low incidence of epistasis 

in the additive null model, we believe that it is the most sensible approach for scoring sequences, for 

at least two reasons. First, most of the PWMs in our dataset are not eight nucleotides wide, and in 

these cases it is simply necessary to use a sliding window. Second, even for the PWMs that are eight 

nucleotides wide, the sliding window is superior to a fixed window. To understand why, consider a 

hypothetical example where the information content in each position of the PWM is maximal, i.e., 

there is no variation in the nucleotide frequencies per position. Such a PWM could be represented by 

a single consensus sequence, say TATATATA. Using a fixed window, the sequence ATATATAT would 

not match the PWM in a single position and the sequence would receive a score of zero. However, by 

sliding the sequence by only one position, it will receive a high score, as it should, since seven of its 

eight nucleotides exactly match the consensus.  

3.4. Sign epistasis preferentially occurs among nucleotides that are near one another in the 

binding site 

The prevalence of epistatic interactions in the TF binding sites of 411 mouse and human TFs was 

recently investigated using data from high-throughput SELEX30. For each TF, pairwise epistasis was 
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estimated as the ratio of the observed frequency of a mutational pair in a binding site to its expected 

frequency, which was calculated using the TF’s PWM. This ratio therefore describes a deviation from 

additivity. Based on this analysis, the authors concluded that the individual nucleotides of a binding 

site generally contribute additively to binding affinity, and that when epistatic interactions do occur, 

they occur preferentially among nucleotides that are near one another in the binding site. 

Our analyses generally agree with these observations, but we also extend these earlier findings 

by partitioning epistasis into three distinct classes that have increasingly detrimental effects on 

landscape navigability: magnitude epistasis, simple sign epistasis, and reciprocal sign epistasis (Box 

1). Specifically, we find that both simple sign epistasis (Supplementary Fig. 9B) and reciprocal sign 

epistasis (Supplementary Fig. 9C) decrease as the distance between the binding site positions 

increases, but we observe no such trend for magnitude epistasis (Supplementary Fig. 9A). Thus, the 

two classes of epistasis that hamper landscape navigability the most – simple and reciprocal sign 

epistasis – occur preferentially among nearby binding site positions, whereas the class of epistasis that 

does not affect landscape navigability – magnitude epistasis – has no such preference. 

3.5. Peak accessibility decreases when unbound sequences are included 

As with our measure of epistasis (Supplementary section 3.8), we restricted our measure of peak 

accessibility to bound sequences. Including unbound sequences can only decrease the navigability of 

a landscape, and therefore decrease peak accessibility. To determine the extent of this decrease, we 

repeated our peak accessibility analyses for mutational paths that include unbound sequences. 

Supplementary Fig. 11 shows that the measures of peak accessibility reported in the main text are 

always higher than those that include unbound sequences (especially at longer mutational distances), 

as expected. The reason is twofold. First, since mutational paths always start at a bound sequence (i.e., 

τ  > 0.35), any path that includes an unbound sequence (i.e., τ ≤ 0.35) is by definition inaccessible. 

Second, the inclusion of unbound sequences creates new shortest paths to the global peak that are 

inaccessible and that occasionally supplant longer, accessible shortest paths to the global peak that 

were present in the genotype networks studied in the main text. 



 70

3.6. Sensitivity analyses 

Our study employs two parameters, one for determining whether two DNA sequences differ in their 

binding affinity (d) and another to determine which DNA sequences are bound by a TF (τ). The 

threshold δ is important because it accounts for the experimental noise in PBM data52. Increasing δ 

has the effect of “smoothing” the landscapes (Fig. 1B), because larger values of δ make it less likely 

that two sequences have different binding affinities. We use a unique threshold δ for each TF, which 

is derived from noise in experimental and replicated PBM measurements for that particular TF 

(Materials and Methods). Increasing the affinity threshold τ reduces the number of bound sequences, 

and decreases the size of a landscape (Fig. 1C). Below, we assess the sensitivity of our main results to 

broadly varying parameter values for τ and d. Moreover, we determine whether our main results differ 

among TFs from distinct DNA binding domain structural classes, as well as among TFs that bind 

DNA sequences shorter or longer than eight nucleotides. Finally, we show that our measure of global 

peak breadth is sensitive to the use of E-scores (rather than Z-scores) as a quantitative phenotype. 

Specifically, we test the sensitivity of the following main results: (1) The empirical landscapes 

have more peaks than expected under the additive model, but far fewer than expected under the 

shuffled model. (2) The global peaks in the empirical landscapes comprise more sequences than 

expected under the shuffled model, but fewer than expected under the additive model. (3) The 

incidence of the three classes of epistasis in the empirical landscapes is higher than expected under the 

additive model, but lower than expected under the shuffled model. (4) The highest-affinity sites are 

more accessible in the empirical data than expected under the shuffled model, but less accessible than 

those expected under the additive model.  

3.6.1. Our observations are insensitive to broadly varying thresholds for noise filtering 

In the main text, we used a threshold d to determine whether two sequences differed in their binding 

affinity. This threshold is important because it accounts for the inherent noise of protein-binding 

microarray data52. Here, we explore the sensitivity of our results to this parameter. 

As the noise threshold d increases, the number of peaks decreases, for the empirical data and 

both null models (Supplementary Fig. 12). This is because increasing the noise threshold makes it less 
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likely for two sequences to have different binding affinities, which has the effect of merging peaks. 

Nonetheless, even for the most permissive noise threshold of d = 0.05 (which corresponds to one-third 

of the range in affinity values when τ = 0.35), 32% of the empirical landscapes comprise multiple 

peaks, as opposed to 3% of the additive landscapes and 98% of the shuffled landscapes. 

Supplementary Figure 13 shows that the number of binding sites per global peak (i.e., global 

peak breadth) increases as the noise threshold d increases, for the empirical data and both null models. 

This occurs because increasing d makes the global peak more “inclusive,” such that the binding 

affinity of a sequence can differ from that of the highest-affinity sequence by a greater amount and the 

sequence will still be considered part of the global peak.  

Supplementary Figure 14 shows that epistasis decreases as the noise threshold d increases, for all 

three classes of epistasis, in the empirical data and both null models. This occurs because increasing d 

decreases the likelihood that Eqs. (3) or (4) (Materials and Methods) are satisfied, which decreases the 

proportion of mutational pairs that are classified as epistatic. These sensitivity analyses confirm 

intuition: increasing the noise threshold d increases the navigability of an adaptive landscape. This is 

further evidenced by Supplementary Fig. 15, which shows that peak accessibility increases with d in 

both the empirical data and the two null models. With the exception of magnitude epistasis – which 

does not affect landscape navigability – at low d, all measurements of epistasis and peak accessibility 

in the empirical data are intermediate to those of the additive and shuffled null models. We therefore 

conclude that the adaptive landscapes of TF binding preferences are less navigable than those from 

the additive model, but far more navigable than landscapes from the shuffled model, and that this 

observation is insensitive to changes in d. 

3.6.2. Our observations are insensitive to broadly varying affinity thresholds for delineating bound 

from unbound sequences 

In the main text, we considered a sequence “bound” if its E-score exceeded 0.35. Here, we assess the 

sensitivity of each of our measures of landscape navigability to the choice of binding affinity 

threshold τ.  
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As the affinity threshold τ increases, the distribution of the number of peaks shifts toward lower 

values, such that an increasing number of landscapes become single-peaked (Supplementary Fig. 16). 

This is true for the empirical data and for both null models, and results from the fact that increasing 

the binding affinity threshold decreases the number of bound sequences24, thus pruning non-global 

peaks from the landscape. However, even for the most stringent threshold of τ = 0.45, under which 

only very few sequences are considered bound24, 14% of the empirical landscapes comprise multiple 

peaks, as compared to 2% of the additive landscapes and 58% of the shuffled landscapes. 

Supplementary Figure 17 shows that the empirical distribution of the number of binding sites in 

the global peak (i.e., global peak breadth) is relatively unaffected by changes in the binding affinity 

threshold τ. This is because the sequences in these peaks typically have E-scores that exceed even our 

most stringent threshold of τ = 0.45. In contrast, the distributions of global peak breadth under the two 

null models are sensitive to the binding affinity threshold, but in different ways. In the additive model, 

the global peak breadth decreases as τ increases. This is because the sequences at the base of each 

peak are gradually removed from the landscape as τ increases, analogous to the loss of exposed 

landmass as water levels rise. In the shuffled model, in contrast, the global peak breadth increases as τ 

increases, a counterintuitive observation that stems from the way these landscapes are constructed. 

Specifically, increasing τ decreases the number of bound sequences24, and in a landscape with few 

sequences, a random permutation of binding affinities is likely to clump many of the high-affinity 

sequences near one another in the landscape, such that they are part of the same peak. In contrast, in a 

landscape with many sequences (low τ), these same high-affinity sequences are likely to be spread 

throughout the landscape, and thus to be part of different peaks. Despite these changes in the 

landscapes generated by the two null models, the global peaks in the empirical landscapes persist in 

comprising more sequences than expected under the shuffled model, but fewer than expected under 

the additive model. We therefore conclude that these observations are insensitive to changes in τ. 

Supplementary Figure 18 shows boxplots of the three classes of epistasis as a function of the 

binding affinity threshold τ, for the empirical data and the two null models. In the additive model, 

there is very little epistasis and it is generally insensitive to changes in τ. In the empirical data and in 

the shuffled model, the incidence of epistasis tends to decrease as τ increases, indicating an increase in 
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landscape navigability. These observations are reflected in Supplementary Fig. 19: peak accessibility 

increases as the binding affinity threshold τ increases for both the empirical data and the shuffled 

model, but for the additive model, peak accessibility does not change with τ. Importantly, all 

measurements of epistasis and peak accessibility in the empirical data are intermediate to those of the 

additive and shuffled null models. We therefore conclude that the adaptive landscapes of TF binding 

affinity are less navigable than those from the additive model, but far more navigable than landscapes 

from a shuffled model, and that this observation is insensitive to changes in τ. 

3.6.3. Our observations are consistent across DNA binding domains 

The 1,137 TFs in our dataset represent 62 different DNA binding domain structural classes 

(Supplementary Table 1). Here, we show that our results do not vary among these classes. While we 

illustrate this point using data from the most prominent DNA binding domains in our dataset, the 

insensitivity of our results applies to the other structural classes as well (data not shown). 

Supplementary Figure 20 shows the distribution of the number of peaks in the empirical data 

and the two null models for the five most prominent DNA binding domain classes. While the 

distributions change quantitatively, especially under the shuffled model, they do not change 

qualitatively. Specifically, the empirical landscapes always have more peaks than expected under the 

additive model, but fewer than expected under the shuffled model. 

Supplementary Figure 21 shows the number of binding sites in the global peak (i.e., global 

peak breadth) in the empirical data and the two null models, for the same five DNA binding domain 

structural classes. Again, the distributions do not change qualitatively: Global peak breadth is larger in 

the empirical landscapes than expected under the shuffled model, but smaller than expected under the 

additive model.  

Supplementary Figure 22 shows that the incidence of the three classes of epistasis among the 

empirical data and the two null models does not vary among DNA binding domain structural classes. 

Epistasis in the empirical data is always intermediate to that of the additive and shuffled null models. 

As a consequence, peak accessibility in the empirical data is intermediate to that of the additive and 

shuffled null models (Supplementary Fig. 23). We therefore conclude that the adaptive landscapes of 
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TF binding preferences are less navigable than those from the additive model, but far more navigable 

than landscapes from the shuffled model, and that this observation does not vary among the DNA 

binding domain structural classes considered here. 

3.6.4. Our observations are consistent across TFs that bind shorter or longer sequences than eight 

nucleotides 

Protein-binding microarray data characterize the binding affinity of a TF to all possible binding sites 

of length 8. However, many of the TFs in our dataset bind sequences that are shorter or longer than 8 

nucleotides. It is therefore important to ensure that our results are insensitive to binding site length. To 

determine the length of a TF’s binding sites, we use the TF’s position weight matrix to calculate the 

maximum number of contiguous nucleotides with information content (Eq. 8, Materials and Methods) 

exceeding 0.5 bits (bold font in Supplementary Fig. 8B).  

We find that among the 1,137 TFs studied here, 935 bind sequences that are shorter than 8 

nucleotides and 47 bind sequences that are longer than 8 nucleotides; the remaining 155 TFs bind 

sequences that are exactly 8 nucleotides long. Supplementary Figure 24 shows that the empirical 

landscapes comprise more peaks than expected under the additive model, but far fewer than expected 

under the shuffled model, regardless of binding site length. Supplementary Figure 25 shows that 

global peaks in the empirical landscapes typically comprise multiple sequences. Notably, for TFs that 

bind sequences shorter than 8 nucleotides, the distribution of global peak breadth shifts toward higher 

values under the additive model. This results from our scoring strategy, which assigns a score to each 

sliding subsequence, and then assigns the maximum of these scores to the sequence (Materials and 

Methods). Since many sequences will contain the same high-scoring subsequence, global peak 

breadth increases for TFs that bind sequences shorter than 8 nucleotides under the additive model.  

Supplementary Figure 26 shows that the incidence of the three classes of epistasis among the 

empirical data and the two null models does not vary among TFs that bind sequences that are shorter 

or longer than 8 nucleotides. Epistasis in the empirical data is greater than expected under the additive 

model, but less than expected under the shuffled model. These trends are reflected in Supplementary 

Fig. 27, which depicts peak accessibility as a function of the mutational distance from the peak 
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sequence. Peaks in the empirical adaptive landscapes are always less accessible than those from the 

additive model, but much more accessible than those from the shuffled model. We therefore conclude 

that the adaptive landscapes of TF binding affinity are less navigable than those from the additive 

model, but far more navigable than landscapes from the shuffled model, and that this observation is 

insensitive to binding site length. 

3.6.5. Peak breadth is sensitive to the use of E-scores as a quantitative phenotype 

Protein-binding microarray data typically include both an E-score and a Z-score for each DNA 

sequence. In the main text, we considered the E-score as the quantitative phenotype that defines the 

surface of each adaptive landscape. The E-score has the advantage that it is robust to outliers, 

insensitive to TF concentrations, and less variable across arrays. However, it has the disadvantage of 

compressing the dynamic range of binding affinities, particularly for E-scores near the maximum 

value of 0.5. Here, we assess the sensitivity of our results to the use of E-scores for the 1095 

landscape for with we have Z-scores (Materials and Methods), revealing that global peak breadth is 

sensitive to this measure, whereas our measures of landscape navigability are not. 

 Supplementary Figure 28 shows that the number of peaks in the empirical landscapes remains 

intermediate to that of the additive and shuffled models, although the number of peaks does increase 

slightly. However, the number of sequences per peak decreases significantly, relative to the 

landscapes constructed using E-scores. For example, the average number of sequences per peak 

decreases from 33.2 to 3.6, and the number of single-sequence peaks increases from 36 to 650. Thus, 

our finding that peaks typically comprise dozens to hundreds of sequences should be considered in the 

context of this sensitivity. In contrast, the three classes of epistasis that we study are insensitive to the 

use of E-scores (Supplementary Fig. 29), as are our measures of peak accessibility (Supplementary 

Fig. 30). 

3.7. The in vivo relationship between landscape navigability and the abundance of binding sites 

is not driven by binding affinity or by information content 

We have previously found that the mouse genome is enriched in high-affinity binding sites both 

genome-wide and within putative enhancers24. Therefore, we checked whether any of the in vivo 
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correlations with the abundance of the highest-affinity site in DNase I footprints could be explained 

by a confounding relationship with binding affinity. To evaluate that possibility, we tested whether 

the observed differences in site abundance between single-peak and multi-peaked landscapes are still 

significant after adjusting for binding affinity. An analysis of covariance (ANCOVA)66 shows that 

after controlling for differences in the response variable (site abundance) caused by the covariate 

(binding affinity), there are still significant differences caused by peak number (Supplementary Table 

5). In both brain and MEL cells, the assumption of the homogeneity of slopes among groups – one of 

the underlying assumptions for the ANCOVA – is violated. However, in brain, the main effect of 

peak number in a linear model that incorporates the interaction between peak number and binding 

affinity is significant (t-test, P-value = 0.038). A partial correlation analysis shows that the effect of 

peak accessibility still holds after controlling for binding affinity, except for three tissue types 

(Supplementary Table 6). 

To measure in vivo binding site abundance, we scanned DNase I footprints using FIMO53 and 

each TF’s position weight matrix (Materials and Methods). Since the information content of a TF’s 

position weight matrix may impact the number of “hits” detected in such genomic scans, we 

performed an additional ANCOVA that controlled for this potential confounding factor. However, 

this analysis was only necessary for brain and heart tissues since for all other cell or tissue types there 

was no linear relationship between site abundance and information content (Supplementary Table 5). 

This analysis shows that the effect of peak number on the abundance of the highest-affinity site in 

DNase I footprints remains statistically significant after controlling for the information content of 

each TF’s position weight matrix (Supplementary Table 5). A partial correlation analysis shows that 

the same is true for peak accessibility (Supplementary Table 7). 

Thus, we conclude that landscape navigability influences the prevalence of high-affinity TF 

binding sites in protein-bound regions of the mouse genome, independent of binding affinity or the 

information content of the TF’s position weight matrix. 

3.8. Our measures of epistasis for bound sequences are conservative 

We have restricted our measures of epistasis to bound sequences (i.e. sequences with a binding 
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affinity above τ; Materials and Methods) because these form the genotype networks that underlie the 

adaptive landscapes we study. Our measures of epistasis are therefore conservative, because they do 

not include unbound sequences, and therefore underestimate the level of ruggedness in a landscape. 

To determine how conservative our measures of epistasis are, we performed an additional analysis in 

which we included both bound and unbound sequences. Specifically, in each landscape, we analysed 

all pairs of bound sequences that differed by two mutations and used them to calculate epistasis for all 

possible mutational paths between these two sequences (i.e., all squares), regardless of whether the 

intermediate sequences were part of the genotype network or not. Supplementary Fig. 33 shows that 

the measures of epistasis reported in the main text are always lower than those that include unbound 

sequences, as expected.  

4. Supplementary discussion 

 

Since Sewall Wright introduced the metaphor of the adaptive landscape in the early 1930s1,67, it has 

received considerable attention from theorists interested in understanding how landscape topography 

affects evolutionary dynamics68. In recent years, however, attention has shifted from theoretical 

landscapes to the analysis of empirical landscapes constructed from experimental data3. This shift has 

been triggered by advances in high-throughput sequencing and chip-based technologies, which have 

made it possible to assign phenotypes or fitness values to a large number of genotypes, thus bringing 

the landscape metaphor to life at unprecedented resolution. The study of empirical landscapes is 

currently a burgeoning area of research69–73.  

However, most of the empirical adaptive landscapes studied to date describe only a minute 

fraction of the full genotype space, and they are therefore highly incomplete. For example, one of the 

pioneering studies of empirical adaptive landscapes – and a truly inspiring one – considered antibiotic 

resistance as a function of all possible combinations of five mutations in the TEM-1 beta-lactamase 

allele of Escherichia coli, and concluded that the landscape is single-peaked31. However, a subsequent 

analysis of a greater number of resistance-conferring mutations in the same allele demonstrated that 
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this landscape is in fact multi-peaked74, highlighting that the analysis of incomplete landscapes may 

produce misleading results75. 

Here, we have studied 1,137 complete adaptive landscapes of transcription factor binding 

affinity using experimental data from protein binding microarrays. We find that they exhibit little 

epistasis and contain few peaks, and these peaks are easily accessed via a series of small mutations 

that only move “uphill.” We highlight that these findings go far beyond our previous work on 

genotype networks of transcription factor binding sites24, in which we studied a binary phenotype – 

the molecular capacity of a DNA sequence to bind specific transcription factors – and ignored the 

quantitative measures of binding affinity that are the focus of this study. Including a quantitative 

measure of binding affinity transforms “flat" genotype networks into “three-dimensional" landscapes. 

We have characterized the incidence of epistasis as a measure of landscape navigability, 

motivated by a recent debate over the significance of epistatic interactions in TF binding sites61,62, and 

more generally over the prevalence of epistasis in molecular evolution76,77. While such interactions 

have been convincingly demonstrated for some TFs78–80, large-scale analyses of mouse and human 

TFs suggest that epistasis is the exception, rather than the rule, in TF binding22,30. Our results extend 

and complement these earlier findings, by categorizing epistatic interactions as magnitude, simple 

sign, or reciprocal sign epistasis. This categorization reveals that both forms of sign epistasis are rare 

in TF binding sites, but that magnitude epistasis is common. However, there are some notable 

exceptions. For example, the empirical landscapes of four TFs (Dbp, bzpH, e_gw1.279.28.1, 

PRKRIR) exhibit the maximum value of magnitude epistasis, something that is rarely seen in the 

shuffled model. More generally, the empirical landscapes of 171 TFs exhibit more magnitude 

epistasis than the shuffled landscapes, the empirical landscapes of 25 TFs exhibit more sign epistasis 

than the shuffled landscapes, and the empirical landscapes of 15 TFs exhibit more reciprocal sign 

epistasis than the shuffled landscapes. These TFs tend to have small dominant genotype networks (the 

median number of bound sequences is 103), suggesting that high-specificity TFs tend to bind 

sequences that exhibit high levels of epistasis. Additionally, while sign epistasis preferentially occurs 

among bases that are near one another in the binding site – as previously reported for human TFs30 – 
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magnitude epistasis shows no such preference: Bases at opposite ends of a binding site are just as 

likely to exhibit magnitude epistasis as are adjacent bases. 

Most of what was previously known about TF binding affinity landscapes came from in vitro 

evolution experiments81 and biophysical models of TF-DNA interactions12,13,15,16,35,47,82–86. 

Specifically, in vitro evolution experiments with the bacterial lac repressor have hinted that TF 

binding affinity landscapes are highly navigable81, because high affinity binding sites evolve quickly 

from a small randomized library of oligonucleotides via repeated rounds of mutation and selection. 

Biophysical models draw similar conclusions, but since they were not based on exhaustive 

measurements of binding affinity, they necessarily made several assumptions about landscape 

structure. These include the assumption that single nucleotide changes in a binding site result in small 

changes in binding affinity86–88, that a binding site’s constituent bases contribute additively to 

affinity15,82, and that binding affinity is a linear function of a site’s mutational distance from the 

highest-affinity site35,86. We and others have provided broad support for the first assumption, because 

the binding affinity of a sequence is strongly correlated with that of its mutational neighbors5,24. In 

contrast, the latter assumptions are occasionally violated: Magnitude epistasis is common and 

landscapes sometimes have multiple peaks. These findings urge caution when incorporating additivity 

assumptions into models of TF-DNA interactions.  

4.1. Caveats 

This study has some caveats that are worth highlighting. First, the landscapes we have constructed 

make several simplifying assumptions about transcriptional regulation. For instance, since they are 

based on an in vitro assay of TF binding, they do not capture many of the complexities of binding in 

vivo, such as epigenetic marks89, chromatin context90, local sequence context91, or interactions with 

protein partners42,92, all of which are likely to affect landscape topography. Nevertheless, we observe 

significant correlations among our measures of landscape navigability and the in vivo abundance of 

high-affinity sites and gene expression levels, suggesting that these in vitro affinity landscapes 

provide meaningful information about TF binding in vivo. This is further supported by the observation 

that the genetic diversity of binding sites across yeast strains reflects the size of their landscape’s 
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global peaks. The second caveat is that we cannot completely rule out the possibility that some of the 

correlations we observe are spurious. While their consistency across different species, experiments, as 

well as diverse cell and tissue types is reassuring, only direct experimentation could conclusively 

determine whether the navigability of a binding affinity landscape affects the evolution of a TF’s 

binding sites in vivo. High-throughput laboratory evolution experiments with selection for 

transcription factor binding could shed light on which landscape parameterizations (τ and δ) best 

reflect binding in vivo, and could provide answers to long-standing questions about the influence of 

landscape navigability on adaptation, mutational robustness, and the predictability of evolution. Our 

current research is directed along these lines. Third, the metaphor of the adaptive landscape 

commonly evokes the fitness of an entire organism, and it is not immediately clear how TF binding 

affinity relates to organismic fitness. Even though examples – such as the evolution of an activator’s 

binding site in the promoter of an antibiotic resistance gene10 – have linked binding affinity to the 

fitness of an organism, such a link need not exist for all TFs. Moreover, for TF’s regulating many 

genes, the relationship between binding affinity and fitness likely varies from binding site to binding 

site. However, we stress that this limitation is not restricted to binding affinity, but rather applies to 

the quantitative phenotypes measured to date in almost all empirical adaptive landscapes of proteins 

and RNAs, including catalytic activity, stability, or affinity to a target ligand3,19. Fourth, while our 

measure of peak accessibility is inspired by the weak-mutation, strong-selection regime of population 

genetics, not all TF binding sites are under strong selection46. Our measure is therefore conservative, 

because relaxed selection for binding affinity would only make a landscape’s peaks more accessible. 

Fifth, our landscape navigability measures assume that valleys cannot be crossed. This assumption 

may be violated if the mutation rate is high or if the population size is small. Valley crossing may also 

be facilitated by relaxed selection for TF binding, genetic hitchhiking, or by temporally changing 

environments93. A final caveat is that we only consider mutations in TF binding sites, even though 

mutations in the DNA binding domains of TFs are also important for regulatory evolution80,94,95. Data 

describing the effects of such mutations on a TF binding preferences are now available80,96,97, but due 

to the hyper-astronomical size of protein space27, they are far from exhaustive, capturing only a small 
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subset of all possible mutations to a TF’s DNA binding domain, and thus precluding a comprehensive 

analysis. 

5. Supplementary references 

 




