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Abstract— This paper presents a novel approach for

visual scene modeling and classification, investigating the

combined use of text modeling methods and local invariant

features. Our work attempts to elucidate (1) whether

a text-like bag-of-visterms representation (histogram of

quantized local visual features) is suitable for scene (rather

than object) classification, (2) whether some analogies

between discrete scene representations and text documents

exist, and (3) whether unsupervised, latent space models

can be used both as feature extractors for the classification

task and to discover patterns of visual co-occurrence. Using

several data sets, we validate our approach, presenting and

discussing experiments on each of these issues. We first

show, with extensive experiments on binary and multi-class

scene classification tasks using a 9500-image data set, that

the bag-of-visterms representation consistently outperforms

classical scene classification approaches. In other data sets

we show that our approach competes with or outperforms

other recent, more complex, methods. We also show that

Probabilistic Latent Semantic Analysis (PLSA) generates a

compact scene representation, discriminative for accurate

classification, and more robust than the bag-of-visterms

representation when less labeled training data is available.

Finally, through aspect-based image ranking experiments,

we show the ability of PLSA to automatically extract visu-

ally meaningful scene patterns, making such representation

useful for browsing image collections.

Index Terms— Image representation, scene classifica-

tion, object recognition, quantized local descriptors, latent

aspect modeling.

I. INTRODUCTION

Scene classification is an important task in com-

puter vision. It is a difficult problem, interesting in its

own right, but also as a means to provide contextual

information to guide other processes such as object

recognition [39]. From the application viewpoint, scene

classification is relevant in systems for organization of

personal and professional image and video collections.

As such, this problem has been widely explored in the

context of content-based image retrieval [38], [37], [41],

but existing approaches have traditionally been based on

global features extracted on the whole image, on fixed

spatial layouts, or on image segmentation methods whose

results are often difficult to predict and control [5], [38],

[41], [31], [15], [16], [42].

In a different direction, viewpoint invariant local

descriptors (i.e. features computed over automatically

detected local areas) have proven to be useful in long-

standing problems such as viewpoint-independent object

recognition [7], [44], [27], wide baseline matching [21],

[40], [19] and, more recently, in image retrieval [34],

[12]. Thanks to their local character, they provide robust-

ness to image clutter, partial visibility, and occlusion.

Thanks to their invariant nature, changes in viewpoint

can be dealt with in a natural way, while providing

robustness to changes in lighting conditions. All these

properties make the features stable, producing a rela-

tively repeatable representation of a particular object.

In the case of scenes, since we expect the component

parts of a given scene class to have relatively similar

image representations, these features could potentially

be useful to detect and describe similar local scene

areas consistently, thus providing good generalization

properties.

In a sense, these local invariant features show many

commonalities with the role played by words in tra-

ditional document analysis techniques [1], in that they

are local, have a high repeatability between similar

images of similar scenes, and have a relatively high

discriminant power. This analogy has been exploited in

recent works to perform retrieval within videos [34], or

object classification [44], and is studied here in more

detail.

However, scene classification is clearly different from

image retrieval and object categorization. On one hand,

images of a given object are usually characterized by the

presence of a limited set of specific visual parts, tightly

organized into different view-dependent geometrical con-

figurations. On the other hand, a scene is generally

composed of several entities (e.g. car, house, building,

face, wall, door, tree, forest, rocks), organized in often

unpredictable layouts. Hence, the visual content (entities,

layout) of a specific scene class exhibits a large vari-

ability, characterized by the presence of a large number

of different visual descriptors. In view of this, while the

specificity of an object strongly relies on the geometrical

configuration of a relatively limited number of visual

descriptors [34], [12], the specificity of a scene class

greatly rests on the particular patterns of co-occurrence

of a large number of visual descriptors.



In this paper, we propose a novel approach for

scene classification that integrates scale-invariant feature

extraction and latent space modeling methods. The con-

tributions of our paper are the following.

1) An approach for scene classification, based on the

use of bags-of-visterms (BOV) (i.e. quantized invariant

local descriptors) to represent scenes. Even though re-

cent work used quantized local descriptors for object

matching in videos [34], and for object classification

[44], our work demonstrates that this approach is suc-

cessful to classify scenes. We show this by presenting

extensive experiments on two binary and four multi-class

classification tasks (including 3, 5, 6, and 13 classes).

Moreover, we show by a rigorous comparison that our

work consistently outperforms classical scene classifica-

tion approaches [41]. We also show that our approach is

clearly competitive when compared to approaches that

have recently appeared [42] or that have been developed

in parallel to ours [11]. Finally, to provide new insights

about the analogy between the bag-of-visterms represen-

tation and text, we have conducted a study of sparsity, co-

occurrence, and discriminative power of visterms, which

complements and extends the work by [34], in a different

media source.

2) A novel approach for scene classification, based

on the use of probabilistic latent space models [14], [3]

that have proven to be successful in text modeling, to

build scene representations beyond the bag-of-visterms.

Latent space models capture co-occurrence information

between elements in a collection of discrete data that

simpler representations usually cannot, and allow to

address issues related to synonymy (different visterms

may represent the same scene type) and polysemy (the

same visterm may represent different scene types in

different contexts), which can be encountered in scene

classification. We show that Probabilistic Latent Se-

mantic Analysis (PLSA) allows for the extraction of a

compact, discriminant representation for accurate scene

classification, that outperforms global scene representa-

tions, and remains competitive with recently proposed

approaches. This compact representation is especially

robust when labeled training data is scarce, and allows

for a greater re-usability of our framework, as labeling is

a time-consuming task. All of our findings are based on

extensive experiments. Although related, the approach

we propose differs from the ones discussed in [11] for

scene classification and [33] for object clustering. A

detailed discussion of the differences is presented in the

next Section.

3) A novel approach for scene ranking and clustering,

based on the successful use of the PLSA formulation. We

show that PLSA is able to automatically capture mean-

ingful scene aspects from data, where scene similarity is

evident, which makes our PLSA-derived representation

useful to explore the scene structure of an image col-

lection, and thus turning it into a tool with potential in

visualization, organization, browsing, and annotation of

images in large collections.

The rest of the paper is organized as follows. The next

Section discusses related work. Section III presents the

image representations we explore. Section IV compares

properties of these representations with text document

representations. Section V describes the classifier we use.

Section VI presents our experimental setup. Classifica-

tion results are provided and discussed in Section VII.

Section VIII describes the aspect-based image ranking

results. Section IX compares our method with recently

proposed works, on other existing scene classification

data sets. Section X concludes the paper.

II. RELATED WORK

The problem of scene classification using low-level

features has been studied in image and video retrieval

for several years [13], [38], [41], [26], [25], [28],

[37]. Broadly speaking, the existing methods differ by

the definition of the target scene classes, the specific

image representations, and the classification method.

We focus the discussion on the first two points. With

respect to scene definition, most methods have aimed

at classifying images into a small number of seman-

tic scene classes, including indoor/outdoor [38], [36],

city/landscape [41], and sets of natural scenes (e.g.

sunset/forest/mountain) [25]. However, as the number of

categories increases, the issue of overlapping between

scene classes in images arises. To handle this issue,

a continuous organization of scene classes (e.g. from

man-made to natural scenes) has been proposed [26].

Alternatively, the issue of scene class overlap can be

addressed by doing scene annotation (e.g. labeling a

scene as depicting multiple classes). This approach is

followed by Boutell et al. [5], which exploits the output

of one-against-all classifiers to derive multiple class

labels. Although the attributions of multiple labels is

not explored in our work, the framework we present,

in particular the PLSA approach, can be easily extended

to perform multi-label attribution [23].

Regarding global image representations for scene

classification, the work by Vailaya et al. is regarded

as representative of the literature in the field [41].

This approach relies on a combination of distinct low-

level cues for different two-class problems (global edge

features for city/landscape, and local color features

for indoor/outdoor). In the work by Oliva and Tor-

ralba [26], an intermediate classification step into a



set of global image properties (naturalness, openness,

roughness, expansion, and ruggedness) is proposed. Im-

ages are manually labeled with these properties, and

a Discriminant Spectral Template (DST) is estimated

for each property. The DSTs are based on the Discrete

Fourrier Transform (DFT) extracted from the whole

image, or from a four-by-four grid. A new image is

represented by the degree of each of the five properties

based on the corresponding estimated DST, and this

representation is used for the classification into semantic

scene categories (coast, country, forest, mountain, etc.).

Other approaches to scene classification also rely on an

intermediate supervised region classification step [25],

[31], [8]. Based on a Bayesian Network formulation,

Naphade and Huang defined a number of intermediate

regional concepts (e.g. sky, water, rocks) in addition

to the scene classes [25]. The relations between the

regional and the global concepts are specified in the

network structure. Serrano et al. [31] propose a two-stage

classification of indoor/outdoor scenes, where features

of individual image blocks from a spatial grid layout

are first classified into indoor or outdoor. These local

classification outputs are further combined to create the

global scene representation used for the final image

classification. Similarly, Vogel and Schiele recently used

a spatial grid layout in a two-stage framework to perform

scene retrieval and scene classification [42]. The first

stage does classification of image blocks into a set of

regional classes, which extends the set of classes defined

in [25] (this requires block ground-truth labeling). The

second stage performs retrieval or classification based

on the occurrence of such regional concepts in query

images. Alternatively, Lim and Jin [18] successfully

used the soft output of semi-supervised regional concept

detectors in an image indexing and retrieval application.

In a different formulation, Kumar and Herbert used a

conditional random field model to detect and localize

man-made scene structures, doing in this way scene

segmentation and classification [15]. Overall, a large

number of local, regional, and global representations

have been used for scene classification.

The combination of interest point detectors and local

descriptors are increasingly popular for object detection,

recognition, and classification [19]. The literature in the

field is too large to discuss in details here [34], [12],

[9], [7], [27], [35], [44], [17]. For the classification task,

recent works include [12], [9], [7], [27], [10], [44].

Most existing works have targeted a relatively small

number of object classes. Fergus et al. optimized, in

a joint unsupervised model, a scale-invariant localized

appearance model and a spatial distribution model [12].

Fei-Fei et al. proposed a method to learn object classes

from a small number of training examples [9]. The

same authors extended their work to an incremental

learning procedure, and tested it on a large number of

object categories [10]. Dorko and Schmid performed

feature selection to identify local descriptors relevant to

a particular object class, given weakly labeled training

images [7]. Opelt et al. proposed to learn classifiers

from a set of visual features, including local invariant

ones, via boosting [27]. Although our work shares

the use of invariant local descriptors with all these

methods, scenes are different than objects in a number of

ways, as discussed in the Introduction, and pose specific

challenges.

The analogy between invariant local descriptors and

words has also been exploited recently [34], [35], [44].

Sivic and Zisserman proposed to cluster and quantize

local invariant features into visterms, for object matching

in frames of a movie. Such approach allows to reduce

noise sensitivity in matching and to search efficiently

through a given video for frames containing the same

visual content (e.g. an object) using inverted files [34],

[35]. Willamowski et al. extended the use of visterms

creating a system for object matching and classification

based on a bag-of-words representation built from local

invariant features and various classifiers [44]. However,

these methods neither investigated the task of scene

modeling and classification, nor considered latent aspect

models as we do here.

In another research direction, a number of works have

also relied on the definition of visterms and/or on varia-

tions of latent space models to model annotated images,

i.e. to link images with key words [2], [4], [22], [45].

However, all these methods have relied on traditional

regional image features without much viewpoint and/or

illumination invariance. In our work, we characterize a

scene using local descriptors as visterms, taking into

account the problems that exist in the construction of

a visterm vocabulary. We use latent space models not

to annotate images but to address some limitations of

the visterm vocabulary, describing images with a model

that explicitly accounts for the importance of visterm

co-occurrence.

In parallel to our work [29], [24], the joint use of

local invariant descriptors and probabilitic latent aspect

models has been investigated by Sivic et al. for ob-

ject clustering in image collections [33], and by Fei-

Fei and Perona for scene classification [11]. Although

related, these two approaches differ from ours in their

assumptions. Sivic et al. [33] investigated the use of

both Latent Dirichlet Allocation (LDA) [3] and PLSA

for clustering objects in image collections. With the

same image representation as ours, they showed that



latent aspects closely correlate with object categories

from the Caltech object data set, though these aspects

are learned in an unsupervised manner. The number of

aspects was chosen by hand to be equal (or very close) to

the number of object categories, so that images are seen

as mixtures of one ’background’ aspect with one ’object’

aspect. This allows for a direct match between object

categories and aspects, but at the same time implies

a strong coherence of the appearence of objects from

the same category: each category is defined by only

one multinomial distribution over the quantized local

descriptors. Closer to our work, Fei-Fei and Perona [11]

proposed two variations of LDA [3] to model scene cat-

egories. They tested different region detection processes

to build an image representation based on quantized local

descriptors. Contrarily to [33], Fei-Fei and Perona [11]

propose to model a scene category as a mixture of

aspects, and each aspect is defined by a multinomial

distribution over the quantized local descriptors. This is

achieved by the introduction of an observed class node in

their models [11], which explicitly requires each image

example to be labeled during the learning process.

In this paper, we model scene images using a proba-

bilistic latent aspect model and quantized local descrip-

tors, but without assuming a one-to-one correspondence

between categories and aspects as in [33], and without

learning a single distribution over aspects per scene

category as in [11]. Images - not categories - are modeled

as mixtures of aspects in a fully unsupervised way,

without class information. The distribution over aspects

serves as image representation, that is inferred on new

images and used for supervised classification in a second

step. These differences are crucial, as they allow us to

investigate the use of unlabeled data for learning the

aspect-based image representation.

III. IMAGE REPRESENTATION

There are two main elements in an image classifi-

cation system. The first one refers to the computation

of the feature vector representing an image
�
, and the

second one is the classifier, the algorithm that classifies

an input image into one of the predefined category using

the feature vector. In this section, we focus on the image

representation and describe the two models that we use:

the first one is the bag-of-visterms, built from quantized

local descriptors, and the second one is obtained through

the higher-level abstraction of the bag-of-visterms into a

set of aspects using latent space modeling.

A. Bag-of-visterms representation from local descriptors

The construction of the bag-of-visterms (BOV) fea-

ture vector ✁ from an image
�

involves the different

steps illustrated in Fig. 1. In brief, interest points are

automatically detected in the image, then local descrip-

tors are computed over the image regions associated

with these points. All descriptors are quantized into

visterms, and all occurrences of each specific visterm

of the vocabulary in the image are counted to build the

BOV representation of the image. In the following we

describe in more detail each step.

1) Interest point detection: The goal of the interest

point detector is to automatically extract characteristic

points -and more generally regions- from the image,

which are invariant to some geometric and photometric

transformations. This invariance property is interesting,

as it ensures that given an image and its transformed

version, the same image points will be extracted from

both and hence, the same image representation will be

obtained. Several interest point detectors exist in the

literature. They vary mostly by the amount of invariance

they theoretically ensure, the image property they exploit

to achieve invariance, and the type of image structures

they are designed to detect [40], [19], [21]. In this

work, we use the difference of Gaussians (DOG) point

detector [19]. This detector essentially identifies blob-

like regions where a maximum or minimum of intensity

occurs in the image, and it is invariant to translation,

scale, rotation and constant illumination variations. We

chose this detector since it has previously shown to

perform well [20], and also since we found it to be a

good choice in practice for the task at hand, performing

competively compared to other detectors. The DOG

detector is also faster and more compact than similarly

performing detectors. An additional reason to prefer this

detector over fully affine-invariant ones [21], [40], is

also motivated by the fact that an increase of the degree

of invariance may remove information about the local

image content that is valuable for classification. An

empirical evaluation of point detectors for classification

will be presented in Section VII, see also Table IV.

2) Local descriptors: Local descriptors are computed

on the region around each interest point identified by

the local interest point detector. We use the SIFT (Scale

Invariant Feature Transform) feature as local descrip-

tors [19]. Our choice was motivated by findings in the

literature [20], [11], where SIFT was found to work best;

we also confirm this for our own work in Section VII.

This descriptor is based on the grayscale representa-

tion of images. SIFT features are local histograms of

edge directions computed over different parts of the

interest region. These features capture the structure of

the local image regions, which correspond to specific

geometric configurations of edges or to more texture-

like content. In [19], it was shown that the use of 8
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Fig. 1. Representation computation of an image.

orientation directions and a grid of 4x4 parts gives a

good compromise between descriptor size and accuracy

of representation. The size of the feature vector is thus

128. Orientation invariance is achieved by estimating

the dominant orientation of the local image patch using

the orientation histogram of the keypoint region. All

direction computations to obtain the SIFT feature vector

are done with respect to this dominant orientation.

3) Quantization and vocabulary model construction:

When applying the two preceding steps to a given image,

we obtain a set of real-valued local descriptors. In order

to obtain a text-like representation, we quantize each

local descriptor ✂ into one of a discrete set ✄ of visterms☎ according to a nearest neighbor rule:✂✝✆ ✞✠✟☛✡✌☞✍✂✏✎✒✑ ☎✔✓✖✕✘✗ dist ☞✍✂✚✙ ☎✔✓ ✎✜✛ dist ☞✍✂✚✙ ☎✣✢ ✎✤✙ (1)✥✧✦✩★✫✪✭✬ ✙✯✮✯✮✯✮✰✙✲✱✴✳✶✵ , where ✱✴✳ denotes the size of the

visterm set. The set ✄ of all visterms will be called

vocabulary.

The construction of the vocabulary is performed

through clustering. More specifically, we apply the K-

means algorithm to a set of local descriptors extracted

from training images, and the means are kept as visterms.

We used the Euclidean distance in the clustering (and in

Eq. 1) and choose the number of clusters depending on

the desired vocabulary size. The choice of the Euclidean

distance to compare SIFT features is common [19], [21].

Technically, the grouping of similar local descriptors

into a specific visterm can be thought of as being similar

to the stemming preprocessing step of text documents,

which consists of replacing all words by their stem. The

rationale behind stemming is that the meaning of words

is carried by their stem rather than by their morpholog-

ical variations [1]. The same motivation applies to the

quantization of similar descriptors into a single visterm.

Furthermore, in our framework, local descriptors will

be considered as distinct whenever they are mapped to

different visterms, regardless of whether they are close

or not in the SIFT feature space. This also resembles

the text modeling approach which considers that all

information is in the stems.

4) Bag-of-visterms representation: The first repre-

sentation of the image that we will use for classification

is the bag-of-visterms (BOV), which is constructed from

the local descriptors according to:✁✷☞ � ✎✸✑✹☞✍✁ ✓ ☞ � ✎✺✎ ✓✼✻✶✽✺✾✿✾ ❀✷❁ ✙ with ✁ ✓ ☞ � ✎✸✑ n ☞ � ✙ ☎✔✓ ✎✤✙ (2)

where n ☞ � ✙ ☎✔✓ ✎ denotes the number of occurrences of

visterm ☎❂✓ in image
�
. This vector-space representation

of an image contains no information about spatial re-

lationship between visterms. The standard bag-of-words

text representation results in a very similar ’simplifica-

tion’ of the data: even though word ordering contains

a significant amount of information about the original

data, it is completely removed from the final document

representation.

B. Probabilistic Latent Semantic Analysis (PLSA)

The bag-of-words approach has the advantage of pro-

ducing a simple representation, but potentially introduces

the well known synonymy and polysemy ambiguities, as

will be shown in the next Section. Recently, probabilistic

latent space models [14], [3] have been proposed to

capture co-occurrence information between elements in

a collection of discrete data in order to disambiguate

the bag-of-words representation. The analysis of visterm

co-occurrences can thus be considered using similar

approaches, and we use the Probabilistic Latent Semantic

Analysis [14] (PLSA) model in this paper for that pur-

pose. Though PLSA suffers from a non-fully generative

formulation, its tractable likelihood maximization makes

it an interesting alternative to fully generative models [3]

with comparative performance [33].

PLSA is a statistical model that associates a latent

variable ❃✰❄ ★❆❅ ✑ ✪ ❃ ✽ ✙✯✮✯✮✯✮✣✙✲❃ ❀❈❇ ✵ , where ✱❊❉ is the

number of aspects, with each observation (occurrence of

a word in a document). These variables, usually called

aspects, are then used to build a joint probability model

over images and visterms, defined as the mixture

❋ ☞ ☎✣✢ ✙ � ✓ ✎✸✑ ❋ ☞ � ✓ ✎ ❀❈❇● ❄ ✻✶✽ ❋ ☞❍❃■❄❑❏ � ✓ ✎ ❋ ☞ ☎✣✢ ❏✏❃✰❄▲✎✤✮ (3)



PLSA introduces a conditional independence assump-

tion, namely that the occurrence of a visterm ☎✏✢ is

independent of the image
� ✓ it belongs to, given an aspect❃■❄ . The model in Equation 3 is defined by the proba-

bility of an image
❋ ☞ � ✓ ✎ , the conditional probabilities❋ ☞ ☎✣✢ ❏ ❃■❄▲✎ , which represent the probability of observing

the visterm ☎■✢ given the aspect ❃✏❄ , and by the image-

specific conditional multinomial probabilities
❋ ☞❍❃❂❄▼❏ � ✓ ✎ .

The aspect model expresses the conditional probabilities❋ ☞ ☎✣✢ ❏ � ✓ ✎ as a convex combination of the aspect-specific

distributions
❋ ☞ ☎■✢ ❏ ❃✰❄◆✎ .

The parameters of the model are estimated using the

maximum likelihood principle. More precisely, given a

set of training images ❖ , the likelihood of the model

parameters P can be expressed by

◗ ☞❘P✘❏ ❖❙✎❚✑❱❯❲❨❳✰❩
❀❈❁❯✢✤✻✶✽✯❬ ☞ ☎ ✢ ✙ � ✎ n ❭ ❲❨❪ ❫❵❴❜❛ ✙ (4)

where the probability model is given by Eq. 3.

The optimization is conducted using the Expectation-

Maximization (EM) algorithm [14]. This estimation pro-

cedure allows to learn the aspect distributions
❋ ☞ ☎✏✢ ❏ ❃■❄▲✎ .

These image independent parameters can then be used to

infer the aspect mixture parameters
❋ ☞❍❃✏❄❵❏ � ✎ of any image�

given its BOV representation ✁✶☞ � ✎ . Consequently, the

second representation of the image that we will use is

defined by ❝
☞ � ✎✒✑✹☞ ❋ ☞❍❃■❄❵❏ � ✎✺✎❜❄ ✻✶✽✺✾✿✾✿✾ ❀❈❇ ✮ (5)

IV. ANALOGY WITH TEXT

In our framework, we consider the visterms like

text terms and model them with techniques that are

commonly applied to text. In this section, we compare

properties of terms in documents with those of visterms

within images. We first discuss the sparsity of the

document representation, an important characteristic of

text documents. We then consider issues related to the

semantic of terms, namely synonymy and polysemy.

A. Representation sparsity

To investigate the analogy with text representation,

we compare the behavior between the BOV representa-

tion of an image data set and the bag-of-words represen-

tation of a standard text categorization data set.

The REUTERS-215781 data set contains 12900 doc-

uments. The standard word stopping and stemming

process produces a vocabulary of 17900 words. As

previously observed in natural language statistics, the

1www.daviddlewis.com/resources/testcollections/reuters21578.
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Fig. 2. Top: relative frequency distribution of the words extracted

from REUTERS-21578, first 1000 words. Bottom: relative frequency

distribution of the visterms in the city-landscape data set D1.

frequency of each word across the text data set follows

the Zipf’s law:
❋✶❞ ✑✫❡❣❢✠❤ , where ❡ is the keyword rank

according to its frequency and ✐ is close to unity (see

Fig. 2 (top)). This distribution results in an average

number of 45 non-zero elements per document, which

corresponds to an average sparseness of 0.25%. Out of

the 17900 words in the dictionary, 35% occur once in the

data set and 14% occur twice. Only 33% of the words

appear in more than five documents.

In our case, we applied the K-means algorithm on

the D1 image data set described in Section VI-B, which

contains 6680 images of city and landscape, and gener-

ated the BOV representation for each image document of

this data set for a vocabulary ❥ ✽❧❦✺❦✺❦ of size ✱ ❫ ✑ ✬✯♠❂♠❂♠
.

Since the visterm vocabulary is created by the K-means

clustering of SIFT descriptors, the resulting vocabulary

shows different properties than in text. As shown in

Fig. 2 (right), the frequency distribution of visterms

differs from the Zipf’s law behavior usually observed

in text. The K-means algorithm identifies regions in the

feature space containing clusters of points, which pre-

vents the low frequency effect observed in text data (see

Fig. 2 bottom). The visterm with the lowest frequency

appears in 117 images of the full data set (0.017 relative

frequency). We also observed an average of 175 non-

zero elements per image, which corresponds to a data

sparseness of 17.5%.

The construction of the visual vocabulary by clus-

tering intrinsically leads to a ”flatter” distribution for

visterms than for words. On one hand, this difference

can be considered as an advantage, as the data sparse-

ness observed in the text bag-of-words representation is

indeed one of the main problems encountered in text

retrieval and categorization. Similar documents might

have very different bag-of-words representations because
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Fig. 3. Bag-of-visterms representation. Top: average of the BOV

representation with respect to city (blue) and landscape (red) com-

puted over the first split of data set D1. Bottom: landscape average

(blue) compared with individual samples (red and green).

specific words in the vocabulary appear separately in

their description. On the other hand, a flatter distribution

of the features might imply that, on average, visterms in

the visual vocabulary provide less discriminant informa-

tion. In other words, the semantic content captured by

individual visterms is not as specific as the one of words.

We address this issue in the next subsection.

B. Polysemy and synonymy with visterms

To study the “semantic” nature of the visterms, we

first considered the class conditional average of the BOV

representation. Fig. 3 (top) shows the average of visterms

for the city and landscape scene categories, computed

over the first split of data set D1 (see Section VI-

B for details). We display the results when using the

vocabulary of 100 visterms, ❥ ✽❧❦✺❦ , defined in Section VII-

A. The behavior is similar for other vocabulary sizes.

We first notice that there is a large majority of

terms that appear in both classes: all the terms are

substantially present in the city class; only a few of them

do not appear in the landscape class. This contrasts with

text documents, in which words are in general more

specifically tied to a given category. Furthermore, we

can also observe that the major peaks in the two class

averages coincide in general. Thus, when using the BOV

representation, the discriminant information with respect

to the classification task seems to lie in the difference

of average word occurrences. It is worth noticing that

this is not due to a bias in the average in visterm

numbers, since the difference in the average number

of visterms per class is only in the order of 4% (city:

268/ landscape: 259). Additionally, these average curves

hide the fact that there exists a large variability between

samples, as illustrated in Fig. 3 (bottom), where two

Fig. 4. Samples from three randomly selected visterms from a

vocabulary of 1000 visterms.

random examples are plotted along with the average of

the landscape class. Overall, all the above considerations

indicate that visterms, taken in isolation, are not so

class-specific, which in some sense advocates against

feature selection only based on the analysis of the total

occurrence of individual features (e.g. [7]), and reflects

the fact that the semantic content carried by visterms,

if any, is strongly subject to polysemy and synonymy

issues.

To illustrate that visterms are subject to polysemy -a

single visterm may represent different scene content- and

synonymy -several visterms may characterize the same

image content-, we show samples from three different

visterms obtained when building the vocabulary ❥ ✽❧❦✺❦✺❦
(see Section VII-A for details) in Fig. 4. As can be

seen, the top visterm (first two rows in Fig. 4) represents

mostly eyes. However, windows and publicity patches

get also indexed by this visterm, which provides an

indication of the polysemic nature of that visterm, which

means here that although this visterm will mostly occur

on faces, it can also occur in city environments. The

two middle rows in Fig. 4 present samples from another

visterm. Clearly, this visterm also represents eyes, which

makes it a synonym of the first displayed visterm.

Finally, the samples of a third visterm (last two rows of

Fig. 4) indicate that this visterm captures a certain fine

grain texture that has different origins (rock, trees, road

or wall texture...), which illustrates that not all visterms

have a clear semantic interpretation.

To conclude, it is interesting to notice that one factor

that can affect the polysemy and synonymy issue is

the vocabulary size: the polysemy of visterms might

be more important when using a small vocabulary size

than when using a large vocabulary. Conversely, with a

large vocabulary, there are more chances to find many

synonyms than with a small one. Since PLSA can in

theory handle both synonymy and polysemy issues, it

could in principle lead to a more stable representation

for different vocabulary sizes.



V. SCENE CLASSIFICATION

To classify an input image
�

represented either by

the BOV vectors ✁ , the aspect parameters

❝
, or any of

the feature vector of the baseline approach (see next

section), we employed Support Vector Machines (SVMs)

[6]. SVMs have proven to be successful in solving

machine learning problems in computer vision and text

categorization applications, especially those involving

large dimensional input spaces. In the current work,

we used Gaussian kernel SVMs, whose bandwidth was

chosen based on a 5-fold cross-validation procedure.

Standard SVMs are binary classifiers, which learn a

decision function ♥❚☞▲♦♣✎ through margin optimization [6],

such that ♥❚☞▲♦✖✎ is large (and positive) when the input♦ belongs to the target class, and negative otherwise.

For multi-class classification, we adopt a one-against-

all approach [43]. Given a q -class problem, we train q
SVMs, where each SVM learns to differentiate images

of one class from images of all other classes. In the

testing phase, each test image is assigned to the class of

the SVM that delivers the highest output of its decision

function.

VI. EXPERIMENTAL SETUP

In this section, we describe the classification tasks we

considered, the origin and composition of our data sets,

the classification protocol we followed, and the baseline

methods we used for comparison purposes.

A. Classification tasks

Four classification tasks, ranging from binary to five-

class classification, have been considered to evaluate the

performance of the proposed approaches. We first con-

sidered two standard, unambiguous binary classification

tasks: indoor vs. outdoor, and landscape vs. city. These

two tasks allow a first evaluation of the classification

performance, and a fair comparison with approaches that

have been proposed for the same tasks [41]. For a more

detailed analysis of the performance, we then merged

the two binary classification tasks to obtain a three-

class problem (indoor vs. city vs. landscape). We also

subdivided the landscape class into mountain and forest,

and the city class into street view and panoramic view

to obtain a five-class data set.

In Section IX we present additional results on two

scene classification data sets, with 13 and 6 scene

categories respectively, that have been proposed in recent

literature [11], [42].

B. Datasets

Five data sets were created four our experiments:

D1: this data set of 6680 images contains a subset of

the Corel data set [41], and is composed of 2505 city

and 4175 landscape images of 384 r 256 pixels. D2:

this set is composed of 2777 indoor images retrieved

from the Internet. The size of these images is typically

384 r 256 pixels. Original images with larger dimensions

were resized using bilinear interpolation. The image size

in the data set was kept approximately constant to avoid

a potential bias in the BOV representation, since it is

known that the number of detected interest points is

highly dependent on the image resolution. D3: this data

set is constituted by 3805 images from several sources:

1002 building images (ZuBud) [32], 144 people and

outdoor images [27], 435 indoor human faces [44], 490

indoor images (Corel) [41], 1516 city/landscape overlap

images (Corel) [41], and 267 Internet photographic im-

ages. D4: this data set is composed of all images from the

data sets D1 and D2. The total number of images in this

data set is 9457. D4v: this is a subset of D4 composed

of 3805 randomly chosen images. D5: this is a five-class

data set. It comprises all images from the data set D2,

and images from D1 whose content corresponds to the

selected classes. From the 6680 images of D1 we kept :

590 mountain images, 492 forest images, 1957 city street

images (close-up of buildings), and 548 city panoramic

images (middle to far views from buildings). The data

sets contains a total of 6364 images.

In the experiments, We use the data set D1 for the

city vs. landscape scene classification task, and D4 for

indoor vs. outdoor scene classification, D4 in the three-

class case, and D5 in the five-class problem.

Alternative vocabularies were constructed from either

D3 or D4v, allowing us to study the influence of the data

on the vocabulary model, and its impact on classification

performance. With 3805 images, we obtained in both

cases approximately one million descriptors to train the

vocabulary models. These data sets are available at:

http://carter.idiap.ch/data sets.html.

C. Protocol

The protocol for each of the classification exper-

iments was as follows. The full data set of a given

experiment was divided into 10 parts, thus defining 10

different splits of the full data set. One split corresponds

to keeping one part of the data for testing, while using

the other nine parts for training (hence the amount of

training data is 90% of the full data set). In this way,

we obtain 10 different classification results. Reported

values for all experiments correspond to the average error



over all splits, and standard deviations of the errors are

provided in parentheses after the mean value.

Additional experiments were conducted with less

amount of training data, to test the robustness of the

image representation. In that case, for each of the splits,

images were chosen randomly from the training part

of the split to create a reduced training set. Care was

taken to keep the same class proportions in the reduced

set as in the original set, and to use the same reduced

training set in those experiments involving two different

representation models. The test data of each split was

left unchanged.

D. Baseline method

As a baseline method, we use the image representa-

tions proposed by Vailaya et al. [41]. We selected this

approach, as it reports some of the best results from

all scene classification approaches for data sets with

landscape, city and indoor images on a significantly large

data set. Thus, it can be regarded as a good representative

of the state-of-the-art.

Two different representations are used for each binary

classification tasks: color features are used to classify

images as indoor or outdoor, and edge features are used

to classify outdoor images as city or landscape. Color

features are based on the LUV first- and second-order

moments computed over a 10 r 10 spatial grid of the

image, resulting in a 600-dimensional feature space.

Edge features are based on edge coherence histograms

calculated on the whole image, and are computed by

extracting edges in only those neighborhoods exhibit-

ing some edge direction coherence. Directions are then

discretized into 72 directions, and their histogram is

computed. An extra non-edge pixels bin is added to the

histogram, leading to a feature space of 73 dimensions.

In the three-class problem Vailaya et al. apply both

methods in a hierarchical way [41]. Images are first

classified as indoor or outdoor given their color represen-

tation. All correctly classified outdoor images are further

classified as either city or landscape, according to their

edge direction histogram representation.

VII. CLASSIFICATION RESULTS

In this section, we present the classification results

of our approach, first using the BOV representation,

then using the aspect representation, and compare both

of them with the baseline method. The performance of

the methods under different conditions (vocabulary size,

number of latent aspects, amount of training data) are

presented and discussed.

Method indoor/outdoor city/landscape

baseline 10.4 (0.8) 8.3 (1.5)

BOV s❣t❘✉❜✉ 8.5 (1.0) 5.5 (0.8)

BOV s✭✈▼✉❜✉ 7.4 (0.8) 5.2 (1.1)

BOV s✭✇▼✉❜✉ 7.6 (0.9) 5.0 (0.8)

BOV s✧t❘✉▼✉❜✉ 7.6 (1.0) 5.3 (1.1)

BOV s②①t❘✉❜✉ 8.1 (0.5) 5.5 (0.9)

BOV s②①✈▼✉❜✉ 7.6 (0.9) 5.1 (1.2)

BOV s②①✇▼✉❜✉ 7.3 (0.8) 5.1 (0.7)

BOV s③①t❘✉▼✉❜✉ 7.2 (1.0) 5.4 (0.9)

TABLE I

CLASSIFICATION ERROR FOR THE BASELINE MODEL AND THE

BOV REPRESENTATION, FOR 8 VOCABULARIES. STANDARD

DEVIATIONS ARE SHOWN IN PARENTHESES.

A. Scene classification with bag-of-visterms

Binary classification

To analyze the effect of the size of the vocabulary

employed to construct the BOV representation, we con-

sidered four vocabularies of 100, 300, 600, and 1000

visterms, denoted by ❥ ✽❧❦✺❦ , ❥✠④ ❦✺❦ , ❥⑥⑤ ❦✺❦ , and ❥ ✽❧❦✺❦✺❦ , re-

spectively, and constructed from D3 as described in

Section III. Additionally, four vocabularies ❥❊⑦✽❧❦✺❦ , ❥⑧⑦④ ❦✺❦ ,❥⑧⑦⑤ ❦✺❦ , and ❥⑨⑦✽❧❦✺❦✺❦ were constructed from D4v.

Table I provides the classification error for the two

binary classification tasks. We can observe that the BOV

approach consistently outperforms the baseline methods.

This is confirmed in all cases by a paired T-test, for❬ ✑ ♠ ✮ ♠✚⑩ . It is important to remind that contrarily to the

baseline methods, the BOV representation uses the same

features for both tasks and no color information.

Regarding vocabulary size, overall we can see that

for vocabularies of 300 visterms or more the classi-

fication errors are equivalent. This contrasts with the

work in [44], where the ’flattening’ of the classification

performance was observed only for vocabularies of 1000

visterms or more. A possible explanation may come from

the difference in task (object classification) and in the use

of the Harris-Affine point detector [21], known to be less

stable than DOG [20].

The comparison of the rows 2-5 and 6-9 in Table I

shows that using a vocabulary constructed from a data

set different than the one used for the classification

experiments, D3 and D4v respectively, does not affect

the results (error rates differences are within random

fluctuation values). This result confirms the observations

made in [44], and suggests that it might be feasible to

build a generic visterm vocabulary that can be used for

different tasks. Based on these results, we use the vocab-

ularies built from D3 in all the remaining experiments.



Method indoor/city/landscape

baseline 15.9 (1.0)

BOV s✧t❘✉▼✉ 12.3 (0.9)

BOV s❶✈▼✉▼✉ 11.6 (1.0)

BOV s❶✇▼✉▼✉ 11.5 (0.9)

BOV s✧t❘✉▼✉❜✉ 11.1 (0.8)

BOV s t❘✉▼✉❜✉ hier. 11.1 (1.1)

TABLE II

THREE-CLASS CLASSIFICATION ERROR FOR BASELINE AND BOV

MODELS. THE BASELINE MODEL SYSTEM IS HIERARCHICAL.

Total class. error 11.1 (0.8)

Classification (%) Class. # of

Gr. Truth indoor city land. Error (%) images

indoor 89.7 9.0 1.3 10.3 2777

city 14.5 74.8 10.7 25.2 2505

landscape 1.2 2.0 96.8 3.1 4175

TABLE III

CONFUSION MATRIX FOR THE THREE-CLASS CLASSIFICATION

PROBLEM, USING VOCABULARY ❷❣❸❺❹✍❹✍❹ .

Three-class classification

Table II shows the results of the BOV approach for the

three-class classification problem. Classification results

were obtained using both a multi-class SVM and two

binary SVMs in the hierarchical case.

First, we can see that once again our system outper-

forms the approach proposed in [41] with statistically

significant differences. This is confirmed in all cases by

a paired T-test, with ❬ ✑ ♠ ✮ ♠✚⑩ . Secondly, we observe

the stability of results with vocabularies of 300 or more

visterms, the vocabulary of 1000 visterms giving slightly

better performance. Based on these results, we assume❥ ✽❧❦✺❦✺❦ to be an adequate choice and use ❥ ✽❧❦✺❦✺❦ for all

experiments in the rest of this paper. Finally, we can

observe that the classification strategy, hierarchical or

multi-class SVM, has little impact on the results for this

task.

A closer analysis of the results can be done by

looking at the confusion matrix, shown in Table III. First,

we can see that landscape images are well classified.

Secondly, we observe that there exists some confusion

between the indoor and city classes. This can be ex-

plained by the fact that both classes share not only simi-

lar local image structures (which will be reflected in the

same visterms appearing in both cases), but also similar

visterm distributions, due to the resemblance between

some more general patterns (e.g. doors or windows). The

two images on the top in Fig. 5 illustrate some typical

errors made in this case, when city images contain a

majority of geometric shapes and little texture. In the

third place, the confusion matrix also shows that city

images are also misclassified as landscape. The main

explanation is that city images often contain natural

elements (vegetation like trees or flowers, or natural

textures), and specific structures which produce many

visterms. The images to the bottom in Fig. 5 illustrate

typical mistakes in this case.

Fig. 5. Typical classification errors of city images in the three-class

problem. Top: city images classified as indoor. Bottom: city images

classified as landscape.

We now explore different combinations of point de-

tectors/descriptors. We purposely choose to do this study

on the 3-class problem since we believe that a multi-

class classification task is a more representative problem

for this data, but at the same time it is not obscured by

many of the additional issues of a many-class task. Four

point detection methods: DOG [19], multi-scale Harris

affine (MHA) [21], multi-scale Harris (MH) [21], and a

fixed 15x20 grid (GRID), and three descriptor methods:

SIFT [19], complex filters (CF) [30], and a
✬❂✬ r ✬❂✬

pixel

sample of the area defined by the detector (PATCH) were

used in paired combinations. The results are shown in

Table IV.

SIFT CF PATCH av. # of points

DOG 11.1 (0.8) 22.5 (1.1) 22.1 (0.9) 271

MHA 11.9 (1.1) 18.4 (1.1) 20.6 (1.3) 424

MH 11.8 (1.0) 19.3 (0.9) - 580

GRID 19.9 (0.9) - 19.8 (0.8) 300

TABLE IV

COMPARISON OF COMBINATIONS OF DETECTOR/DESCRIPTORS

FOR INDOOR/CITY/LANDSCAPE CLASSIFICATION. THE AVERAGE

NUMBER OF DETECTED POINTS PER IMAGE IS ALSO SHOWN.

In Table IV, we can see that the combination

DOG+SIFT is the best performing one, this is confirmed



Total class. error rate: 20.8 (2.1) (Baseline: 30.1 (1.1))

m. f. i. c.-p. c.-s. error (%) # of images

mount. 85.8 8.6 2.5 0.5 2.6 14.2 590

forest 8.9 80.3 1.6 2.4 6.7 19.7 492

indoor 0.4 0 91.1 0.4 8.1 8.9 2777

city-pan. 3.5 1.8 8.0 46.9 39.8 53.1 549

city-str. 2.0 2.2 20.8 6.0 68.9 31.1 1957

TABLE V

CLASSIFICATION RATE AND CONFUSION MATRIX FOR THE

FIVE-CLASS, USING BOV AND VOCABULARY ❷❣❸❺❹✍❹✍❹ .

by a paired T-test, with ❬ ✑ ♠ ✮ ♠✚⑩ . However, MHA+SIFT

and MH+SIFT produce similar results. This confirms

SIFT as the best performing descriptor, as pointed out in

the literature, although for other tasks [11], [20]. As for

detectors, it is important to note that, although the multi-

scale Harris and multi-scale Harris affine detectors [21]

allow for similar performance, DOG is computationally

more efficient and more compact (less feature points per

image). Although Table IV shows DOG+SIFT to be the

best choice for this particular task, it is possible that

other combinations may perform better for other tasks.

Based on these results, however, we have confirmed in

practice that DOG+SIFT constitutes a reasonable choice.

Five-class classification

Table V presents the overall error rate and the confusion

matrix obtained with the BOV approach in the five-class

experiment, along with the baseline overall error rate.

The latter number was obtained using the edge coherence

histogram global feature [41].

The BOV representation performs much better than

the global features in this task, and the results show that

we can apply the BOV approach to a larger number of

scene classes and obtain good results.

Analyzing the confusion matrix, we first observe that

some mistakes are made between the forest and mountain

classes, reflecting their sharing of similar textures and

the presence of forest in some mountain images. A

second observation is that city-panorama images are

often confused with city-street images. This result is not

surprising because of the somewhat ambiguous definition

of the classes (see Fig. 6), which was already observed

during the human annotation process. The errors can

be further explained by the scale-invariant nature of

the interest point detector, which makes no distinction

between some far-field street views in the city-panoramic

images, and middle-view similar structures in the city-

street images. Another explanation is the unbalanced data

set, with almost four times as many city-street images

than panoramic ones. Finally, we observe that the main

source of confusion lays between the indoor images

and the city-street images, for similar reasons as those

described in the three-class task.

Fig. 6. Illustration of the five classes, with 8 randomly selected

examples per class. From left to right: mountain, forest, indoor, city-

panorama, city-street. All images have been cropped for display.

B. Scene classification with PLSA

In PLSA, we use the probability distribution
❋ ☞❍❃✔❄❜❏ � ✓ ✎

of latent aspects given each specific document as a✱ ❉ dimensional feature vector

❝
☞ � ✎ (Eq. 5). Given that

PLSA is an unsupervised approach, where no reference

to the class label is used during the aspect model learn-

ing, we may wonder how much discriminant information

remains in the aspect representation. To answer this

question, we compare the classification errors obtained

with the PLSA and BOV representations. Furthermore,

to test the influence of the training data on the aspect

model, we conducted two experiments which only differ

in the data used to estimate the
❋ ☞ ☎ ✢ ❏ ❃■❄◆✎ multinomial

probabilities. More precisely, we defined two cases:

PLSA-I: for each data set split, the training data part

(that is used to train the SVM classifier, cf Section VI-C)

was also used to learn the aspect models.

PLSA-O: the aspect models are trained only once on

the auxiliary data set D3, which is disjoint from the sets

used for SVM learning.

As the data set D3 comprises city, outdoor, and city-

landscape overlap images, PLSA learned on this set

should capture valid latent aspects for all the classi-

fication tasks simultaneously. Such a scheme presents

the clear advantage of constructing a unique ✱✘❉ -

dimensional representation for each image that can be

tested on all classification tasks.



Method A ind./out. city/land. ind./city/land.

BOV 7.6 (1.0) 5.3 (1.1) 11.1 (0.8)

PLSA-I 20 9.5 (1.0) 5.5 (0.9) 12.6 (0.8)

PLSA-I 60 8.3 (0.8) 4.7 (0.9) 11.2 (1.3)

PLSA-O 20 8.9 (1.4) 5.6 (0.9) 12.3 (1.2)

PLSA-O 60 7.8 (1.2) 4.9 (0.9) 11.9 (1.0)

TABLE VI

COMPARISON OF BOV, PLSA-I AND PLSA-O STRATEGIES ON

THE TWO- AND THREE-CLASS CLASSIFICATION TASKS, USING 20

AND 60 ASPECTS, AND VOCABULARY ❷ ❸❺❹✍❹✍❹ .❻❽❼
20 40 60 80 100

Error 5.6 (0.9) 4.9 (0.8) 4.9 (0.9) 4.8 (1.0) 5.0 (0.9)

TABLE VII

CLASSIFICATION RESULTS FOR THE CITY/LANDSCAPE TASK,

USING DIFFERENT NUMBER OF ASPECTS FOR PLSA-O.

Classification results: two and three-class cases

Table VI shows the classification performance of the

latent space representation for 20 and 60 aspects for the

two strategies PLSA-I and PLSA-O, using ❥ ✽❧❦✺❦✺❦ . The

corresponding results for BOV with the same vocabulary

are re-displayed for comparison purposes.

Discussing first the PLSA training data issue, we

observe that performance of both strategies is compa-

rable for the city/landscape scene classification, being

PLSA-O better than PLSA-I for indoor/outdoor (paired

T-test, with ❬ ✑ ♠ ✮ ♠✚⑩ ). This might suggest that aspect

models learned on the same set used for SVM training

may cause some over-fitting in the indoor/outdoor case.

Since using PLSA-O allows to learn one single model

for all tasks, we chose this approach for the rest of

the experiments. Of course, the data set from which the

aspects are learned must be sufficiently representative of

the collection to be classified in order to obtain a valid

aspect-based representation.

Comparing the 60-aspect PLSA-O model with the

BOV approach, we observe that their performance is sim-

ilar, and that PLSA performs better in the city/landscape

case (although not significantly), while the opposite

holds for the three-class task. Learning visual co-

occurrences with 60 aspects in PLSA allows for dimen-

sionality reduction by a factor of 17 while keeping the

discriminant information contained in the original BOV

representation. Note that PLSA with 60 aspects performs

better than the BOV representation with the vocabulary❥ ✽❧❦✺❦ in all cases (see Tables I and II).

We also conducted experiments to study the impor-

tance of the number of aspects on the classification

performance. Table VII displays the evolution of the

error with the number of aspects for the city/landscape

classification task. The results show that the performance

is relatively independent of the number of aspects in the

range [40,100]. For the rest of this paper we use a PLSA

model with ✱❊❉❾✑✩❿ ♠ aspects.

For comparison purposes, we present in Table VIII

the confusion matrix in the three-class classification task.

The errors are similar to those obtained with the BOV

(Table III). The only noticeable difference is that more

indoor images were misclassified in the city class.

Decreasing the amount of training data

Since PLSA captures co-occurrence information from

the data it is learned from, it can provide a more stable

image representation. We expect this to help in the case

of lack of sufficient labeled training data for the classifier.

Table IX compares classification errors for the BOV and

the PLSA representations for the different tasks when

using less data to train the SVMs. The amount of training

data is given both in proportion to the full data set size,

and as the total number of training images. The test sets

remain identical in all cases.

Several comments can be made from this table. A

general one is that for all methods, the larger the training

set, the better the results, showing the need for building

large and representative data sets for training purposes.

Qualitatively, with the PLSA and BOV approaches, per-

formance degrades smoothly initially, and sharply when

using 1% of training data. With the baseline, on the other

hand, performance degrades more steadily.

Comparing methods, we first notice that PLSA with

10% of training data outperforms the baseline approach

with full training set (i.e. 90%), this is confirmed in all

cases by a Paired T-test, with ❬ ✑ ♠ ✮ ♠✚⑩ . BOV with 10%

of training still outperforms the baseline approach with

full training set (i.e. 90%) for indoor/outdoor (paired T-

test with ❬ ✑ ♠ ✮ ♠✚⑩ ). More generally, we observe that both

PLSA and BOV perform better than the baseline for -

almost- all cases of reduced training set. An exception is

the city/landscape classification case, where the baseline

Total class. error 11.9(1.0)

indoor city land. class error(%) # images

indoor 86.6 11.8 1.6 13.4 2777

city 14.8 75.4 9.8 24.5 2505

land. 1.3 1.9 96.8 3.1 4175

TABLE VIII

CLASSIFICATION ERROR AND CONFUSION MATRIX FOR THE

THREE-CLASS PROBLEM USING PLSA, WITH ❷✧❸❺❹✍❹✍❹ AND 60

ASPECTS.



Method Amount of training data

90% 10% 5% 2.5% 1%

Indoor/Outdoor

# images 8511 945 472 236 90

PLSA 7.8(1.2) 9.1(1.3) 10.0(1.2) 11.4(1.1) 13.9(1.0)

BOV 7.6(1.0) 9.7(1.4) 10.4(0.9) 12.2(1.0) 14.3(2.4)

Baseline 10.4(0.8) 15.9(0.4) 19.0(1.4) 23.0(1.9) 26.0(1.9)

City/Landscape

# images 6012 668 334 167 67

PLSA 4.9(0.9) 5.8(0.9) 6.6(0.8) 8.1(0.9) 17.1(1.2)

BOV 5.3(1.1) 7.4(0.9) 8.6(1.0) 12.4(0.9) 30.8(1.1)

Baseline 8.3(1.5) 9.5(0.8) 10.0(1.1) 11.5(0.9) 13.9(1.3)

Indoor/City/Landscape

# images 8511 945 472 236 90

PLSA 11.9(1.0) 14.6(1.1) 15.1(1.4) 16.7(1.8) 22.5(4.5)

BOV 11.1(0.8) 15.4(1.1) 16.6(1.3) 20.7(1.3) 31.7(3.4)

Baseline 15.9(1.0) 19.7(1.4) 24.1(1.4) 29.0(1.6) 33.9(2.1)

TABLE IX

CLASSIFICATION PERFORMANCE FOR PLSA-O WITH 60

ASPECTS, BOV WITH VOCABULARY ❷ ❸❺❹✍❹✍❹ , AND BASELINE

APPROACHES, WHEN USING A SVM CLASSIFIER TRAINED WITH

PROGRESSIVELY LESS DATA. THE AMOUNT OF TRAINING DATA IS

GIVEN AS PERCENTAGE OF THE FULL DATA SET, AND THEN AS

THE ACTUAL NUMBER OF TRAINING IMAGES.

is better than the BOV when using 2.5% and 1% training

data, and better than the PLSA model for 1%. This can

be explained by the fact that edge orientation features

are particularly well adapted for this task, and that with

only 25 city and 42 landscape images for training, global

features are competitive.

Furthermore, we notice that PLSA deteriorates less as

the training set is reduced, producing better results than

BOV for all reduced training set experiments (although

not always significantly better).

Previous work on probabilistic latent space modeling

has reported similar behavior for text data [3]. PLSA’s

better performance in this case is likely due to its

ability to capture aspects that contain general information

about visual co-occurrence. Thus, while the lack of data

impairs the simple BOV representation in covering the

space of documents belonging to a specific scene class

(eg. due to the synonymy and polysemy issues) the

PLSA-based representation is less affected.

Classification results: five-class case

Table X reports the overall error rate and the confusion

matrix obtained with PLSA-O in the five-class problem,

and with the full training set. As can be seen, PLSA

performs slightly worse than BOV, but still better than

the baseline. By comparing the confusion matrix with

that of the BOV case (Table V), we can see that,

while the forest, mountain, and indoor classification

Total error rate (BOV: 20.8 (2.1), Baseline: 30.1 (1.1))

m. f. i. c.-p. c.-s. error (%)

mountain 85.5 12.2 0.8 0.3 1.2 14.5

forest 12.8 78.3 0.8 0.4 7.7 21.7

indoor 0.3 0.1 88.9 0.2 10.5 11.1

city-pan. 3.6 4.9 8.8 12.6 70.1 87.4

city-str. 1.6 1.4 20.4 1.7 74.9 25.1

TABLE X

CLASSIFICATION ERROR AND CONFUSION MATRIX FOR THE

FIVE-CLASS PROBLEM USING PLSA-O WITH 60 ASPECTS.

Perc. data 90% 10% 5% 2.5% 1%

# images 5727 636 318 159 64

PLSA 23.1(1.2) 27.9(2.2) 29.7(2.0) 33.1(2.5) 38.5(2.6)

BOV 20.8(2.1) 25.5(1.7) 28.3(1.3) 30.8(1.6) 37.2(3.4)

Baseline 30.1(1.1) 36.8(1.4) 39.3(1.4) 42.8(1.6) 49.9(3)

TABLE XI

COMPARISON BETWEEN BOV, PLSA-O, AND BASELINE, FOR

SVM TRAINED WITH REDUCED DATA ON THE 5-CLASS PROBLEM.

behavior remains almost unchanged, the results for the

two city classes were significantly altered. The main

explanation comes from the rather loose definition of the

city-panorama class, which contains many more images

from landmark buildings in the middle distance than

’cityscape’ images. Due to this fact, combined with the

visterm scale invariance, the PLSA modeling generates

a representation for the city-panorama images which

clearly contains building-related aspects, and introduces

confusion with the city-street class. In this case, the ab-

straction level of PLSA loses some of the discriminative

elements of the BOV. Due to the unbalanced data set,

the city-street class beneficiates from this confusion, as

shown by its reduced misclassification rate with respect

to the city-panorama class. Furthermore, aspects are

learned on the D3 data set, which contains a relatively

small amount of city-panorama images compared to city-

street images. This imbalance can explain the ambiguous

aspect representation of the city-panorama class and the

resulting poor classification performance.

Table XI presents the evolution of the classification

error when less labeled training data is available. It

shows that the loss of discriminative power between

the city-panorama and city-street classes continue to

affect the PLSA representation, and that, in this task,

the BOV approach outperforms the PLSA model for

reduced training data. Both methods, however, perform

better than the global approach.

The five-class experiment raises a more general issue.

As we introduce more classes or labels, the possibility

of defining clear-cut scenes and of finding images that

belong to only one class diminishes, while the number



of images whose content belongs to several concepts

increases. With more classes, the task could be bet-

ter formulated as an annotation problem rather than a

classification one. PLSA-based approaches have shown

promising performance for this task [23].

In the case of less confusing class definitions, the

PLSA approach can be valid for other multi-class prob-

lems. We have recently applied our approach on a

seven-class object data set with good performance (88%

classification rate), and obtaining similar conclusions

with respect to the properties of our approach [24].

We have performed additional experiments with more

classes on Section IX where we investigate the applica-

tion of both BOV and PLSA scene modeling to problems

with more classes (13 and 6).

VIII. ASPECT-BASED IMAGE RANKING

With PLSA, aspects can be conveniently illustrated

by their most probable images in a data set. Given an

aspect ❃ , images can be ranked according to:❋ ☞ � ❏ ❃❶✎✸✑ ❋ ☞❍❃➀❏ � ✎ ❋ ☞ � ✎❋ ☞❍❃❶✎ ➁ ❋ ☞❍❃➂❏ � ✎✤✙ (6)

where
❋ ☞ � ✎ is considered as uniform. The top-ranked

images for a given aspect illustrate its potential ’visual

meaning’. Fig. 7 displays the 10 most probable images

from the 668 test images of the first split of the D1

data set, for seven out of 20 aspects learned on the

D3 data set. The top-ranked images representing aspects

1, 6, 8, and 16 all clearly belong to the landscape

class. More precisely, aspect 1 seems to be mainly

related to horizon/panoramic scenes, aspect 6 and 8 to

forest/vegetation, and aspect 16 to rocks. Conversely,

aspect 4 and 12 are related to the city class. However,

as aspects are identified by analyzing the co-occurrence

of local visual patterns, they may be consistent from

this point of view (e.g. aspect 19 is consistent in

terms of texture) without allowing for a direct seman-

tic interpretation. The results can be better appreciated

at http://carter.idiap.ch/aspect ranking/index.html.

Considering the aspect-based image ranking as an in-

formation retrieval system, the correspondence between

aspects and scene classes can be measured objectively.

Defining the Precision and Recall paired values by:❋ ❡✚➃✣➄➆➅▼✂■➅❧➇✏q✒☞▲❡✚✎✒✑➉➈✠➊ ❄ ➈➋➊▼➌➈✠➊▼➌✩➍➏➎ ➃■➄
❝❶➐❍➐

☞▲❡✭✎✸✑➉➈➋➊ ❄ ➈✠➊▼➌➈➋➊ ❄ ✙
where ➎ ➃✯➑ is the number of retrieved images, ➎ ➃

➐
is

the total number of relevant images and ➎ ➃
➐
➎ ➃✣➑ is

the number of retrieved images that are relevant, we

can compute the precision/recall curves associated with

each aspect-based image ranking considering either city

and landscape queries, as illustrated in Fig. 8. Those

A=19A=1 A=4 A=6 A=8 A=12 A=16

Fig. 7. The 10 most probable images from the D1 data set for seven

aspects (out of 20) learned on the D3 data set.

curves prove that some aspects are clearly related to

such concepts, and confirm observations made previ-

ously with respect to aspects 4, 6, 8, 12, and 16. As

expected, aspect 19 does not appear in either the city

or landscape top precision/recall curves. The landscape-

related ranking from aspect 1 does not hold as clearly for

higher recall values, because the co-occurrences of the

visterm patterns appearing in horizons that it captures

is not exclusive to the landscape class. Overall, these

results illustrate that the latent structure identified by

PLSA highly correlates with the visual structure of our

data. This potentially makes PLSA a very attractive tool

for browsing/annotating unlabeled image collections.
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Fig. 8. Precision/recall curves for the image ranking based on each

of the 20 individual aspects, relative to the landscape (left) and city

(right) query. Each curve represents a diferent aspect. Floor precision

values correspond to the proportion of landscape(resp. city) images

in the data set.



IX. EXPERIMENTS WITH OTHER DATA SETS

Given the recent appearance of other works and data

sets in works on scene classification [11], [42], we have

also compared our framework to them. In [11], the

authors tackle the classification of 13 different scene

types. In [42], the authors tackle the classification of 6

different natural scenes types, all collected from outdoor

images. We present a short description of those data sets

in the next paragraphs.

13-class data set [11] This data set contains a

total of 3859 images of approx. 60000 pixel resolution,

varying in exact size and XY ratio. The images are

distributed over 13 scene classes as follows (the number

in parenthesis indicates the number of images in each

class): bedroom (216), coast (360), forest (328), highway

(260), inside city (308), kitchen (210), living room (289),

mountain (374), open country (410), office (215), street

(292), suburb (241), and tall buildings (356) (available

for download at: http://faculty.ece.uiuc.edu/feifeili/data

sets.html).

6-class data set [42] This relatively small data set

contains a total of 700 images of resolution ➒✔➓ ♠ r→➔✭➣ ♠
pixels. They are distributed over 6 natural scene classes

as follows: coasts (142), river/lakes (111), forests (103),

plains (131), mountains (179), and sky/clouds (34).

These two data sets are challenging given their re-

spective number of classes and the intrinsic ambiguities

that arise from their definition. In the 13-class data set

for example, images from the inside city and street cate-

gories share a very similar scene configuration. Similarly,

the differences between bedroom and living room exam-

ples can be subtle. In the 6-class data set, examples of the

coasts and waterscapes classes are hard to distinguish.

The same ambiguous class definition was observed for

our five-class classification task in Section VII-A.

In Section VII, we evaluated visterm vocabularies

built from different data sources, and conducted a com-

parison of aspect representations learned from extra data

(PLSA-O) or learned on the same data used to learn the

SVM classifier (PLSA-I). Given that we have no extra

set of representative images for the 13-class or 6-class

data, we can not present the same experiments for these

data sets. To keep consistency with the way in which

results are presented in [11], [42], we report classification

accuracy instead of classification error.

A. Classification results: 13-class

We first classify the images based on their BOV as in

Section VII. Results were obtained by training a multi-

class SVM using a 10-split protocol, as in Section VI-C.

No parameter tuning on the vocabulary was done in this
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Fig. 9. Classification accuracy for the BOV representation, in the

13-class problem from [11]. The overall classification accuracy is

66.5%.
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Fig. 10. Classification accuracy for the PLSA-I representation, in

the 13-class problem from [11]. The overall classification accuracy

is 60.8%.

case, as we directly apply the vocabulary ❥ ✽❧❦✺❦✺❦ used in

Section VII.

The confusion matrix for the 13 classes and the

classification performance per class are presented in

Figure 9. The classification performance is substantially

higher than the one presented by [11], which reported

an overall classification performance of 52.5% when

using the same combination of detector/descriptors we

adopted here (DOG+SIFT) for learning their model. The

performance of our method is also slightly better than the

best performance reported in [11] (65.2%, obtained with

a different detector/descriptor pair: GRID/SIFT). As we

do not have access to the individual per-image results

of [11], we cannot assess the statistical significance of

these results, but we can nevertheless consider that the

BOV approach is competitive.

We also applied the PLSA-I approach to solve the

same classification problem, as in Section VII-B. We

learned PLSA with 40 aspects, since this is the number

of aspects used in [11]. Results were obtained, as before,

with a multi-class SVM trained using a 10-split protocol.

Figure 10 shows the performance of the PLSA-I

representation. The classification accuracy is higher than

the one in [11] when using the (DOG+SIFT) combina-

tion, but is lower than the best performance reported



Class confusion matrix perf.

coasts 59.9 9.9 2.1 8.5 18.3 1.4 59.8

river/lakes 1.6 24.3 10.8 10.8 27.0 5.4 24.3

forests 2.9 5.8 81.6 4.9 4.9 0.0 81.6

plains 18.3 6.1 8.4 52.7 11.5 3.1 52.7

mountains 11.2 8.9 2.2 2.8 73.7 1.1 73.7

sky/clouds 5.9 2.9 0.0 5.9 5.9 79.4 79.4

overall 61.9

TABLE XII

CLASSIFICATION ACCURACY FOR THE BOV REPRESENTATION, IN

THE 6-CLASS PROBLEM PRESENTED IN [42].

in [11], and also lower that one obtained with BOV.

The performance degradation between BOV and PLSA

results from the same phenomena observed for the five-

class experiments in Section VII-B. In the presence of a

high number of classes, the PLSA decomposition tends

to result in a loss of important details for the distinction

of ambiguous classes. As with the BOV case, we can

also say that the PLSA approach remains competitive

with respect to [11].

B. Classification results: 6-class

The data set presented by Vogel et al. [42] is com-

posed of less classes than [11], with a total of six natural

scene types. The ambiguity between class definitions is

however more important, and some images are difficult

to classify in only one scene type. The number of

examples per class is significantly smaller than that

in [11] and than the five-class data set in Section VII.

The multi-class SVM results, obtained using a 10-

split protocol on the BOV representations ( ❥ ✽❧❦✺❦✺❦ vo-

cabulary learned on D3) are presented in Table XII.

In this case, our system has a slightly reduced clas-

sification accuracy (61.9%) when compared with the

performance presented in [42](67.2%). Note, however,

that these results have not been obtained using identical

features: [42] relies on a fixed grid, where a texture

and color features are extracted. We believe that the

difference in performance with respect to our work arises

from the fact that natural scene discrimination can benefit

greatly from the use of color, something we have not

made use of, but which in light of these results consti-

tutes an issue to investigate in the future. Moreover, the

intermediate classification step proposed in [42] requires

the expensive manual labeling of hundreds of regional

descriptors, which is not needed in our case.

Given the reduced set of examples per class, and the

need for a large number of representative examples to

train a PLSA model, we could not perform the PLSA-

Class confusion matrix perf.

coasts 40.1 9.9 9.2 12.0 25.4 3.5 40.1

river/lakes 20.7 21.6 11.7 12.6 30.6 2.7 21.6

forests 1.9 3.9 78.6 7.8 7.8 0.0 78.6

plains 20.6 6.9 11.5 35.9 21.4 3.8 35.9

mountains 8.4 7.3 11.7 5.6 65.9 1.1 65.9

sky/clouds 14.7 0.0 0.0 8.8 5.9 70.6 70.6

overall 52.1

TABLE XIII

CLASSIFICATION FOR THE PLSA-O REPRESENTATION, IN THE

6-CLASS PROBLEM PRESENTED IN [42].

I approach for this 6-class problem. However, in order

to evaluate the performance of the aspect representation

for these data, we use the previous PLSA model with

60 aspects learned on the D3 data set (see Section VII-

B). The corresponding classification results, as shown in

Table XIII, indicate a decrease in performance (52.1%)

with respect to both BOV and the results reported in [42].

The fact that the PLSA model has been learned on the D3

data set, which does not contain any coasts, river/lakes,

or plain examples, likely explains the poor discrimination

between the 6-classes when the aspect representation is

used.

Overall, these experiments support some of the find-

ings obtained in Section VII, namely that modeling

scenes as a bag-of-visterms performs well even in prob-

lems with a large amount of classes, and that PLSA

modeling can find limitations in cases of large amount

of overlapping classes. At the same time, these experi-

ments offer other insights: our framework is competitive

with recent approaches, and feature fusion mechanisms

(adding color) have a potential for an increased classifi-

cation performance.

X. CONCLUSION

Based on the results presented in this paper, we

believe that the presented scene modeling methodology

is effective for solving scene classification problems. We

have shown, with extensive results, that it outperforms

classical scene classification methods. We have also

shown that it is able to handle a variety of problems

without having to redesign the features used.

Regarding the specific contributions of this paper, we

first presented results that demonstrate that the bag-of-

visterms approach is adequate for scene classification,

consistently outperforming methods relying on a suite of

hand-picked global features. In the second place, we also

showed that the PLSA-based representation is competi-

tive with the BOV in terms of performance and results,



in general, in a more graceful performance degradation

with decreasing amount of training data. This result is

potentially relevant for the portability and re-usability of

future systems, since it allows to reuse a classification

system for a new problem using less training data.

Thirdly, we also demonstrated that PLSA-based cluster-

ing of images reveals visually coherent grouping that we

showed to be valuable for aspect-based image ranking.

Finally, as part of our work, we explored the visterm

vocabulary co-occurrence properties, and compared them

to those of words in text documents. The results of

such analysis showed the presence of cases of synonymy

and polysemy as in text words, but also showed other

statistical properties, such as sparsity, to be different

than those in text. This, we believe, is mainly due to

the vocabulary construction methodology, and advocates

for improved vocabulary construction approaches.

The description of a visual scene as a mixture of

aspects is an intriguing concept worth of further ex-

ploration. We are currently exploring the extension of

PLSA modeling for scene segmentation. Further areas to

investigate with the approach are the extraction of more

meaningful vocabularies, the study of the influence of

the degree of invariance of the local descriptors, and the

definition of feature fusion mechanisms (e.g. color and

local descriptors) in the latent space framework.
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