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Abstract

The problem of describing images through natural lan-

guage has gained importance in the computer vision com-

munity. Solutions to image description have either focused

on a top-down approach of generating language through

combinations of object detections and language models or

bottom-up propagation of keyword tags from training im-

ages to test images through probabilistic or nearest neigh-

bor techniques. In contrast, describing videos with natural

language is a less studied problem. In this paper, we com-

bine ideas from the bottom-up and top-down approaches to

image description and propose a method for video descrip-

tion that captures the most relevant contents of a video in a

natural language description. We propose a hybrid system

consisting of a low level multimodal latent topic model for

initial keyword annotation, a middle level of concept detec-

tors and a high level module to produce final lingual de-

scriptions. We compare the results of our system to human

descriptions in both short and long forms on two datasets,

and demonstrate that final system output has greater agree-

ment with the human descriptions than any single level.

1. Introduction

The problem of generating natural language descriptions

of images and videos has been steadily gaining prominence

in the computer vision community. A number of papers

have been proposed to leverage latent topic models on low-

level features [4, 6, 7, 22, 32], for example. The problem

is important for three reasons: i) transducing visual data

into textual data would permit well understood text-based

indexing and retrieval mechanisms essentially for free; ii)

fine grained object models and region labeling introduce a

new level of semantic richness to multimedia retrieval tech-

niques; and iii) grounding representations of visual data in

natural language has great potential to overcome the inher-

ent semantic ambiguity prominent in the data-driven high-
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Output from our system: 1) A person is on artificial rock wall. 2) A person climbing

a wall is on artificial rock wall. 3) Person climbs rock wall indoors. 4) Young man

tries to climb artificial rock wall. 5) A man demonstrates how to climb a rock wall. 
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Figure 1: A framework of our hybrid system showing a

video being processed through our pipeline and described

by a few natural language sentences.

level vision community (see [27] for a discussion of data-set

bias and discussion on the different meanings common la-

bels can have within and across data sets).

Fig. 1 shows our video to text system pipeline. To date,

the most common approach to such lingual description of

images has been to model the joint distribution over low-

level image features and language, typically nouns. Early

work on multimodal topic models by Blei et al. [4] and sub-

sequent extensions [6, 7, 11, 22, 32] jointly model image

features (predominantly SIFT and HOG derivatives) and

language words as mixed memberships over latent topics

with considerable success. Other non-parametric nearest-

neighbor and label transfer methods, such as Makadia et al.

[18] and TagProp [12], rely on large annotated sets to gener-

ate descriptions from similar samples. These methods have

demonstrated a capability of lingual description on images

at varying levels, but they have two main limitations. Be-

ing based on low-level features and/or similarity measures,

first, it is not clear they can scale up as the richness of the

semantic space increases. Second, the generated text has

largely been in the form of word-lists without any semantic

verification (see Sec. 2.3).
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Alternatively, a second class of approaches to lingual de-

scription of images directly seeks a set of high-level con-

cepts, typically objects but possibly others such as scene

categories. Prominent among object detectors is the de-

formable parts model (DPM) [10] and related visual phrases

[26] which have been successful in the task of “annotating”

natural images. Despite being able to guarantee the seman-

tic veracity of the generated lingual description, these meth-

ods have found limited use due to the overall complexity of

object detection in-the-wild and its constituent limitations

(i.e., noisy detection), and the challenge of enumerating all

relevant world concepts and learning a detector for each.

In this work, we propose a hybrid model that takes

the best characteristics of these two classes of methods.

Namely, our model leverages the power of low-level joint

distributions over video features and language by treating

them as a set of lingual proposals which are subsequently

filtered by a set of mid-level concept detectors. A test video

is processed in three ways (see Fig. 1). First, in a bot-

tom up fashion, low level video features predict keywords.

We use multimodal latent topic models to find a proposal

distribution over some training vocabulary of textual words

[4, 7], then select the most probable keywords as potential

subjects, objects and verbs through a natural language de-

pendency grammar and part-of-speech tagging.

Second, in a top down fashion, we detect and stitch to-

gether a set of concepts, such as “artificial rock wall” and

“person climbing wall” similar to [26], which are then con-

verted to lingual descriptions through a tripartite graph tem-

plate. Third, for high level semantic verification, we relate

the predicted caption keywords with the detected concepts

to produce a ranked set of well formed natural language sen-

tences. Our semantic verification step is independent of any

computer vision framework and works by measuring the

number of inversions between two ranked lists of predicted

keywords and detected concepts both being conditional on

their respective learned topic multinomials.

Our method does not suffer from any lack of semantic

verification as bottom-up models do, nor does it suffer from

the tractability challenges of the top-down methods—it can

rely on fewer well-trained concept detectors for verification

allowing the correlation between different concepts to re-

place the need for a vast set of concept detectors.

Videos vs. Images Recent work in [9, 16, 34] is

mainly focused on generating fluent descriptions of a single

image—images not videos. Videos introduce an additional

set of challenges such as temporal variation/articulation and

dependencies. Most related work in vision has focused only

on the activity classification side: example methods us-

ing topic models for activities are the hidden topic Markov

model [33] and frame-by-frame Markov topic models [13],

but these methods do not model language and visual topics

jointly. A recent activity classification paper of relevance

is the Action Bank method [25], which ties high-level ac-

tions to constituent low-level action detections, but it does

not include any language generation framework.

The three most relevant works to ours are the Khan et al.

[14], Barbu et al. [1] and Malkarnenkar et al. [19] systems.

All of these methods extract high-level concepts, such as

faces, humans, tables, etc., and generate language descrip-

tion by template filling; [19] additionally uses externally

mined language data to help rank the best subject-verb-

object triplet. The methods rely directly on all high-level

concepts being enumerated (the second class of methods in-

troduced above) and hence may be led astray by noisy de-

tection and have a limited vocabulary, unlike our approach

which not only uses the high-level concepts but augments

them with a large corpus of lingual descriptions from the

bottom-up. Furthermore, some have used datasets have sim-

pler videos not in-the-wild.

We, in contrast, focus on descriptions of general videos

(e.g., from YouTube) directly through bottom-up visual fea-

ture translations to text and top-down concept detections.

We leverage both detailed object annotations and human

lingual descriptions. Our proposed hybrid method shows

more relevant content generation over simple keyword an-

notation of videos alone as observed using quantitative eval-

uation on two datasets—the TRECVID dataset [20] and a

new in-house dataset consisting of cooking videos collected

from YouTube with human lingual descriptions generated

through MTurk (Sec. 3).

2. System Description

2.1. Low Level: Topic Model
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Figure 2: Low-

level topic model.

Following [7], we adapt the

GM-LDA model in [4] (dubbed

MMLDA for MultiModalLDA in

this paper) to handle a discrete vi-

sual feature space, e.g., we use

HOG3D [15]. The original model

in [4] is defined in the continuous

space, which presents challenges

for discrete features: it can become

unstable during deterministic approximate optimization due

to extreme values in high-dimensions and its inherent non-

convexity [30]. We briefly explain the model and demon-

strate how it is instantiated and differs from the original ver-

sion in [4]. First, we use an asymmetric Dirichlet prior, α

for the document level topic proportions θd following [31]

unlike the symmetric one in [4]. In Fig. 2, D is the num-

ber of documents, each consisting of a video and a lingual

description (the text is only available during training). The

number of discrete visual words and lingual words per video

document d are N and M . The parameters for corpus level

topic multinomials over visual words are ρ1:K . The param-
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eters for corpus level topic multinomials over textual words

are β1:K—only the training instances of these parameters

are used for keyword prediction. The indicator variables for

choosing a topic are {zd,n} and {yd,m}; wd,m is the text

word at position m in video “document” d with vocabulary

size V . Each wd,n is a visual feature from a bag-of-discrete-

visual-words at position n with vocabulary size corrV and

each wd,n represents a visual word (e.g., HOG3D [15] in-

dex, transformed color histogram [28], etc.).

We use the mean field method of optimizing a lower-

bound to the true likelihood of the data. A fully factorized

q distribution with “free” variational parameters γ, φ and λ

is imposed by: q(θ, z,y|γ,φ,λ) =

D
∏

d=1

q(θd|γd)

[

Nd
∏

n=1

q(zd,n|φd,n)

Md
∏

m=1

q(yd,m|λd,m)

]

. (1)

The optimal values of free variables and parame-

ters are found by optimizing the lower bound on

log p(wM,wN|α,β,ρ). The free multinomial parameters

of the variational topic distributions ascribed to the corre-

sponding data are φds. The free parameters of the varia-

tional word-topic distribution are λds. The surrogate for the

K-dimensional α is γd which represents the expected num-

ber of observations per document in each topic. The free

parameters are defined for every video document d. The

optimal value expressions of the hidden variables in video

document d for the MMLDA model are as follows:

φn,i ∝ exp
{

ψ(γi) + log ρi,wd,n

}

, (2)

λm,i ∝ exp
{

ψ(γi) + log βi,wd,m

}

, (3)

γi = αi +

Nd
∑

n=1

φn,i +

Md
∑

m=1

λm,i , (4)

where ψ is the digamma function. The expressions for the

maximum likelihood of the topic parameters are:

ρi,j ∝
D
∑

d=1

Nd
∑

n=1

corrV
∑

j=1

φd,n,iδ(wd,n, j) , (5)

βi,j =
D
∑

d=1

Md
∑

m=1

V
∑

j=1

λd,m,iδ(wd,m, j) . (6)

The asymmetric α is optimized using the formulations

given in [5], which incorporates Newton steps as search di-

rections in gradient ascent.

A strongly constrained model, Corr-LDA, is also intro-

duced in [4] that uses real valued visual features and shows

promising image annotation performance. We have exper-

imented with the model to use our discrete visual feature

space (and name it Corr-MMLDA) but finally opt to not use

it in our final experiments due to the following reasons.

K=200 n=1 n=5 n=10 n=15

MMLDA 0.03518 0.11204 0.18700 0.24117

Corr-MMLDA 0.03641 0.11063 0.18406 0.24840

Table 1: Average word prediction 1-gram recall for different

topic models with 200 topics when the full corpus is used.

The numbers are slightly lower for lower number of topics

but are not statistically significant.
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Figure 3: Prediction ELBOs

from the two topic models for

the videos in TRECVID dataset.

Lower is better.

The correspon-

dence between wd,m

and zd,n necessitates

checking for corre-

spondence strengths

over all possible de-

pendencies between

wd,m and wd,n.

This assumption

is relaxed in the

MMLDA model and removes the bottleneck in runtime

efficiency for high dimensional video features without

showing significant performance drain. Fig. 3 shows the

held out log likelihoods or the Evidence Lower BOunds

(ELBOs) on part of the TRECVID dataset (Sec. 3.1).

The figures are obtained by topic modeling on the entire

corpus of multimedia documents (video with corresponding

lingual description). Using visual features, we predict the

top n words as the description of the test videos. Table 1

shows the average 1-gram recall of predicted words (as in

[14]). We observe that both models have approximately the

same fit and word prediction power, and hence choose the

MMLDA model since it is computationally less expensive.

2.2. Middle Level: Concepts to Language

The middle level is a top-down approach that detects

concepts sparsely throughout the video, matches them over

time, which we call stitching, and relates them to a tripartite

template graph for generating language output.

2.2.1 Concept Detectors

Instead of using publicly available object detectors from

datasets like the PASCAL VOC [8], or training indepen-

dent object detectors for objects such as microphone, we

build the concept object detectors like microphone with up-

per body, group of people etc., where multiple objects to-

gether form a single concept. A concept detector captures

richer semantic information (from object, action and scene

level) than object detectors, and usually reduces the visual

complexity compared to individual objects, which requires

less training examples for an accurate detector. These con-

cept detectors are closely related to Sadeghi and Farhadi’s

visual phrases [26] but do not use any decoding process and
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person with microphone

person climbing wall

Figure 4: Examples of DPM based concept detectors.

are applied on video.

We use the deformable parts model (DPM) [10] for the

concept detectors, some examples of which are visualized

in Fig. 4. The specific concepts we choose are based on the

most frequently occurring object-groupings in the human

descriptions from the training videos. We use the VATIC

tool [29] to annotate the trajectories of concept detectors

in training videos, which are also used in Sec. 2.2.3 for

extracting concept relations.

2.2.2 Sparse Object Stitching (SOS)

Concept detectors act as a proxy to the trajectories being

tracked in a video. However, tracking over detection is a

challenging and open problem for videos in-the-wild. First,

camera motion and the frame rate are unpredictable, ren-

dering the existing tracking methods useless. Second, the

scale of our dataset is huge (thousands of video hours), and

we hence need a fast alternative. Our approach is called

sparse object stitching; we sparsely obtain the concept de-

tections in a video and then sequentially group frames based

on commonly detected concepts.

For a given video, we run the set of concept detec-

tors L on T sparsely distributed frames (e.g. 1 frame/sec)

and denote the set of positive detections on each frame as

Di. The algorithm tries to segment the video into a set of

concept shots S = {S1, S2, . . . , SZ}, where S = ∪Di,

and Z ≪ T , so that each Sj can be independently de-

scribed by some sparse detections similar in spirit to [14].

We start by uniformly splitting the video into K proposal

shots {S′
1, S

′
2, . . . , S

′
K}. Then we greedily traverse the pro-

posed shots one by one considering neighboring shots S′
k

and S′
k+1. If the Jaccard distance J(S′

k, S
′
k+1) = 1 −

|S′

k∩S′

k+1|

|S′

k
∪S′

k+1
| is lower than a threshold σ (set as 0.5 using cross-

validation), then we merge these two proposed shots into

one shot and compare it with the next shot, otherwise shot

S′
k is an independent shot. For each such concept shot, we

match it to a tripartite template graph and translate it to lan-

guage, as we describe next.

V s V t

V o

BYPASS

person-
sitting

microphone-on-stand

flag

board-on-wall
podium

people-sitting-at-table

mob-5-sitting

mob-5-standing

mob-10-sitting

mob-10-standing

person-
upright

microphone-
with-upper-body

upright-camera-man

Figure 5: Lingual descriptions from tripartite template

graphs consisting of concepts as vertices.

2.2.3 Tripartite Template Graph

We use a tripartite graph G = (V s, V t, V o, E)—V s for

human subjects, V t for tools, and V o for objects—that

takes the concept detections from each Sj and generates

template-based language description. The vertex set V =
V s ∪ V t ∪ V o is identical to the set of concept detectors L
in the domain at hand. Each concept detector is assigned to

one of the three vertex sets (see Fig. 5). The set of paths

P = {(Eτ,μ, Eμ,ν)|τ ∈ V s, μ ∈ V t, ν ∈ V o} is defined as

all valid paths from V s to V o through V t, and each forms

a possible language output. However, we prune P so that it

contains only those valid paths that were observed in the an-

notated training sequences. For a given domain, each such

path, or triplet 〈V s, V t, V o〉, instantiates a manually created

template, such as “〈V s〉 is cleaning 〈V o〉 with 〈V t〉.”
Language Output: Given the top confident concept de-

tections Lc ⊂ L in one concept shot Sj , we activate the set

of paths Pc ⊂ P . A natural language sentence is output

for paths containing a common subject using the template

〈V s, V t, V o〉. For situations where Lc∩V t = ∅, the consis-

tency of the tripartite graph is maintained through a default

“BYPASS” node in V t (see Figs. 1 and 5). This node acts

as a “backspace” production rule in the final lingual out-

put thereby connecting the subject to an object effectively

through a single edge. There is, similarly, a BYPASS node

in V o as well. In this paper, we generally do not consider

the situation that Lc∩V s = ∅, in which no human subject is

present. Histogram counts are used for ranking the concept

nodes for the lingual output.

Fig. 5 depicts a visual example of this process. The

edges represent the action phrases or function words that

stitch the concepts together cohesively. For example, con-

sider the following structure: “([a person with microphone])

is speaking to ([a large group of sitting people] and [a small

group of standing people]) with ([a camera man] and [board

in the back]).” Here the parentheses encapsulate a sim-

ple conjunctive production rule and the phrases inside the

square brackets denote human subjects, tools or objects.
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The edge labels in this case are “is speaking to” and “with”

which are part of the template 〈V s, V t, V o〉. In the figure,

Lc is colored blue and edges in Pc with the common vertex

“microphone-with-upper-body” are colored red. We delete

repeated sentences in the final description.

2.3. High Level: Semantic Verification

The high level system joins the two earlier sets of lingual

descriptions (from the low and middle levels) to enhance the

set of sentences given from the middle level and at the same

time to filter the sentences from the low level. Our method

takes the predicted words from the low level and tags their

part-of-speech (POS) with standard NLP tools. These are

used to retrieve weighted nearest neighbors from the train-

ing descriptions, which are then ranked according to pre-

dictive importance, similar in spirit to how Farhadi et al.

[9] select sentences. In contrast, we rank over semantically

verified low level sentences, giving higher weight to shorter

sentences and a fixed preference to middle level sentences.

We use the dependency grammar and part-of-speech

(POS) models in the Stanford NLP Suite∗ to create an-

notated dictionaries based on word morphologies; the

human descriptions provide the input. The predicted

keywords from the low level topic models are labeled

through these dictionaries. For more than two POS

for the same morphology, we prefer verbs, but other

variants can be retained as well without loss of gener-

ality. For the video in Fig. 5, we obtain the following

labeled top 15 keywords: “hall/OBJ town/NOUN meet-

ing/VERB man/SUBJ-HUMAN speaks/VERB microphone/OBJ

talking/VERB representative/SUBJ-HUMAN health/NOUN

care/NOUN politician/SUBJ-HUMAN chairs/NOUN flags/OBJ

people/OBJ crowd/OBJ.” The word annotation classes used

are Subjects, Verbs, Objects, Nouns and “Other.” Subjects

which can be humans (SUBJ-HUMAN) are determined

using WordNet synsets.

To obtain the final lingual description of a test video, the
output from the middle level is used first. If there happen
to be no detections, we rely only on the low-level generated
sentences. For semantic verification, we train MMLDA on
a vocabulary of training descriptions and training concept
annotations available using VATIC. Then we compute the
number of topic rank inversions for two ranked lists of the
top P predictions and top C detections from a test video as:

Lkeywords =

〈{

k :

V
∑

j=1

P
∑

m=1

p(wm|βk)δ(wm, j)

}↑〉

Lconcepts =

〈{

k :

corrV
∑

j=1

C
∑

n=1

p(wn|ρk)δ(wn, j)

}↑〉

. (7)

∗nlp.stanford.edu/software/corenlp.shtml

If the number of inversions is less than a threshold (≤√
P + C) then the keywords are semantically verified by

the detected concept list.

Finally, we retrieve nearest neighbor sentences from the

training descriptions by a ranking function. Each sentence s

is ranked as: rs = bh(w1xs1 +w2xs2) where b is a boolean

variable indicating that a sentence must have at least two of

the labeled predictions, which are verified by the class of

words to which the concept models belong. The boolean

variable h indicates the presence of at least one human

subject in the sentence. The variable indicating the total

number of matches divided by the number of words in the

sentence is xs1—this penalizes longer and irrelevant sen-

tences. The sum of the weights of the predicted words from

the topic model in the sentence is xs2—the latent topical

strength is reflected here. Each of xs1 and xs2 is normal-

ized over all matching sentences. The weights for sentence

length penalty and topic strength respectively are w1 and w2

(set to be equal in our implementation).

3. Experimental Setup and Results

3.1. Datasets and Features

TRECVID MED12 dataset: The first dataset we use for

generating lingual descriptions of real life videos is part

of TRECVID Multimedia Event Detection (MED12) [20].

The training set has 25 event categories each containing

about 200 videos of positive and related instances of the

event descriptions. For choosing one topic model over an-

other (Sec. 2.1) we use the positive videos and descriptions

in the 25 training events and predict the words for the pos-

itive videos for the first five events in the Dev-T collection.

The descriptions in the training set consist of short and very

high level descriptions of the corresponding videos ranging

from 2 to 42 words and averaging 10 words with stopwords.

We use 68 concept models on this dataset.

A separate dataset released as part of the Multimedia

Event Recounting (MER) task contains six test videos per

event where the five events are selected from the 25 events

for MED12. These five events are: 1) Cleaning an appli-

ance; 2) Renovating a home; 3) Rock Climbing; 4) Town

hall meeting; 5) Working on a metal crafts project. Since

this MER12 test set cannot be publicly released for obtain-

ing descriptions, we employ in-house annotators (blinded to

our methodology) to write one description for each video.

In-house “YouCook” dataset on cooking videos: We

have also collected a new dataset for this video descrip-

tion task, which we call YouCook. The dataset consists of

88 videos downloaded from YouTube, roughly uniformly

split into six different cooking styles, such as baking and

grilling. The videos all have a third-person viewpoint, take

place in different kitchen environments, and frequently dis-

play dynamic camera changes. The training set consists of
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49 videos with object annotations. The test set consists of

39 videos. The objects for YouCook are in the categories of

utensils (31%), bowls (38%), foods and other; with 10 dif-

ferent object classes for utensils and bowls (we discard the

other classes in this paper because of too few instances).

We use MTurk to obtain multiple human descriptions for

each video. The annotators are shown an example video

with a sample description focusing on the actions and ob-

jects therein. Participants in MTurk are instructed to watch

a cooking video as many times as required to lingually de-

scribe the video in at least three sentences totaling a min-

imum of 15 words. We set our minimum due to the com-

plex nature of the micro-actions in this dataset. The average

number of words per summary is 67, the average number

of words per sentence is 10 with stopwords and the average

number of descriptions per video is eight. The recent data

set [24] is also about cooking but it has a fixed scene and no

object annotations.

Our new YouCook dataset, its annotations and descrip-

tions, and the train/test splits are available at http://www.

cse.buffalo.edu/˜jcorso/r/youcook.

Low Level Features for Topic Model: We use three dif-

ferent types of low level video features: (1) HOG3D [15],

(2) color histograms, and (3) transformed color histograms

(TCH) [28]. HOG3D [15] describes local spatiotempo-

ral gradients. We resize the video frames such that the

largest dimension (height or width) is 160 pixels, and ex-

tract HOG3D features from a dense sampling of frames. We

then use K-means clustering to create a 4000-word code-

book for the MED12 data, and a 1000-word codebook for

the YouCook data, due to sparsity of the dataset follow-

ing [3]. Color histograms are computed using 512 RGB

color bins. Further, they are computed over each frame and

merged across the video. Due to large deviations in the ex-

treme values, we use the histogram between the 15th and

85th percentiles averaged over the entire video. To account

for poor resolution in some videos, we also use the TCH

features [28] with a 4096 dimension codebook.

For a given description task, the event type is assumed

known (specified manually or by some prior event detection

output); we hence learn separate topic models for each event

that vary based on the language vocabulary. However, the

visual feature codebooks are not event specific. When learn-

ing each specific topic model, we use 5-fold cross validation

to select the subset of best performing visual features. For

example, on YouCook, we ultimately use HOG3D and color

histograms, whereas on most of MED12 we use HOG3D

and TCH (selected through cross-validation).

3.2. Quantitative Evaluation

We use the ROUGE [17] tool to evaluate the level of rel-

evant content generated in our system output video descrip-

tions. As used in [34], ROUGE is a standard for compar-

ing text summarization systems that focuses on recall of

relevant information coverage. ROUGE allows a perfect

score of 1.0 in case of a perfect match given only one refer-

ence description. The BLEU [21] scorer is more precision

oriented and is useful for comparing accuracy and fluency

(usually using 4-grams) of the outputs of text translation

systems as used in [2, 16] which is not our end task.

Quantitative evaluation itself is a challenge—in the

UIUC PASCAL sentence dataset [23], five sentences are

used per image. On the other hand we only allow at most

five sentences per video per level – low or middle up to a

maximum of ten. A human, on the other hand, can typically

describe a video in just one sentence.

Table 2 shows the ROUGE-1 recall and precision scores

obtained from the different outputs from our system for the

MER12 test set. In Tables 2 and 3, “Low” is the sentence

output from our low level topic models and NLP tools,

“Middle” is the output from the middle level concepts,

“High” is the semantically verified final output. We use

the top 15 keywords with redundancy particularly retaining

subjects like “man,” “woman” etc. and verb morphologies

(which otherwise stem to the same prefix) as proxies for

ten-word training descriptions. All system descriptions are

sentences, except the baseline [7], which is keywords.

From Table 2, it is clear that lingual descriptions from

both the low and middle levels of our system cover more

relevant information, albeit, at the cost of introducing addi-

tional words. Increasing the number of keywords improves

recall but precision drops dramatically. The drop in preci-

sion for our final output is also due to increased length of the

descriptions. However, the scores remain within the 95%

confidence interval of that from the keywords for “Renovat-

ing home,” “Town hall meeting” and “Metal crafts project”

events. The “Rock climbing” event has very short descrip-

tions as human descriptions and the “Cleaning an appli-

ance” event is a very hard event both for DPM as well as

MMLDA since multiple related concepts indicative of ap-

pliances in context appear in prediction and detection. From

Table 2 we see the efficacy of the short lingual descriptions

from the middle level in terms of precision while the final

output of our system significantly outperforms relevant con-

tent coverage of the lingual descriptions from the other in-

dividual levels with regards to recall.

Table 3 shows ROUGE scores for both 1-gram and 2-

gram comparisons. R1 means ROUGE-1-Recall and P1

means ROUGE-1-Precision. Similarly for R2 and P2. The

length of all system summaries is truncated at 67 words

based on the average human description length. The sen-

tences from the low level are chosen based on the top 15

predictions only. For fair comparison on recall, the number

of keywords ([7] columns in Table 3) is chosen to be 67.

The numbers in bold are significant at 95% confidence over

corresponding columns on the left. R2 is non-zero for key-
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Precision Recall

Events [7] Low Middle High [7] Low Middle High

Cleaning appliance 20.03 17.52 11.69(∗) 10.68(∗) 19.16(−) 32.60 35.76 48.15

Renovating home 6.66 15.29 12.55 9.99 7.31(−) 43.41 30.67 49.52

Rock climbing 24.45 16.21(∗) 24.52 12.61(∗) 44.09 59.22 46.23 65.84

Town hall meeting 17.35 14.41 27.56 13.36 13.80(−) 28.66 45.55 56.44

Metal crafts project 16.73 18.12 31.68 15.63 19.01(−) 41.87 25.87 54.84

Table 2: ROUGE-1 PR scores for the MER12 test set. A (−) for the Recall-[7] column means significantly lower performance

than the next 3 columns. The bold numbers in the last column is significantly better than the previous 3 columns in terms of

recall. The bold numbers in Precision-Middle column are significantly better than those in Precision-[7] column. A (∗) in

columns 3, 4 or 5 means significantly lower than Precision-[7]. A 95% confidence interval is used for significance testing.

[7] High

P2 P1 R2 R1 P2 P1 R2 R1

6E-4 15.47 6E-4 19.02 5.04 24.82 6.81 34.2

Table 3: ROUGE scores for our “YouCook” dataset.

words since some paired keywords are indeed phrases. Our

method thus performs significantly well even when com-

pared against longer descriptions. Our lingual descriptions

built on top of concept labels and just a few keywords sig-

nificantly outperform labeling with even four times as large

a set of keywords. This can also tune language models to

context since creating a sentence out of the predicted nouns

and verbs does not increase recall based on unigrams.

3.3. Qualitative Examples

The first four rows in Fig. 6 show examples from the

MER12 test set. The first one or two italicized sentences

in each row are the result of the middle level output. The

“health care reform” in the second row is a noise phrase

that actually cannot be verified though our middle level but

remains in the description due to our conservative ranking

formula. Next we show one good and one bad example

from our YouCook dataset. The human descriptions in the

last two rows are shown for the purpose of illustrating their

variance and yet their relevancy. The last cooking video has

a low R1 score of 21% due to imprecise predictions and

detections.

4. Conclusion

In this paper we combine the best aspects of top-down

and bottom-up methods of producing lingual descriptions

of videos in-the-wild that exploit the rich semantic space of

both text and visual features. Our contribution is unique

in that the class of concept detectors semantically verify

low level predictions from the bottom up and leverage both

sentence generation and selection that together outperforms

output from the independent modules. Our future work will

emphasize scalability in the semantic space to increase the

generality of plausible lingual descriptions.
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Keywords: refrigerator/OBJ cleans/VERB man/SUBJ-HUMAN clean/VERB blender/OBJ cleaning/VERB woman/SUBJ-HUMAN 
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Human Synopsis: A man talks to a mob of sitting persons who clap at the end of his short speech.  
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drill to renovate a house. 3. A person is using trowel to renovate a house. 4.  man lays out underlay for installing flooring. 5. 

A man lays a plywood floor in time lapsed video. 

Human Synopsis: Time lapse video of people making a concrete porch with sanders, brooms, vacuums and other tools.  

Cleaning an appliance 

Town hall meeting 

Renovating home 
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Cooking video: High ROUGE score 
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