
Flapping foil propulsion has received considerable attention

in the past few years as an alternative to the propeller. This

mode of propulsion, which involves no body undulation, has

many applications, such as propulsion of submersibles,

maneuvering and flow control, that are of interest to the

hydrodynamic community and unconventional aerodynamics

of micro aerial vehicles (MAVs) and the study of aircraft flutter

that are of interest to the aerodynamic community.

Flapping foil propulsion is also important in the area of bio-

fluid dynamics for the study of propulsion in insects, birds and

certain aquatic animals. Flying animals generate lift and thrust

as a consequence of the interaction between the flapping

motions of the wings and the surrounding air. These animals

also perform maneuvers involving rapid plunging and pitching

motions. Conventional steady-state theories do not predict

sufficient forces to meet those required for flight (Ellington,

1984). Therefore, we need to understand the unsteady

aerodynamics of flapping wings undergoing highly three-

dimensional motions with widely varying geometries.

Experimental work on two-dimensional flapping foils has

been carried out by Anderson (1996) and Freymuth (1999).

Computational studies have been performed by Jones and

Platzer (1997) and Ramamurti and Sandberg (2001). While

two-dimensional wing section investigations can yield useful

insights on the coupled pitching and heaving dynamics,

nothing can be learned concerning the influence of spanwise

flow. It is therefore essential to carry out computations for

actual three-dimensional insect wings. Ramamurti et al. (1996)

computed three-dimensional unsteady flow past moving and

deforming geometries in a simulation of a swimming tuna with

caudal fin oscillation.

The three-dimensional wing strokes of insects can be

divided into two translational phases and two rotational phases.

During the translational phases, the upstroke and the

downstroke, the wings move through the air with high angles

of attack, and during the rotational phases, pronation and

supination, the wings rotate rapidly and reverse direction.

Dickinson et al. (1999) studied the effects of translational and

rotational mechanisms of the wing in Drosophila

melanogaster. They directly measured the forces produced by

flapping wings and explained the aerodynamics of insect flight

by interactions between three unsteady flow mechanisms. The

‘delayed’ stall mechanism is a translational mechanism which,

in two dimensions, produces high lift in the initial phases of

translation until eventual flow separation; in three dimensions,

the spanwise flow effectively prevents stall. Rotational

circulation and wake capture are rotational mechanisms that

depend mainly on the pronation and supination of the wing

during stroke reversal. Walker and Westneat (1997) have

studied experimentally the kinematics of fin motion in a fish,

the bird wrasse Gomphosus varius. Liu and Kawachi (1998)

numerically investigated the flow over a hovering hawkmoth,

Manduca sexta. They reported the presence of a spiral leading-

edge vortex to which they attributed the lift enhancement
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A finite element flow solver was employed to compute

unsteady flow past a three-dimensional Drosophila wing

undergoing flapping motion. The computed thrust and

drag forces agreed well with results from a previous

experimental study. A grid-refinement study was

performed to validate the computational results, and a

grid-independent solution was achieved. The effect of

phasing between the translational and rotational motions

was studied by varying the rotational motion prior to the

stroke reversal. It was observed that, when the wing

rotation is advanced with respect to the stroke reversal,

the peak in the thrust forces is higher than when the wing

rotation is in phase with the stroke reversal and that the

peak thrust is reduced further when the wing rotation is

delayed. As suggested by previous authors, we observe

that the rotational mechanism is important and that the

combined translational and rotational mechanisms are

necessary to describe accurately the force time histories

and unsteady aerodynamics of flapping wings.
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mechanism. They validated their results by comparing the

computational streak lines found in a two-dimensional

hovering airfoil with the experimental smoke visualization, but

they did not directly compare instantaneous forces.

Here, we extend the two-dimensional pitching and heaving

airfoil computations to three dimensions. This study will

address the role of the rotational motion in detail. Also, the role

of the leading edge vortex and the interaction between the axial

flow and this leading edge vortex are investigated. The primary

objectives were (i) to validate the three-dimensional

computations by comparing the forces with the experimental

results of Dickinson et al. (1999) and performing grid-

refinement studies, to verify the hypothesis of Dickinson et al.

(1999) that rotational mechanisms of the wing form the basis

by which the insect modulates the magnitude and direction of

the forces during flight and (ii) to provide data on the forces,

moments and power required for the development of a robotic

fly.

To this end, computations are performed for various phase

angles between the rotation and translation motions, and the

time history of the unsteady forces is compared with the

experimental results. The flow solver we employ is a finite-

element-based incompressible flow solver based on simple,

low-order elements. The simple elements enable the flow solver

to be as fast as possible, reducing the overheads in building

element matrices, residual vectors, etc. The governing

equations are written in Arbitrary Lagrangian Eulerian form,

which enables flow with moving bodies to be simulated. The

details of the flow solver, the rigid body motion and adaptive

remeshing are given by Ramamurti et al. (1995) and are

summarized below.

Materials and methods

The incompressible flow solver

The governing equations employed are the incompressible

Navier–Stokes equations in Arbitrary Lagrangian Eulerian

(ALE) formulation. They are written as:

∇ · v = 0 . (3)

Here, p denotes pressure, and va=v–w, the advective velocity

vector, where v is flow velocity and w is mesh velocity and

the material derivative is with respect to the mesh velocity w.

Both the pressure p and the stress tensor σ have been

normalized by the (constant) density ρ and are discretized in

time t using an implicit time-stepping procedure. It is

important for the flow solver to be able to capture the

unsteadiness of a flow field. The present flow solver is built

as time-accurate from the onset, allowing local time stepping

as an option. The resulting expressions are subsequently

discretized in space using a Galerkin procedure with linear

tetrahedral elements. To be as fast as possible, the overheads

in building element matrices, residual vectors, etc., should be

kept to a minimum. This requirement is met by employing

simple, low-order elements that have all the variables (v,p) at

the same location. The resulting matrix systems are solved

iteratively using a preconditioned conjugate gradient

algorithm (PCG), as described by Martin and Löhner (1992).

The flow solver has been successfully evaluated for both two-

dimensional and three-dimensional laminar and turbulent flow

problems by Ramamurti and Löhner (1992) and Ramamurti et

al. (1994).

To carry out computations of the flow about oscillating and

deforming geometries, one needs to describe grid motion on

a moving surface, i.e. to couple the moving surface grid to the

volume grid. The volume grid in the proximity of the moving

surface is then remeshed to eliminate badly distorted

elements. The velocity of the mesh is obtained in a manner so

as to reduce this distortion. A detailed description of the

various mesh movement algorithms is given in Ramamurti et

al. (1994). In that study, smoothing of the coordinates was

employed for the mesh movement with a specified number of

(2)
dv

+ w · ∇v ,
dt

=
∂v

∂t

(1)
dv

+ va · ∇v + ∇p = ∇ · σ ,
dt
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Fig. 1. (A) Schematic diagram of a hovering Drosophila showing the

orientation of the x,y,z coordinate system. (B) Schematic diagram of

the flapping Drosophila wing. The position of the wing is shown at

three different times during the flapping cycle. The coordinate

system (x′,y′,z′) is fixed to the wing, and the wing rotates about the z′
axis throughout the cycle. R, wing length; φ, wingbeat amplitude.
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layers of elements that move rigidly with the wing. In two-

dimensional studies (Ramamurti and Sandberg, 2001), the

grid showed that the elements at the edge of the rigid layers

were very distorted after one cycle of oscillation. This is due

to a residual mesh velocity that is present as a result of the

non-convergence of the mesh velocity field. This will appear

whether a spring-analogy or a Laplacian-based smoothing is

used.

To reduce the distortion of the mesh, the coordinates at the

new time xn+1 were obtained as a weighted average of the

original grid point location at time t=0(x0) and the location of

the point as if it moved rigidly with the body (xn+1
rigid):

xn+1 = x0f(r) + x
n+1
rigid[1 − f(r)] , (4)

where the weighting function (f ) is a simple linear function

based on the distance from the center of rotation r, and is given

by:

f(r) = 0 for r < rmin , (5)

f(r) = 1 for r > rmax (6)

–100

–50

0

50

100

–60

–40

–20

0

20

40

60

10 12 14 16 18 20

Roll angle φ 
Advanced

Symmetrical

Delayed

R
o
ll

 a
n
g
le

 (
d
eg

re
es

)

P
it

ch
 a

n
g
le

 (
d
eg

re
es

)

Pitch angle

Downstroke Upstroke

–25.0

–12.5

0

12.5

25.0

–100

–50

0

50

100

10 12 14 16 18 20

Translational velocity
Advanced

Symmetrical

Delayed

T
ra

n
sl

at
io

n
al

 v
el

o
ci

ty
 (

cm
 s

–
1
)

A
n
g
u
la

r 
v
el

o
ci

ty
 (

° 
s–

1
)

Time (s)

Angular velocity

Downstroke Upstroke

A

B

Fig. 2. Kinematics of the flapping wing. (A) Angle of rotation of the

wing about the x axis (roll), and the z′ axis (pitch) for three different

phases between wing rotation and stroke reversal. (B) Translational

velocity of the wing tip and rotational (angular) velocity of the wing

for three different phases.
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Fig. 3. Time history of thrust (A) and drag (B) forces during one

wingbeat. The red lines are from the present study; the blue lines are

from Dickinson et al. (1999). The numbered broken lines in A refer

to times discussed in the text.
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and

The mesh velocity is then obtained using:

The values of rmin and rmax used in this study are 2.0 and

10.0, respectively. To reduce the computational effort, the

experimental arrangement of Dickinson et al. (1999) was

approximated by introducing a symmetry plane. Because of the

proximity of the wing at the beginning of the downstroke and

the rotation of the wing during the pronation phase, the normal

component mesh velocity of the points on the symmetry plane

can become non-zero. This would result in the points being

pulled away from the symmetry plane. To avoid this problem,

the points on the symmetry plane are allowed to glide along

this plane. A similar technique has been employed for the

simulation of torpedo launch from a submarine by Ramamurti

et al. (1995) where the gap between the launch tube and the

torpedo was small.

Results and discussion

The configuration of the hovering Drosophila

melanogaster is shown in Fig. 1A. The coordinate system

(x,y,z) is fixed to the body with the x coordinate normal to the

stroke plane. During the translational phases (upstroke and

downstroke), the wing moves from close to the y axis through

an angle φ, the wingbeat amplitude. The flapping wing

configuration used in the flow simulations is shown in

Fig. 1B. This is based on the experimental arrangement of

Dickinson et al. (1999). Fig. 1B shows the position of the

wing at three different times during the flapping cycle. The

coordinate system (x′,y′,z′) is fixed to the wing, and the wing

rotates about the z′ axis throughout the cycle. The planform

of the wing is derived from the Drosophila wing and is 25 cm

long and 3.2 mm thick. The experimental apparatus consisted

of two wings immersed in a tank of mineral oil. The viscosity

of the oil, the length of the wing and the frequency of the

flapping motion were chosen to match the Reynolds number

(Re) of a typical Drosophila melanogaster, approximately

136. The Re for the present calculations is defined on the

basis of the mean chord of the wing c– (6.7 cm) and the mean

(8)
1

(xn=1 − xn) .w =
∆t

(7)
(r − rmin)

for rmax > r > rmin .f(r) =
(rmax − rmin)
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Fig. 5. Instantaneous particle traces at the beginning of the

downstroke. Particles were released from a rake of rectangular grid

of points in a plane 0.8 mm away from the bottom surface of the

wing. Using the instantaneous velocity field, the positions of these

particles were obtained by integrating the velocity at these rake

points until the length of the traces exceeded a specified length or the

particles ended on a solid boundary or exited the computational

domain. These particle traces are colored according to the magnitude

of the velocity (in cm s–1) at that location. A leading edge vortex is

seen rotating in the counterclockwise direction, and a stagnation line

is shown near the z′ axis of rotation (dark blue traces).
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Fig. 4. (A) Position of the wing (red outline) at the beginning of the

downstroke. The wing chord is aligned with the x axis of the x,y,z

coordinate system at this instant. The orientation of the y=10 cm

plane for which the velocity vectors are shown in Fig. 6 is indicated.

(B) Position of the wing at t=12.5 s. The orientation of the two planes

for which velocity vectors are shown in Fig. 7 is indicated.



1511Three-dimensional computational study of insect flight

L.E.

z

x L.E.

z

x
L.E.

z

x

A B C

t=11.81 s t=11.897 s t=11.983 s

Fig. 6. Velocity vectors near the leading edge at three instants at the beginning of the downstroke on a plane y=10 cm (see Fig. 4A for the
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wing-tip velocity Ut (ignoring the forward velocity), as

follows:

where c–=2R/AR, Ut=2φnR, R is the wing length (25 cm), AR is

the aspect ratio of the wing, n is the frequency of flapping

motion, φ is the wingbeat amplitude (peak to peak, in rad) and

ν is the kinematic viscosity (115 cSt=115×10–6 m2 s–1).

The kinematics of the wing motion is obtained from the

experiments of Dickinson et al. (1999). The angles of rotation

about the x axis (roll) and the z′ axis (pitch) are shown in

Fig. 2A. The motion of the wing is prescribed using these two

angles. Fig. 2B shows the translational velocity of the wing

tip and the rotational (angular) velocity of the wing. Three

different phases between the translational and rotational

motions were used. In the ‘advanced’ case, wing rotation

precedes stroke reversal by 8 % of the wingbeat cycle;

‘symmetrical’ wing motion is where the wing rotation

occurs symmetrically with respect to stroke reversal; in

‘delayed’ wing motion, rotation is delayed by 8 % with

respect to stroke reversal. Wingbeat amplitude is 160 °,

flapping frequency is 0.145 Hz and the angle of attack at

midstroke is approximately 40 ° during both upstroke and

downstroke.

Symmetrical case

The flow solver described here is employed to compute

the flow past the Drosophila wing undergoing translation

and rotation. First, an inviscid solution was obtained

using a grid consisting of 178 219 points and 965 877

tetrahedral elements. An initial steady-state solution was

obtained in 1500 time steps. The unsteady solution using the

prescribed kinematics (Fig. 2) is then obtained. The surface

pressure on the wing is integrated to obtain the forces on the

wing along the three axes (Fx, Fy, Fz). The thrust T and the

drag D forces are then computed as T=–Fx and

D=√(Fy
2+Fz

2), respectively. These forces are compared with

those obtained from the experiments of Dickinson et al.

(1999).

The unsteady computation was carried out for five cycles of

oscillation. Fig. 3 shows the thrust and drag forces during one

cycle of the wingbeat and compares the values with those of

Dickinson et al. (1999). The present computations capture the

peak forces well. The mean thrust force is approximately

0.318 N, and the mean thrust coefficient Cr
–

is 1.317. The mean

drag force is 0.375 N and the drag coefficient Cp
–

is 1.55. The

(9)
c–Ut

,Re =
ν
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Fig. 9. Particle streaklines produced during the downstroke at

t=12.93 s. The particles were release from a rake of rectangular grid

on a plane 3.0 cm above (A) and 3.5 cm below (B) the wing parallel

to the wing and near the leading edge. The absolute velocities of the

particles (in cm s–1) are given in the color scale.
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force coefficients were obtained using the following non-

dimensionalization:

where T
–

and D
–

are the mean thrust and drag forces, respectively,

and r2
2(s) is the second moment of the dimensionless area of the

wing (0.40). The variation of these forces during the translational

phase of the wing is also predicted correctly, but the magnitude

of the thrust force during the downstroke is higher than that of

Dickinson et al. (1999). The kinematics is symmetrical between

the up- and downstroke, so the resultant force should also be

symmetrical. That this is not the case may be due the mechanical

play in the experimental arrangement, as suggested by M. H.

Dickinson (personal communication). To understand the

different mechanisms occurring during the wingbeat cycle, we

can divide the cycle into two rotational and two translational

phases. The rotational phase near the beginning of the

downstroke (pronation) occurs between time t0 and t3 (Fig. 3A).

Thrust decreases between t0 and t1, then increases until t2. This

behavior can be explained by a rotational mechanism. The wing

continuously rotates in a counterclockwise direction producing a

circulation pointing nearly along the +y direction. Between t0 and

t1, the wing is translating in the –z direction, resulting in a force

pointing in the –x direction, thus producing a peak in thrust at t0.

If a rotational mechanism alone were present, the thrust should

continue to decrease until t3; in fact, the thrust force increases

between t1 and t2. This happens after the wing changes direction

at the start of each half-stroke. Dickinson et al. (1999) attribute

this increase in thrust to a wake-capture mechanism in which the

wing passes through the shed vorticity of the previous stroke.

The position of the wing at the beginning of the downstroke

is shown in Fig. 4A. The chord in this case of symmetrical

rotation is aligned with the x axis at this instant. We found a
(11)

D
–

ρUt
2c–Rr2

2(s)

,CD =
1

2

(10)
T
–

ρUt
2c–Rr2

2(s)

,CT =
1

2

Fig. 11. Particle traces prior to the end of the downstroke, t=14.65 s.

The particles were release from a rake of rectangular grid on a plane

3.2 cm above the wing parallel to the wing and near the leading edge.

Traces are colored according to the magnitude of absolute velocity

(in cm s–1).

A B

C
Fig. 10. Flow patterns during the middle of the downstroke at t=13.79 s.

(A) Particle traces (streaklines). The particles were released on a plane parallel

to the wing and 3.9 cm below it, and velocity vectors are colored according to

the magnitude of absolute velocity (in cm s–1). (B) Velocity vectors on the xy

plane at z=20 cm. Velocity vectors are colored according to the magnitude of

absolute velocity (in cm s–1) and are of constant length. (C) Pressure contours.

Pressure is non-dimensionalized with respect to the dynamic head.
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separation bubble attached to the leading edge during the

interval t0–t1. Particles were released from a rake of rectangular

grid of points in a plane 0.8 mm away from the bottom surface

of the wing. Using the instantaneous velocity field, the positions

of these particles were obtained by integrating the velocity at

these rake points in both the positive and negative velocity

directions until the length of the traces exceeded a specified

length or the particles ended on a solid boundary or exited the

computational domain. These instantaneous particle traces are

colored according to the magnitude of velocity at that location.

Fig. 5 shows the leading edge vortex with vorticity oriented in

the +y direction. This leading edge vortex was created at the end

of the preceding upstroke. This vortex is located below the wing

and is rotating in the counterclockwise direction, which can be

seen from the velocity vectors shown in Fig. 6A. A possible

explanation for the increase in thrust between t1 and t2 is that the

wing moving through this wake benefits from the shed vorticity.

As the wing moves through this vortex during the downstroke, it

produces a stagnation region at the bottom of the wing near the

z′ axis (Fig. 5), resulting in an increase in thrust.

At the beginning of the downstroke (t1), the flow separates at

the leading edge and reattaches on the bottom of the wing as

shown in Fig. 6A. As the wing continues to move down, between

t1 and t2, the separation point of this bubble moves back along

the wing chord (Fig. 6). During the interval t2–t3, we observe a

trailing edge separation bubble forming (see Fig. 7A–C). A

similar separation region forms at the wing tip, as can be seen in

Fig. 7D–F. Fig. 4B shows the position of the wing at t=12.5s.
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1515Three-dimensional computational study of insect flight

Thrust production reaches a local minimum around this instant

(Fig. 3). In Fig. 7A,D, a large recirculation region can be seen in

the wake of the wing. This separated flow from the wing tip and

trailing edge will result in a higher pressure on the upper surface

of the wing and, hence, a reduction in the thrust. During the

interval t1–t3, the magnitude of the translational acceleration of

the wing decreases while that of the angular acceleration

increases (symmetrical phase, Fig. 8).

Between t2 and t3, the magnitude of the translational

acceleration is large enough to overcome the rotational effect

and, when the angular acceleration becomes large enough, the

rotational mechanism dominates, resulting in the observed

reduction in thrust until t3. Between t3 and t4, the translational

effect should result in a constant thrust because the

translational acceleration is almost constant during this period.

The rotational effect produces an increase in thrust between t3

and t4, with a plateau in the middle, which occurs when the

trailing edge vortex is shed. Similar trends are observed during

the supination phase prior to the beginning of the upstroke

(t4–t5) and at the beginning of the upstroke (t5–t7).

Fig. 9 shows the instantaneous traces or streaklines of

particles released 3.0 cm above or 3.5 cm below the wing in a

plane parallel to the wing and near the leading edge. In Fig. 9A,

a wing tip vortex can be seen, but no leading edge vortex is

visible above the wing surface. A leading edge vortex spinning

in the counterclockwise direction is found below the wing

surface (Fig. 9B). Particle traces near the mid stroke are shown

in Fig. 10A. At this instant, the wing rotation axis z′ is aligned

with the body coordinate z (see Fig. 1B). Here, we can see the

beginnings of the leading edge vortex on the upper surface of

the wing that is also shown by the velocity vectors in the xy plane

at z=20 cm (Fig. 10B). Fig. 10C shows the pressure contours on

the upper surface of the wing. The pressure is non-

dimensionalized with respect to the dynamic head, GρUt
2, where

ρ is the density of the mineral oil (880 kg m–3) used in the

experiments of Dickinson et al. (1999). A region of constant

pressure is present from the root of the wing up to approximately

60 % of the span and extending to the trailing edge. Fig. 11
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shows the particle traces prior to the end of the downstroke.

Here, the leading edge vortex is clearly seen on the upper surface

of the wing.

Grid-refinement study

To assess the sensitivity of our computational results, we

carried out a grid-refinement study. The resolution of the grid

in the vicinity of the wing was doubled. The computations were

carried out using a grid consisting of approximately 238×103

points and 1.3×106 tetrahedral elements. The time step was

halved for this computation. The computed thrust forces are

shown in Fig. 12. It can be seen that the agreement between

the two analyses is very good; even the coarse grid produces

adequate resolution.

Viscous effect

To the study the effects of viscosity, a laminar viscous

computation was carried out, for Re=120. Because of the lack

of information on the transition to and the presence of

uncertainties in turbulence modeling, laminar flow was assumed

first. Fig. 13 shows the time history of the thrust and drag forces

for the inviscid and the viscous cases. The finer mesh employed

in the grid-refinement study (see above) was used for this

computation, and the mesh size near the leading and trailing

edge of the wing was approximately

0.02. It is clear that viscous effects are

minimal, and the thrust and drag forces

are dominated by translational and

rotational mechanisms. Hence, inviscid

computations were carried out to study

the effect of phasing between the

translational and rotational motions.

Effect of phasing

Fig. 14 compares the forces produced

when the rotational motion precedes

stroke reversal (‘advanced’ case) with

those of Dickinson et al. (1999). Again,

the agreement with the experimental

results is good. In this case, the peak in

the thrust force is achieved prior to the

beginning of the downstroke at t=10.76s

and is approximately 0.56N compared

with a value of 0.47N for the

symmetrical case (see Fig. 3A). This

can be explained by the rotational mechanisms discussed above.

The rotational effect diminishes prior to the beginning of the

downstroke, producing a negative thrust of 0.2N. The thrust then

increases until t=11.98s. During this period, the wing moves

through the wake created during the upstroke, as in the

symmetrical case, resulting in a high pressure on the bottom of

the wing. The velocity vectors near the leading edge are shown

in Fig. 15. During this period, both the translational and rotational

accelerations are in phase (Fig. 8). The peak thrust is

approximately 0.48N compared with a value of 0.28N for the

symmetrical case. Thereafter, the combined effect of rotational

and translational motions produces reduced thrust until a second

peak arises due to the rotational motion at t=14.23s, prior to the

beginning of the upstroke. The mean thrust force for one

wingbeat cycle is approximately 0.312N, and the mean thrust

coefficient CT
–

is 1.291. The mean drag force is 0.457N and the

drag coefficient CD
–

is 1.89.

In the ‘delayed’ case, where wing rotation is delayed with

respect to stroke reversal, the rotational motion does not

produce any thrust prior to the beginning of the downstroke

(Fig. 16A). The mean thrust force for one wingbeat cycle is

approximately 0.206 N and the mean thrust coefficient Cr
–

is

0.854. The mean drag force is 0.457 N and the drag coefficient

CD
–

is 1.496 (Fig. 16B). In the initial period following stroke
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reversal, the rotational effect continues to produce a negative

thrust. Fig. 17A,B shows the velocity vectors near the leading

edge. The leading edge vortex from the upstroke is not present

after t=12.05 s. In this case, the high pressure on the bottom of

the wing together with the orientation of the wing cause a

reduction in thrust. Subsequently, the combined translational

and rotational mechanisms result in an increase in thrust. At

t=12.8 s, we observe a plateau region in the thrust (Fig. 16A).

During this period, the presence of a trailing edge vortex on the

upper surface (Fig. 17C,D) increases the pressure on the upper

surface of the wing, resulting in a temporary loss of thrust; when

this vortex leaves the trailing edge, thrust increases again.

Fig. 18 shows the magnitude of velocity in the xz plane at

y=10 cm at the beginning of the downstroke for the three cases
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Fig. 19. Spanwise contribution to thrust for the ‘symmetrical’ case of

wing rotation relative to stroke reversal. The thrust generated at three

spanwise locations (quarter, half and three-quarter span) was

calculated and is shown together with the total thrust produced by the

wing and half the total thrust.
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of wing motion in the wake created by the wing. Velocities are

greatest for the advanced case and smallest for delayed

rotation. The wing moving through the higher-velocity fluid

therefore produces an additional thrust in the advanced rotation

case, whereas the wing for the delayed case intercepts the flow

at an angle that produces negative thrust. Similar velocity fields

can be seen in the particle image velocimetry data of Dickinson

et al. (1999).

Mechanical aspects of the flapping wing

The results of the present study were then used to derive the

input forces, moments, power requirement and efficiency for

the creation of a robotic fly. First, the forces on the wing were

integrated to a particular spanwise location from the root. The

forces were obtained by marking this location and then

computing the force contribution of all the surface elements on

the wing up to this location. This location was then tracked

using the prescribed rigid body motion. The elements

contributing to the force up to this location are recomputed as

the surface mesh is regenerated due to the motion. Three

different spanwise locations were chosen: quarter span, half

span and three-quarter span of the wing. Fig. 19 shows their

force contributions compared with the total contribution of the

wing and half the total thrust force generated by the wing for

the symmetrical rotation case. It is clear from this figure that

nearly half the thrust is generated by the outer 25 % of the wing.

Moments about the wing root in the wing coordinate system

(x′,y′,z′) were then computed from the moments about the fixed

body coordinates and the prescribed kinematics of the wing

(Fig. 20). The moment about the wing rotation axis z′ (Mz′) is

nearly zero throughout the cycle, implying that there is no

torsional load on the system. The variation of moment about

the x′ (=x) axis (Mx′) is anti-symmetrical because only one

wing is considered for the moment computation.

The power input to the wing Pin is computed by:

where F is the force vector and wwing is the velocity of the

surface of the wing. Fig. 21 shows the instantaneous power

requirement for one wing for the three phases of wing rotation.

The mean power required is 0.024 W for the symmetrical case,

0.039 W for the advanced case and 0.024 W for the delayed

case. The mean thrust for the symmetrical case is 0.318 N;

values for the advanced and delayed cases are 0.312 N and

0.206 N, respectively.
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