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Abstract

Diffuse axonal injury (DAI) is a debilitating consequence of traumatic brain injury (TBI) attributed to abnormal stretching

of axons caused by blunt head trauma or acceleration of the head. We developed an anatomically accurate, subject-

specific, three-dimensional (3D) computational model of the human brain, and used it to study the dynamic deformations

in the substructures of the brain when the head is subjected to rotational accelerations. The computational head models use

anatomy and morphology of the white matter fibers obtained using MRI. Subject-specific full-field shearing motions in

live human brains obtained through a recently developed tagged MRI imaging technique are then used to validate the

models by comparing the measured and predicted heterogeneous dynamic mechanical response of the brain. These results

are used to elucidate the dynamics of local shearing deformations in the brain substructures caused by rotational accel-

eration of the head. Our work demonstrates that the rotational dynamics of the brain has a timescale of *100 ms as

determined by the shearing wave speeds, and thus the injuries associated with rotational accelerations likely occur over

these time scales. After subject-specific validation using the live human subject data, a representative subject-specific head

model is used to simulate a real life scenario that resulted in a concussive injury. Results suggest that regions of the brain,

in the form of a toroid, encompassing the white matter, the cortical gray matter, and outer parts of the limbic system have a

higher susceptibility to injury under axial rotations of the head.
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Introduction

Traumatic brain injury (TBI) is a critical public health

problem worldwide with an estimated 10,000,000 people af-

fected annually.1 Global data indicate that nearly 60% of TBI oc-

currences are the result of road traffic accidents; *20–30% are the

result of falls; 10% are caused by violence, and another 10% are the

result of sports and combat operations.1 The rate of TBI incidence

continues to grow with the increased adoption of motorized vehi-

cles in developing countries, the faster pace of sports, and asym-

metric military conflicts around the world. According to the World

Health Organization, TBI will likely be the main cause of death and

disability by the year 2020.1

Deformation of the brain tissue in response to a traumatic impact

or rapid head acceleration can lead to numerous mechanical and

chemical changes within the tissue. For example, during a con-

cussion, rapid tissue strain is thought to cause diffuse depolariza-

tion of neurons.2 In more severe trauma, diffuse axonal injury

(DAI) can occur within the white matter of the brain, perhaps as a

result of axonal stretch beyond a physiological injury threshold.3

Animal models and in vitro mechanical testing support the hy-

pothesis that abnormal tissue deformation is a fundamental cause of

most brain injuries.4 However, the susceptibility to injury of spe-

cific regions within the brain remains largely unknown.5 Because

injury-causing experiments cannot be performed on humans, hu-

man brain deformation dynamics leading to TBI have remained the

subject of much speculation.5

Computational simulations can provide insights into the me-

chanics of abnormal deformations,6,7 substituting for experiments

that either cannot be performed for ethical reasons (e.g., injury-

level accelerations in humans) or that are extremely difficult or

expensive.4,5 Biofidelic computer models8–11 are invaluable tools

for simulating dynamic deformations in the brain during an impact

or head acceleration. Simulations can provide multi-scale de-

scriptions of relevant mechanical variables such as strain and stress,

given the physical properties of the human head and specific input
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loading conditions (e.g., skull acceleration12,13). This capability is

even more important for accident reconstruction, because it is not

possible to measure the deformations in the living human brain

during an actual injury event. Knowledge of the local deformation

levels in the human brain is the first step toward being able to

identify likely regions of injury in the brain.

Rotational accelerations are potentially more harmful than linear

accelerations in DAI.7,14,15 Despite advancements in sensing and

measurement technology, accurate measurement of rotational ac-

celerations during head trauma remains a nontrivial aspect even for

laboratory experiments. Like many soft tissues, the brain is much

more compliant under shear loads compared with volume-changing

loads (e.g., pressure). This has two consequences. First, larger de-

formations are sustained in shear, so the substructures of the brain

may be more prone to injury under shear. Second, and perhaps more

important, the wave speeds associated with shearing deformations

are at least an order of magnitude lower than that associated with

volumetric deformations, resulting in a scale separation that can

cause shear-driven injuries to occur at times much longer than those

associated with pressure. This influence of the dynamics means that

approaches designed to protect under pressure loads may not pro-

vide protection under shear loads (such as those resulting from

rotational accelerations). Consequently, protection approaches and

protocols must be designed to deal with a wider range of time scales

and length scales than is commonly done today.

However, the question of how the rotational accelerations of the

head might lead to injury remains largely unexplored.7 Here, we

examine the consequences of rotational accelerations on live hu-

man brains using computational simulations of subject-specific

human heads in six subjects, and demonstrate the new capability to

accurately capture the dynamics of shearing deformation in the live

human brain. We developed three-dimensional (3D) virtual human

head models (Fig. 1) using detailed MRI information for each

subject, and incorporated subject-specific morphology of white

matter fiber tracts into this high-structural-fidelity digital head

through the use of diffusion tensor imaging (DTI). Models captured

the anisotropic constitutive response of white matter fiber structure

obtained from the DTI. Using subject-specific ‘‘digital’’ head

models, we show that the computations have the ability to track the

evolution of deformation in critical substructures of the living hu-

man brain. We focus on shearing deformations, as this remains a

poorly understood yet critical realm in brain injury biomechan-

ics.3,14,16 Each subject-specific head model is quantitatively com-

pared against full-field, time-varying measurements of displacements

and shear strains16,17 in subject-specific live human brains as de-

scribed by Knutsen and coworkers.18 To our knowledge, such a

comparison of measured full-field deformation histories in the live

human brain with the computational simulations has never been

performed before. We obtained substantial insight even from the

process of validation under such conditions. After subject-specific

validation using the live human subject data, a representative subject-

specific head model was used to simulate a real life scenario that

produces a concussive injury. The ability of the model to provide

insights into the degree and likely locations of injury is demonstrated

for such an injury-causing event.

Our modeling approach is substantially different from finite el-

ement models of brain mechanical response in the literature6–9,11 in

two particular ways. First, our modeling approach is subject spe-

cific. We do not build a generic head model; rather, we build an

individualized model for each subject, based on direct MRI im-

aging of the subject’s anatomical and fiber tract orientation data;

which include eight different anatomical structures (white matter,

gray matter, caudate, putamen, thalamus, ventricles, cerebrospinal

fluid [CSF], and subarachnoidal space [SAS]) for each individual

subject. The subject-specific nature of the model allows us to en-

sure that the experimental validation corresponds to the subject-

specific computational model, rather than the traditional case in

which the computational model is based on a generic head that does

FIG. 1. The subject-specific, three-dimensional (3D) computational head model is created from T1-weighted MR images (a). T1-
weighted MR images are segmented into eight different substructures (b) by thresholding to the region of greatest probability for each
pixel. These substructures are white matter, gray matter, caudate, putamen, thalamus, ventricles, cerebrospinal fluid (CSF), and
subarachnoidal space (SAS). In addition to these substructures, the skull (not shown) is created by dilation of each MR slice by a number
of pixels. Subject-specific fiber orientation and fractional anisotropy of the white matter is also incorporated in the subject-specific head
model from diffusion imaging (c). The resulting 3D head model (d) is digitized and kinematics under various loadings are solved using
the material point method. Color image is available online at www.liebertpub.com/neu
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not have the specific anatomical details associated with the ex-

perimental data set. Our validation approach is, therefore, much

more constrained. Finally, the use of subject-specific models allows

us to address the heterogeneity and variability of mTBI across the

presenting population, which is not handled by any generic head

model. Second, our modeling approach is based on the material

point method (MPM),19–21 rather than the finite element method

(FEM). The material point method itself is not new; however, to our

knowledge, it has never been utilized to study the dynamics of the

human brain. The major improvements that we attain as a result of

using the material point method are the following: 1) we are able to

directly import voxelated information from MRI imaging of each

subject to develop a computational model for each subject, so that

there is little cost associated with developing a separate head model

for each subject (this latter cost is huge for finite element models);

2) the material point method does not suffer from the excessive

distortion limits developed in finite element models during large

rotations of the type we discuss here, and, therefore, convergence

questions can be explicitly addressed; 3) we are able to handle the

very large ratio between the bulk modulus and the shear modulus of

the brain tissue explicitly without volumetric locking artifacts (the

ratio in our simulations, and in the brain, is 106).We also note that

current advanced finite element (FE) codes can handle large dif-

ferences in bulk and shear moduli without this issue.

Methods

In vivo experiments on human subjects

Experiments to obtain brain motion were conducted with the
help of healthy human subjects recruited by the Center for Neu-
roscience and Regenerative Medicine (CNRM). This study was
approved by the CNRM Institutional Review Board (IRB) at the
National Institutes of Health. All subjects provided written in-
formed consent prior to participation in the study. The experimental
setup consisted of a head rotation device equipped to deliver a
controlled angular acceleration onto a subject’s head in an axial
plane (i.e., rotation about an inferior-superior axis, see video S1)
(see online supplementary material at http://www.liebertpub.com).
Dynamic motions of subject-specific brains, under mild angular
accelerations, were captured using an established quantitative im-
aging technique called tagged MRI.16,17 Deformation measures,
specifically, components of displacement vector and strain tensor,
were computed from tagged MRI images using the harmonic phase
(HARP) method.17 As such, experimental data were obtained in
3D. However, the calculation of strain was restricted to two-
dimensional (2D) (i.e., in-plane) strain components because of
technical challenges associated with accurately calculating out-of-
plane motion from the tagged images. Further, experiments were
designed such that the head was subjected to pure rotational ac-
celeration about a single axis. This simplified loading in the ex-
periments has the advantage of primarily inducing 2D kinematics
(i.e., significant in-plane motion and minimal out-of-plane motion)
within the 3D head. Hence, in this article, we have focused on
motions in a 2D plane only. Details on the experimental method
have been provided elsewhere.18

Subject-specific digital head model

The subject-specific head model was built for total six human
subjects (volunteers) (age range: 18–30 years). The head model
considers the subject-specific anatomy of the brain. MRI (T1-
weighted) images are segmented into different substructures using a
topology-preserving, atlas-based technique.22 The segmented struc-
tures are identified in Figure 1, and include white matter, gray matter,
caudate, putamen, thalamus, ventricles, CSF, and SAS. Image pro-

cessing (dilation of a brain mask) is used to generate an approximate,
artificial ‘‘skull.’’ The segmented stack of images are exported in
the form of voxelated data with a uniform spatial resolution of
2 · 2 · 2 mm3. These data, which carry with them subject-specific
anatomy of the brain, are imported to the subject-specific head model
with each voxel now representing a physical material volume.
Contiguous material volumes are used to represent the structure of
the brain (assumed as a continuum solid). The deformation response
of the brain is computed with the help of a numerical method, called
the material point method, to solve governing equations of motion,
supplemented with initial conditions, boundary conditions, and
material constitutive response. We used the UINTAH material point
method package (uintah.utah.edu) to perform high-performance
simulations on a computing cluster.

Constitutive models

The white matter of the brain consists of an organized mor-
phology of fibers (bundle of axons) and the gray matter contains the
cell bodies of neurons. The white matter tissue is generally con-
sidered anisotropic and the gray matter tissue is considered iso-
tropic. A constitutive model, as applicable to an individual material
volume, is an analytic model that relates a stress measure to a
deformation measure, with the fidelity to consider the underlying
fibrous morphology of the tissue. A number of previous studies7,9,10

have found that the anisotropy of white matter (because of pref-
erential fiber orientations) is critical for prediction of axonal strain
and subsequent locations of injury. We modeled the white matter
using the Holzapfel–Gasser–Ogden (HGO) strain energy func-
tion.7,23 All other substructures were modeled using an isotropic
limit of the HGO model. The constitutive model even incorporates
the time-dependent response using a quasilinear viscoelastic
function.24 In this work, because viscous time constants are much
larger than the simulation time, the contribution of viscous terms
was minimal (if any). Details on the implementation of the con-
stitutive model are available in Wright and coworkers.7 The CSF
was modeled as a fluid using the Tait equation of state,25 given as

P¼ K0

n

q
q0

� �n

� 1

� �

where P is the pressure, K is the bulk modulus, and q is the density.

The subscript ‘0’ indicates values at zero pressure. For fluids similar

in composition and viscosity to that of water, the value of constant

n = 7.15.25 In addition, Newtonian behavior is assumed for shear.
Value for bulk modulus of the brain tissue used in computational

head models varies significantly (by three orders of magnitude [for
details and relevant references see Ganpule and coworkers6]) and
remains uncertain because of lack of measurements in the litera-
ture. The dynamic bulk moduli of cerebrum (K = 1.46 GPa) and
cerebellum (K = 1.19 GPa), were measured by one of the co-authors
(K.T.R.) at high strain rates (550 s-1 to 2700 s-1) using the com-
pression Kolsky bar testing26 on tissue samples from a postmortem
human subject. The dynamic bulk modulus value is close to some
other values (e.g., 2.1 GPa27,28) that are widely used in the litera-
ture.8,29–32 Several material constants in the constitutive model are
adopted from nanoindentation measurements available in the lit-
erature.33 The anisotropic properties of the white matter tissue are
calibrated7 from data on tensile tests.34 A comprehensive list of
material properties and values are listed in Table 1.25,33–36

Incorporation of white matter anisotropy through DTI

In this work, axonal tracts were deformed based on the aniso-
tropic constitutive response and they were not merely mapped
against the deformation field. The fiber alignment vector a, and the
degree of fiber dispersion, j, are required inputs to the constitutive
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model. These parameters vary spatially within the white matter of the
brain and can be estimated from the DTI.37 DTI is an MRI technique
that provides an in vivo method for determining the orientation and
anisotropy of white matter. The subject-specific DTI data were co-
registered with subject-specific MRI images. The fiber alignment
vector and the degree of fiber dispersion were estimated for individual
voxels of the white matter.37 Details of incorporation of white matter
anisotropy through constitutive model and DTI are available else-
where.7 In brief, constitutive model used in this work (i.e., HGO strain
energy function) took the following form:

W ¼ l
2

I1� 3
� �

þ k1

2k2

+N

a¼ 1
ek2Æ �Eaæ2

� 1
n o

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
shear

þ K

2

J2� 1

2
� ln J

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

volumetric

with

�Ea¼ j �I1� 3ð Þþ 1� 3jð Þ �I4a� 1ð Þ

where, l is the shear modulus of the isotropic matrix, k1 is the

stiffness of the fibers, k2 is the dimensionless material parameter

that controls the nonlinearity of the anisotropic response, N is the

total number of fiber families (in the current work it was assumed

that only a single family of fibers existed in the material; therefore,

N was set equal to 1), K is the effective bulk modulus of the ma-

terial, J is the volume change ratio, and j is the structural parameter

that defines the degree of fiber dispersion. The modified invariant,
�I1 and �I4, are defined as

�I1¼ tr C
� �

�I4¼ a0 � C � a0

where, C is the deviatoric component of the right Cauchy–Green

deformation tensor and a0 is a unit vector representing the fiber

direction in the reference configuration. Fiber direction can be

obtained from DTI. When the material undergoes deformation, the

vector a0 will deform with the body. After deformation, the fiber

direction may be described by a unit vector a. In general, the fibers

will also undergo length change. The fiber stretch, k, can be de-

termined in terms of the deformation gradient and the fiber direc-

tion in the undeformed configuration:

ka¼F � a0

because a is a unit vector:

k2a � a¼ k2¼ a0 � FTF � a0¼ a0 � C � a0¼ �I4

The fiber orientation map and fractional anisotropy (FA) map
from DTI provides the primary direction of fiber alignment and the
degree of fiber dispersion respectively, for each voxel. Although
the local fiber orientations can be directly obtained from the fiber
orientation map, the fiber dispersion values determined from the FA
map are not equal to the fiber dispersion parameter (j) used in the
HGO model. Fiber dispersion parameter j can be related to FA
from DTI using a relation (derived in Wright and coworkers7):

j¼ 1

2

� 6þ 4FA2þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3FA2� 2FA4
p

� 9þ 6FA2

the lower limit of j becomes 0, which represents regions with

perfectly aligned fibers (i.e., transverse isotropy), and the upper

limit becomes 1/3, which describes regions with randomly oriented

fibers (i.e., isotropy).

Loading and boundary conditions

In the experiments,18 a mild angular head deceleration in a human
subject is generated after being initiated by voluntarily releasing a
latch and coming to a rigid stop within a head support device. During
the experiment, angular position histories are measured on the head
rotation device in real-time using an MRI-compatible angular posi-
tion sensor. Angular velocity and deceleration histories are computed
from the recorded angular positions. The experimentally measured
initial angular velocity and angular deceleration of the head act as
initial conditions and boundary conditions to the head model, re-
spectively. The head has an initial angular velocity of x0 =*3.5 rad/
sec at t = 0 ms, after which it decelerates according to the angular
deceleration history shown in Figure 2.

Method of solution

The material point method19–21 is used to obtain dynamic
analysis of the head model subjected to aforementioned loading
conditions. In this numerical technique, the material volumes (also
referred to as the material points) are used to represent a discretized
material continuum. A background grid is used for solving gov-
erning equations (balance of linear momentum and balance of
mass) and to determine spatial gradients using interpolation shape
functions. The background grid does not deform. The material
points are convected under the action of boundary conditions and
are consistent with the materials constitutive response. The mate-
rial point method has been applied to analyze a wide range of
dynamic problems in solid mechanics and biomechanics, including
dynamic material failure,20,38 cellular mechanics,39 and analysis of
the ballistic impact on soft tissues and subsequent soft tissue fail-
ure.40 In finite element modeling, element geometry typically
corresponds to either hexahedral or tetrahedral elements. In the

Table 1. Material Properties of Head Constituents

Substructure Properties Reference

White matter G0 = 1520 Pa; G1 = 286 Pa; g1 = 0.81;
s1 = 2 sec k1 = 121 Pa; k2 = 0.0001;
fractional anisotropy (j)
and fiber direction (a, unit vector)
for each material
point from diffusion tensor
imaging (DTI)

33,34

Gray matter G0 = 2750 Pa; G1 = 385 Pa;
g1 = 0.625; g2 = 0.055; g3 = 0.182;
s1 = 2 sec; s2 = 11 sec; s3 = 47.5 sec

33

Caudate,
putamen

G0 = 700 Pa; G1 = 110 Pa; g1 = 0.61;
g2 = 0.135; g3 = 0.103;
s1 = 1.45 sec; s2 = 10 sec;
s3 = 110 sec

33

Thalamus G0 = 6700 Pa; G1 = 943 Pa; g1 = 0.81;
s1 = 2 sec

33

Common
properties
for brain
substructures

q = 1040 kg/m3;
Kcerebrum = 1.46 GPa;
Kcerebellum = 1.19 GPa

Subarachnoid
space (SAS)

q = 1133 kg/m3; E = 9.85 MPa;
t = 0.45

36

Skull q = 2070 kg/m3; E = 8 GPa; t = 0.22 35
Ventricles,

cerebrospinal
fluid (CSF)

q = 1004 kg/m3; K = 1.46 GPa;
n = 7.15; l = 1.002e-3 Pa-sec

25
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MPM, becauses explicit meshing is not required, elements are only
used for the background grid. The background grid is made up of
hexahedral elements.

The MPM has several limitations. MPM is more computationally
expensive than the FEM, as the field variables have to be interpolated
from the particles to the grid and vice versa, and as the grid has to be
reinitialized at the beginning of the new step. Energy dissipation error
can occur in the MPM. Advanced techniques such as a time-stepping
algorithm for stress calculation41,42 and convected particle domain
interpolation technique are required for alleviating the error.21 Si-
mulations in our article utilized the aforementioned techniques21,41,42

to alleviate the energy dissipation.

Comparison of simulation predicted full-field data
with tagged MRI measurements

Over the past few decades, the (bio) mechanics community has
seen a tremendous rise in the use of computational models. The
practice of using numerical models to design, build, and evaluate
the performance of systems at the intersection of engineering and
biology is gaining traction. Often, such models are validated at
discrete spatial points because of the limitation in experimental
measurements. One important aspect of the model development
process—full spatial field model validation—has, however, re-
ceived little attention. The evaluation of model validity becomes

extremely critical when predictive capability is desired, especially
to predict injuries, under dynamic loading conditions that typically
result in spatially heterogeneous deformations. We propose a few
statistical measures43–46 to evaluate model validity. These mea-
sures are summarized in Table 2. Variables P and O represent a
spatially varying simulated (predicted) data set and an experi-
mentally measured (observed) data set, respectively. An overbar
(O) denotes the mean of the data set. Although there are un-
certainties in the measured data, we assume that the measured data
(O) is the ground truth for comparison of simulated results. A
higher value of one of these statistical measures indicates a better
agreement between simulated and measured data sets, except for
the root mean square error (RMSE) observations standard deviation
ratio (RSR) measure, for which a lower value indicates a better
agreement. For some of the statistical measures described here (e.g.
RSR, correlation score [CS]), the validity rating (or performance of
a predictive model) in terms of a qualitative index (such as excel-
lent, unacceptable) are adopted from the literature.44,45 We use
these ratings to indicate the agreement of simulated results with the
measurements (Table 3).

Simulations of injurious loading

Rowson and coworkers47 studied the rotational kinematics of the
head associated with concussive impacts, using a head acceleration

FIG. 2. The head models use a particle-based numerical method, the material point method (MPM), for dynamic analysis of a subject-
specific human brain undergoing rotational acceleration. (a) shows a mid-axial section of the head model. Digitized image data from
MRI images and diffusion tensor imaging (DTI) images were imported to the head model. A constant angular velocity, x0, acts as an
initial condition for the head, as shown in (a). Subsequently, the skull decelerates according to deceleration history shown in (b). Both
x0 and angular deceleration are based on the experimental measurements. Color image is available online at www.liebertpub.com/neu

Table 2. Statistical Measures for Evaluation of Full Field Data Between the Model and the Experiment

Statistical measure Equation Range Reference

Index of agreement (dr) dr ¼
1� +N

i¼ 1
Oi �Pij j

2 +N

i¼ 1 Oi �Oj j if Oi�Pij j � 2 +
N

i¼ 1

Oi�O


 



+N

i¼ 1
Oi �Pij j

2 +N

i¼ 1 Oi �Oj j � 1 if Oi�Pij j > 2 +
N

i¼ 1

Oi�O


 



8>>><
>>>:

(-1) to 1 46

Coefficient of efficiency (E2) E2¼ 1� +N

i¼ 1 Oi �Pij j2

+N

i¼ 1
Oi �Oj j2 �1 to 1 43

Root mean square error (RMSE)-observations
standard deviation ratio (RSR)

RSR¼ RMSE
STDEVobs

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+N

i¼ 1 Oi �Pið Þ2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+N

i¼ 1 Oi �Oð Þ2
q 0 to 1 45

Correlation scores (CS) CS¼ 1� NISEj jð Þ· 100 NISE¼ 1� 2 +N

i¼ 1 OiPi

+N

i¼ 1 O2
i
þ +N

i¼ 1 P2
i

0 to 100 44

NISE, normalized integral square error.
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data set collected in 335 collegiate football players. They report
injury thresholds for various impact scenarios that resulted in de-
finitive concussive injury. The impact scenarios are classified into
three broad categories based on the direction of rotation as: impacts
that result primarily in rotations in the sagittal plane, impacts that
result primarily in rotations in the coronal plane, and the impacts
that result primarily in rotations in the axial plane. We simulated
the scenario that resulted primarily in rotation about the axial plane,
as this closely resembles the loading simulated in the noninjurious
case. This mode is dominated by significant rotational accelerations
about the inferior-superior axis; that is az; with sagittal (ax) and
coronal (ay) being negligible components (as recorded by the hel-
met sensors). Rowson and coworkers47 report peak angular accel-
eration of 2192 rad/sec2 as an injury threshold for the impacts that
result in preliminary rotation about the axial plane. This peak ac-
celeration value is used together with a representative acceleration
pulse from Rowson and coworkers12 as the loading input to the
simulations (Fig. 6) . This peak acceleration value is an order of
magnitude higher than the peak value used in the noninjurious
loading case (*200 rad/sec2) associated with the live human ex-
periments. Also, the duration of the acceleration pulse is 18 ms for
the injurious loading scenario as opposed to 40 ms for the non-
injurious loading scenario.

Injury criterion

Our current understanding of the best injury criterion for DAI
under rotational accelerations is that injury occurs7 when the axonal
tensile strains (rather than shear strains) reach a critical value.48,49

The closest approximation to the axonal strains is provided by the
axial strains along the fiber directions in the white matter fiber
tracts. Because our head model includes the fiber orientations and
our constitutive model7 includes the anisotropic response because
of underlying fiber tracts, we can compute the axial strains along
the white matter fiber tracts. We use an axonal strain injury (ASI)
criterion7,10 to identify regions of the brain that exceed the ASI
during the injurious loading scenario. We use two injury threshold
values, a value of 18% defined by Wright and coworkers,7 based
on work of Bain and Meaney,49 and a value of 13% defined by
Giordano and Kleiven,10 based on the work of Newman and co-
workers.50 Bain and Meaney49 defined an optimal axonal strain
threshold of 18% for the onset of electrophysiological impairment
(a functional injury). Giordano and Kleiven10 defined a white
matter axonal threshold of 13% based on finite element calculations
of accidental reconstructions50 from the American National Foot-
ball League (NFL). Strain rates for injurious loading simulated here
and used while deriving ASI criteria are comparable. Strain rate for
simulated injurious loading is *50 s-1. Strain rate for ASI criteria
of Wright and coworkers is*30–60 s-1, whereas strain rate for ASI
criteria of Giordano and Kleiven is *100–400 s-1.

Quantification of injury

To quantify overall injury (damage) in white matter substruc-
tures, white matter tracts are further classified into three broad
functional categories.51 These categories are: 1) projection fibers

(cortex–spinal cord, cortex-brainstem, and cortex–thalamus con-
nections), 2) association fibers (cortex–cortex connections, limbic
system tracts), and 3) callosal fibers (right–left hemispheric con-
nections). We kept white matter tract segmentation to three broad
categories for ease of interpretation of overall damage.

Results

Rotational dynamics of the live human brain

We performed 3D computational simulations of subject-specific

human heads to study the dynamics of the shear wave propagation

during a sudden deceleration (Fig. 3). During sudden deceleration

of the head, the skull decelerates almost instantaneously, while the

motion of the brain lags behind the motion of the skull. This lag in

motion causes the brain to deform dynamically during deceleration

Table 3. Model Performance Evaluation Statistics

Axial slice location dr E2 RSR CS

Radial-circumferential shear strain (Ert) Z = 40 0.48 -0.08 1.06 (unsatisfactorya) 84.70 (gooda)
Z = 20 0.55 0.02 0.99 (unsatisfactorya) 91.20 (excellenta)
Z = 0 0.49 -0.07 1.04 (unsatisfactorya) 86.19 (excellenta)

Z = -20 0.43 -0.12 1.09 (unsatisfactorya) 78.90 (gooda)

aValidity rating (or performance of a predictive model).
RSR, Root mean square error (RMSE) observations standard deviation ratio; CS, correlation score.

FIG. 3. Dynamics of wave propagation (simulated) in a human
brain subjected to axial plane rotation. Radial-circumferential
shear strain (Ert) is used to illustrate wave propagation. Color
image is available online at www.liebertpub.com/neu
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(see Video S1). One manifestation of this motion is a shear wave

propagating toward the center of the brain, as we demonstrate.

The wave propagation in the brain as a result of the sudden

deceleration is illustrated in Figure 3 in terms of the computed

radial-circumferential shear strain (Ert), where the rows represent

axial slices of the head and the columns represent the computed

strain field in each slice at increasing times after deceleration be-

gins. The rows are ordered top to bottom and are sections taken at

various values of z, where the z axis is the inferior-superior axis of

the human head, and the origin represents the centroid. The times

presented correspond to times when experimental information is

available (the corresponding accelerations are shown at the top of

the figure), but the simulations include all intervening times. The

figure shows that as the head decelerates, a shearing wave propa-

gates from the exterior boundary toward the center (columns a–c).

The wave propagation is truly 3D even for simulated quasi-2D

motion of the head, and the interactions of the wave with the 3D

structure of the brain are clearly visible in the individual slices. The

propagation speed for the initial wave traversal is *1.2 m/sec,

close to the elastic shear wave speed. As time proceeds, the

shearing wave reflects from the center of the head and propagates

back outward. The subsequent strain fields consist of a combination

of reflected waves from the center traveling toward the external

boundary and release waves traveling from the exterior boundary

toward the center (as the deceleration decreases). By *100 ms, the

strains appear to have been relaxed, but the kinetic energies in the

system are still non-zero. The viscous dissipations are minimal at

this time, because the viscoelastic relaxation times (1.5–47 sec) of

the various substructures of the brain are at least an order of

magnitude larger than the simulation time.

Validation of model against full-field live
human brain data

We validate subject-specific computational head models against

subject-specific, full-field live human brain data18 with a focus on

the shearing strains3,14,16 (oft-used intracranial pressure is a much

less discriminating measure for computational models of the brain,

because of the near-incompressibility of brain tissue). Experiments

were performed with spatial and temporal resolutions of 8 mm and

18 ms, respectively,18 and the measured spatial displacements were

then interpolated to obtain a full-field deformation map for the

entire head. This information was used to extract displacement and

strain fields for specific slices of the head for comparison with

simulations performed on the subject-specific head model with

identical input accelerations. The comparisons for a representative

subject are shown in Figure 4. The full experimental and simulation

data sets are massive, and, therefore, we chose only a handful of

specific slices (the midaxial slice z = 0 mm and the slices at z = 20,

-20, and 40 mms) for a range of times (t = 27,45, 63, 81, and 99 ms),

dictated by the temporal resolution of the experiment) to provide

the comparison. For each slice, we show the experimental results in

the left half and the simulation results in the right half. Figure 4

shows qualitatively (quantitative comparisons et seq.) that the

computational model is able to capture the approximate magnitudes

and dynamics of the experimentally observed strain fields in the

live human brain, providing the validation of subject-specific

computational models against live human brain data. Figure 4

shows that in both experiments and the simulations, a shear wave

starts to propagate from the outer boundary toward the inside. Peak

shear occurs at 45 ms, and, as time proceeds, shearing in the other

direction (sign change) starts because of the reflection of waves

from the center. The agreement between the experiment and the

simulation appears reasonable in terms of strain magnitudes and

overall distribution of strains.

An example of a more quantitative comparison of the experi-

mental and computational results is presented in Figure 5a for a

specific slice at a specific time using the conventional area-fraction

approach.18 Such an approach compares the area-fraction / of each

slice that has strains (e) within specified range m to n, with the area

fraction being defined by

/
m< e�n¼

RR
edxdy, for m < e � nRR

dxdy

In addition, peak positive and peak negative shear strain (Ert) in

each substructure (such as white matter, gray matter) are also

compared (Fig. 5b). The comparison between experiment and

simulation is fair in terms of distribution of strains and strain

magnitudes. A similar agreement between experiment and simu-

lation is seen for other subjects (Fig. S1) (see online supplementary

material at http://www.liebertpub.com), which demonstrates the

robustness of the model in terms of the ability to translate from one

subject to another.

The area fraction-based comparison approach described integrates

out the heterogeneity of the strain field distribution. A more robust

way to compare full-field data between the model and the experiment

is to use broader statistical measures for model evaluation. Here, we

FIG. 4. Qualitative comparison of the radial-circumferential shear strain (Ert) field between the experiment and the simulation. A
representative result for a single subject is shown. Color image is available online at www.liebertpub.com/neu
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use a number of such measures (Table 2), mostly motivated from the

climate community,43–46 to estimate the degree of agreement between

the model and the experiment. Table 3 shows the statistical evaluation

of the model performance for a specific slice (z = 0 mm), at a specific

time (t = 45 ms). Here, we evaluate the degree of model performance

based on pointwise spatial variations at a fixed time. Conversely, the

approach can be applied to evaluate temporal variations (in a given

mechanical field) at a fixed point in space. Even though the qualitative

agreement between the model and simulation (Fig. 4) appears rea-

sonable, the quantitative comparison based on overall statistics at

discrete spatial points is less definitive (Table 3). However, caution

should be exercised while interpreting these results, as some of the

validity ratings are based on the standards developed in the climate

community, because of a lack of such standards in mechanics com-

munity. These measures are able to capture subtle differences be-

tween the model and the simulation, which are otherwise not apparent

by visual comparison (Fig. 4). We note that although in general,

comparison of temporal response at specific locations is an effective

means to compare experiment and the simulation, in the current work,

comparison of time histories between the experiment and the simu-

lation is not useful, because of low temporal resolution (18 ms) in the

experiments.

Sensitivity of the results to the material properties

To study the sensitivity of simulation results to material prop-

erties, particularly shear moduli, the baseline properties are scaled

uniformly by ½, 2, and 4 times the original values. Figure S2 (see

online supplementary material at http://www.liebertpub.com)

shows the area fraction based distribution of radial-circumferential

shear strain (Ert) for various shear modulus values (for a repre-

sentative subject); experimental strain distribution is also plotted.

Because shear modulus values are different for each substructure,

average (weighted by volume of each substructure) shear modulus

is marked for each case. White matter and gray matter volumes

comprise >95% of total volume, hence the average shear modulus

is dominated by the values in white matter and gray matter. Further,

these marked shear modulus values are closer to instantaneous

shear modulus values, as relaxations times (sec) are much longer

than the simulation time (ms), and hence viscous dissipation is

FIG. 5. (a) Quantitative comparison in terms of area fraction of th e radial-circumferential shear strain (Ert) field between the
experiment and the simulation. (b) Comparison of peak positive and peak negative radial-circumferential shear strain (Ert) in each
substructure. A representative result for a single subject is shown. Color image is available online at www.liebertpub.com/neu

FIG. 6. (a) Input acceleration for injurious loading. (b) Radial-
circumferential shear strain (Ert) pattern in the brain for injurious
loading. (c) Regions of white matter fiber tracts exceeding axonal
strain injury (ASI) criterion. Injured (damaged) regions are marked
in red. Color image is available online at www.liebertpub.com/neu
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minimal. Based on the distribution of area fractions (Fig. S2), it is

seen that the average shear modulus value of *2.2 kPa gives the

best agreement with the experimentally obtained response. Aver-

age shear modulus values of *4.4 kPa and *8.8 kPa produced a

stiff response in which peak strains were underestimated, whereas

shear modulus value of *1.1 kPa produced a soft response in

which peak strains were overestimated.

The global comparison approach based on area fraction inte-

grates out the heterogeneity of the strain field distribution. Hence,

an RMSE estimate that takes into account differences at each

material point was also used for evaluating overall agreement be-

tween the experiment and the simulation. RMSE between the ex-

periment and the simulation for various shear moduli are tabulated

in Table S1(see online supplementary material at http://www

.liebertpub.com). Based on RMSE estimates, a mean shear modulus

value of *2.2 kPa provides the least error (best agreement) with

the experimentally obtained response. With shear modulus values

of 2.2 – 0.40 kPa, the RMSE error is <1%. As noted earlier, because

viscoelastic time constants from low-rate experiments were used,

viscous effects in the model were minimal, and this specific value

of the shear modulus should be interpreted carefully.

Dynamic brain deformations during
injury-causing loading

The validated head model presented previously is further used

to simulate injurious loading that resulted in definitive concussion

during collegiate football impacts. The specific head model used is

a representative subject from the subjects examined in the non-

injurious (validation) case. Figure 6 shows the strain evolution in

the brain for injurious loading for a specific slice (z = 0 mm). The

overall rotational dynamics (Fig. 6b) are similar to that observed in

the noninjurious case. However, much larger shear strains are ob-

served in this simulation, of the order of –30%. Further, temporal

variations in wave dynamics (e.g., time to peak experienced by

various substructures) are also observed as compared with the

noninjurious case, because of changes in the frequency of the

loading pulse. Even with these spatiotemporal differences, overall

time scale of the wave dynamics is 100 ms for injurious loading

scenario, as limbic (innermost) regions of the brain experience the

peak values at *100 ms (Fig. 6b).

As stated earlier in the Methods section, we used ASI criteria to

identify injured regions within the brain. We used the white matter

ASI threshold values defined by Wright and coworkers7 of 18%

tensile strain and by Giordano and Kleiven10 of 13% tensile strain.

Using these injury thresholds, the specific white matter fiber tracts

that would be injured (damaged), according to our simulations of

this injurious loading scenario, are shown in Figure 6c. Notable

damaged regions include the corpus callosum (with the highest

damage of all tracts), cingulum, corona radiata, and internal cap-

sule. Also, maximum damage occurs in the central portions of

the brain as opposed to the cortical regions. This is because of the

anisotropy of the brain tissue and preferential orientation of the

fiber bundles along specific directions. Examining injury over

the entire brain and for the entire simulation time of 100 ms, we can

determine the degrees to which specific white matter substructures

are likely to be injured in this scenario. Based on tract segmentation

(for details refer to quantification of injury in the Methods section),

we calculate injury (damage) in *10% of projection fibers, *18%

of association fibers, and *22% of callosal fibers over the entire

brain and for the entire simulation time of 100 ms (Table 4). While

quantifying the damage, once a given voxel is damaged it is not

considered any further even if the injury threshold is exceeded at

that voxel at later times.

Discussion

In this work, we studied the dynamics of head rotation in live

human volunteers subjected to mild (*200 rad/s2) rotational ac-

celeration. Our results indicate that the interaction of the rotational

loading with the anatomical structure of the brain is seen to result in

substantial heterogeneity (Fig. 3) in the strain pattern. Because

some form of strain magnitude is often used7 as an injury criterion,

this indicates that the degree of injury will be spatially heteroge-

neous as well. The simulations and experiments (Figs. 3 and 4) also

demonstrate that the rotational dynamics of the brain have a

timescale of *100 ms, as determined by the shearing wave speeds,

and, therefore, the injuries associated with rotational accelerations

are likely to occur over these time scales. This time scale may

change slightly with better characterization of viscous time con-

stants. Further, the time scales associated with the shearing infor-

mation in the brain depend on both the material response (i.e., wave

propagation speed in the material) and the frequencies in the

loading pulse. Therefore, the entire range of times up to 100 ms may

be important in these events. It is of note that even for injurious

loading (Fig. 6), innermost limbic regions of the brain experience

the peak values at *100 ms, despite changes in the frequency of the

loading pulse compared to noninjurious loading. This is important

because much of the TBI mechanics literature (both experimental

and computational) tends to focus on much smaller time scales.

The predictive capability of a computational head model can

only be estimated after the model has been validated against

available experimental data. As always, the key questions are 1)

what experimental data set is used for validation, 2) is this exper-

imental data set different from that used for calibration of the

model, and 3) what is the degree of agreement between the simu-

lation data set and the experimental data set. Ideally, the material

and anatomical parameters that go into a head model should be

obtained independently of the experimental data set used for vali-

dation. However, this is difficult, because there are few experi-

mental data sets that can be used with the injury problem.

Most of the computational head models (see Yang and co-

workers52 and references therein) developed to study brain bio-

mechanics are compared against measurements of intracranial

pressures (made at a limited number of locations) in postmortem

human subjects (PMHS). An interesting observation is that a very

wide range (in terms of structural and material parameters) of

computational head models can all replicate intracranial pressure

Table 4. Damage Quantification in White Matter

Fiber Tracts

Cumulative damage (>100 ms)

White matter
substructure

Axonal strain
injury (ASI)
(Wright and

Ramesh)
ASI (Giordano
and Kleiven)

Average of
two injury
threshold
measures

Projection
fibers

9% 12% 10.5%

Association
fibers

16% 20% 18%

Callosal fibers 21% 23% 22%
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traces, and, therefore, this particular experimental data set is not

able to discriminate between models. Therefore, although com-

parison of computed and measured intracranial pressures is valu-

able, this is not a sufficient validation of a computational head

model. In addition to validation of intracranial pressure response, a

few computational models of brain biomechanics have also been

compared against53,54 experimental measurements of brain dis-

placement in PMHS.8,10,11,29,32,55,56 These experiments and vali-

dation efforts are very encouraging, but are limited by the low

spatial resolution of the displacement measurements (and therefore

even poorer spatial resolution of the displacement gradients and

hence the strains). Further, the geometry and anatomy of the head

model are usually not the same as that of the head used in the

experiment. Because of these challenges, there is currently no

standard protocol for validation of computational biomechanics

models of the head. Computational head models that claim ‘‘vali-

dation’’ can show differences of up to 100 % between experi-

mentally measured and predicted responses.8,10,11,29,32,55,56

Here, considering the noninjurious case, we compare subject-

specific head models against full-field deformation data measured

noninvasively inside the living human brain of the identical living

subject. This is the first comprehensive attempt toward comparing

full-field deformation inside the brain tissue of a live human under

prescribed loads. There is a one-to-one correspondence between the

model and the experiment in morphology and fiber orientation of

the brain tissue, loading conditions, and measured deformations.

All of the model parameters are determined independently of the

validation data set. For the comparisons, we focus on in-plane

displacements and shearing strains for the reasons articulated in the

Methods section of this article.

In spite of the conservative and rigorous approach we have used

in the validation protocol (Figs. 4 and 5 and Table 3), the degree

of agreement that we observe between the strains obtained in the

experiments and predicted by the simulation is reasonable (Figs. 4

and 5) in terms of strain magnitudes and overall distribution of

strains. Even though direct comparison cannot be made with other

models,8,10,11 the current acceptable standard in the literature for

computational model validation appears to be differences on the

order of –100% when compared with experimental response. Full-

field shearing deformations in the live human head have never been

measured and used for validation before. Further, our simulations

are able to match strain magnitudes, and strain distribution in each

subject-specific head (Fig. S1). The error in magnitude of peak

shear strain between simulations and experiments is 1.4 – 0.5% for

all the subjects. Another major difference between our approach

and earlier validation efforts is that we compare full-field defor-

mation fields as opposed to comparing at a limited number of

discrete points inside the brain tissue. We believe that such a

comprehensive approach toward validation will greatly enhance

the predictive capabilities of the model, with implications in using

computational head models for patient-specific diagnosis and care

against DAI. We also propose statistical measures43–46 (Table 2)

for evaluation of model performance. Although a normalized in-

tegral square error (NISE) CS is generally used as a measure of

model evaluation in the impact biomechanics community,11,57 it

tends to produce a relatively higher number (i.e., most liberal)

compared with other model evaluation measures. Therefore, we

believe that correlation score should not be used as an exclusive

measure of model evaluation. It should be complemented with the

other measures described in Table 2. The coefficient of efficiency

(E2) and RSR are difficult to interpret because of the lack of lower

and upper bound, respectively, on these measures. In addition,

these measures yield artificially higher values (toward1) if a de-

viation of Oi from the mean (O) is small. On the other hand, index

of agreement dr is bounded by -1.0 and 1.0 and, in general, more

rationally related to model accuracy than other model evaluation

measures presented here. Index of agreement dr is also quite flex-

ible, making it applicable to a wide range of problems requiring

model evaluation. Therefore, in addition to the conventional ‘‘CS’’

measure, we recommend ‘‘index of agreement (dr)’’ as a potential

measure for model evaluation. We emphasize that model evalua-

tion measures as applied here are less definitive (Table 3) because

of the lack of use of such measures in the (bio) mechanics com-

munity. We stress the utility of these methods for evaluation of

model performance, with the hope that such a practice will bring

out robust means for model evaluation in the (bio) mechanics

community.

Comparison of full field strain fields between the experiments

and the simulation (Fig. 4) also highlight some significant chal-

lenges. The comparison between simulation and experiment lacks

agreement at times >45 ms (Fig. 4). This is likely because of the

incomplete or inaccurate measurement of relevant viscoelastic time

constants. It is also likely that the complex wave dynamics arising

from the structural response are not captured properly by the sim-

ulations. Also, the experiments themselves have greater difficulty

obtaining consistent data at very long times (as the subject’s vol-

untary responses become engaged). The HGO strain energy func-

tion that we use does not account for the interaction between the

white matter fibers and the effective matrix, and this might be

important to fully represent a response of the brain tissue under

dynamic loading. In addition, we did not explicitly model brain

vasculature that can perhaps affect dampening, especially at later

times.

After subject-specific validation in live human brains, we used a

subject-specific head model (a representative subject) to predict the

likely locations of injury in white matter fiber tracts under the

injurious loading scenario. We used ASI threshold values7,10 to

identify regions of the brain that exceed the ASI during the inju-

rious loading scenario. Based on these threshold values, our model

predicted injury in the regions of the corona radiata, internal cap-

sule, corticospinal tract, and corpus callosum (Fig. 6c) for axial

rotation (i.e., rotation about an inferior-superior axis). The corona

radiata, internal capsule, and corticospinal tract represent a motor

pathway, and hence injury (damage) to these regions can presum-

ably affect motor functions. The corpus callosum connects the right

and left hemisphere and facilitates communication between the two

sides of the brain. This neural tissue is also the largest collection of

white matter within the brain, and contains a high myelin content

which facilitates quicker transmission of information. Damage to

the corpus callosum thus can lead to overall cognitive impairment.

Microstructural changes in the corpus callosum are routinely ob-

served among TBI populations in DTI imaging studies.58 Quanti-

fication of injury based on tract-based segmentation (Table 4)

suggests the highest damage to callosal fibers followed by associ-

ation fibers and least damage to projection fibers. Such an approach

can be extremely useful in a clinical setting to relate injury to

functional outcomes, and also in establishing injury thresholds

based on macroscopic (overall) damage to white matter as opposed

to conventional head acceleration based thresholds.

The injured regions found in this work (corona radiata, internal

capsule, corticospinal tract, and corpus callosum) are consistent

with DTI findings in sports-related concussions. Meier and co-

workers59 collected DTI data in collegiate athletes (40 concussed,

46 control) at regular time intervals (1.64, 8.33, and 32.15 days)
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post-concussion. They found changes in FA in longitudinal fas-

ciculus, internal capsule, corona radiata, and corpus callosum with

no evidence of recovery. Chamard and coworkers60 conducted DTI

studies in female athletes (8 concussed, 10 control) 6 months post-

concussion. They particularly investigated two white matter re-

gions, the corpus callosum and corticospinal tract, and found sig-

nificant differences in the corpus callosum but no significant

differences in the corticospinal tract in mean and radial diffusiv-

ities. Herweh and coworkers61 conducted DTI studies in amateur

boxers (31 concussed, 31 control). They found significant changes

in FA and diffusivity measures in several white matter regions,

including the corticospinal tract, internal capsule, corpus callosum,

and longitudinal fascicle. Similar findings in injured white matter

regions (albeit differences in quantitative trends) have been re-

ported in other DTI studies62–64 in TBI patients. The corpus cal-

losum, internal capsule, and longitudinal fasciculus are commonly

observed abnormal regions in these investigations. It should be

noted that even though DTI studies are promising as a potential

biomarker for mild TBI, the findings are still not robust in terms of

quantifiable trends.

Limitations

In the current work, anisotropic material properties are based

on the experiments of Velardi and coworkers34 on porcine brain

matter. Understanding the directional dependence of brain me-

chanical properties both in vitro34,65–68 and in vivo69 is still a topic

of intense ongoing research, with varying results to date. Some

studies of the corpus callosum in large mammals (lamb or sheep)

found significantly stiffer response in the fiber direction than per-

pendicular to it.34,66 On the other hand, another study of corpus

callosum properties in the porcine brain found significantly stiffer

response in shear perpendicular to the fiber than along the fiber.65 In

a recent investigation using postmortem human brain tissue, Bud-

day and coworkers68 found anisotropy of the brain tissue to be

insignificant. Jin and coworkers,67 on the other hand, found sig-

nificant anisotropy in shear and minimal anisotropy in tension and

compression in postmortem human brain tissue. Further, in vitro

studies have shown that brain mechanical properties are affected by

age65,70 and loading mode.68 Overall, additional investigations are

likely needed to accurately account for mechanical anisotropy in

white matter in vivo. As more reliable data become available, they

should be incorporated in the computational modeling.

Viscous properties, including viscoelastic time constants used in

this work, are taken from nanoindentation measurements on vari-

ous substructures (e.g., white matter, caudate) of the brain. We

chose these sets of properties because these appear to be the only

measurements that provide the material response for individual

anatomical regions (substructure) as opposed to the global prop-

erties that are typically used. The trade-off is that these measure-

ments did not resolve high-strain rate behavior. In our experiments

and simulations, the loading rates are *0.01 s-1. At these rates, the

effects of the modeled viscous terms in the simulation are minimal.

However, better estimates of viscoelastic properties are likely

needed to improve the agreement between simulation and experi-

ments, especially at longer times (>45 ms).

Our model has not been systematically compared with high se-

verity impacts. In addition to the comparison of model predictions

to high-resolution strain fields in vivo described previously, a

comparison of displacements predicted by the current head model

was made to measurements of displacements of neutral-density

markers in PMHS for higher severity impacts.53,54 The goal of the

current study is to capture live human brain dynamics, and it is well

known that the material behavior71,72 and internal boundary con-

ditions54 in PMHS are very different from those of live subjects.

Hence, we believe, comparison of this model with the data obtained

in PMHS is likely to be different and of limited value. However, for

completeness, we briefly describe the comparison of model-

predicted with to measured displacement data in PMHS.53,54 The

magnitude of displacements are similar to those reported for

PMHS;53,54 however, the frequency of displacement is not well

captured (Fig. S3) (see online supplementary material at http://

www.liebertpub.com). This mismatch can be attributed to several

causes. 1) Because of limitations of the material point method and

computational capacity, we cannot apply the very fast experimental

loading and boundary conditions to the entire head. 2) At the very

high levels of acceleration in the PMHS studies, the current model

may not properly account for large deformation and high-rate vis-

coelastic behavior of the brain tissue. It is noteworthy that Gasser and

coworkers23 showed that for certain structural configurations (e.g.,

highly aligned fibers with nearly zero dispersion), the HGO model

fails to accurately predict stiffening behavior at high stretches. We

emphasize that although these limitations suggest that comparison of

the experiment with simulation of brain motion in vivo at sub-injury

levels is not sufficient to validate a model of brain injury at high rates,

such a comparison is necessary to establish the ability to model basic

biomechanics of the intact, living brain.

Conclusion

DAI, a type of TBI, has been strongly correlated to the rotational

accelerations of the head. However, there is limited understanding

of how rotational accelerations lead to DAI, which is normally

attributed to abnormal stretching of axons. This work develops

subject-specific computational head models that capture, for the

first time, experimentally observed dynamics of brain deformations

in live human subjects.

Full-field shearing deformations in the live human head have

never been used for validation of models. Our work proposes sta-

tistical measures for evaluation of model performance. We rec-

ommend ‘‘index of agreement (dr)’’ as a potential measure for

model evaluation within the context of impact biomechanics, in

addition to the commonly used conventional ‘‘CS’’ measure. Our

simulations are able to match strain magnitudes and spatial distri-

bution of strains in subject-specific brains.

Simulations using virtual head models allow for understanding

of the mechanics associated with multi-scale dynamic deforma-

tions in the human brain. Our work demonstrates that, under elastic

response, the rotational dynamics of the brain have a time scale of

*100 ms as determined by the shearing wave speeds, and, there-

fore, the injuries associated with rotational accelerations likely

occur over these timescales. By applying the model to a scenario

that resulted in concussion, we demonstrate the ability to provide

insights into the degree and likely locations of injury. Results

suggest that susceptible regions of the brain, in the form of a toroid,

encompassing the white matter, the cortical gray matter, and outer

parts of the limbic system have a higher susceptibility to injury

under axial rotations of the head.
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