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Abstract 

Bone tissue engineering strategies use flow through perfusion bioreactors to apply 

mechanical stimuli to cells seeded on porous scaffolds. Cells grow on the scaffold surface but 

also by bridging the scaffold pores leading a fully filled scaffold following the scaffold’s 

geometric characteristics. Current computational fluid dynamic approaches for tissue 

engineering bioreactor systems have been mostly carried out for empty scaffolds. The effect 

of 3D cell growth and extracellular matrix formation (termed in this study as neotissue 

growth), on its surrounding fluid flow field is a challenge yet to be tackled. In this work a 

combined approach was followed linking curvature driven cell growth to fluid dynamics 

modeling. The level-set method (LSM) was employed to capture neotissue growth driven by 

curvature, while the Stokes and Darcy equations, combined in the Brinkman equation, 

provided information regarding the distribution of the shear stress profile at the 

neotissue/medium interface and within the neotissue itself during growth. The neotissue was 

assumed to be micro-porous allowing flow through its structure while at the same time 

allowing the simulation of complete scaffold filling without numerical convergence issues. 

The results show a significant difference in the amplitude of shear stress for cells located 

within the micro-porous neo-tissue or at the neotissue/medium interface, demonstrating the 

importance of taking along the neotissue in the calculation of the mechanical stimulation of 

cells during culture.The presented computational framework is used on different scaffold pore 

geometries demonstrating its potential to be used a design as tool for scaffold architecture 

taking into account the growing neotissue. This article is protected by copyright. All rights 

reserved 

Keywords: bioreactor, scaffold, computational fluid dynamics, tissue growth, level-set 

method 
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Introduction 

Perfusion bioreactors have been extensively explored for the production of bone forming 

tissue engineered constructs by supporting cell growth, metabolism, and differentiation. 

Attempts to culture in vitro three dimensional (3D) tissue engineered (TE) constructs in static 

conditions typically resulted in an outer shell of viable cells, while the inner core became 

necrotic due to limited diffusive delivery of nutrients (Griffith et al., 2005). Using bioreactors, 

cell proliferation and cell survival have been enhanced substantially when compared with 

static setups, by improving mass transport of oxygen and nutrients throughout the TE 

construct during cell growth (Martin, Wendt et al. 2004). However, fluid flow exerts stresses 

on the cultured cells affecting functions such as migration, proliferation and apoptosis 

(McCoy and O'Brien 2010). Furthermore shear stress can determine lineage commitment 

(Song, Dean et al. 2013) but also promote osteogenic differentiation of bone marrow stromal, 

periosteum and adipose derived mesenchymal stem (stromal) cells, and enhance extra-cellular 

matrix deposition (McCoy and O'Brien 2010; Rauh, Milan et al. 2011; Papantoniou, Chai et 

al. 2013).  

In order to understand and characterize complex flow fields which are developed throughout 

regular and irregular scaffolds during cell culture in bioreactors, computational fluid 

dynamics (CFD) modeling has been extensively used in tissue engineering (for review see 

(Hutmacher and Singh 2008)). The quantification of flow-associated shear stresses as well as 

their spatial distribution within various 3D scaffold geometries has been thoroughly 

investigated in perfused bioreactor setups (Raimondi, Boschetti et al. 2004; Porter, Zauel et al. 

2005; Boschetti, Raimondi et al. 2006; Cioffi, Boschetti et al. 2006; Jungreuthmayer, 

Donahue et al. 2009; Maes, Ransbeeck et al. 2009; Voronov, VanGordon et al. 2010). In 

previous studies, local shear stresses were defined as a function of flow rate of the culture 

medium, bioreactor configuration, porosity and porous scaffold micro-architecture (Voronov, 
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VanGordon et al. 2010; Pham, Voronov et al. 2012). However the majority CFD studies to 

date used empty scaffold geometries to calculate shear stress magnitude and distribution 

across the empty scaffold surface i.e. wall shear stress. They did not take into account the 

dynamics of the changing 3D environment as a result of cell/tissue growth. Efforts to mimic 

3D cell growth on regular scaffolds were limited to a swelling of the scaffold struts (Lesman, 

Blinder et al. 2010) or the use of a growing biomass (Nava, Raimondi et al. 2013), in both 

cases modeling the cell layer to be impermeable whilst not being able to reach a full filling of 

the scaffold void. 

3D cell growth and neotissue formation starts with 2D cell migration and proliferation on the 

strut surface, followed by cells bridging the scaffold void spaces and growing in the third 

dimension with matrix deposition. This will eventually lead to complete scaffold void filling 

as evidenced recently via synchrotron and nano-CT imaging (Voronov, VanGordon et al. 

2013; Papantoniou, Sonnaert et al. 2014). This means that estimation of wall shear stress 

values in empty scaffold geometries would only be indicative of the shear stress experienced 

by cells during early culture time points. A current bottleneck to further advance and utilize 

CFD strategies in the TE field is the inclusion of a domain composed of cells and extracellular 

matrix (a growing permeable neotissue) on real scaffold geometries as recently stated 

(Hendrikson, van Blitterswijk et al. 2014). This way the whole range of fluid-flow associated 

stresses exerted on cells during neotissue growth could be determined. 

In this paper we present a computational strategy that will help understand shear stress 

magnitude and distribution along the fluid-neotissue interface but also within the permeable 

3D neotissue during growth in a perfusion bioreactor. To achieve this, the level-set method 

(LSM) was employed capturing neotissue growth on 3D macro-porous Titanium scaffolds 

over time leading to complete scaffold pore closure (filling). Computational neotissue growth 

was driven by the local curvature as previously described (Bidan, Wang et al. 2013; Guyot, 
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Papantoniou et al. 2014).  At various degrees of scaffold filling, the steady Brinkman equation 

was used to continuously describe both flow through a micro-porous medium (neotissue) and 

free flow through the macro-porous scaffold void. This shear stress mapping will allow to 

eventually link experimentally determined biological responses (i.e. cell phenotype) to the 

actual shear stress regime that cells experience during 3D neotissue growth in perfusion 

bioreactors. 

 

Materials and Methods 

2.1. Ti6Al4V scaffolds 

Regular, 3D additive manufactured Ti6Al4V scaffolds (diameter 6 mm, height 6mm) were 

produced in-house using selective laser melting, based on a diamond-shaped unit cell (Pyka, 

Burakowski et al. 2012) (Figure 1B) and a square unit cell (Van Bael et al. 2012) (Figure 1C). 

Strut diameter for both scaffolds was 200 µm. Prior to use, the scaffolds were ultrasonically 

cleansed for 10 min over three wash steps in acetone, ethanol and distilled water. 

Subsequently they received an alkali treatment with 5M sodium hydroxide (Sigma-Aldrich) at 

60°C for 24 h, rinsed with distilled water and finally sterilized in a steam autoclave. Prior to 

cell seeding, all scaffolds were prewetted by vacuum impregnation in cell culture medium for 

2 h in a humidified incubator. 

 

2.2 Human periost-derived cells (hPDCs) 

hPDCs were isolated from periosteal biopsies of different donors, as described previously 

(Eyckmans and Luyten 2006). This procedure was approved by the Ethics Committee for 

Human Medical Research (KU Leuven) and by the patients’ informed consent. hPDCs were 

expanded in Dulbecco’s modified Eagle’s medium (DMEM) with high glucose (Invitrogen), 
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containing 10% fetal bovine serum (FBS; Gibco), 1% sodium pyruvate (Invitrogen) and 1% 

antibiotic–antimycotic (100 units/ml penicillin, 100 mg/ ml streptomycin and 0.25mg/ml 

amphotericin B; Invitrogen).  

 

2.3 Scaffold seeding 

The cells were seeded at 5700 cells/cm2 and passaged at 80–90% confluence. Prior to the 3D 

culture experiments, cells were harvested using Triple Express (Invitrogen) and drop-seeded 

by a single drop onto the scaffolds at a density of 200 000 cells/60 µl drop, as performed in 

earlier studies (Papantoniou, Chai et al. 2013). 45 min after seeding, 60 µl culture medium 

was added and 135 min later the medium volume was topped up to 1 ml. Seeded scaffolds 

were incubated overnight under standard culture conditions (37°C, 5% CO2,95% relative 

humidity) before being positioned in the perfusion chamber. 

 

2.4 Bioreactor culture 

Seeded scaffolds were cultured in the perfusion bioreactors for up to 21 days. The perfusion 

chamber was 26 mm long with a diameter of 6 mm, holding a single scaffold. This chamber 

was connected to an individual medium reservoir (disposable 50 mL Falcon tubes, BD 

Biosciences) containing 10 mL of cell culture medium via a Tygon1 (Cole Parmer, Antwerp, 

Belgium) tubing and a two-stop tubing (BPT, Cole Parmer) connected to a peristaltic pump 

(IPC-24, Ismatec, SA). Culture medium was refreshed every 2 days for the entire culture 

period. All seeded scaffolds were positioned 10mm from the inlet of the perfusion chamber so 

that a steady state flow profile was reached as shown in (Papantoniou, Guyot et al. 2014). 
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2.5 SEM imaging  

The micro-porosity of the neotissue between cells and extracellular matrix was approximated 

by scanning electron microscopy (SEM) coupled with energy-dispersive X-ray (EDAX) 

analysis (FEI XL30 FEG) at 10 kV. Briefly, the cultures were rinsed twice with PBS, fixed 

with 2.5% glutaraldehyde (in PBS) for 1 h, and postfixed in 1% osmium tetroxide for 2 h 

before dehydrated in 50%, 75%, 95%, and 100% ethanol solutions. Finally, the samples were 

chemically dried with hexamethyldisilazane for 3 min and goldsputtered before SEM 

analysis. 

 

2.6. Live/Dead Assay  

The live/dead viability/cytotoxicity kit (Invitrogen) was employed to evaluate qualitatively 

cell viability and cell distribution and growth by fluorescence microscopy. Constructs were 

rinsed with 1 mL PBS after which they were incubated in the staining solution (0.5 ml Calcein 

AM and 2 ml Ethidium Homodimer in 1 mL PBS) for 20 min in normal cell culture 

conditions. The constructs were imaged using a Leica M165 FC microscope. 

 
 
2.7 Computational Framework 

Neotissue growth with Level-set method (LMS): The evolution of the neotissue topology 

occurring during the growth process was numerically treated with the LSM which has been 

developed to deal with moving interfaces.  This technique has been used here for its ability to 

track the front-line between neotissue and void space in a mesh-free manner. In this study, the 

simulated moving interface Γ represents the border between the neotissue domain  and the 

void domain . The principle of LSM is based on a continuous distance function  defined 

on the whole domain  with the following properties: 
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                                              (1) 

To simulate the evolution of the system, the time dependent advection equation (2) is solved 

with a given velocity . 

                                                        (2) 

Neotissue growth kinetics are curvature-dependent meaning that neotissue grows faster where 

the curvature is higher and also that it does not grow if the curvature is negative or equal to 

zero. To tackle this, the advecting velocity  of equation (2) has the following expression:  

                                                        (3) 

with  representing the normal at the interface pointing towards the neotissue, and 

 representing the mean curvature. Growth simulations were run thanks to the model 

developed in a previous study (Guyot et al. 2014) providing several neotissue topologies. 

From these results, geometries corresponding to 10% to 90% of scaffold pore filling were 

taken as starting points for the flow simulations (see below). 

Fluid flow model: Neotissue growth leads to changes in morphology affecting the fluid 

behavior over time. Two fluid flow regimes can be distinguished one within the void but also 

in the neotissue. In the void part, due to a low Reynolds number, the flow profile can be 

estimated with Stokes equation (4).  
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                                                         (4) 

Due to the presence of cells and extracellular matrix in the neotissue part (see Figure 2), the 

flow profile in this region cannot be estimated with a simple Stokes equation. To address this 

we consider this region as a porous medium with a given permeability  and so the flow 

profile will be governed by the Darcy equation (5).  

                                                         (5) 

In (4) and (5), µ represents the viscosity, u the fluid velocity and p the pressure. Due to the 

LSM definition of the neotissue topology, the interface would not conform with the fluid 

computational mesh, and so equations (4) and (5) could be difficult to couple together. One 

solution to this problem is to model the flow with a penalization technique and the Brinkman 

equation (6). 

                                                   (6) 

This technique is based on a penalization of the term K in the neotissue domain. For that 

purpose, a smooth space and time dependent Heaviside function H was calculated with the 

following equation:  

                                          (7) 
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It should be noted that equation 6 does not take into account time, this corresponds to the fact 

that the flow is calculated only on given neotissue geometries in order to estimate the 

mechanical stimuli at that degree of scaffold filling. 

The parameter  was taken to be equal to 1.5*h, with h the mesh size. K is then updated 

according to the following equation:  

 

The permeability of the neotissue  was calculated using a random fibers approximation to 

simulate the random unstructured cell and extracellular matrix structure. To tackle this issue, 

 was estimated according to (Nabovati 2009), based on a method to approximate the 

permeability of a random fibers web, resulting in the following expression for : 

 

In this equation,  represents the micro-porosity of the neotissue. According to Nabovati et al 

(2009)  is called the “percolation threshold”, and it corresponds to a threshold porosity 

where fluid flow is permitted through the micro-porous medium. We assumed that such a 

threshold did not exist, so  was set to zero. An important parameter is , which corresponds 

to the average size of the micro-porosity of the neotissue. Two values for ,  25 and 50 µm 
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were used based on experimental SEM observations, accounting for the fact that the micro-

porosity could be affected by the culture environment.  

Finally, a poiseuille flow corresponding to the average inlet velocity was applied as a dirichlet 

boundary condition at the entrance of the domain. Symmetry boundary conditions (u.n=0) 

were applied on each lateral side and a free flow condition at the exit of the domain.  

Shear stress estimation: Wall shear stress ( ) at the interface between neotissue and 

void was calculated by: 

     where        

In addition the shear stress associated with the interstitial flow through the micro-porous 

neotissue ( ) was calculated based on the method presented in (Whittaker, Booth et al. 

2009). The interstitial velocity magnitude  was calculated, assuming that the 

micro-porous neotissue is composed of cylindrical ducts of diameter . Hence, the flow 

profile in each duct can be seen as a Poiseuille flow with a local radial coordinate r, and the 

following velocity profile: 

. 

The inner neotissue shear stress would be:  

. 
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Implementation details: The full implementation of the model presented above has been 

carried out with Freefem++ (http://freefem.org) (Hecht 2012). For each geometry (diamond 

and square), the curvature-driven growth model (Guyot et al, 2014) was run on a mesh made 

of approximatively 1 million tetrahedrons, corresponding to an average element size of 1e-5 

m. From these simulations, neotissue topologies corresponding to 10,20,..,90% of scaffold 

filling were calculated and used as input for the fluid model using the Brinkman equation. The  

Brinkman equation was solved using the parallelization method of domain decomposition, 

where the problem is distributed over and solved on 12 cores. 

 

Results & Discussion 

Live/dead images in Figure 2 show typical 3D cell growth and neotissue formation over time 

during culture in a perfusion bioreactor for two different scaffold designs with square and 

diamond pore shapes. In both cases the initial scaffold void was substituted gradually by 

neotissue. Cells seeded on 3D scaffolds have been seen to be able to bridge across pores of 70 

µm entering a 3D growth phase followed by neotissue formation in static conditions (Joly, 

Duda et al. 2013). In previous studies we have also observed this behavior for bioreactor 

based cell cultures in scaffolds of larger pores (~750 µm) (Papantoniou, Guyot et al. 2014; 

Papantoniou, Sonnaert et al. 2014). The growing neotissue is a permeable micro-porous 

structure as can be observed in the SEM image (Figure2). Neotissue growth will subsequently 

influence the fluid flow profile in the remaining scaffold void space but also the fluid flow 

derived shear stress distribution and magnitude within the neotissue itself. The flow rate used 

in this study was 1 ml/min, for which the cells used in this study have been observed  to be 

able to grow up to 100% scaffold filling in a similar bioreactor set-up (Sonnaert, Papantoniou 

et al. 2014). In this study, 100% scaffold filling was indeed reached for both pore shapes as 
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shown in Figure2. Their growth under a constant flow rate meant that cells experienced a 

cascade of increasing shear stresses until complete filling was reached. Two fluid flow 

regimes could be distinguished, one for free fluid flow and one within the micro-porous 

neotissue itself. Hence a dynamic multiphase approach was best suited to capture the 

aforementioned events.  

Starting from two different scaffold designs, cell growth was simulated following a curvature 

dependent growth mechanism (Bidan, Kommareddy et al. 2012; Bidan, Wang et al. 2013; 

Guyot, Papantoniou et al. 2014). Once coupled with fluid flow equations, computer 

simulations were run to study shear stress magnitude and distribution over time. The average 

inlet velocity used at the entrance of a single scaffold pore was (0.0012 m/s) and 

corresponded to a 1 ml/min perfusion flow rate for the geometric features of the bioreactor. 

Figure 3 shows the gradual closure and the development of the correspondingly changing 

flow profiles for the two different scaffold designs. Shear stress values were determined both 

at the interface of the neotissue with the free flow domain and also within the neotissue itself.  

For the square design, the average interface shear stress values evolved from 0.0034 to 0.005 

Pa while for the diamond design the average interface shear stress values evolved from 0.004 

to 0.008 Pa during the filling of the scaffold macro-pores. Interface shear stress values 

reported here ranged from being comparable (for i.e. 10% filling) to two orders of magnitude 

higher (for i.e. 60% filling upwards) compared to the ones calculated for empty scaffold 

geometries in CFD modeling studies to date, as seen in Table 1. The average shear stresses 

developed within the growing neotissue were higher as expected, evolving from 0.04 to 0.28 

Pa in the diamond pore shape scaffold and from 0.03 to 0.18 Pa in the square pore shape 

scaffold during the filling of the scaffold macro-pores.  Additionally, the absolute values of 

the shear stresses were dependent on the micro-porosity of the neotissue domain (Figure 4). 
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Figure 5 shows the shear stress distribution within the neotissue for different degrees of 

scaffold filling.  Following this distribution for different degrees of scaffold filling (different 

colors), it demonstrates the shift from lower towards higher shear stress values within the 

neotissue due to the scaffold filling. The geometric homogeneity of the square pore scaffold 

was  reflected on the shear stress distribution inside the neotissue which was narrower for the 

square pore scaffolds than for the diamond pore scaffolds. Furthermore it should be noted that 

average inner shear stress values calculated here, especially in conditions with high degrees of 

scaffold filling, were closer to calculated values experienced by cells in the in vivo setting,  

reported to range from 0.8 Pa onwards (Weinbaum, Cowin et al. 1994) or, as calculated more 

recently, from 0.1-10 Pa experienced by osteocytes due to fluid flow via canaliculi 

(Verbruggen, Vaughan et al. 2014). Interestingly, these shear stress levels also closely 

compared with recent work focusing on shear stresses experienced by single cells bridging 

across scaffold pore struts (Jungreuthmayer, Jaasma et al. 2009; Zhao, Vaughan et al. 2014).  

In this study a number of simplifications were made that warrant further investigation in 

future work.  First and foremost it will be necessary to couple the shear stress experienced by 

the cells (and calculated in this study) to the neotissue growth rate. Various studies have 

shown the influence of mechanical stimuli on the behavior of cells (McCoy and O'Brien 2010; 

Rauh, Milan et al. 2011; Papantoniou, Chai et al. 2013 to but name a few of them).  Adding a 

more detailed description of the neotissue constituents (cells and extracellular matrix (ECM)) 

and/or additional variables such as oxygen and glucose will allow to capture additional 

biological behavior observed in bioreactor experiments.  These observations include the 

decrease in neotissue micro-porosity due to ECM production, the cellular lineage commitment 

and  the oxygen consumption during culture. 
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Conclusion 

In conclusion, this framework provides insight into the dynamic microenvironment to which 

cells are exposed in TE perfusion bioreactors. The development of such a model generates an 

additional level of control by allowing operators to deliver controlled shear stress magnitudes 

to cells during growth, e.g. by adapting flow rates during neotissue growth in order to 

maintain fixed shear stress magnitudes and profiles causing minimal culture environment 

variation. Moreover this model could be used for an in silico evaluation and screening of 

scaffold designs, including their impact on neotissue growth and exposure to stress profiles, 

avoiding costly and time consuming in vitro experiments.  
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 Scaffold Pore 

size (µm) 

Average Shear 

Stress (mPa) 

Inlet velocity 

(µm /s) 

(Maes, Ransbeeck 

et al. 2009) 
280 1.4 34 

(Cioffi, Boschetti 

et al. 2006) 
100 3.28-3.94 53 

(Lesman, Blinder 

et al. 2010) 
500 11 5000 

Nava (Nava, 

Raimondi et al. 

2013) 

300 5 100 

(Zermatten, 

Vetsch et al. 

2014) 

220 3.08 66 

(Shakhawath 

Hossain 2015) 
1000 40 230 

 

 

 

 

Wall 

shear 

stress 

This study 

(interface shear 

stress) 

600 3.4-8 1200 

 

Signle 

(Zhao, Vaughan 

et al. 2014) 
180 50-250 300 
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(Jungreuthmayer, 

Jaasma et al. 

2009) 

96 30 235 

cells / 

µ-

porosity / 

inner 

shear 

stress 

 

This study  

 

600 10-250 1200 

 
Table 1:A comparison between empty scaffold shear stress values calculated in literature and 

interface shear stress values obtained in this study. In the second group the inner shear 

stresses obtained for the neotissue part were compared to literature shear stress values for 

bridging single cell models,please note that shear stress units are in mPa.All shear stress 

presented have been obtained for flow-through perfusion bioreactors. 
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Figure 1: (A) Image indicating the the perfusion rig dimensions (Drig=6mm, Lrig=26mm) and 

scaffold position which was Lentr=10 mm from the entrance of the rig. Both scaffolds had the 

same external dimensions Dscaf=6mm and Lscaf=6mm, also the same strut thickness was used 

for both pore designs were Dstrut=200µm. (B) Diamond scaffold pore size was 750 µm from 

the center of one strut to the other as shown by the dashed arrows. (C) Square pore scaffold 

pore size was 650 µm.  

Figure 2: Live/dead staining indicating three dimensional neotissue growth during culture 

over a culture period of 21 days in perfusion bioreactors in two different scaffolds designs: 

(A) diamond and (b) square. In both cases neotissue eventually fills the scaffold void by day 

21, (scale bar = 800 µm). SEM shows the micro-porosity of the growing neotissue 

(representative image). 

Figure 3: (A,C) Inner and (B,D) interface shear stress magnitude and distribution during 

neotissue growth and gradual filling of the void in scaffolds with (A,B) square and (C,D) 

diamond pore shape. Neotissue micro-porosity used for this simulation was 50µm. 

Figure 4: Average inner (blue bars) and interface (red bars) shear stress values for both 

scaffold geometries and neotissue micro-porosities investigated in this study for a range of  

neotissue scaffold void filling percentages.  

Figure 5: Shear stress distribution within the neotissue during growth. Different colors 

represent the filling percentage of the scaffold void during neotissue growth, ranging from 

10% to 90% as indicated in the figure. 
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Figure 5 
 
 


