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ABSTRACT

The motion of an electron beam through a longitudinally varying
period undulator for a single-pass free—electron laser is studied.
It is shown that, under certain conditions, the electrons are trap-
ped in an optical "bucket", and deliver on the average more energy
to the laser field than in constant period undulators of comparable
parameters. The limits set by a finite beam emittance and energy
spread are studied in detail by three-dimensional computer simulation.

L. INTRODUCTION

A single-pass free-electron laser (FEL) using a wiggler magnet
with either the period, Aw’ and/or the magnetic field, B, varying
along the magnet axis has been proposed recently.” The main advantage
of this system over a '"conventional" free-electron laser, having a
constant period and magnetic field wiggler, is in the higher effi-
ciency of the energy transfer from the electron beam to the laser
radiation field. This efficiency, which is of the order of 1% in a
conventional FEL, can be of the order of 30% in a variable wiggler

FEL.

The theory of the variable wiggler FEL is based on a one dir -
sional model, in which the electron motion transverse to the laser
axis is assumed to be given, and only the motion parallel to the axis
is studied. In this paper, we want to study the effect on the laser
efficiency of the electron transverse motion and evaluate the electron
energy loss for a beam having a spread in angle and in the transverse
position at the wiggler entrance.
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The complete three dimensional equations -of motion for an elec-
tron interacting with the laser field and the wiggler field are
integrated numerically. We only consider the case of a small gain
regime, assuming that the laser field intensity remains constant. .
We also limit ourselves to the case of a helical wiggler. The results.
are compared with the one dimensional model. The effect of the initial’
position and angular spread can, to a good approximation, be consider-
ed equivalent to an increase in the energy spread. the limits for
this increased energy spread that must not be exceeded in order to
avoid a loss in efficiency are nearly the same as in the one
dimensional model. ' '

II. THE EQUATIONS OF MOTION

To describe the energy exchange between the electrons and the
radiation field, we use the single particle model developed by
Colson.? We write the electron equations of motion in the wiggler
field, B, and laser field, EL, By, as

1d@By) _ .* * *
¢ dt =E ¢ §_><(§L+1_3w) (1)
ldvy _ o*,

cat " BB 2)

where B is the electron velocity in units of the speed of light, c;
Y is the electron energy in units of m c2, the rest energy; the
fields E°, B" are normalized as
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We decompose the velocity in a component, f£,, parallel to the
w1ggler axis, z, and in the components By, B along the directions
X, y orthogonal to the wiggler axis. We assume

B = 15 By, By << 1 | | (5)

.We use for the laser and the helical wiggler fields the following
.exnressions

E; = E;{;c sin [% (z—-ct) + ¢o]
' (6)
+ § cos [%F—(z-ct) + ¢0 ] }
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To write the wiggler field in the form (8) we have made the following
assumptions:

*

i) the field intensity B_ and the period are slowly varying

functions of z, so that

w

dx
w
dz

we have neglected all terms containing these derivatives;

ii) we considered an expansion of the field in powers of x and y
‘near to the wiggler axis, neglecting all terms quadratic or of higher
order in 2mx/Xy, 2ny/kw.

To determine the electron motion and energy change, we will use
the equation (2) for y and the equation (1) for 8_, B_. The parallel
velocity is then determined by the relationship y

L

1 2
v = 1l - —-p2 - 2] 10
B [ y2 % T By A . (10
For convenience we will use the variable
t : .
z={ cg (t') dt' (11)
. o

instead of t, the '"polar" quantities

ei (a+¢w)

By =B, +i8, (12)
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and the relative phase of the electron and the radiation field

2,
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The complete set of equations can now be
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III. REDUCTION TO THE ONE DIMENSIONAL MODEL

We have solved the system of equations (15) to (21) by numerical
integration. It is, however, useful to reduce the system to the form
used in the one dimensional model and to describe briefly some of the

main results obtained from it.

A equations of
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In this case, the particle trajectory is a helix of pitch angle B,
and radius p = Blkw/Zn.

Using (10) we have

1

29 2 2

5, = [:1_1+K] . 1_1+1< (24)
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and from (15), (16)
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Following réference (1) we define a resonant energy
2 = 2 ‘ ' ,
YZ = A, (14K2)/2) @n

and a synchronous phase,:cpr

de_ . * . . RN
sin ¢r = I /2 KEL , | (28)

The particles inside the "optical bucket" of width (A¢,Ay) will
oscillate around ¢, Ypo and their average energy variation will be
equal to the change in y,.. In the following, we assume that the
change in y, is due to a change in A while K remains a.constant.
For a wiggler of length Lw,’one obtailns

2 -2 -
Yr(Lw) yr(o) 2K E L. (29)

The efficiency is then defined as

Oy @),

no Y, (0) 27 (30)

havirg assumed that the initial distribution of the phase is uni-
form in the interval 0-27. Assuming ¢r to be in the interval
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m, 5m, we have

2
B =3 -4 - - (31)
where ¢* is a solution of the equation .
v = VG -8y | (32)
with . , -
V() = cos¢ + ¢ sin o | - (33)

The bucket '"height"
byg=v - v,
is given by
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Notice that in the case K= constant, the quantity (Ay/Yr) is
independent of z. '

All these results are valid for particles injected. with initial
velocity By, = K/v, By = 0, and on axis. For particles injected off
axis, the motion will Be a superposition of the helical motion and
an oscillation of reduced wavelength

Ag = /2yxw/2nx

The amplitude of this oscillation is equal to the initial displace-
ment r, for a particle injected off axis, or to /fy'xw AB/27w K for a
particle injected at an angle. A particle executing this oscillation
will experience a different magnetic field from a.particle on axis

2
2 Y A ‘
T B e (39)
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The change in Bw is equivalent to a change in K and hence to a change
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and, using (35)

, _
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If the electron beam has an energy spread Ay/y, we can define a
total energy spread

[ ]

and assume that when the condition
{QIJ < [él} (39)

T
is satisfied, the efficiency is still given to a good approximation
by (34).

The validity of this assumption can be tested comparing (34)

with the results obtained from the numerical integration of (15) to
(21). This will be done in the next section.

Before closing this section, we notice that introducing the
transverse electron beam emittance

€ = mrAB ’ (40)

and assuming that the electron beam has cylindrical symmetry, we can
rewrite (37) as

.0
Y)eff

N

(41)
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IV. NUMERICAL RESULTS

The Eqs. (15) through (21) have been integrated numerically, for
various initial values of the quantities vy, ¢, B,, a, and r. The
wiggler wavelength A was assumed to vary linearly along the (helical)
wiggler according to

ka = Ao (1 - z/o) . (42)



With this, and from the definition of Eq. (28), the resonant phase
angle becomes

A

_ X WO
¢ = arsin Zore, | (43)

A set of the free-electron laser parameters chosen for the
calculations is shown in Table 1.

Table 1. Free-electron Laser Parameters
Wiggler wavelength'(initial) _ Awo =2 cm
Wiggler overall lengtﬁ Lw =2.5m
Wiéglér taper length {Eq. (42)} 0 =5m
Wiggier parameter {Eq. (21)} K=1
Radiation wavelength A =10 pym
Resonant "energy" {Eq. (27)} Y o = 44733
Normalized rad. field {Eq. (3)}  E, = 341’

1

- As already mentioned in Sect. III, if the electrons are injected
into the wiggler at a radius given by '

- x =22 [4n2p | |
r X k /4w Py , (44)
where p = moyoc/eB is the cyclotron radius in the field B , and
with a transverse veloc1ty given by (22), (23), they move along a
helical path close to the wiggler axis.

Figures 1 and 2 show a set -of calculated curves of the energy y
vs. distance z along the wiggler in the two cases of 0 = 5 m and 15 m,
for a monochromatic bundle of 16 electrons with initial energy equal
to the resonant energy; Yo = Yro» injected exactly on the helical
path defined by Egs. (22), (23), (44), and with 16 equidistant start-
_ing phas. bo between O and 2w.

Here, the resonant energy .. decreases with z according to

y =y » | : (45)

r ‘'ro w WO

The capture of some of the electrons in an energy phase bucket
arOund-& shows clearly. : .
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Fig. 1. Normalized energy y vs. distance z along the wig'gler.AMonochromatic
electron bundle with Yo = y.r“(.‘)' = 44,733 injected on helix. Case ¢ = 5m.
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Fig. 2.

5 m
1.063 T
1 I 1 L
50 100 150 200 250

Z(cm)

Normelized energy vy vs. distance z along the wiggler. Mono-

chromatic electron bundle with y =¥y = 44.733 injected
. o TOo
on helix. Case ¢ = 15 m.

Figures 3 and 4 show the trajectories of the representative
points. of the electrons in phase-space for the same cases. Here, the
values of bucket parameters, from Eq. (43) and from Eqs. (31), (34),
given in Table 2, appear to agree well with the numerical results.
However, both the bucket height and width shown in Figs. 3, 4 are of
the order of 107% smaller than the theoretical values. :

Table 2. Phase Space Bucket Parameters

6 = 5m 15 m
Resonant ''energy" Yoo © 44.733
Resonant phase : ‘ ¢r = 1.200 7 1.063n
Energy height of bucket 8l - 1.63y 2.78%
Yr)B
$* = 0.867m 0.475
Limit ang.es for bucket
) 3n—¢r.= 1.800w 1.937 w
Phase width of bucket Ay = 0.933 7 1.462 7

Efficiency Eq. (30) n = 13.7% 6.4%
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Fig. 3. Phase space trajectories of electrons injected on a helix.
0 = 5 m. The capture width appears somewhat smaller than
A shown (see Table 2). '
200} - oc=I5m _
100+ T/\/—
. //\
> 0 ) "
o~ O o2/ AY\ T2 T - 3m/2 2T ¢
™ 2)”( ')B\__r/\
-100} 4 =
e Ad 2!
-200 =

Fig. 4, Phase-space trajectories of electrons injected on a helix.
Case ¢ = 15 m.
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Once established the conditions for capture and energy loss of
paraxial electrons with resonant energy, we moved on to find how a
real beam, with finite emittance, behaves. As it has been shown in
Sect. III, a finite radius of the beam and a transverse velocity
spread around the values given by Eqs. (44), (22), (23), should act
as an additional energy spreacd. <

In our calculations, we assigned a parabolic shape to the density
distribution of the beam in the y, r, B, and a spaces, while the
density in phase ¢ was always taken as uniform. To reduce the number
of cases, we limited ourselves to consider separately the y, r, B, and
o sections of the four-dimensional phase space density volume. -

Results for 0 = 5 m are shown in Figs. 5 through 8.

— 2l — (3,
0o 002 003 004

-0.0! (l?l

-0.05

o=5m
- [(87/7)0 ]2
(8y/7 Juax

-0l0}F

Fig. 5. Average energy loss <8y/y>, relative statistical standard
deviation W/y and weighted average energy loss as a func-
tion of the initial energy. Electrons injected on helix.

= 5 m. For comparison, the "height' of the bucket from
Table 2 is also shown.
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Figure 5 shows the average (respect to the initial phase,¢ )
energy loss <6y/y> and its statistical standard deviation W, as a
function of the initial energy. '

The bucket effective height, defined at the half maximum noint,
obtained from Fig. 5 is (ay/y,) = 1.31%. This value is almost 20%
smaller than the value (Ay/y)B given in Table 2. Correspondingly, the
maximum energy transfer, averaged over the phase, is 127% instead of
the value of 13.47% given in the Table.

The values of W show also a pronounced peak within theé bucket,
where, because of the capture mechanism, the statistical distribution
of final energies exhibits two well separated maxima. -

In the same Fig. 5, we give also the average energy loss, weight-
ed on a parabola. This shows that in the present case, a paraxial

0.5 -
1 ) I I 1 1 J
- 0.0 0.20 0.30 . 040
r/)\wO

Fig. 6. ‘Average energy loss <8y/y> and relative statistical stan-
dard deviatibn W/y as a function of initial radius, for
By, = K/y and Yo = ¥po- 0 = 5 m. The "capture" radius is
also shown for comparison.



beam with 5% initial energy spread loses still on the average 6% of
its energy to the radiation field. If the initial energy spread is
equal to (Ay/Yr)B, the average energy loss is only reduced from 12%

to 117%.

_ Figure 6 shows analngnus results for a beam with finite radial
extension. According to Eq. (37), a spread in radius is equivalent
to a spread in ‘energy - ' '

Ayyp  _1 K
Y 2

2 : o
2rr ‘ . (46)
14K2 ‘

)\W
rad .

which gives, by assuming Ay/y = 1.63%, a limiting value

Teape/Mw = 0.0406

T 1
2B,0/(KA)

—-—
- -
-

~0.05

-0.10+

= /
o=5m \ ,

-
-

-0.15 - .
0.5 1.0 1.5
Bio/(K/y)

Fig. 7. Average energy loss <§y/y> and relative statistical stan-
' dard deviation W/y as a function of the initial transverse

velocity, for xj = rj and Y, = Yyo.0 = 5 m. The "capture
transverse angle' is also shown. . ‘

:_5 14
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in good agreement with the results.

Figures 7 and 8 show the effect of a transverse velocity disper-
sion around the values (22), (23): From Eq. (37) it appears that the
limiting value for capture of B, equals the ratio of oot O the
‘reduced wavelength of the long wavelength oscillations of the elec-

tron trajectories in the wiggler.

Hence
K. Teapt .Zn‘rca el kK -
capt ¥ f /2 w Y ,

Fig. 8. Average energy loss <8y/y> and relative statistical stan-
dard deviation W/y as a function of initialislant angle o ,

fq?_xo = r,-and B, = Kfy.oc =5 m: acapﬁ ?g'a;so shown.

.
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and, with the present values,

B,

L, capt ‘/(K‘/Y) =1+ 0.180

again in good agreement with the results.

The same holds for the angle o that the vector B, makes with-the
tangent to the ideal paraxial helix. Limits for o , when Blo = K/yo,
are : . '

2r “capt |
= 4+ LT _capt _ + 0.180

o‘capt T /3 Aw -
and they appear to bound well the calculated capture peak.

' Both Figs. 7 and 8 show a fine structure in the behaviour of
bAy/y vs. B, and vs. a. They are not surprising since we did not

0.05 m— T I T T

2, -

1 I N 1 |
-0.04 - -0.02 ‘0 _ 0.02 0.04 i
. . _ |
(5

Fig. 9. Average energy loss <6y/y>land relative'standé:d deviation
© W/y as a function of initial electron energy. ¢ = 15 m..
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average the results over the complete phase-space emittance of the
electron beam, but limited ourselves to representative points on the
axes. No systematic study of this fine structure was made.

Results of the numerical calculations for the case 0 = 15 m are
shown in Figures 9 through 12.

Figure 9 shows <8y/y> and W/y as a function of the initial elec-
tron energy, for electrons 1n3ected exactly on a helix. In the figure,
the value of the capture energy spread ("height of the bucket") from
Table 2

AY) o 4 2,78y
YrB

is also.shown.

Figures 10 and 11 show <8y/y> .and W/y as a function of r_ and

0 l I T
| LK/’c/)‘wo
-0.05 c=15m ]
1 1 l
Q- ' 0.05 0.10
'o/)‘wo

Fig. 10.° Avéfage:energy loss <6y/Y> and W/y as a function of
injection radius. ¢ = 15 m. '
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B,, respectively, with their capture ranges

r /A = 0.053
¢’ “wo

[BLOJ -1=2% 0.234 A ,
Outside these ranges, the calculations gave as result oscilla-
tions in <§y/y> as large as 37%. However, by averaging over starting

points on the phase-space ellipses

2 2
2nr) S L x® (88, )2 = const (49)
A 2 =0

wo K

the <8y/y> was reduced to 0.8%.

Figure 12 shows <8y/y> and W/y as a function of the slant angle
a - Capture range for o is also shown.

L T |

0 <— 2AB, o/ ki) —

-0.05
1 I ]
0.5 ' 1.0 . 1.5
Byo/tksy
Fig. 11. Average energy loss.<6yly> and standard deviation W/y as

function of initial transverse velocity 810. c =15 m.
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Average energy loss <8y/y> and standard deviation W/y as a
function of initial slant angle a . 0= 15 m.



