
SOFTWARE – PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2013; 43:241–258
Published online 26 January 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.2111

A threat model-based approach to security testing

Aaron Marback1, Hyunsook Do1,*,†, Ke He2, Samuel Kondamarri1 and Dianxiang Xu2

1Computer Science, North Dakota State University, Fargo, ND, USA
2Computer Science, Dakota State University, Madison, SD, USA

SUMMARY

Software security issues have been a major concern in the cyberspace community, so a great deal of research
on security testing has been performed, and various security testing techniques have been developed. Threat
modeling provides a systematic way to identify threats that might compromise security, and it has been a
well-accepted practice by the industry, but test case generation from threat models has not been addressed
yet. Thus, in this paper, we propose a threat model-based security testing approach that automatically gener-
ates security test sequences from threat trees and transforms them into executable tests. The security testing
approach we consider consists of three activities in large: building threat models with threat trees; generating
security test sequences from threat trees; and creating executable test cases by considering valid and invalid
inputs. To support our approach, we implemented security test generation techniques, and we also conducted
an empirical study to assess the effectiveness of our approach. The results of our study show that our threat
tree-based approach is effective in exposing vulnerabilities. Copyright © 2012 John Wiley & Sons, Ltd.

Received 14 January 2011; Revised 1 October 2011; Accepted 3 January 2012

KEY WORDS: threat modeling; threat trees; security testing; software testing

1. INTRODUCTION

Software security issues have been a major concern in the cyberspace community. These issues

include attacks that deny service, corrupt data, and disclose confidential information. Although the

importance of trustworthy software systems has been well recognized and tremendous effort has

been devoted to enhancing cyber security, companies have still suffered from various cyber crimes

[1, 2]. For instance, one study performed by the WebCohort’s Application Defense Center from

2000 to 2004 reported that at least 92% of Web applications are vulnerable to some form of hacker

attacks [3]. A more recent survey performed by Cenzic [1] reported that the number of attacks

continues to increase and that hackers become more sophisticated and more organized.

One approach to improving software security involves software testing. To date, researchers have

developed various security testing techniques. These include techniques that generate test cases or

identify vulnerabilities focusing on specific attacks, such as SQL injection or cross-site scripting

(XSS) [4–7]; generate test cases using model-based approaches, such as threat modeling or use

case modeling [8–12]; and generate test cases from control policy specifications [13, 14] (Section 2

provides details).

Although each of these approaches has strengths and weaknesses for different types of security

issues, threat modeling particularly provides a systematic way to identify threats that might com-

promise security. Further, this approach can be utilized not only during software testing phase but

also during software design and development phases for secure design and risk mitigation. Owing to

these merits, a threat modeling approach has been a well-accepted practice by the industry [15, 16],

*Correspondence to: Hyunsook Do, Computer Science, North Dakota State University, Fargo, ND, USA.
†E-mail: hyunsook.do@ndsu.edu

Copyright © 2012 John Wiley & Sons, Ltd.

242 A. MARBACK ET AL.

and recently, researchers have begun to investigate a threat modeling approach to security testing

[11, 12]. Although their work has made some progress in this area, an important open issue is how

test cases can be generated automatically from threat models.

Thus, in this paper, we propose a threat model-based security testing approach that generates

security test cases from threat trees. This approach consists of two steps. The first step involves auto-

mated test sequence generation from threat trees. The second step involves transforming the security

tests into an executable form by considering valid and invalid inputs. Security attacks typically result

from malicious actions or invalid inputs deliberately chosen by attackers. The complexities of input

space and program structure make the testing of a program against all invalid inputs extremely

difficult. Therefore, it is important to automate or partially automate security testing.

To demonstrate the feasibility of our approach, we have developed security test generation tech-

niques that require the two aforementioned steps and performed an empirical study using real-world

Web applications. The results of our study showed that our testing approach is effective in expos-

ing vulnerabilities that are present in the Web applications that we examined. Through our study,

we evaluated the feasibility of our approach that generates executable security test cases from

threat trees.

The rest of the paper is organized as follows. Section 2 discusses background information and

related work. Section 3 presents threat modeling for Web applications under test. Section 4 presents

test generation techniques and their implementations. Section 5 presents our study design and

results. Section 6 presents conclusions and discusses future work.

2. BACKGROUND AND RELATED WORK

Threat modeling has emerged as a viable practice for secure software development, which involves

identifying, specifying, evaluating, and counter-measuring potential security attacks (i.e., threats). It

can be conducted at various levels of abstraction and granularity or in different development phases,

such as requirements analysis, design, and even testing [17]. Although existing methods have used

threat trees for risk-based security testing [16,18], they do not generate security tests systematically

from threat trees.

Several notations have been proposed for threat modeling, such as threat trees (a variation of fault

trees for safety analysis) [15], threat nets [9, 12], and misuse cases (based on use case modeling)

[8, 10]. Threat nets are based on Petri nets, a mathematically based formalism for modeling and

verifying distributed systems. Building threat models with threat nets requires expertise in formal

methods. Misuse case modeling specifies misuse cases as security threats to use cases and suggests

mitigation use cases. It is used for the elicitation and analysis of security requirements. Because

threat trees are intuitive and easy to use, they have been widely adopted by the software industry.

Therefore, this paper focuses on security testing with threat trees. Wang et al. [11] have proposed

a threat model-driven security testing approach for detecting undesirable threat behaviors at run-

time. Threats to security policies are modeled with UML sequence diagrams. A set of threat traces

is extracted from a design-level threat model. Each threat trace is an event sequence that should

not occur during the system execution; otherwise, it becomes a security attack. In comparison, this

paper is based on Microsoft’s threat modeling approach, where an application is decomposed using

data flow diagrams and security threats to the application are modeled with threat trees. Our goal is

to systematically generate security tests from threat trees.

One approach to evaluating the effectiveness of security testing is mutation analysis, which creates

mutants by injecting vulnerabilities deliberately and determines how many of the injected vulnera-

bilities can be revealed by security tests. The existing work on security mutation falls into three

categories: (1) implementation-level security mutation, (2) specification-level security mutation,

and (3) mutation of access control policies. Implementation-level security mutation is to inject

vulnerability into implementation and to evaluate how many of the injected vulnerabilities can

be revealed by security tests. Shahriar and Zulkernine have developed the MUTEC and MUSIC

tools for mutation testing of XSS and SQL injection attacks against Web applications [19, 20].

MUTEC provides five and six mutation operators for modifying JavaScript code and PHP code,

respectively [20]. MUSIC provides four operators for injecting faults into where conditions of SQL

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:241–258

DOI: 10.1002/spe

A THREAT MODEL-BASED APPROACH TO SECURITY TESTING 243

queries and five operators for injecting faults in database API method calls [19]. Fonseca et al.

[21] assessed the effectiveness of Web scanning tools by injecting XSS and SQL injection faults

in Web applications. Tuya et al. [22] developed the SQLMutation tool that provides four cate-

gories of mutation operators for SQL SELECT queries. They include SQL clause operators, operator

replacement mutation operators, NULL mutation operators, and identifier replacement. The afore-

mentioned work focuses on particular types of vulnerabilities (SQL injection and XSS). Unlike these

approaches, in this work, our approach is evaluated using various types of real vulnerabilities not

injected vulnerabilities.

Specification-level security mutation is to introduce errors in the specification of security-related

behaviors so as to generate threat scenarios. Wimmel and Jürjens used such mutation for security test

generation from structured system diagrams in AutoFocus, a computer-aided software engineering

tool for graphically specifying distributed systems [23, 24]. Abstract test sequences are determined

with respect to the system’s required security properties using mutations of the system specification

and threat scenarios. These abstract tests are then converted into executable tests. In [23], security

testing focuses on the fail-safety principle based on the common electronic purse specifications. In

the aforementioned work, threat scenarios are generated from the specification according to secu-

rity properties. Our work is based on the explicit specifications of various threats, such as spoofing,

tampering with data, and denial of service.

For mutation analysis of access control policies, there are two main systems used to write access

control policies. One uses organization-based access control or role-based access control (RBAC)

as a modeling scheme to abstractly design a security policy without the implementation [25, 26].

The other uses eXtensible Access Control Markup Language (XACML) to create the actual imple-

mentation of a security policy [13,27,28]. Le Traon et al. have investigated various issues of testing

access control policies, such as test criteria of access control policies [25], test generation from

access control models [29], and selection and transformation of functional tests for policy test-

ing [30]. Martin and Xie [13, 27, 28] have been investigating techniques for test generation from

access control policy specifications written in XACML (OASIS XACML). They have defined pol-

icy coverage criteria [27] and a mutation testing framework for XACML access control policies

[13]. To generate tests from policy specifications, they synthesized inputs to a change-impact anal-

ysis tool [28]. Masood et al. [14, 31] have investigated a state-based approach to test generation

for RBAC policies. This approach first constructs a finite state model of the RBAC policy and

then drives tests from the state model. The aforementioned work focuses on testing whether the

intended access control policies are enforced, but not from the standpoint of how the system can

be attacked.

Blackburn et al. [32] have developed an approach to automated generation of functional security

tests. In this approach, security properties are modeled in Software Cost Reduction (SCR). An SCR-

to-Test Vector (T-VEC) translator is used to translate the SCR model to a T-VEC test specification.

T-VEC tools are then used on the T-VEC representation of the security properties to automatically

generate test vectors (i.e., test cases with test input values, expected output values, and traceability

information) and requirement-to-test coverage metrics. Jürjens [33] has developed an approach for

testing security-critical systems based on UMLsec models. Test sequences for security properties

are generated from UMLsec models to test the implementation for vulnerabilities. Different from

this work, our work generates security tests solely from threat models.

Another challenge related to transforming the test sequences generated from threat trees to exe-

cutable test code is identifying feasible input data. Because the primary concern with software

security testing is finding security vulnerabilities [34], although both valid inputs and invalid inputs

are required for testing any software system, invalid inputs are more important to security test-

ing because, by nature, they verify whether the system is misused (e.g., whether access is granted

to unauthorized users) or provides unexpected functionalities. This feature makes security testing

more difficult because there are far more invalid inputs than valid inputs. We also need to test the

‘presence of an intelligent adversary bent on breaking the system’ [35]. Several security testing tech-

niques that address invalid input generation have been proposed. Fuzz testing [36] provides negative

random inputs to the program. Although this approach is easy to apply, it tends to only find simple

faults. Other approaches that target specific types of flaws that could cause security breaches, such

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:241–258

DOI: 10.1002/spe

244 A. MARBACK ET AL.

as buffer overflows, command/SQL injection, or XSS vulnerabilities [4–7, 37]. In this paper, we

provide an input data generation approach that uses the design information of an application and

threat models as the basis for input categorization and generation instead of targeting specific types

of security flaws.

3. THREAT MODELING

Threat modeling is a systematic process of identifying, analyzing, documenting, and mitigating

security threats to a software system [15]. This approach allows development teams to understand

a system’s threat profile by examining the application through the eyes of a potential attacker and

helps them determine potential security risks posed to a system. The main steps of threat model-

ing are the following: (1) identifying the assets of an application, (2) determining the threats to an

application, (3) ranking the threats, and (4) mitigating the threats.

In this paper, we used the first two steps to identify threats relevant to the applications under

test. In the first step, we decompose an application under development using data flow diagrams

to identify the assets of an application. An application can be decomposed into subsystems, and

subsystems can further be decomposed into lower-level subsystems. Note that application decom-

position is not to determine how everything works but rather to identify the system boundaries,

components, or assets of the application and how data flows between the components. Confiden-

tial and sensitive data to the application, such as credit card numbers and social security numbers,

should be identified during this step.

In the second step, we use the identified components as the threat targets for the threat model,

categorize the threats by STRIDE model, and model the threat using threat trees. STRIDE stands for

Spoofing identity, Tampering with data, Repudiation, Information disclosure, Denial of service, and

Elevation of privilege. STRIDE model provides a simple way to categorize security threats and helps

testers determine the resources required to expose security vulnerabilities. The threat tree describes

the decision-making process an attacker would go through to compromise the component.

After identifying potential threats, we model them with threat trees [15] and generate test cases

from threat trees. The following subsection describes how threats are modeled with threat trees.

3.1. Modeling threats with threat trees

Threat trees are tree structures with child nodes having AND or OR relationships. The root node of

a threat tree is the threat goal. The root node is then decomposed into subgoals, and the subgoals

are further decomposed until leaf nodes representing the individual attack actions are determined. A

node of threat trees can be decomposed as either (1) a set of subgoals, all of which must be achieved

for the parent goal to succeed (the relationship between subgoals is represented as an AND rela-

tionship), or (2) a set of subgoals, any one of which must be achieved for the parent goal to succeed

(the relationship between sub-goals is represented as an OR relationship). Threat trees describe the

decision-making process that an attacker would go through to compromise the software. Typically,

software has a set of threat trees that are relevant to its operation. The root of each threat tree repre-

sents a potential threat goal that could violate the security goal or policy of the software. Each threat

tree enumerates and elaborates the ways that an attacker could cause events to occur. Each sequence

of events in a threat tree represents a unique attack on the software. Different paths form different

sequences of attack actions that an attacker could use to achieve the threat goal of a threat tree.

We illustrate the threat tree using an example. Suppose that we have a Web application system

that provides services to multiple users with different privileges to access the system. To identify

possible threats to this system, we examine categories defined by the STRIDE method and decide

the threat that the system may be vulnerable to if an attacker runs unauthorized commands (elevation

of privilege in STRIDE). Once we identify the threat, we define specific goals and events that can

compromise the system using design documentation.

To gain access to unauthorized administration commands, an attacker needs to perform the fol-

lowing three basic tasks in order: (1) gain access to the system, (2) log into the system, and (3) run

system commands. Each task can have subgoals or events as we explained earlier. For instance, the

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:241–258

DOI: 10.1002/spe

A THREAT MODEL-BASED APPROACH TO SECURITY TESTING 245

first task can be achieved by either physical access to the system or remote access to the system. To

achieve the third task, the attacker could try two techniques: a buffer overflow attack, which can be

attempted on any system that does not have safety features in place that forbid users for overwriting

data on the runtime stack; and a brute force attack, which can be attempted against any system that

does not limit the number of times that the attacker can enter credentials or commands.

Figure 1 shows the entire threat tree of this threat. In the threat tree, AND relationships are rep-

resented by edges from a parent node to the child nodes that are connected by an AND conditional

connector. For instance, in the figure, the Attacker executes unauthorized system

command has three children that have an AND relationship. To execute this attack, the attacker

must execute all of the child nodes that appear from left to right (i.e., Attacker accesses the

system followed by Attacker logs into the system then Attacker executes

system commands). OR relationships are represented by edges from a parent node to child nodes

that do not contain an AND conditional connector. For instance, the two child nodes of (Attacker

accesses the system) have an OR relationship. The attacker can execute any of the child

nodes (i.e., Attacker has physical access or Attacker has remote access) to

realize that goal. In the following section, we describe the process of generating event sequences

from threat trees.

4. TEST GENERATION

4.1. Security test sequence generation from threat trees

Having developed threat trees, we now need to generate executable test cases from them. To do this,

we implemented a test generation technique that (1) imports threat trees created using the Microsoft

Threat Modeling Tool [15] and creates test sequences; (2) provides a graphical interface so that

testers map events (gathered from the threat trees) in the test sequences to the applicable unit tests;

(3) adds input parameters to test sequences; (4) generates test inputs including valid and invalid

inputs; and (5) generates test scripts that execute all test sequences with assigned input values.

We will provide more detailed descriptions for each of these activities in this section and in

Section 4.2. We refer to these activities as ‘Test Gen Activities’.

Figure 2 shows how these activities are related to each other. First, we generate security test

sequences from threat trees and test parameters from input syntaxes. We then integrate test parame-

ters into the test sequences to create complete model-level security test cases. With the implementa-

tion knowledge, we further convert the model-level security tests into implementation-level security

tests. To illustrate our approach to test generation that is described in this section and the following

section, we use the threat tree described in Section 3.1, Adversary executes unauthorized system

commands (Figure 1), as an example.

Figure 1. Threat tree showing an attacker executing unauthorized system commands.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:241–258

DOI: 10.1002/spe

246 A. MARBACK ET AL.

Figure 2. The process of security test generation.

For the first activity described previously (Test Gen Activity 1), we analyzed the ‘.tmd’ files

produced by the Microsoft Threat Model Tool. Because the ‘.tmd’ files use XML version 1.0

syntax, they can be easily parsed using publicly available libraries. Using the Java Document-

BuilderFactory class, we created a series of and/or tree-based data structures and inserted the

threat tree data into our Java data structure; during this step, we added parameter information to

the applicable leaf nodes in threat trees. For instance, in our example, a parameter overflowed

input is required by the Adversary overflows input buffer using opcodes

node, so we added this parameter to the Adversary overflows input buffer using

opcodes node.

Once threat tree data has been placed in our and/or tree data structure, we generated test

sequences by analyzing this tree (Test Gen Activity 2). We used a top–down approach for test

sequence generation. The main goal of this step is to generate every sequence of events that

may exploit the vulnerabilities of a system. To obtain these threat sequences, we used a node

replacement algorithm where parent nodes are replaced by the sequence of their children as shown

in Algorithm 1.

4.1.1. Test sequence generation algorithm. The test sequence generation algorithm (Algorithm 1)

takes a threat tree as an input and generates a set of test sequences as an output. The algorithm

analyzes a threat tree by using a breadth-first search to walk the tree and generate test sequences.

For simplicity, we make two assumptions. First, the sibling nodes with an ‘AND’ or ‘OR’ relation

are ordered—they are treated in the sequential order when test sequences are generated. Second, the

same group of sibling nodes has a single AND or OR relation, but not a mixture. This does not lose

generality because the mixed AND and OR relations can be eliminated by using more intermediate

nodes when threat trees are built.

The algorithm starts by creating a test sequence that contains a root node. This test sequence is

then added to the set of test sequences (line 4). The root node is also added to the queue of unvisited

nodes (line 5). Every node in the queue of unvisited nodes is then processed until it is empty (line 6).

The node at the front of the queue is dequeued (CurrentNode), and any children that it may have are

enqueued into the unvisited nodes queue (lines 7–11). The algorithm then analyzes the nodes in the

set of test sequences until every node that matches CurrentNode in every sequence is replaced with

a leaf node by using the following replacement method. (1) If CurrentNode is in a test sequence that

has children with an AND relationship, replace CurrentNode with these children in that sequence

in the left-to-right order in which they appear in the tree (lines 12–22). (2) If CurrentNode is in a

test sequence that has children with an OR relationship, we create the same number of sequences

as children of the CurrentNode and replace CurrentNode in each of these sequences with one of

the children of the OR relationship. Then, delete the original sequence containing CurrentNode

(lines 24–35). The set of test sequences that remains after the substitutions is the final set of test

sequences used for test generation.

We illustrate this algorithm by using our example (Figure 1). We begin by analyzing the root

node. A set of test sequences containing only a sequence with the root node (Adversary

executes unauthorized system commands) is created. This node is then added to the

unvisited nodes queue and is then dequeued. The child nodes of the root node are added to

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:241–258

DOI: 10.1002/spe

A THREAT MODEL-BASED APPROACH TO SECURITY TESTING 247

Algorithm 1. Breadth-first search test sequence generation.

the unvisited nodes queue. With the use of the substitution algorithm described previously, the

sequence containing only the root node in the set of test sequences is replaced by the follow-

ing sequences: Adversary accesses the system ! Adversary logs into the

system ! Adversary executes system commands. We then dequeue the first child

node, Adversary accesses the system. Because this node has two children that have an

OR relationship, we create two new sequences with each child (Adversary has physical

access; Adversary has remote access) and replace Adversary accesses the

system with these new sequences.

We proceed to the next node in the queue, Adversary logs into the system. Because

it does not have any children, we proceed to the next node. We then dequeue the next node

in the queue, Adversary executes system commands. Because this node has two chil-

dren that have an OR relationship, we create two new sequences with each child (Adversary

uses buffer overflow; User runs command with elevated privileges) and

replace User runs command with elevated privileges with these new sequences.

We continue this process until all sequences have been generated and the unvisited node queue

is empty.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:241–258

DOI: 10.1002/spe

248 A. MARBACK ET AL.

When we have completed analyzing the threat tree, this algorithm generates six test sequences

from our example:

1. Adversary has physical access ! Adversary logs into the system

! Adversary starts application ! Adversary overflows input

buffer using opcodes

2. Adversary has physical access ! Adversary logs into the system

! Adversary obtains credentials using social engineering !

Adversary runs the command

3. Adversary has physical access ! Adversary logs into the system

! Adversary gains access using brute force ! Adversary runs the

command

4. Adversary has remote access ! Adversary logs into the system !

Adversary starts application ! Adversary overflows input buffer

using opcodes

5. Adversary has remote access ! Adversary logs into the system !

Adversary obtains credentials using social engineering ! Adver-

sary runs the command

6. Adversary has remote access ! Adversary logs into the system !

Adversary gains access using brute force ! Adversary runs the

command

Because the test sequences have been generated from design-level threat trees, we need to

transform the test sequences into executable tests (Test Gen Activity 2). In a typical threat tree,

there may be actions that can be incredibly difficult or simply impossible to transform into exe-

cutable test cases, such as social engineering attacks, hardware tampering, or distributed attacks.

For instance, in the case of social engineering attacks, we are forced to assume that an attacker

has access to some data that are typically accessible only to users of the application. In the case

of distributed attacks, we were able to create test cases for the application. However, these test

cases had to be executed on multiple computers simultaneously, which involved writing a test

harness manually.

As mentioned earlier, many events can be associated with parameters (Test Gen Activity 2).

Because a test sequence can consist of many events each with multiple parameters, keeping track

of the order of all of the parameters associated with all of the events in a sequence can be challeng-

ing. To address this issue, we needed to take the following steps. First, we specified parameters in

the Microsoft Threat Modeling Tool. These parameters are imported into our tree structure dur-

ing the parsing phase. Once test sequence generation has been completed, we then generate a

list of parameters by iterating through the events in a sequence. The generated list is helpful for

test developers because it specifies which inputs are needed for a test case, the order in which

they occur, and which inputs are represented by which arguments. For instance, in our exam-

ple, the Adversary overflows input buffer using opcodes event would probably

contain one parameter (overflowed input) that tells that testers need to provide one input for

that event.

4.2. Syntax-based test input generation

Once we have obtained test cases with parameters, we need actual inputs to execute the test cases

(Test Gen Activity 4). To generate test inputs, we used a syntax-based testing approach, which

is syntax-based and input data-driven testing [38, 39] considering valid inputs and invalid inputs

that could pose security threats. To achieve this, we have developed a technique that (1) retrieves

parameter information (the number of parameters, data type and format, constraints on values) from

the generated test sequences; (2) creates a syntax by using the data type, format information, and

constraints given by the specification in the threat trees; (3) constrains the values produced by this

syntax even more by using implementation information and common malicious strings (in the case

of invalid inputs); (4) generates values from this syntax and all constraints.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:241–258

DOI: 10.1002/spe

A THREAT MODEL-BASED APPROACH TO SECURITY TESTING 249

To illustrate these steps, we consider our prior example that requires overflowed input

to successfully execute the system commands. First, we retrieve the parameter information

(overflowed input) from the threat tree. Second, we constrain our malicious input by speci-

fying the data type, in this case, it is a string (we need a text input combined with an opcode and a

return address). We then define a syntax for the overflow string. The simplest syntax for the over-

flow string is the regular expression a� where a is any printable ASCII character. After we have a

format for the regular expression, length constraints can be also applied to the inputs to reduce the

total number of inputs. The total number of inputs after specifying a length constraint can still be

too large to feasibly handle. In this case, a length constraint of L will produce 95
L (where 95 is the

number of printable ASCII characters) test inputs.

To further reduce the number of inputs and identify malicious input values (step 3), we use source

code and design documentation of the application under test to retrieve information related to inputs,

such as valid values and dependency constraints. In this case, let us assume that the input is stored

in a character array with a length of 10.

Now, with this information, we can create malicious inputs that cause security attacks.

For instance, we can create test cases that realize an Adversary overflows input buffer using

opcodes attack on this system by using fields that accept strings as input (in this example,

overflowed input).

We utilize the design documentation of the system to determine which opcodes are valid for the

system. From this design information, we define a syntax for the input generation. In this particular

example, let us assume that the adversary wants to assign a different value to some variable in the

runtime stack of the application. One common approach for this attack is to overwrite the return

address of a function. This program will then jump to a section of the program that the adversary

has specified. We then generate a syntax that can be used to create malicious strings for the attack. In

this example, the overflow string consists of characters to fill the buffer, a collection of instructions

that will execute without crashing the program (this is typically a copy of the original instruction in

the program that is between the input buffer and the return call), a jump command, and a malicious

return address. Figure 3 shows the syntax definition for this parameter.

Once we define a syntax for inputs, we need to create actual values for them (step 4). Consider the

Buffer Overflow part of our example. To realize the Buffer Overflow attack, we need to create invalid

inputs for the overflowed input. To do so, we can parse the syntax that we defined in the pre-

vious step (Figure 3) and automatically generate a pattern of malicious Buffer Overflow stings. One

string that can generated from this syntax is the combination of 0123456789 for the input buffer

(a 10-character hexadecimal string), 8800000087654321 for the valid instructions(a hexadecimal

string whose length is application specific), EB for the jump opcode, and 1234567890ABCDEF

for the return address (a 16-character hexadecimal string). The end result of the syntax-based input

generation would yield 01234567898800000087654321EB1234567890ABCDEF.

Having generated all test sequences and required test inputs, we then create test scripts that exe-

cute all test sequences with assigned input values (Test Gen Activity 5). Once we have generated a

list of inputs associated with a test case, we can easily create a test harness script that passes these

inputs to the executable test script as command line arguments. Figure 4 shows a complete example

of an executable test case with $myagrgs as the command line argument. In this example test

case, the adversary is trying to overflow the ISBN field in a Web application by using the string

generated by the syntax in Figure 3 (01234567898800000087654321EB1234567890ABCDEF) as

a command line argument.

Overflowed Input Input Buffer Chars Valid Instructions Jump Opcode Malicious Return Address

Input Buffer Chars [0-F]10

Valid Instructions [0-F]*

Jump Opcode EB

Malicious Return Address [0-F]16

Figure 3. An example of buffer overflow input syntax for a 16-bit x86 computer.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:241–258

DOI: 10.1002/spe

250 A. MARBACK ET AL.

#/usr/bin/perl-w

#p0:overflowedInput

use WWW::Mechanize;

use HTTP::Cookies;

use WWW::Mechanize::FormFiller;

use URI::URL;

my $agent = WWW::Mechanize-> new(autocheck= > 1);

$agent-> cookie jar(HTTP::Cookies-> new);

$myargs = 0;

$agent-> get(’http://example.com/product info.php?ISBN=’.“$ARGV[$myargs]”);

$agent-> click();

Figure 4. Combined executable test case.

5. EMPIRICAL STUDY

As stated in Section 1, we wished to assess our threat model-based security testing approach

considering the following research question:

Can test cases generated from STRIDE-based threat trees be effective in detecting potential

vulnerabilities in a given target system?

To investigate this research question, we performed an empirical study. The following subsections

present, for this study, our objects of analysis, study setup, and data and analysis.

5.1. Objects of analysis

For this study, we used two open source Web applications as objects of analysis: osCommerce [40]

and Drupal [41]. OsCommerce is a Web-based storefront and shopping cart application. Drupal is a

content management system that is specifically suited for blogging. These applications are written

in the PHP programming language and use the MySQL database system. They are real, nontrivial

Web applications that have been used by a large number of users.

Table I lists, for each of our objects, its associated ‘Lines of code’, ‘Threat trees’ (the total number

of threat trees), ‘Test sequences’ (the total number of test sequences generated from threat trees),

and ‘Test cases’ (the total number of test cases generated from threat tree-based test sequences). The

following subsections describe details about these artifacts’ construction.

5.1.1. Threat trees. In building threat trees, we initially started with osCommerce and identified

13 threats. Then, we examined the threats to see whether they can be applied to Drupal because

some functionalities are common to the Web applications, such as user authentication. We were

able to reuse four of them with minor modifications and found two new threats for Drupal. Owing

to the space limit, we describe six threat trees that represent each category from STRIDE model.

(see Table II in Section 5 for the STRIDE category of the identified threat trees). The first three

threat trees present existing vulnerabilities in osCommerce.

5.1.1.1. Hijacking a user’s session ID. This threat can be realized by XSS. XSS is one of the most

commonly used attack methods and is responsible for large portions of all security vulnerabilities

[42]. XSS attacks allows an attacker to embed malicious code into Web pages. By doing so, the

attacker can steal users’ confidential information or can change user settings [43]. For instance, in

Table I. Objects of analysis.

Application Lines of code Threat trees Test sequences Test cases

osCommerce 29,320 13 63 259
Drupal 27,771 6 18 106

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:241–258

DOI: 10.1002/spe

A THREAT MODEL-BASED APPROACH TO SECURITY TESTING 251

Table II. Threat trees for osCommerce.

Name of the threat tree Threat type Threat description

Hijacking a user’s session ID Spoofing An attacker can execute arbitrary
HTML and script code using an
administrator’s browser session.

Stealing user information Tampering An attacker can obtain user
using SQL injection information using SQL injection

by entering malicious inputs.

Multiple login attempts Elevation of privileges An attacker can login
as a registered user.

Data modification Repudiation An attacker can access and modify
restricted files within the application
or the underlying system.

Denial of service Denial of service An attacker can perform a denial of
using local resources service by depleting various system

resource of the Web application’s
host system.

User data disclosure Information disclosure This threat can be realized by directly
attacking an SQL server associated
with the application

Login information Spoofing This threat makes use of the steal
vulnerability session information vulnerability to

change the username and the password

Session information Information disclosure Access to the referral log file, and
disclosure session fixation are the two ways of

achieving the goal of stealing the
session information

Session ID exhaustion Denial of service If an attacker can get the session IDs
exhaust, his or her goal of denial of
service to the genuine users will be achieved

Transaction resource Denial of service Credit card authorization process is attacked
to keep the system busy from doing the
actual user request.

User data tampering Tampering An attacker tampers with the user data in the
database with the help of SQL injection and
session information.

Data tampering using Tampering Because of unprotected admin files, an
access to admin files attacker is able to find the admin files.

User credential disclosure Information disclosure An attacker can query the database
for user credentials.

the case of osCommerce, user-generated input that is passed to the applications is not properly san-

itized, allowing the attacker to execute arbitrary HTML and script code using an administrator’s

browser session (see Figure 5).

5.1.1.2. Stealing user information with SQL injection. SQL injection is also a very common method

used by attackers. In osCommerce, there are a few places where an SQL code can potentially be

injected by an attacker. During the process of adding items to the shopping cart, the attacker is

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:241–258

DOI: 10.1002/spe

252 A. MARBACK ET AL.

Figure 5. Threat tree showing hijacking a user’s session ID.

allowed to enter a malicious input into some of the fields related to different product options (e.g.,

quantity or size). When the attacker submits this datum, the unsanitized and malicious information

is injected to the database. We modeled a threat tree with three attack approaches to exploit this

threat. As shown in Figure 6, the attacker tries to obtain users’ credit card information, personal

information, or login information by injecting corresponding SQL statements.

5.1.1.3. Multiple login attempts. By not limiting the number of user login attempts, an attacker can

guess the user ID and password, allowing the attacker to login as a registered user. We modeled a

threat tree with four attack approaches to exploit this threat. As shown in Figure 7, the attacker tries

to guess a user ID or password by using a brute force attack or dictionary attack. Dictionary attacks

use a large list of probable inputs to attack an application.

5.1.1.4. Data modification. Data modification is also a common threat that attempts to modify the

application source code by combining XSS with the known file structure of the application. This

exploit allows an attacker to view the contents of any file on an improperly configured system.

The attacker can access and modify restricted files within the application or the underlying system.

Figure 8 shows a threat tree for this threat (the whole tree contains more components, but we show

Figure 6. Threat tree showing stealing user information with SQL injection.

Figure 7. Threat tree showing multiple login attempts.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:241–258

DOI: 10.1002/spe

A THREAT MODEL-BASED APPROACH TO SECURITY TESTING 253

Figure 8. Threat tree showing data modification.

Figure 9. Threat tree showing denial of service using local resources.

only a partial threat tree because of formatting constraints). In this threat tree, the attacker tries to

pass malicious scripts to the different components of the application by using application source

code. For instance, the attacker can select an item, try to lower the price of this item in the HTTP

POST request, and submit the request.

5.1.1.5. Denial of service using local resources. An attacker can perform a denial of service attack

by attempting to deplete various system resources of the Web application’s host system. This attack

tries to stress the system under test as much as possible. As shown in Figure 9, three attack sequences

are included in this threat: attempting to fill the hard drive by repeatedly creating user accounts, exe-

cuting hundreds of password recoveries by email and creating multiple accounts simultaneously,

and performing multiple logins simultaneously.

5.1.1.6. User data disclosure. User data disclosure can be realized by directly attacking an SQL

server associated with the application. If an attacker has credentials for the database and the database

is not secured properly, the attacker should be able to view any user’s data. The attacker can also

perform an attack by hijacking a user’s session information from the referrer log or by getting a user

to disclose their credentials. For instance, the attacker can capture a victim’s session information

using the referrer log. Once the session information is captured, the attacker has full access to the

victim’s account. Figure 10 shows this threat.

Figure 10. Threat tree showing user data disclosure.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:241–258

DOI: 10.1002/spe

254 A. MARBACK ET AL.

All the threat trees we developed for osCommerce are shown in Table II. Having developed the

threat trees, we examined them to see whether they can be applied to Drupal. We were able to reuse

four of them with minor modifications: Multiple login attempts, Denial of service, User data dis-

closure, and User data tampering. However, we could not reuse the rest of them because of various

reasons: some functionalities do not exist in Drupal such as the session ID and credit card process-

ing. We also identified two new threat trees for Drupal; thus, we have six threat trees in total for

Drupal as shown in Table III.

5.1.2. Test sequences and test cases. In our study, we used Selenium [44] to develop and run test

cases. Selenium is a widely used integrated development environment for Web application testing. It

provides functions such as record and replay for efficiently developing and running test cases. From

threat trees, we generated 63 test sequences for osCommerce and 18 test sequences for Drupal by

using our tool described in Section 4.1. For all tests in our study, we developed a relevant input

list by using the syntax-based generation technique described in Section 4.2. This technique used

design documentation (variable name, database table, and field names), a database containing com-

mon malicious strings (SQL, XSS, and command injection string), and implementation information

(specific values from the applications database backend) to generate the inputs for the test sequences.

Because assigning all possible values to test sequences is prohibitively expensive and ineffective,

we created test inputs following the procedure we explained in Section 4.2. For each of the applica-

ble test sequences, we assigned multiple combinations of valid and invalid inputs depending on the

type of test sequences.

5.2. Study setup

We performed our study using two different virtual machines (one as a client, one as a server) on

the same host. The client operating system was Ubuntu Linux version 9.04, and the server operating

system was Suse Linux version 9.1. The server ran Apache as its HTTP server and MySQL as its

database backend. One important thing to note is that the network connection has a direct impact on

the execution time required for testing. In this study, virtual machines on the same host are used to

provide a nearly optimal network connection.

In order to execute test cases, we implemented a test assignment and generation module. This

module allows a test to assign tests to all of the events in every sequence. To achieve this, we have

implemented a graphical interface that displays the events to a tester. The tester can then use a file

browser to assign specific tests to every event. We have also allowed the tester to save and reload

Table III. Threat trees for Drupal.

Name of the threat tree Threat type Threat description

Multiple login attempts Elevation of privileges See Table II

Denial of service Denial of service See Table II
using local resources

User data disclosure Information disclosure See Table II

User data tampering Tampering See Table II

Data modification Tampering Previews on comments were not passed through
using SQL injection normal form validation routines, enabling users

with the ‘post comments’ permission and access to
more than one input filter to execute arbitrary code.

Infinite accounts Denial of service Allows the same ip address to make an infinite number
of accounts on from same IP the website host until hard drive fills

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:241–258

DOI: 10.1002/spe

A THREAT MODEL-BASED APPROACH TO SECURITY TESTING 255

a test assignment session because this can be a very time-consuming process. The module then

combines the assigned test files into executable test cases that correspond to our event sequences.

5.3. Data and analysis

Tables IV and V show the results for osCommerce and Drupal, respectively. The tables list, for each

of threats, data on its associated number of test sequences (Sequences), the number of test cases exe-

cuted (Test cases), the number of sequences that exposed vulnerabilities (Test sequences exposed

vulner.), and the number of test cases that exposed vulnerabilities (Test cases exposed vulner.). Mul-

tiple inputs were used for each sequence as mentioned in Section 5.1.2. For instance, in the case

of Multiple login attempts in Table IV, we tested nine valid input combinations (a valid username

and password) for each of the four different sequences (36 test cases in total). Among these, 28

test cases exposed vulnerabilities. By varying our input for this particular threat, we were able to

determine that if only one field (either username or password) was assigned to an invalid input, we

could expose the vulnerability.

To address our research question, we need to examine whether test cases generated from our

approach would either expose a vulnerability or lack thereof. In the case of osCommerce, we have

designed threats by using three different sources: for threats 1, 2, and 3, we used known vulner-

abilities; for threats 4 and 13, we used attack patterns that had been properly handled by reading

application documentation; for the rest of them, we used common attack patterns without any prior

knowledge whether they exposed vulnerabilities or not. As expected, in the first case (threats 1, 2,

Table IV. Test results for osCommerce.

Test sequences Test cases
Threats Sequences Test cases exposed vulner. exposed vulner.

1 Hijacking a user’s session ID 4 28 4 20
2 Stealing user information using 3 24 3 18

SQL injection
3 Multiple login attempts 4 36 4 28
4 Data modification 18 72 0 0
5 Login information vulnerability 1 2 1 2
6 Session information disclosure 5 15 5 15
7 Session ID exhaustion 3 3 1 1
8 Transaction resource 1 1 1 1
9 Denial of service using 6 6 3 3

local resources
10 User data disclosure 4 20 3 9
11 User data tampering 3 15 3 15
12 Data tampering using access to 1 1 1 1

admin files
13 User credential disclosure 9 36 0 0

Total 62 249 29 113

Table V. Test results for Drupal.

Test sequences Test cases
Threats Sequences Test cases exposed vulner. exposed vulner.

1 Multiple login attempts login 4 24 4 20
2 Denial of service 5 5 3 3
3 User data disclosure 3 27 1 7
4 User data tampering 2 26 0 0
5 Data modification using SQL injection 1 5 0 0
6 Infinite accounts from same IP 1 1 1 1

Total 16 88 9 31

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:241–258

DOI: 10.1002/spe

256 A. MARBACK ET AL.

and 3), our test cases could expose all known vulnerabilities that are present in osCommerce. As also

expected, in the second case (threats 4 and 13), our test cases could not expose any vulnerabilities

because these vulnerabilities had been properly handled by developers. This confirms that develop-

ers’ or designers’ security concerns actually have been handled as intended. In the last case (threats 5

through 12), our test cases could expose all vulnerabilities that we have additionally identified.

In the case of Drupal, all threats except for threat 6 were taken from common attack patterns with-

out any prior knowledge of existing system vulnerabilities. Among the unknown five vulnerabilities,

our test cases could expose three of them, but the rest of them were not exposed. The reason for this

is that Drupal makes extensive use of input sanitization functions built into PHP.

The results from these applications show that test cases generated from threat trees can be

effective at exposing vulnerabilities.

5.4. Discussion

Our results show that our threat model-based security testing approach can be effective in discov-

ering unmitigated threats. Through the threat tree-based approach from the adversary’s perspective,

we could identify the threat goals that an attacker wants to realize, and these threat goals are the

targets of our security testing. Different sequences of attack actions have been derived from the

threat trees, and these sequences of attack actions represent the ways in which an attacker realizes

the threat goals and thus provide a basis for security test sequences.

The results also show that some threat trees that exposed vulnerabilities in one application could

be used to expose vulnerabilities in other application after being slightly modified. This could pos-

sibly be attributed to a few factors: (1) the programs are both written in PHP, use a MySQL database

for data storage, and are deployed on the Apache Web server; (2) both have some similar function-

ality, especially when it comes to user management authentication; (3) the programs are both Web

applications that have an identical high-level architectural design (typical three tier). The threats that

were not applicable for both applications were typically due to the areas where the programs differ

in functionality or implementation. The denial-of-service threat is a vulnerability that is present in

both applications. This is likely due to the similar architectures. The user data tampering threat is

an example where osCommerce was vulnerable and Drupal was not. This has to be due to imple-

mentation differences in the safeguards the applications use when accessing the database backend.

It should be noted that all unknown vulnerabilities discovered during this study have been reported

to the developers.

5.4.1. Threats to validity. Although our empirical results are promising, like any empirical study,

this study has limitations that must be considered when interpreting its results. One limitation

involves how the threat trees have been developed. Owing to a lack of comprehensive design docu-

mentation for our object programs, we created some threat trees from known vulnerabilities instead

of design documents. Also, because this technique requires developers to build threat trees and

the accompanying tests, the effectiveness may be directly affected by the ability of individuals

who develop threat trees. Another limitation of our study is a lack of variety in object programs.

We tried to minimize this limitation by performing realistic attacks against large, readily deployed

Web applications that have been used by a large number of users. Nevertheless, additional stud-

ies with other programs are needed to address this limitation. Another limitation comes from the

use of STRIDE to construct and categorize threats. STRIDE only covers a subset of all possible

threats that a system could possibly be vulnerable to. Our technique is, by no means, an exhaus-

tive approach for discovering all security vulnerabilities, but it does provide a systematic way for

identifying possible threats.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed threat model-based security testing techniques that systematically

generate security test cases from threat trees and conducted a study to assess our approach. These

security test cases can verify whether the system under test is vulnerable to the identified security

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:241–258

DOI: 10.1002/spe

A THREAT MODEL-BASED APPROACH TO SECURITY TESTING 257

threats. In our study, we have used two real-world Web applications to evaluate the effectiveness

of our security testing approach. Our results showed that our threat tree-based testing approach is

effective in exposing security vulnerabilities that are present in the software systems. In addition to

these promising results, our approach also provides several significant advantages for security test-

ing: (1) we could identify threat goals that an attacker wants to realize using threat trees; and (2) we

could generate executable security tests automatically from threat trees considering actual inputs.

For future work, we intend to apply our approach to more applications and perform controlled

experiments for evaluating our approach through comprehensive mutation analysis of security vul-

nerabilities according to Open Web Application Security Project’s 10 most critical Web application

security risks [45]. We also plan to integrate domain constraints of input parameters into the process

of syntax-based test input generation. To do so, we will enhance threat trees with the specification

of domain constraints. When actual inputs are to be created for a test sequence that is derived from a

threat tree, they need to satisfy all the constraints in the sequence. A potential solution is to enhance

our test input generator with a constraint solver. This technique could also be combined with the

security policy monitoring technique proposed by Wang et al. [11] to provide an oracle framework

for the generated tests.

ACKNOWLEDGEMENT

This work was supported in part by NSF under Award CNS-0855106.

REFERENCES

1. Cenzic. Application Security Trends Report Q1 2008. Available from: http://www.cenzic.com [September 2009].

2. Richardson R. CSI Survey: Computer Crime and Security Survey, 2007.

3. WebCohort, Inc. Only 10% of Web applications Are Secured Against Common Hacking Techniques, 2004.

4. Halfond W, Orso A, Manolios P. Using positive tainting and synrax-aware evaluation to counter SQL injection

attacks. In Proceedings of the ACM SIGSOFT Symposium on Foundations of Software Engineering, November 2006.

5. Kiezun A, Guo P, Jayaraman K, Ernst M. Automatic creation of SQL injection and cross-site scripting attacks. In

Proceedings of the International Conference on Software Engineering, May 2009; 199–209.

6. Lam M, Martin M, Livshits B, Whaley J. Securing Web applications with static and dynamic information flow

tracking. In Proceedings of PEPM, San Francisco, CA, January 2008.

7. Wassermann G, Yu D, Chander A, Dhurjati D, Inamura H, Su Z. Dynamic test input generation for Web applications.

In Proceedings of the International Conference on Software Testing and Analysis, July 2008.

8. Alexander I. Misuse cases: use cases with hostile intent. IEEE Softw 2003; 20(1):58–66.

9. McDermott J. Abuse-case-based assurance arguments. In ACSAC ’01: Proceedings of the 17th Annual Computer

Security Applications Conference, Washington, DC, USA, 2001; 366. IEEE Computer Society.

10. Sindre G, Opdahl A. Eliciting security requirements with misuse cases. In Proceedings of TOOLS Pacific, 2000;

120–131.

11. Wang L, Wong W, Xu D. A threat model driven approach for security testing. In The 3rd International Workshop on

Software Engineering for Secure Systems, May 2007.

12. Xu D, Nygard K. Threat-driven modeling and verification of secure software using aspect-oriented Petri nets. IEEE

Transactions on Software Engineering 2006; 32(4):265–278.

13. Martin E, Xie T. Automated test generation for access control policies via change-impact analysis. In The 3rd

International Workshop on Software Engineering for Secure Systems, May 2007.

14. Masood A, Ghafoor A, Mathur A. Scalable and effective test generation for role-based access control systems. IEEE

Transactions on Software Engineering 2009; 35(5):654–668.

15. Swiderski F, Snyder W. Threat Modeling. Microsoft Press: Redmond, WA, 2004.

16. Wysopal C, Nelson L, Zovi DD, Dustin E. The Art of Software Security Testing: Identifying Software Security Flaws

(Symantec Press). Addison-Wesley Professional: Boston, MA, 2006.

17. Xu D. Software Security. In Wiley Encyclopedia of Computer Science and Engineering. John Wiley & Sons,

Inc.: Hoboken, NJ, 2008.

18. Howard M, LeBlanc D. Writing Secure Code, 2nd ed. Microsoft Press: Redmond, WA, 2003.

19. Shahriar H, Zulkernine M. MUSIC: Mutation-based SQL injection vulnerability checking. In Proceedings of the 8th

International Conference On Quality Software, Aug 2008; 77–86.

20. Shahriar H, Zulkernine M. MUTEC: Mutation-based testing of cross site scripting. In Proceedings of the 5th

International Workshop on Software Engineering for Secure Systems, 2009; 47–53.

21. Fonseca J, Vieira M, Madeira H. Testing and comparing web vulnerability scanning tools for SQL injection and

XSS attacks. In Proceedings of the 13th Pacific Rim International Symposium on Dependable Computing, dec 2007;

365–372.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:241–258

DOI: 10.1002/spe

258 A. MARBACK ET AL.

22. Tuya J, Suarez-Cabal M, Riva C. Mutating database queries. Information and Software Technology april 2007;

49(4):398–417.

23. Jürjens J, Wimmel G. Formally testing fail-safety of electronic purse protocols. In Proceedings of the 16th IEEE

international conference on Automated software engineering, ASE ’01, Washington, DC, USA, 2001; 408. IEEE

Computer Society.

24. Wimmel G, Jürjens J. Specification-based test generation for security-critical systems. In Proceedings of the Fourth

International Conference on Formal Engineering Methods, 2002; 471–482.

25. Le Traon Y, Mouelhi T, Baudry B. Testing security policies: Going beyond functional testing. In Proceedings of the

International Symposium on Software Reliability Engineering, November 2007.

26. Mouelhi T, Le Traon Y, Baudry B. Mutation analysis for security tests qualification. In Proceedings of

Mutation, 2007.

27. Martin E, Xie T. Defining and measuring policy coverage in testing access control policies. In Proceedings of the 8th

International Conference on Information and Communications Security, December 2006; 139–158.

28. Martin E, Xie T. A fault model and mutation testing of access control policies. In Proceedings of the 16th

international conference on World Wide Web, May 2007; 667–676.

29. Mouelhi T, Fleurey F, Baudry B, Le Traon Y. A model-based framework for security policy specification, deploy-

ment and testing. In Proceedings of the International Conference on Model Driven Engineering Languages and

Systems, October 2008.

30. Mouelhi T, Le Traon Y, Baudry B. Transforming and selecting functional test cases for security policy testing. In

Proceedings of the International Conference on Software Testing, Verification and Validation, April 2009.

31. Masood A, Bhatti1 R, Ghafoor A, Mathur A. Model-based testing of access control systems that employ RBAC

policies. Technical Report SERC-TR-277, Purdue University, September 2005.

32. Blackburn M, Busser R, Nauman A, Chandramouli R. Model-based approach to security test automation. Quality

Week June 2001.

33. Jürjens J. Model-based security testing using UMLsec. Electronic Notes in Theoretical Computer Science (ENTCS)

December 2008; 220(1):93–104.

34. Thompson H, Whittaker J. Testing for software security. Dr. Dobb’s Journal November 2002; 27(11):24–34.

35. Potter B, Allen B, Mcgraw G. Software security testing. In IEEE Security & Privacy, September 2004; 2(5):81–85.

36. Oehlert P. Violating assumptions with fuzzing. IEEE Security and Privacy 2005; 3(2):58–62.

37. Larson E, Austin T. High Coverage Detection of Input-Related Security Faults. In Proceedings of the USENIX

Windows System Symposium, jul 2000; 1–10.

38. Ammann P, Offutt J. Introduction to Software Testing. Cambridge University Press: New York, NY, 2008.

39. Beizer B. Software Testing Techniques. Van Nostrand Reinhold: New York, NY, 1990.

40. osCommerce Web page. Available from: http://www.oscommerce.com/ [September 2009].

41. Drupal Web page. Available from: http://www.drupal.org/ [September 2009].

42. Symantec. Symantec Internet Security Threat Report trends for July–December 07.

43. CGI Security. The Cross-Site Scripting FAQ. Available from: http://www.cgisecurity.com/xss-faq.html

[September 2009].

44. Selenium Web page. Available from: http://seleniumhq.org/projects/ [September 2009].

45. OWASP Web page. Available from: http://www.owasp.org/ [September 2009].

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2013; 43:241–258

DOI: 10.1002/spe

