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Abstract. Dengue virus infections are a major cause of morbidity in tropical countries. Early detection of dengue
hemorrhagic fever (DHF) may help identify individuals that would benefit from intensive therapy. Predictive modeling
was performed using 11 laboratory values of 51 individuals (38 DF and 13 DHF) obtained on initial presentation using
logistic regression. We produced a robust model with an area under the curve of 0.9615 that retained IL-10 levels,
platelets, and lymphocytes as the major predictive features. A classification and regression tree was developed on these
features that were 86% accurate on cross-validation. The IL-10 levels and platelet counts were also identified as the
most informative features associated with DHF using a Random Forest classifier. In the presence of polymerase chain
reaction-proven acute dengue infections, we suggest a complete blood count and rapid measurement of IL-10 can assist
in the triage of potential DHF cases for close follow-up or clinical intervention improving clinical outcome.

INTRODUCTION

Dengue viruses (DENV) are members of the flavirirus fam-
ily that are transmitted by Aedes sp. mosquitoes and may
produce a clinically significant disease in humans. Because of
a number of factors, including urbanization, globalization of
travel, and lack of efficient chemical pesticide-based vector
control interventions, DENV infections have re-emerged as a
significant international public health problem. Worldwide,
an estimated 2.5 billion people in tropical and subtropical
regions are at risk of infection. In the Americas alone, an
estimated 890,000 cases of dengue fever (DF) were reported
in 2007 representing a significant increase from historical
levels.1 The DENV infections produce a graded spectrum of
disease severity ranging from asymptomatic infection to a flu-
like state (DF) to a hemorrhagic form (dengue hemorrhagic
fever [DHF]), characterized by plasma leakage and bleeding,
representing a life-threatening complication.2

Dengue hemorrhagic fever is the result of a complex inter-
play of host immunologic and genetic factors with DENV
serotypes and genotypes. Epidemiological studies indicate a
40–80-fold increased risk of DHF after a second infection with
a different serotype.3–5 The “antibody-dependent enhance-
ment” theory proposes that neutralizing antibodies generated
during the adaptive immune response to an infecting serotype
increases viral burden during infection with a second, different
DENV serotype.6 Virus contained within non-neutralizing het-
erotypic immune complexes enter immunocytes (particularly
monocytes and dendritic cells) through the Fc receptor.
Hyper-stimulated cells release enhanced cytokines and other
factors leading to the pathophysiological manifestations of vas-
cular leakage and coagulopathy. Other evidence points to
DHF being the result of an interplay between viral and host
factors, including cell-mediated immunity.2,7,8

The mortality of DHF is age-dependent, primarily affecting
both children and the elderly.4 In Southeast Asia, a dispro-
portionate amount of DHF hospitalizations are of children,
whereas in the Americas, there is a more even age distribu-
tion. Although DHF fatality rates can exceed 20%, early
identification and intensive supportive therapy can reduce
the rate to 1% or less9; consequently, there is clinical need
to identify predictive features of DHF early in the course
of infection.
In this study, we sought to evaluate whether combinations

of clinical and accessible laboratory tests could be used as a
surrogate for DHF. These data were analyzed by Bayesian
inference methods and a robust predictive logistic regression
model was developed incorporating IL-10 concentrations,
platelet counts, and lymphocyte counts. A classification and
regression tree (CART) was evaluated. Although CART clas-
sification was less accurate than that produced by logistic
regression, IL-10 and platelet counts were identified as the
most informative predictive features.

MATERIALS AND METHODS

Ethics statement. This informed consent study was conducted
under a human subjects study protocol no. NMRCD.2005.0007
(Active Dengue Surveillance and Predictors of Disease
Severity in Maracay, Venezuela) approved by the Centro de
Investigaciones Biomedicas de la Universidad de Carabobo
(BIOMED-UC), Maracay, Venezuela, and the Naval Medical
Research Center institutional review boards in compliance
with all applicable federal regulations governing the protec-
tion of human subjects.
Study population. Active surveillance for people with den-

gue infection was conducted in Maracay, Venezuela. Febrile
subjects with signs and symptoms consistent with DENV
infection who presented at participating clinics and hospi-
tals,10 or who were identified by community-based active sur-
veillance, were included in the study (Table 1). On the day of
presentation, a blood sample was collected for dengue virus
reverse transcription-polymerase chain reaction (RT-PCR)
confirmation and clinical testing.11 Individuals with confirmed
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DENV infections were consented and monitored for clinical
outcome, and DF and DHF cases were scored following World
Health Organization (WHO) case definitions.12

Complete blood cell count. Whole anticoagulated venous
blood upon presentation is obtained from each volunteer.
Complete blood cell count was performed with the QBC
automated system according to the manufacturer’s instruc-
tions (Becton-Dickinson, Franklin Lakes, NJ).
RT-PCR. Viral RNA was prepared from 140 mL sera using

QIAamp Viral RNA Mini Kits following the manufacturer’s
instructions (Qiagen Inc., Valencia, CA). Nested dengue virus
RT-PCR was performed on serum samples for virus detection
as described previously.11

Multiplex bead-based cytokine measurements. Plasma sam-
ples were analyzed for the concentrations of 9 human cyto-
kines (IL-6, IL-10, IFN-g, IP-10, MIP-1a, TNFa, IL-2,
vascular endothelial growth factor [VEGF], and TNF-related
apoptosis-inducing ligand [TRAIL]) according to the manu-
facturer’s recommendations (Bioplex, Bio-Rad, Hercules,
CA). For each analyte, a standard curve was generated using
recombinant proteins to estimate protein concentration in the
unknown sample. For the purposes of modeling, the cytokine
values were logarithm base 2(log2)-transformed to approxi-
mate a normal distribution.
Bayesian variable selection for generalized additive models.

To select the models of predictors between smoothing
nonlinear terms and linear effects, we performed Bayesian
variable selection in generalized additive models (GAM,
implemented in the R package spikeSlabGAM13).
Statistical analysis. The best subsets logistic regression pro-

cedure was performed to eliminate covariates and select the
best list of predictive variables for model generation. The
criteria for selection were based on minimizing the mean
squared error of prediction using the Akaike information
criteria (AIC)/Bayesian information criteria (BIC). The AIC/
BIC was used in our modeling approach because the results
for AIC/BIC converge with those produced by leave-one-out
cross validation in larger data sets14 and because of its ease of
implementation. For this modeling SAS, version 9.1.3 (SAS
Institute, Inc., Cary, NC) was used.
Generalized additive models (GAM). Generalized additive

models were estimated by a backfitting algorithm within a
Newton-Raphson technique. We used SAS 9.2 PROC GAM
(SAS Institute, Inc.) and STATISTICA 8.0 (StatSoft Inc.,
Tulsa, OK) to fit the GAM fittings with the binary logit link
function that provided multiple types of smoothers with auto-
matic selection of smoothing parameters.
Classification and regression tree modeling. Decision tree

model building was performed with CART (Salford Systems,
San Diego, CA). The CART is an iterative classification method
for variable selection and predicting categorical response vari-

ables that uses a splitting rule to identify a predictive variable
and a cutoff that best breaks the population into homogenous
classes. The splitting rule used was entropy. Because of the study
design, modeling was performed assuming equal likelihood of
the DF or DHF classification (equal priors). The model was
tested using 10-fold cross-validation to prevent overfitting.
Random forests classifiers. Random forests (Salford Sys-

tems) built an ensemble of CART trees using a bagging
(bootstrap aggregation) technique. A large collection of decor-
related trees are produced and averaged. Variable importance
plots are used to evaluate the information content of indi-
vidual features.

RESULTS

Study population. Subjects were enrolled in the study who
presented with a new fever (oral) equal to or greater than
38˚C, accompanied by two or more of the following mani-
festations: myalgia, arthralgia, leukopenia, rash, headache,
lymphoadenopathy, nausea, vomiting, positive tourniquet test,
thrombocytopenia, or hepatomegaly.10 The clinical character-
istics of the study population are shown in Table 1. The indi-
viduals that developed DF were aged 15.8 ± 7.8 y (N = 38),
whereas the individuals that developed DHF were aged
19 ± 13.4 y (N = 13; not significant). Using the 2009 WHO
criteria,15 all 13 DHF had dengue with warning signs; of these
three were classified as severe dengue (C) caused by plasma
leakage and severe bleeding. None of the severe dengue cases
had evidence of shock. There was no significant difference
between the groups by duration of fever before study enroll-
ment. On the day patients presented at clinics, platelet counts
were lower in the DHF group (105 ± 33 + 10

3/mL) than DF
group (159 ± 41 + 10

3/mL; P < 0.001), and the frequency of
diarrhea was greater in the DHF group (P = 0.021 Fisher’s
exact test). All four dengue serotypes were represented in the
study (distribution shown in Table 1).
Multivariate logistic regression modeling for DHF-Bayesian

feature reduction. Within the study population, we selected a
feature set of 11 parameters including gender, clinical signs
(days of fever, diarrhea), laboratory measurements (lymphocyte/
neutrophil/platelet counts, hemoglobin concentration, red
blood cell count) and cytokine concentrations (IL-10, IL-6,
TRAIL). Because the underlying data structures of the fea-
ture set dictates the selection of an appropriate modeling
approach, we analyzed the contributions of parametric (linear)
or nonparametric (spline) features using Bayesian variable
selection.13 This method produces a hierarchy of structured
model selections for parametric and nonparametric relation-
ships to the outcome for each feature. The posterior probabil-
ities for the linear and spline components are shown in
Table 2. The linear component of the log2-transformed IL-10

Table 1

Study population for the dengue fever (DF) and dengue hemorrhagic fever (DHF) groups

Outcome Age (y)

Gender (no.)

Platelets (103/mL) Lymphocytes (103/mL)

Fever (duration, d) Diarrhea Dengue virus (DENV) serotype

Males Females 2d 3d 4d 5d 6d 8d N Y 1 2 3 4

DF (N = 38) 15.76 � 7.82 19 19 159 � 41* 46.31 � 13.48 2 5 14 14 3 0 33 5 20 6 8 4
DHF (N = 13) 19 � 13.4 3 10 105 � 33 36.9 � 14.86 0 0 2 8 2 1 7 6 2 8 2 1

*P < 0.01.
Note: Shown are the mean age, gender, platelet and lymphocyte counts, duration of fever before study enrollment (in days, based on subjects recall), presence of diarrhea, and dengue serotype

obtained upon entry into the study.
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(L-IL10) had a marginal inclusion probability (P*[gamma = 1])
of > 0.5, indicating L-IL10 could be considered as a parametric
feature. Similarly, the linear component of gender (P*[gamma =
1] > 0.25) and the lymphocyte count (P*[gamma = 1] > 0.25)
all had high posterior probabilities that were related to the
disease outcome.
The Bayesian feature selection approach suggested that

linear components of the feature set were related to outcome.
The feature set was therefore analyzed by c2 analysis,
an approach that assumes the features have a linear relation-
ship with outcome. The rank-ordered list of features included
plasma IL-10 (c2 = 17), platelet count (c2 = 14.2), lymphocyte
count (c2 = 5), IL-6 (c2 = 6.602), presence of diarrhea (c2 =
6.234), days of fever (c2 = 5.938), hemoglobin concentration
(c2 = 5.210), and lymphocyte count (c2 = 5.056) were the
features with the largest c2 values. A box-plot presentation
of these features by outcome is shown in Figure 1, where log2-
transformed IL-10, log2-TRAIL, log2-IL-6, and circulating
neutrophils concentrations were increased in the DHF popu-
lation relative to that of the DF population, with the remainder
being decreased.
Logistic regression modeling of DHF. Because the feature

reduction suggested that the clinical and laboratory data were
linearly related with outcome, we used a logistic regression
modeling approach for the prediction of DHF. Model build-
ing was performed using best subsets selection starting with
the entire feature list (Table 2). Of the input variables, initial
platelet and lymphocyte counts and log2-IL-10 concentration
were features retained in the model. The odds ratio and
95% confidence limits are shown in (Table 3). Increases in
IL-10 concentrations were associated with an increased prob-
ability of DHF, whereas decreases in platelet and lymphocyte
counts were associated with an increased probability of DHF.
Model diagnostics. The receiver operating characteristic

(ROC) curve was used to evaluate the model performance.16

The area under the ROC (AUC) is equivalent to the proba-
bility that two cases, one chosen at random from each group,
are correctly ordered by the classifier.17 In the DHF logistic
regression model, an AUC of 0.9615 was obtained (Figure 2).
Overall, these findings confirmed the excellent performance
of the logistic regression model on this data set.
To confirm the logistic regression model, we conducted a

Bayesian variable selection, model choice, and regularized
estimation in GAM fits separately modeling the parametric
and nonparametric components of the features. The c2 statis-
tic in the linear component analysis of deviance was statisti-
cally significant (Table 4, top), where the parametric (linear)
components for L-IL10, platelets, and lymphocytes were
highly significant with P values, whereas the nonlinear

“smoothing” components of the IL-10, platelets, and lympho-
cytes are not significant at the level alpha of 0.05 with the
GAM fit (using 3 degrees of freedom). Because the nonlinear
components were not independently contributing to the
model, the GAM analysis was repeated for the linear compo-
nents only (Table 4, bottom). Here, P values of 0.037, 0.022,
and 0.035 were obtained for L-IL10, platelets and lympho-
cytes. These values were equivalent to the results produced
by logistic regression. Additionally, because the P value
equaled 0.895 using the Hosmer and Lemeshow goodness-of-
fit test, we concluded that the logistic regression response
function is appropriate. Together, these data further validate
the parametric modeling approach using linear regression.
Finally, we examined the distribution of residuals for the

logistic regression model. Residual plots of the predictors are
useful for examining if individual points are not well fit or
influence model performance. We used the deviance residual,
partial residual, influence on single fitted value, and influence
on the regression coefficients to identify influential observa-
tions (not shown). Two outlier/influential data points were
identified. The logistic regression model building, including
or excluding these observations, produced no significant dif-
ference of P values for the IL-10, lymphocytes, and platelet
coefficients indicating that the model was robust.
CART decision tree. To aid in the clinical application of

the logistic regression model, we sought to represent the three
predictive features as a decision tree. The CART is a machine
learning tool that seeks to identify the best cutoff for each
analyte that produces the most accurate classification of
DHF or DF. Performing 10 trials using 10-fold cross-validation
resulted in the best model with an average accuracy of 84.6%
for DHF and 84.0% for DF (Figure 3). Here, four terminal
nodes (indicated in red) are produced by the CART classifier.
Twenty-five of the DF cases were predicted on the basis of
platelet count alone; another six were identified on the basis
of low L-IL10 concentrations and low lymphocyte counts. The
AUC for the test data was 0.87.
Random forest classification. To extend the CART analy-

sis, a Random Forest classifier was constructed. Random For-
est generates an ensemble of regression trees, and from this,
variable importance can be calculated. Variable importance is
the relative measure of the influence of the variable on model
accuracy. Analysis of the variable importance confirms that
L-IL10 and platelets are the two most important variables in
the classification, whereas hematocrit and age were least
important (Figure 4). We interpret the finding that both the
logistic regression and random forest models converge on
IL10 and platelets indicate that these features are robust pre-
dictors of disease.
Correlations with clinical symptoms. Finally, we examined

the correlation between the prominent dengue symptoms
(headache, chills, rash, myalgia, cough, and diarrhea) with these
two highly informative features (platelet count and IL-10).
Weak, but significant correlations were between the presence
of rash and platelet count (r = 0.311, P < 0.027), and diarrhea
with IL-10 (r = 0.280, P < 0.047).

DISCUSSION

Because previous work has shown that the mortality of
DHF is improved with early detection and intensive treat-
ment,9 the identification of predictive models that aid in early

Table 2

Marginal posterior inclusion probability and term importance

Coefficients P (gamma = 1) Pi Dimension

Linear (LIL10) 0.751 0.773 1**
Spline (LIL10) 0.001 0.000 8
fct (sex) 0.392 0.070 1*
Linear (platelets) 0.136 0.059 1
Spline (platelets) 0.053 0.001 8
Linear (lymphocytes) 0.458 0.098 1*
Spline (lymphocytes) 0.011 0.000 8

* P (gamma = 1) > 0.25; ** P (gamma = 1) > 0.5.
Note: Shown are the posterior model probabilities from the MCMC 8,000 samples from

8 chains, each ran 5,000 iterations after a burn-in of 500.
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Figure 1. Box plots of differentially expressed laboratory values. Shown are the data for cytokines and laboratory measurements for dengue
fever (DF) and dengue hemorrhagic fever (DHF) groups. Horizontal bar, median value; shaded box, 25–75% interquartile range (IQR); error
bars, median ± 1.5 (IQR); black circle, outlier.
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detection of DHF will have an important translational impact
in the clinic. Identification of single predictive biomarkers has
been elusive; however, the combinations of clinical features
and laboratory tests may be informative. Here, we sought to
identify predictive models based on assessable measurements
that would be currently available in the clinic and laboratory.
A major challenge in multivariate modeling is to identify the
appropriate modeling approach; the performance of various
modeling approaches is highly dependent on the underlying
data structures. We have approached this problem using
Bayesian modeling, a powerful technique that can model both
parametric and nonparametric components of predictive fea-
tures. This analysis suggested to us that parametric modeling
approaches could be applied to these clinical features, a find-
ing that was confirmed by the c2 analysis. A logistic regression
model was produced using best subsets selection, which seeks
to identify the most meaningful covariates in the group of
features related to the probability of DHF. The IL-10, plate-
let, and lymphocyte concentrations were retained in the
model with statistical significance. A random forest classifier
also identified IL-10 and platelet count as the major informa-
tive features for DHF. These laboratory values have special
relevance to the pathogenesis of DHF.
Previous studies have shown that clinical laboratory mea-

surements obtained at the time of initial clinical presentation
can partially predict DHF. In a cohort of Thai children
presenting within 72 h of symptoms, CART analysis was
developed to identify features that predict severe dengue
illness.18 The best CART model produced had a 97% sensi-
tivity for predicting severe dengue illness, but only correctly
excluded 48% of non-severe cases.18 The splitting variables

identified included white blood cell, monocytes, platelet
counts, and hematocrit.18 Another CART model that differ-
entiated acute dengue from non-dengue febrile illness identi-
fied thrombocytopenia as an important discriminating variable.19

Our study confirms the prognostic importance of reduced plate-
let counts for DHF. We observe here that the addition of
systemic IL-10 levels provide much more predictive accuracy
than that produced by circulating cell counts. Of importance,
our logistic regression modeling outperformed the CART
approach, with an overall AUC of 0.9615. Moreover, logistic
regression is a classification approach that provides prob-
abilitistic information for development of DHF, a feature that
will aid in future validation studies. Because of the spectrum
of DHF severity in our study, we are not able to evaluate the
performance of our classifier on the most severe forms of DHF.
Larger studies including caseswithmore severitywill be required
to resolve this issue.
Our study indicates that IL-10 measured approximately

within 1 week of fever is highly related to the risk of develop-
ing DHF. We note that IL-10 is an immunosuppressive cyto-
kine20 secreted by primary monocytes in response to DENV
infection mediated by antibody-dependent enhancement.21,22

Interestingly, IL-10 production reflects active infection,
because its secretion by monocytes is replication dependent,
and not induced by Fc receptor ligation.21 The detection of
increased IL-10 in our DHF samples from acutely infected
patients is consistent with this observation in vitro. Previous
work has shown that IL-2, IL-4, IL-6, IL-10, IL-13, and IFN-g
are found in plasma in increased concentrations in patients
with severe dengue infections.23 Moreover, in a prospective
study of a single serotype outbreak in Cuba, IL-10 was
observed to be higher in severe dengue infections.24–26 The
appearance of IL-10 in our predictive model therefore has
biological plausibility. It is important to point out that the
predictive information of IL-10 appears to be constrained to
times of initial presentation. In data not shown, IL-10 mea-
surements obtained in the same individuals 5 days after study
enrollment were not significantly different between DF and
DHF. This finding suggests that different protein profiles are
produced as the infection evolves.
Reduced platelet concentrations were also identified as

being associated with DHF in this study. Thrombocytopenia
is a well-established feature of DHF, responsible in part for

Table 3

Adjusted odds ratios for dengue hemorrhagic fever (DHF) logistic
regression model

Effect Point estimate 95% Wald confidence limits

Platelet count 0.964 0.934 0.994
Lymphocytes 0.890 0.802 0.989
IL-10 5.944 1.172 30.136

Figure 2. Receiver operating characteristic (ROC) curve for the
LR model of dengue hemorrhagic fever (DHF). Shown is an ROC
curve for the LR predictive model for DHF. Y axis, sensitivity; X axis,
1-specificity.

Table 4

Model analysis of deviance tests

GAM analysis incorporating both linear and smoothing components

Parameters df c2 Pr > chisq

Linear (L-IL10) 1 3.460 0.071*
Linear (platelets) 1 6.000 0.019**
Linear (lymphocytes) 1 3.725 0.060*
Spline (L-IL10) 2 5.577 0.162
Spline (platelets) 2 2.562 0.278
Spline (lymphocytes) 2 3.341 0.188

GAM analysis incorporating only linear components

Linear (L-IL10) 1 3.460 0.037**
Linear (platelets) 1 6.000 0.022**
Linear (lymphocytes) 1 3.725 0.035**

Note: Two generalized additive model (GAM) analyses are shown. For each, the dengue
fever (DF), degrees of freedom (df), and dominant factors significant at the level = 0.1 (*)
and 0.05 (**) are shown for each parameter. L-IL10, Log2-transformed IL-10 concentration.
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an increased tendency for cutaneous hemorrhages. The origin
of thrombocytopenia in DHF is multifactorial, because of the
consequence of both bone marrow depression and acceler-
ated antibody-mediated platelet sequestration by the liver.27

Cell-mediated immunity is an important protective immune
mechanism to dengue infections. Although circulating lym-
phocyte counts are not reflective of cellular activation, our
study indicates that patients who develop DHF have reduced
lymphocyte concentrations at presentation. A prospective
study of 91 subjects with DENV infection in Taiwan
described that a lower percentage of “typical” lymphocytes
were observed in subjects with severe dengue infection.28 Our
findings here indicate that lymphocyte counts are also
reduced in DHF, but lymphocyte concentrations are not as
informative as IL-10 concentrations and platelet counts with
disease outcome.
Our study will need to be replicated and validated in

a larger study population. Replication will need to include
both testing whether IL-10 measurements using a clinical
laboratory-based enzyme-linked immunosorbent assay is dis-
criminatory of DHF and re-establishing the optimal cutoff
value of IL-10 for a larger population. To aid in these poten-
tial validation studies, we have subjected the three features

Figure 3. Classification and regression tree (CART) for prediction of dengue hemorrhagic fever (DHF). Shown is a CART decision tree for
classification of DHF. The number of dengue fever (DF) and DHF cases in the study population and their percentage is indicated in each node.
Terminal nodes indicated by red.

Figure 4. Feature importance analysis using Random Forests.
Shown is a variable importance plot for the prediction of dengue
hemorrhagic fever (DHF) using Random Forest classifier. Variable
importance (X axis) is computed as 100% times the change in the
margins averaged over all cases. Abbreviation: L = log2-transformed
cytokine concentration.
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identified by probabilistic logistic regression modeling to
CART analysis. The CART trees are readily human inter-
pretable as simple decisions that result in a classification. We
emphasize that the CART model here does not quite perform
as well as the logistic regression model (in terms of AUC).
Nevertheless, the CART analysis suggests that the subjects
with dengue infections have specific characteristics; those
with high platelet counts (> 147.5 + 10

3/mL) are very likely to
have uncomplicated DF (represented as Node 4, Figure 3),
whereas those with low platelet counts (< 147.5 + 10

3/mL) and
high IL-10 are likely to have DHF (represented as Node 3,
Figure 3). The group with low platelet counts, low IL-10
concentrations, and low lymphocyte counts are equally
represented by DF and DHF outcomes.
In summary, parametric modeling approaches using acces-

sible laboratory data (IL-10, platelets and lymphocyte counts)
from patients acutely presenting with RT-PCR-confirmed
dengue infections show promise for the early detection of
DHF. These predictive models will require further validation
on independent study populations.
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