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ABSTRACT

The motion of an electron beam through a longitudinally varying
period undulator for a single-pass free-electron laser is studied.
It is shown that, under certain conditions, the electrons are trap-

ped  in an optical "bucket", and deliver  on the average more energy
to the laser field than in constant period undulators of comparable
parameters. The limits set by a finite beam emittance and energy
spread are studied in detail by three-dimensional computer simulation.

I.   INTRODUCTION

A single-pass free-electron laser (FEL) using a wiggler magnet
with either the period, Aw, and/or the magnetic field, Bw, varying
along the magnet axis has been proposed recently.1 The main advantage

of this system  over a "conventional" free-electron laser, having   a
constant period and magnetic field wiggler, is in the higher effi-

ciency of the energy transfer from the electron beam to the laser

radiation field. This efficiency, which is of the order of 1% in a
conventional FEL, can be of the order of 30% in a variable wiggler
FEL.

The theory of the variable wiggler FEL is based on a one dir  -
sional model., in which the electron motion transverse to the laser
axis is assumed to be given, and only the motion parallel to the axis
is studied. In this paper, we want to study the effect on the laser

efficiency of the electron transverse motion and evaluate the electron
energy loss for a beam having a spread in angle and in the transverse

position at the wiggler entrance.
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The complete three dimensional equations -of motion for an elec- 
tron interacting with the laser field and the wiggler field are 
integrated numerically. We only consider the case of a small gain 
regime, assuming that the laser field intensity remains constant. 
We also limit ourselves to the case of a helical wiggler. The results . 
are compared with the one dimensional model. The effect of the initial' 
position and angular spread can, to a good approximation, be consider- 
ed equivalent to an increase in the energy spread. the limits for 
this increased energy spread that nust not be exceeded in order to 
avoid a loss in efficiency are nearly the same as in the one 
dimensional model. 

11. THE EQUATIONS OF MOTION 

To describe the energy exchange between the electrons and the 
radiation field, we use the single particle model developed by 
~olson.~ We write the electron equations of motion in the wiggler 
field, F&, and laser field, EL, BL, as 

- - -  1 dy - E*.B 
cdt -L - 

where B is the electron velocity in units of the speed of light, c; 
y is the*ele$tron energy in units of m c2, the rest energy; the _. . 

0 
fields E , B are normalized as . ,  

We decompose the velocity in a component, El,, parallel to the 
wiggler axis, z, and in the components Dx, B along the directions Y 
x, y orthogonal to the wiggler axis. We assume 

.We use for the laser and the helical wiggler fields the following 
. exnressions 

* A 

E* = E~ { x sin [F (z-ct) + + -L 0 I 
+ cos [F (z-ct) + d o ] } 



* * 
B = B~(z) { ; cos + + y sin +w 
T W 

A 2n - z - rx sin +w - y COS +w] 
Xw - 

Z 

+w = lk12n /Aw(z1)} dz' (9) 

To write the wiggler field in the form (8) we have made the following 
assumptions: 

* 
i) the field intel~sity Bw and the period are slowly varying 

functions of z, so that 

we have neglected all terms containing these derivatives; 

ii) we considered an expansion of the field in powers of x and y 
near to the wiggler axis, neglecting all terms quadratic or of higher 
order in 2 ~ x / A ~ ,  2ny/Aw. 

To d 
the equat 
velocity 

.etermine the electron motion and energy change, we will use 
ion (2) for y and the equation (1) for Bx, . The parallel 
is then determined by the relationship 

For convenience we will use the variable 

L 

Z = J C 6, (t') dt' 
0' 

instead of t; the "polar" quantities 

and the relative phase of the electron and the radiation field 
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d f 
The complete set of equations can now be written as (f'z) 

* 
B1 EL 

Y l  = - sin $ 
Btl 

a1 = ?[-& cosa-1 + - (F )2r sin (4;~) 
W ~Btr I " 
1-611 * +- EL cos $ 
yBLBtl 

with 

111. REDUCTION TO THE ONE DIMENSIONAL MODEL 

We have solved the system of equations (15) to (21) by numerical 
integration. It is, however, useful to reduce the system to the form 
used in the one dimensional model and to describe briefly some of the 
main results obtained from it. 

equations of the one dimensional model are obtained if one 
I 

assurnis 

B; = 0, - - - =  ' constant 6, y 



In  t h i s  case, the  p a r t i c l e  t ra jec tory  i s  a  he l i x  of p i t ch  angle f 3 ,  - 
and radius  p = BLhw/2n 3 

Using (10) we have 

and from (15), (16) 

* 
KE= 

Y t  = - s i n  9 
Y 

Following r i fe rence  (1) we define a  resonant energy 

and a synchronous phase,: ' r . . 
.. . 

du; * 
s i n  9 = - 

r d  z 12 K EL 

. . 
. ' The p a r t i c l e s  ins ide  the  "opt ical  bucket" of width ( A $ , A ~ )  w i l l  

o s c i l l a t e  around $,, yr ,  and t h e i r  average energy va r i a t i on  w i l l  be 
equal t o  the  change i n  yr. I n  the  following, we assume tha t  the  . 

change i n  yr i s  due t o  a  change i n  A v while K remains a c o n s t a n t ,  
For a  wiggler of length Lw, .one obtalns 

The eff ic iency i s  then defined as  

havirg assumed tha t  the i n i t i a l  d i s t r i b u t i o n  of the  phase i s  uni- 
form i n  the  i n t e rva l  0-2n. Assuming $ r t o  be i n  the  i n t e rva l  
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n ,  7, we have 

* 
A$ = 3n - @ r - $  

* 
where $ i s  a  so lu t ion  of t he  equation 

with 

The bucket "height" 

i s  given by 

L 

Notice t ha t  i n  the  case K= constant ,  t he  quant i ty  ( ~ ~ 1 ~ ~ )  i s  
independent of z .  

A l l  these  r e s u l t s  a re  va l id  f o r  p a r t i c l e s  in jec ted ,wi th  i n i t i a l  
veloci ty  Bx0 = K/y, B = 0, and on ax i s .  For p a r t i c l e s  in jec ted  off  
ax i s ,  the motion willYge a superposit ion of the  h e l i c a l  motion and 
an o s c i l l a t i o n  of reduced wavelength3 

The amplitude of t h i s  o s c i l l a t i o n  is equal t o  the  i n i t i a l  displace- 
ment r ,  f o r  a p a r t i c l e  in jected off ax i s ,  or  t o  f i y  A w  A B / ~  n  K f o r  a 
p a r t i c l e  in jec ted  a t  an ang1e.A p a r t i c l e  executing t h i s  o s c i l l a t i o n  
w i l l  experience a d i f f e r en t  magnetic f i e l d  from a p a r t i c l e  on ax i s  

Thr change i n  B i s  equivalent  t o  a change i n  K and hence t o  a change 
W i r  

. r 



and, using (35) 

If the electron beam has an energy spread AY/Y, we can define a 
total energy spread . ' 

and assume that when the condition 

is satisfied, the efficiency is still given to a good approximation 
by (34). 

The validity of this assumption can be tested comparing (34) 
with the results obtained from the numerical integration of (15) to 
(21). This will be done in the next section. 

Before closing this section, we notice that introducing the 
transverse electron beam emittance 

. . .  , . 

E = nrAB (40) 

and assuming that the electron beam has cylindrical symmetry, we can 
rewrite (37) as 

IV. NUMERICAL RESULTS 

The Eqs. (15) through (21) have been integrated numerically, Lor 
various initial values of the quantities y, I$, BL, a; and r. The 
wiggler wavelength A, was assumed to vary linearly along the (helical) 
wiggler according. to 



With this, and from the definition of Eq. (28), the resonant phase 
angle becomes 

+ r = arsin [-I 
A set of the free-electron laser parameters chosen for the 

calculations is shown in Table 1. 

Table 1. .~ree-electron Laser Parameters 

Wiggler wavelength (initial) X = 2 c m  
WO 

Wiggler overall length L = 2.5.m 
W 

wiggler taper length' {Eq. (42)) o = 5 m  

Wiggler { ~q . (21) 1 K =  1 

Radiation wavelength X = 10 pm 

Resonant "energy" {Eq. (27)) Yro = 44.733 

* - 1 
.Normalized rad. field' { Eq. (3) EL = 341 m 

.. As already mentioned in Sect. 111, if the electrons are injected 
into the wiggler at 'a radius given by 2 

where po = moyoc/eB0 is the cyclotron radius in the field B , and 
with a transverse velocity given by (22), (23), they move a?ong a 
helical path close to the wiggler axis. 

Figures 1 and 2 show a set.of calculated curves of the energy y 
vs. distance z along the wiggler in the two cases of o  = 5 m and 15 my 
for a monochromaric bundle of 16 electrons with initial energy equal 
to .the resonant energy; yo = yro, injected exactly on the helical 
path defined by Eqs. (22), (23), (44), and with 16 equidistant start- 

. ing phasc between 0 and 27r. 
' 0 

Here, the resonant energy y . decre'ases with z according to r 

The capture of some of the electrons in an energy-phase bucket 
around% shows clearly. 



Fig. 1. Normalized energy y vs. distance z along the wiggler. Monochromatic 
electron bundle with yo = y.ri = 44.733. injected on helix. Case o = 5m. 



Fig. 2. Norutelized energy y vs. distance z along the wiggler. Mono- 
chromatic electron bundle with y = 

'ro 
= 44.733 injected 

0 on helix. Case a = 15 m. 

Figures 3 and 4 show the trajectories of the representative 
points.of the electrons in phase-space for the same cases. Here, the 
values of bucket parameters, from Eq. (43) and from Eqs. (31), (34), 
given in Table 2, appear to agree well with,the numerical results. 
However, both the bucket height and width shown in Figs. 3, 4 are of 
the order of 10% smaller than the theoretical values. 

Table 2. Phase Space Bucket Parameters 

Resonant "energy" - - 
'ro 44.733 

Resonant phase . $r = 1.20011 

Energy height of bucket [?IB= 1.63% 

$* = 0.8671~ 
Limit ang-es for bucket  IT-$^ = 1.8001~ 

Phase width of bucket A = 0.933~1 

Efficiency Eq . (30) TI = 13.7% 



zoo 

Fig. 3 .  Phase space t r a j e c t o r i e s  of e l e c t r o n s  i n j e c t e d  on a he l ix .  
a = 5 m. The capture width appears somewhat smal ler  than 
A$ shown (see  Table 2 ) .  

Fig. 4. Phase-space t r a j e c t o r i e s  of e l e c t r o n s  i n j e c t e d  on a  h e l i x .  
Case a = 15 m. 



12 

Once established the conditions for.capture and energy'loss of 
paraxial electrons with resonant energy, we moved on to find how a 
real beam, with finite emittance, behaves. As it has been shown in 
Sect. 111, a finite radius of the beam and a transverse velocity 
spread around the values given by Eqs. (.44), ( 22 ) ,  (23), should act 
as an additional energy spr?a?. 

In our calculations, we assigned a parabolic shape to the density 
distribution of the beam in the y, r, BL and a spaces, while- the 
density in phase I$ was always taken as uniform. To reduce the number 
of cases, we limited ourselves .to consider separately the y, r, B ,  and - 
a sections of the four-dimensional phase space density volume. 

Results for a = 5 m are shown in Figs. 5 through 8. 

Fig. 5. Average energy loss <6y/y>, relative statistical standard 
deviation W/Y and weighted average energy loss as a func- 
tion of the initial energy. Electrons injected on helix. 
a = 5 m. For comparison, the "height" of the bucket from 
Table 2 is also shown. 



Figure 5 shows the average (respect to the initial phase,$ ) 
energy loss <6y/y> and its statistical 'standard deviation W, as a 
function of the initial e3ergy. 

The bucket effective height, defined at the half maximum ~oint, 
obtained from Fig. 5 is 1.31%. This value is almost 20% 
smaller than the value ( A Y / ~ ) ~  given in Table 2. Correspondingly, the 
maximum energy transfer, averaged over the phase, is 12% instead of 
the value of 13.4% given in the Table. 

The values of W show also a pronounced peak within the bucket, 
where, because of the capture mechanism, the statistical distribution 
of final energies exhibits two well separated-maxima, 

In the same Fig. 5, we give also the average energy loss, weight- 
ed on a parabola. This shows that in the present case, a paraxial 

Fig. 6. Average 'energy loss <Sy/y> and relative statistical stan- 
dard deviatio~ W/y as a function of initial radius, for 
Br, = K/Y and y o  = Yro o = 5 m. The "capture" radius is 
also shown for comparison. 



beam with 5% i n i t i a l  energyspread loses  s t i l l  on t he  average 6% of 
i t s  energy t o  t he  r ad i a t i on  f i e l d .  I f  t h e  i n i t i a l  energy spread i s  
equal t o  ( A ~ / Y , ) ~ ,  t he  average energy l o s s  i s  only reduced from 12% 
t o  11%. 

Figure 6shows ana ln~ous  r e s u l t s  f o r  a beam with f i n i t e  r a d i a l  
extension. According t o  Eq. (37), a spread i n  radius  i s  equivalent 
t o  a spread i n  'energy 

which gives,  by assuming Ay/y = 1.63%, a l imi t ing  value 

Fig. 7. Average energy l o s s  <Sy/y> and r e l a t i v e  s t a t i s t i c a l s t a n -  
dard deviation W/y as a funct ion of the  . i n i t i a l  t ransverse  
veloci ty ,  f o r  xo = ro and yo = yro.o = 5 m. The "capture 
transverse angle" i s  a l s o  shown. 



I i n  good agreement with the  ' r e su l t s .  

Figures 7  and 8 show the  e f f e c t  of a  t r ansverse  ve loc i t y  disper-  
s ion  around the  values ( 2 2 ) ,  ( 2 3 ) .  From Eq. (37)  i t  appears t h a t  t he  
l imi t ing  value f o r  capture of B ,  equals t he  r a t i o  of rco t o  t he  
reduced wavelength of the  long Gavelength o s c i l l a t i o n s  OF the  elec-  
t r on  t r a j e c t o r i e s  i n  the  wiggler. 

Hence 

r 

8 1 
capt  

Fig. 8. Average energy l o s s  <&y/y> and r e l a t i v e  s t a t i s t i c a l  s tan- 
dard devia t ion W/y a s  a  function of i n i t i a l . i . s l an t  angle a  0 ' 

i s ' a l s o  shorn. f o r x ,  = ro -and BLo = K/y . u  = ' 5 m i  acapt :, ,, 

, 

. . *I .. . . 
. .  . . 



and, with t h e  present  va lues ,  

/(K/y) = 1 + 0.180 - J @,,capt 
, .  , 

again  i n  good agreement wi th  t h e  r e s u l t s .  
, . 

The s&e holds f q r  t h e  angle a t h a t  t h e  vec to r  6,. makes w i t h . t h e  
tangent  t o  t h e  i d e a l  pa rax ia l  h e l i x .  Limits  f o r  a , d e n  BLo = K/Y,, 
a r e  

r 27 capt  
a = + -  X 

= + 0.180 
capt  w 

and they appear t o  bound wel l  t h e  ca lcu la ted '  capture  peak. 

Both Figs.  7 and 8 show a f i n e  s t r u c t u r e  i n  t h e  behaviour of 
ay/y vs.  B ,  - and vs .  a .  They a r e  not  surpris ' ing s i n c e  we d id  not  

i 

Fig. 9. Average energy l o s s  c6y /y>' and r e l a t i v e  standard dev ia t ion  
W/y as  a funct ion  of i n i t i a l  e l e c t r o n  energy. d = 15 m .  



average the results over the complete phase-space emittance of the 
electron beam, but limited ourselves to representative points on the 
axes. No systematic study of this fine structure vas made. 

Results of the numerical calculations for the case a = 15 m are 
shown in Figures 9 through 12. 

Figure 9 shows <by/y> and W/y as a function of the initial elec- 
tron energy, for electrons injected exactly on a helix. In the figure, 
the value of the capture energy spread ("height of the bucket") from 
Table 2 

is also.shown. 

Figures 10 and 11 show <by/y> ,and W/y as a fundtion' of r and' 
0 

Fig. 10'. ' Ave'rage energy loss and' W/y as & 'function of 
injection radius. a = 15 m. 



Bio respectively, with their capture ranges 

OutsTde these ranges, the calculations gave as result oscilla- 
tions in <6y/y> as large as 3X.,However, by averaging over starting 
points on the phase-space ellipses 

the < 6 ~ / ~ >  was reduced to 0.8%. 

Figure 12 shows <tiyIy> and W/Y as a function of the slant angle 
a . Capture range for a is also shown. 
0 

Fig. 11. Average energy loss <6y/y> and standard deviation WIy as 
function of initial transverse'velocity B, . a ' =  15 m. 

-0 
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