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Abstract

Material size effects are predicted for idealized planar micromanufactured structures, as a

consequence of the competitive contributions of strain gradient strengthening and loss of

microstructural constraints with diminishing dimensions, assuming a constant grain size.

Simulations are carried out using a 3D strain gradient crystal plasticity model which in-

trinsically accounts for the influence of differently oriented crystals within the material. By

distinguishing between different crystallographic slip boundary conditions, the influences

of surface layer passivity, internal grain boundaries and back stresses are assessed under ex-

ternally applied in-plane tension and through-thickness bending loading conditions. Anal-

yses are carried out on samples with a size that is representative of micromanufacturing

processes. The simulations reveal a competitive process between first-order constraints,

generally inducing a weakening behaviour as the number of grains decreases, and second-

order strengthening resulting from the strain gradients.

Key words: strain gradient, crystal plasticity, back stress, grain boundaries, dislocation

fields, geometrically necessary dislocations, miniaturization, MEMS, micromanufacturing

1 Introduction

With ever successive electronic device miniaturization, component dimensions are

approaching those of the underlying microstructure. This is particularly evident in

the field of Miniaturized Electro Mechanical Systems (MEMS), which are used in

applications such as tunable capacitors and pumps in micro-fluidic applications

such as lab-on-a-chip. Recently, the World Technology Evaluation Center pub-

lished a report on research and development in micromanufacturing [1], which cov-

ers length scales that are somewhat larger than those of most MEMS applications

Preprint submitted to Philosophical Magazine A 26 June 2006
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but are not based on lithographic-based processes. Even within this range of compo-

nent length scales (∼ 100 µm), microstructural engineering becomes increasingly

important, as the global behaviour of the metallic components may be dominated

by the response of individual grains. Clearly, this behaviour cannot be described by

a macroscopic (averaging) continuum approach that ignores individually oriented

grains and their boundaries. Therefore, understanding the microstructural phenom-

ena is crucial in assessing the mechanical response of these components.

The component size and microstructural features of a typical miniaturized test sam-

ple are visible in Figure 1, which shows an FCC beam-type specimen used to ex-

perimentally quantify the microstructural characteristics of processed micromanu-

factured systems. The miniaturized component in Figure 1a, is manufactured with

(a)

(b)

Fig. 1. a) Micromanufactured sample with large through-thickness grains and a thickness

of 300 µm. b) Typical orientation image map, revealing the relative crystallographic mis-

matches between adjacent grains along the planar surface of one of the samples.

a thickness of 300 µm, with only a single through-thickness grain. The outlines of

some of the grains are clearly visible, reflecting a typical ratio between specimen

size and grain size, which is of interest in the present work. The different orien-

tations between the constituent grains are qualitatively shown in Figure 1b. De-

pending on the processing conditions, micromanufactured components may have

an irregular crystallography with a near random or pronounced texture. The impli-

cation of the crystallographic scatter within the sample may induce a large variance

in global mechanical properties, and hence potentially unacceptable rejection rates

of individual components which fall outside the allowable tolerances. Whereas a

lot of work has been done at the submicron length scale, examining for instance the

formation of boundary layers, less is known about what impact the grain size and

number of grains have on the mechanical behaviour of micromanufactured compo-

nents. In this circumstance the ratio between the grain size and the component size

is a governing parameter.

In order to accurately predict the mechanical response of such miniaturized com-

2
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ponents, the material model must, as opposed to a continuum plasticity model,

account for the influence that individual grains have on the aggregate behaviour.

The fundamental assumption that the material behaves as a homogeneous contin-

uum is invalid as dimensions diminish and the statistical phenomenon that indi-

vidual grains dominate the component behaviour becomes increasingly important.

An appropriate point of departure for an analysis is a constitutive rate-dependent

crystal plasticity theory [2, 3] where the response of each individual crystal is in-

cluded in the definition. However, not only must the response of each crystal be

included, but also a description of what happens at their boundaries. Internal and ex-

ternal boundaries form obstacles to crystallographic slip which must be overcome

with an increased applied load. Within the current material model, the obstructions

at internal boundaries are taken into account by inhibiting crystallographic slip

across the boundary through the accumulation of geometrically necessary dislo-

cations (GNDs), which are required to accommodate plastic slip gradients [4]. The

GNDs contribute to the slip system resistance, while back stresses associated with

the GND stress fields, provide kinematic hardening. The influence of the GNDs

is particularly apparent in cases which develop macroscopic strain gradients such

as shearing, torsion and bending [5, 6, 7, 8]. However, by neglecting the develop-

ment of GNDs completely, this strain-gradient crystal plasticity model reverts back

to a first-order crystal plasticity model, making this model particularly well suited

to examine the competitive relationship between first order weakening and second

order strengthening when the number of grains decreases.

Experimentally, material size effects have been examined in both micro-beam bend-

ing of bars and micro-torsion of wires [9, 10]. These observations of size depen-

dence have also been predicted numerically [5, 6, 7, 11, 12, 13, 14, 15, 16, 17, 18].

However, the investigations typically involve scaling of both the geometry and the

microstructure simultaneously, confounding the influence of the size effect. Strictly

speaking, only the external component geometry should be scaled during minia-

turization while maintaining a constant internal microstructure, as physically rele-

vant for the specimen size effect. Empirical and numerical evidences suggest that

smaller is stronger, however, this neglects contributions due to the weakening in-

fluence of reduced crystallographic constraints as the number of grains within the

component are reduced as in the case of micromanufactured components. This sub-

ject was advocated experimentally in [19, 20, 21, 22], and justifies an analysis in the

considered range of length scales. Using a 3D second-order strain gradient crystal

plasticity approach, this paper examines the qualitative relevance and competitive

influence between gradient strengthening and weakening, under imposed uniaxial

tension and bending with ’large’ grains and specimen dimensions in the range of

100 µm to 1 mm.
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2 Strain gradient crystal plasticity material model

The adopted second-order strain gradient crystal plasticity model is next briefly

outlined, which was initially developed by Evers et al. [6, 11]. A key feature of the

model is the incorporation of both geometrically necessary and statistically stored

dislocation densities which are used to affect the crystallographic slip resistance,

while the gradients of the GND field are used to determine the internal stress state

that acts as a dislocation induced back stress.

In order to consistently represent the different scalar, vector and tensorial quantities,

the following notation convention is pursued: scalar quantities are written in italic

symbols i.e. b, vectorial quantities are written in bold italics i.e. s
α

0
and n

α

0
, and

matrices and second tensors are written in an upright sans-serif font i.e. Fe and S,

while fourth order tensors are expressed as C. Tensorial notation is used throughout

whereby · represents an inner product and : represents the double inner product.

As a classical point of departure, the deformation gradient tensor F, is multiplica-

tively decomposed into its elastic part Fe and a plastic part Fp, which is visualized

in Figure 2, according to:

F = Fe · Fp (1)

The plastic contribution Fp refers to the deformation from the initial reference con-

figuration to the intermediate stress-free configuration. This stress-free configura-

tion can be considered to develop from the reference configuration solely by plastic

shearing along the active slip planes of the crystal lattice through crystallographic

slip, leaving the orientations of the slip systems unaltered. The elastic part of the

deformation tensor rotates and stretches the plastically deformed material into the

current configuration.

Reference state

Intermediate state

Current state

n
α

s
α

s
α

0

s
α

0

n
α

0

n
α

0

F = Fe · Fp

Fe
Fp

Fig. 2. Multiplicative decomposition of the deformation into a plastic and elastic part.

In Figure 2, an arbitrary slip system is labelled by a superscript α, with α =
1, 2 . . . , ns where ns is the total number of slip systems. The individual slip sys-

tems are defined according to Table 1 for an FCC crystal. In the reference state, a

slip system α is identified by unit vectors representing the slip plane normal n
α
0

and the slip direction s
α
0 .
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Table 1

Slip system (α) and dislocation (ξ) indices with their corresponding normal (nα

0
) and slip

(sα

0
) direction unit vectors for an FCC crystal.

ξ α Dislocation type s
α

0
n

α

0

1 1 edge 1√
2
[1̄10] 1√

3
(111)

2 2 edge 1√
2
[101̄] 1√

3
(111)

3 3 edge 1√
2
[01̄1] 1√

3
(111)

4 4 edge 1√
2
[1̄1̄0] 1√

3
(11̄1̄)

5 5 edge 1√
2
[101] 1√

3
(11̄1̄)

6 6 edge 1√
2
[011̄] 1√

3
(11̄1̄)

7 7 edge 1√
2
[110] 1√

3
(1̄11̄)

8 8 edge 1√
2
[1̄01] 1√

3
(1̄11̄)

9 9 edge 1√
2
[01̄1̄] 1√

3
(1̄11̄)

10 10 edge 1√
2
[11̄0] 1√

3
(1̄1̄1)

11 11 edge 1√
2
[1̄01̄] 1√

3
(1̄1̄1)

12 12 edge 1√
2
[011] 1√

3
(1̄1̄1)

13 4 or 7 screw 1√
2
[110] 1√

3
(11̄1̄) or 1√

3
(1̄11̄)

14 5 or 11 screw 1√
2
[101] 1√

3
(11̄1̄) or 1√

3
(1̄1̄1)

15 9 or 12 screw 1√
2
[011] 1√

3
(1̄11̄) or 1√

3
(1̄1̄1)

16 1 or 10 screw 1√
2
[1̄10] 1√

3
(111) or 1√

3
(1̄1̄1)

17 2 or 8 screw 1√
2
[101̄] 1√

3
(111) or 1√

3
(1̄11̄)

18 3 or 6 screw 1√
2
[01̄1] 1√

3
(111) or 1√

3
(11̄1̄)

The elastic behaviour is considered with respect to the fictitiously unloaded config-

uration defined by the plastic deformation gradient tensor Fp. A hyper-elastic for-

mulation is selected where the second Piola-Kirchhoff stress tensor S is expressed

in the (elastic) Green-Lagrange strain tensor Ee defined with respect to the interme-

diate configuration according to:

S = C : Ee with Ee =
1

2

(

Fe
T · Fe − I

)

(2)

with I the second order identity tensor, while the stress tensor S is defined by:

S = Fe
−1 · τ · Fe

−T with τ = Jeσ (3)

where τ is the Kirchhoff stress tensor, σ the Cauchy stress tensor and Je = det (Fe) =
det (F) the volume change ratio while for C the fourth order isotropic elasticity ten-

sor is taken.

For a given slip system α the resolved shear stress τα (also called the Schmid stress)

in the intermediate state can be determined through:

τα = s
α
0 · S · nα

0 (4)

5
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The plastic velocity gradient tensor in the intermediate configuration Lp is com-

posed of the contributions over the slip systems:

Lp =
ns
∑

α=1

γ̇ α
s

α
0 n

α
0 (5)

where the summation runs over the total number ns of slip systems and where γ̇α

is the yet to be determined slip rate quantity on each individual slip system α. The

plastic velocity gradient tensor is related to the plastic deformation gradient tensor

according to:

Ḟp = Lp · Fp (6)

The connection between the single crystal kinematics and the underlying disloca-

tion density development is accomplished through a visco-plastic power-law which

relates the slip rates to the effective shear stress τ α
eff and the slip system resistance

sα according to:

γ̇ α = γ̇0

(

|τ α
eff |

sα

)1/m

exp

[

−
G0

kT

(

1 −
|τ α

eff |

sα

)]

sign(τα
eff ) (7)

with γ̇0 and m material parameters, representing the reference plastic shear rate and

the rate sensitivity, respectively. T and k are the absolute temperature and Boltz-

mann’s constant, respectively, and G0 is the thermal activation energy necessary to

activate dislocation motion. With a small value of m (i.e. m = 0.1) γ̇α remains

negligible unless |τ α
eff | is close to sα or larger (reflecting the ’viscous’ activation of

the slip system).

The effective shear stress τ α
eff constitutes the driving force for crystallographic slip

through dislocation motion on slip system α and is determined as the difference

between the externally imposed resolved shear stress τ α, see equation (4), and the

yet to be defined resolved back stress τ α
b according to:

τ α
eff = τ α − τ α

b (8)

The slip system resistance (sα) is a measure of the impedance of dislocation mo-

tion on the slip systems by the formation of short-range interactions between all

dislocations. Physically, dislocations are discrete loops but are represented here by

a continuous field of dislocations with either an edge or screw nature. In contrast

to more phenomenological crystal plasticity models which relate the slip resistance

to the history of the plastic shear on all slip systems, here the slip resistance sα on

slip system α is expressed as a function of both the dislocation densities ρ
ξ
GND and

ρ
ξ
SSD, with the superscript ξ denoting the dislocation type as labelled in Table 1.

The slip system resistance includes the contribution of both the SSDs and GNDs

6
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according to:

sα = G b

√

√

√

√

√

12
∑

ξ=1

Aαξ|ρ ξ
SSD| +

18
∑

ξ=1

Aαξ|ρ ξ
GND| (9)

where G is the shear modulus, b the magnitude of the Burgers vector, and Aαξ is a

component of an interaction matrix which represents the strength of the interactions

between slip systems as determined by Franciosi and Zaoui [23]. The six relevant

interaction coefficients corresponding to self hardening, coplanar, Hirth lock, glis-

sile junction, Lomer Cottrell lock, and cross slip are further defined by Arsenlis and

Parks [24]. Note that equation (9) incorporates edge SSDs and edge GNDs since

they are the major source of hardening in FCC, whereas screw GNDs are accounted

for as well since at least one screw population is needed to accommodate certain

strain gradients with geometrically necessary dislocations.

Internal stress formulations

Because dislocations disturb the regularity of crystal lattices they constitute a source

of internal stress. For statistically stored dislocations, which usually have a random

orientation, the net internal stress contribution will be negligibly small. However,

geometrically necessary dislocations may cause a significant internal stress state,

which can be estimated from the self-equilibrating elastic stress fields associated

with individual edge and screw dislocations [25]. The evaluation of the internal

stress was carried out by Evers et al. [6, 11] for the dislocation fields distributed on

each of the slip systems, thereby ignoring the latent contributions originating from

other slip systems. This is presently improved by considering all stress components

of all GND fields on all slip systems [5]. Through analytical integration over a

cylindrical domain with a finite radius R, within which dislocations are considered

to contribute to the back stress, the following internal stress state can be derived for

a field of edge dislocations:

σ int
e =

GbR2

8(1 − ν)

12
∑

ξ=1

∇0ρ
ξ
GND·

[

3nξ
0s

ξ
0s

ξ
0 + n

ξ
0n

ξ
0n

ξ
0 + 4νn

ξ
0p

ξ
0p

ξ
0

−s
ξ
0s

ξ
0n

ξ
0 − s

ξ
0n

ξ
0s

ξ
0

]

(10)

while for a field of screw dislocations, the resulting internal stress can be written

as:

σ int
s =

GbR2

4

18
∑

ξ=13

∇0ρ
ξ
GND ·

[

−n
ξ
0s

ξ
0p

ξ
0 − n

ξ
0p

ξ
0s

ξ
0 + p

ξ
0s

ξ
0n

ξ
0 + p

ξ
0n

ξ
0s

ξ
0

]

(11)

where n
ξ
0 and s

ξ
0 define the slip system normal and slip direction, p

ξ
0 = s

ξ
0 × n

ξ
0

associated with the ξ dislocation listed in Table 1, and ∇0 is the gradient of the

7
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dislocation density related to the reference configuration. For the screw disloca-

tions, either one of the two slip systems defined in Table 1 results in an equivalent

internal stress, and therefore the choice of the slip system associated with a screw

dislocation is irrelevant. A detailed assessment of different types of internal stress

formulations is given in [5].

Analogous to resolving the Schmid stress on each slip system defined in equation

(4), the back stress on each slip system is resolved from the dislocation induced

internal stress tensor according to:

τ α
b = −s

α
0 ·
(

σ int
s + σ int

e

)

· nα
0 (12)

where the minus sign in the right-hand side of equation (12) is introduced to provide

consistency with the definition of the back stress as introduced in equation (8). La-

tent hardening, herein defined as the hardening on a secondary slip system caused

by dislocation gradients on a primary slip system, is incorporated by summation

over ξ = 1, 2, 3, . . . , 12 for the edge dislocations and ξ = 13, 14, . . . , 18 for the

screw dislocations, respectively.

Dislocation density evolution

The evolutions of the 12 edge SSD densities of an FCC material, which are required

for equation (9), are based on the balance between accumulation and annihilation

rates according to the references [6, 24, 26] and [11]:

ρ̇α
SSD =

1

b

(

1

Lα
− 2ycρ

α
SSD

)

|γ̇ α| with: ρα
SSD(t = 0) = ρα

SSD0
(13)

The accumulation rate (first term in the right-hand side of equation (13)) is gov-

erned by the average dislocation segment length of mobile dislocations (SSDs) on

system α, denoted by Lα, which is directly related to the current dislocation state

according to:

Lα =
K

√

12
∑

ξ=1
Hαξ|ρξ

SSD| +
18
∑

ξ=1
Hαξ|ρ ξ

GND|

(14)

In this expression the dimensionless coefficients Hαξ , represent the mutual immo-

bilization between dislocations of different slip systems, structured analogously to

the coefficients Aαξ introduced in equation (9), yet with different values. Further-

more, the annihilation rate (second term in the right-hand side of equation (13)) is

controlled by the critical annihilation length yc, a material parameter characterizing

the average distance between dislocations of opposite signs which triggers spon-

taneous neutralization. Note that equation (13) does not imply that GNDs are not

mobile. Individual dislocations cannot discriminate between being SSD or GND.
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In fact, the GND fraction of the total dislocation population is determined geomet-

rically. Nevertheless, GNDs do contribute to the production of SSDs, as clearly

expressed by equation (14).

Gradients in the plastic deformation within crystalline materials give rise to so-

called geometrically necessary dislocations in order to restore lattice continuity in

the crystals. With the knowledge of the crystalline orientation in relation to the plas-

tic deformation gradient, the type of dislocation needed to preserve this continuity

can be determined.

Considering one of the slip systems, only slip gradients in the plane of the slip

system give rise to an incompatibility that will lead to GNDs. Slip gradients in the

direction of the slip will be accommodated by edge dislocations while gradients

in the slip plane perpendicular to the slip direction induce screw dislocations. The

relationship between the gradient (with respect to the undeformed reference con-

figuration) of the plastic slip γ α on a slip system α (with α = ξ = 1, 2, . . . , 12 for

FCC material) and the associated edge GND density takes the following form, see

Ashby [4]:

ρ
ξ
GND = ρ

ξ
GND0

−
1

b
∇0γ

ξ · s ξ
0 (15)

where an initial value of the GND density has been introduced to account for ini-

tially present geometrical lattice distortions (i.e. at small angle grain boundaries,

see Evers et al. [11]). The screw GND densities for ξ = 13, 14, . . . , 18, due to slip

gradients can effectively be written as:

ρ
ξ
GND = ρ

ξ
GND0

+
1

b
(∇0γ

α1 · pα1

0 + ∇0γ
α2 · pα2

0 ) (16)

with α1 and α2 indicating the two slip systems associated with each screw GND,

as listed in Table 1.

Finite element implementation

In order to systematically compute an approximate solution of the entire set of

strongly non-linear and coupled equations for an arbitrary geometry and boundary

conditions, the previously described strain gradient crystal plasticity framework

is implemented within the finite element method at the integration point level. A

mixed formulation is thereby used, in which both displacement fields and GND

fields are discretized. Each integration point describes the enriched constitutive re-

sponse of the lattice within the integration point volume, whereby individual grains

consist of a number of finite elements.

As apparent from equations (15) and (16) the spatial variation of the crystallo-

graphic slip throughout the domain sets the GND densities, moreover, the evo-

lution of the crystallographic slip rates (equation (7)) requires knowledge of the
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GND densities through the crystallographic resistance (equation (9)) and the inter-

nal stress (equations (10) and (11)). GND densities are therefore incorporated as a

field variable, from which all relevant quantities can be determined along with the

solution for the displacement field. Therefore, the 18 GND densities are treated as

nodal unknowns in a similar manner as the 3 displacements, increasing the number

of nodal degrees of freedom to 21. Essentially, the stress equilibrium equations,

here formulated in terms of the first Piola-Kirchhoff stress tensor (nominal stress)

denoted by P, and the GND density equations (15) and (16) constitute the basis to

determine the unknown degrees of freedom.

The incremental calculation of the material model at the integration point level

involves a number of steps which are outlined below. Input to the material model

from the global FE solution are the estimates of the deformation gradient tensor

F∗ and the GND densities, both to be determined from the current estimates of the

nodal degrees of freedom and interpolation at the integration points through the

element shape functions. Not only does the material model return the associated

integration point values of P∗ and γ∗α, but also the tangent moduli. Further details

of the FEM solution can be found in the references [5, 11], where only 2D solutions

were considered.

• Starting from an estimate for the incremental slip rates γ̇∗α, determine the plastic

part of the deformation gradient tensor F∗
p by integrating equation (6) to yield

F
∗
p = (I + ∆t Lp) · Fpt where Fpt denotes the deformation gradient tensor at the

end of the previous (converged) increment and ∆t is the current time step.

• With F∗
p, and the current deformation gradient tensor F∗, determine the associated

elastic deformation gradient tensor F∗
e with equation (1). Subsequently compute

the second Piola-Kirchhoff stress tensor S∗ using equation (2). Use this result

to determine the resolved shear stresses τ ∗α on the slip systems α by applying

equation (4).

• Determine the first Piola-Kirchhoff stress tensor P∗ according to:

P
∗ = τ ∗ · F∗(−T ) = F

∗
e · S

∗ · F∗
e · F

∗(−T ) = F
∗
e · S

∗ · F∗
p
(−T )

(17)

where it is recalled that the second Piola-Kirchhoff stress tensor S
∗ was related

to the intermediate configuration while the first Piola-Kirchhoff stress tensor P∗

is defined with respect to the undeformed reference state.

• Determine the dislocation induced internal stress tensors from the GND density

fields defined by the nodal values ρ
∗ξ
GND using the equations (11) and (10) and

then calculate the back stresses τ ∗α
b on the slip systems with equation (12). From

τ ∗α and τ ∗α
b determine the effective shear stresses with equation (8).

• Estimate ρ
∗ξ
SSD by integrating equation (13), and together with ρ

∗ξ
GND, the slip

system resistances, s ∗α, can be calculated from equation (9).

• Evaluate the right-hand side of the slip law equation (7). The results will deviate

from the previous slip rate estimates γ̇ ∗α, the differences of which are used to

correct the current iterative state. As long as the convergence norm is not yet
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reached, a next iteration step (restarting the procedure from the beginning) is

executed.

3 3D dislocation field analyses for micromanufactured samples

Finite element models examining the competitive influence between strain gradi-

ent strengthening and mutual grain constraints are considered under conditions of

in-plane tension and out-of-plane pure bending. These models aid in understand-

ing size effects in metallic material where the crystallographic texture along with

surface and grain boundaries influence the macroscopic behaviour, as observed ex-

perimentally.

To examine the constraining influence of differently oriented neighbouring grains

qualitatively, FEM models were constructed to represent flat beam-like miniatur-

ized components with varying width and thickness, but composed of identically

shaped brick-like crystals. The material parameters for the models are representa-

tive of copper and adopted from the references [5, 11]. The grains were arranged

to form a rectangular volume extending 10 crystals in length with variable widths

and thicknesses as shown in Figure 3. The configuration with only a single row

of crystals (Figure 3a) models the performance of a miniaturized strut-like compo-

nent, while the configuration with seven rows of crystals (Figure 3e) approaches

a macroscopic plate-like geometry. Note that all samples have only a single grain

across the thickness, consistent with the processed specimens shown in Figure 1.

Since each crystal has a unique randomly selected crystallographic orientation, the

grain boundaries between adjacent grains impose deformation constraints by ob-

structing plastic slip due to the mismatch of the mutual slip systems. Hence, the

model with a single row of crystals (Figure 3a) has the least amount of constraint

while a successively greater number of crystals in the width direction increases the

constraint caused by neighbouring grains. The rectangular microstructures have di-

mensions of 100 µm in both the length and width directions, but with thicknesses

ranging from 75 to 300 µm. The response from one of these microstructures is com-

pared to the response from a configuration with randomly shaped grains in order

to assess the influence of the use of regularly shaped grains within the structure.

The randomly shaped model (Figure 3f) has 49 individual grains and dimensions

similar to the 500 µm model (Figure 3d) with five cubic grains in the width direc-

tion. The cubic shaped grains are represented by 27 brick elements as shown in

Figure 3 with either linear, selectively reduced integration brick elements (hex8)

or quadratic brick elements (hex27), depending on the applied loading conditions.

Linear brick elements (with selectively reduced integration to prevent locking) are

used for the tensile models while quadratic brick elements are used to accurately

capture the through-thickness bending, but uses a limited number of elements. A

previous mesh sensitivity study [27] revealed that a limited influence of the mesh

density for similarly sized elements under both bending and tension loading condi-
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tions. This relative mesh insensitivity is not surprising given that the model equa-

tions share a common structure with some continuum gradient plasticity models

which have also been shown to be largely mesh-independent as well.

Displacement boundary conditions are specified for the nodes lying at both ends of

the major axes, adequately prescribing the external loading conditions, including

suppression of rigid body motion without additional (transverse) constraints. The

tensile models utilize a constant thickness of 100 µm but with variable widths,

while the out-of-plane bending models utilize the specimen with a constant width of

300 µm (represented by the configuration as shown in Figure 3c) but with variable

thicknesses.

(a) (b)

(c) (d)

(e) (f)

Fig. 3. a–e) Regular planar MEMS models with only single through thickness grains and

variable widths used in the tensile simulations while f) presents a more realistic grain struc-

ture. The bending simulations are based on the mesh shown in c), but with variations in the

thickness dimension.

To properly incorporate grain boundaries, grains are modelled as separate volumet-

ric domains. Along the coinciding grain boundaries, double nodes are introduced

to represent the mutual grain boundary. The displacement degrees of freedom of

these double nodes are always mutually tied to preserve kinematic compatibility,
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while the GND degrees of freedom are uncoupled to allow for different dislocation

densities at either side of the boundary. The plastic slip between grains is assumed

to be fully obstructed which forces GNDs to accumulate at both adjacent grain

boundaries. Where grain boundaries coincide with the specimen outer surface two

different conditions are represented, suppressed plastic slip (modelling a hard ox-

ide layer on the specimen surface) or free plastic slip (inducing a vanishing GND

density at the specimen surface). By either inhibiting or permitting crystallographic

slip in the specimen surface normal direction, upper and lower (stiffness) bounds

of the specimen response are obtained. Additionally, to realize an absolute lower

bound for reference purposes, calculations are also performed with a standard first-

order crystal plasticity approximation without any gradient effects (in which all

GND effects are ignored).

For each model geometry, a random selection of grain orientations, sampled from

a random texture was taken, which was repeated at least five times in order to

quantitatively assess the influence of grain statistics on the macroscopic behaviour.

Emphasis in the analysis is on (1) the 3D effects; (2) the influence of competing

size effects at the considered (coarse) scale; (3) a qualitative assessment of the

constraints at internal and external boundaries.

3.1 The tensile case

0 0.02 0.04 0.06 0.08 0.1

Applied strain (%)

0

10

20

30

40

50

E
n

g
in

ee
ri

n
g

 S
tr
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P

a)

Cubic microstructure
Irregular shaped microstructure

Fig. 4. The grey region represents the range of response curves for five sets of cube shaped

microstructures as visualized in Figure 3d, showing the influence of different selections of

grain textures. Lying within the scatter of these results the response is plotted for a model

with the non-regular microstructure shown in Figure 3f.

The results from 5 tensile samples (with differently oriented grains) are represented

through their stress-strain curves for both the regular (cubic grains, Figure 3d) and
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the non-regularized (Figure 3f) microstructural models, see Figure 4. Crystallo-

graphic slip is constrained at both internal grain boundaries and external specimen

boundaries. Since the response of the non-regular configuration falls within the

scatter of the responses of the regular cubic crystal models, the result appears to

be hardly dependent of the crystal shape, and for the remainder of this paper, cubic

shaped crystals will therefore be used. Beyond the initial linear part, the stress-

strain curves during yielding diverge throughout a small range of stresses related to

the statistical selection of grain orientations.

Inspired by the experimental results found in [22] and related comments in [28],

two competing mechanisms that influence the size dependent behaviour are exam-

ined in detail, whereby the size of the grains in the microstructure is kept con-

stant. As the dimensions of the structure diminish (accomplished by reducing the

widths of the specimen), macroscopic deformation gradients are accentuated, while

reversely, the deformation constraint imposed by the grain boundaries at adjacent

grains decreases with decreasing dimensions. The influence of the grain boundaries

are examined for the above defined cubic microstructures subjected to an applied

tensile strain of 0.1%. This applied macroscopic strain exceeds the physically in-

trinsic yield strain by a factor four, at which point, grains which are favourably

oriented for slip will have endured at least some crystallographic slip. The stresses

at an applied strain of 0.1% are compared in Figure 5 for the considered range

of model widths (Figure 3) and the two previously outlined crystallographic slip

boundary conditions. Furthermore, the standard crystal plasticity result is shown as

well (no GNDs). Error bars representing 99% confidence intervals were obtained

from the different model texture variants and represent the expected scatter (mind

the scaling on the vertical axis) due to different crystallographic grain orientations.

In spite of the relative large scales investigated, the influence of the crystallographic

slip boundary conditions along the internal and external grain boundaries remains

visible in the responses, presented by three almost parallel curves. The upper and

lower curve represent the two extremes of the crystallographic slip boundary con-

ditions, i.e. completely obstructed crystallographic slip across the grain boundary

(leading to the highest stress response) and standard first-order crystal plasticity

(which eases crystallographic slip at the grain boundaries, inducing the weakest

response), respectively. An intermediate response is generated by assuming that

the outer boundaries are free surfaces while restricting crystallographic slip at all

internal grain boundaries, leading to a corresponding net decrease in the total num-

ber of GNDs compared to the fully restricted case. Localized strain gradients be-

tween adjacent grains develop, which increase the local GND densities, thereby

contributing to an increase slip resistance. The overall back stress contribution is

less pronounced.

The influence of the specimen width, while maintaining a constant microstruc-

ture with grain dimensions of 100×100×100 µm, is also evident from Figure 5.

For specimens exceeding 300 µm in width, the two upper curves are expected to
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approach a macroscopic, near size independent response, while widths less than

300 µm predict a reduction in flow strengths (at 0.1% strain). The origin of this

size dependence is the decreasing interaction between neighbouring grains as the

number of grains across the width decreases. With only a single grain across the

width, there is no crystallographic constraint (in width direction). With an increas-

ing number of grains, the number of constraints continues to increase until the

macroscopic (plate-like) behaviour is reached. This trends holds for all cases, even

though the first-order prediction will naturally predict a smaller stress (compared

to the second-order predictions) because of the weaker grain boundary constraints.

The error bars associated with each point correspond to the 99% confidence in-

tervals associated with the multiple simulations for each specimen width. While

the sample sizes were insufficiently large to generate statistical significant obser-

vations, they provide an indication of the relative influence of the grain sampling

statistics. The error bar magnitudes over the range of widths investigated suggests

that the limited number of grains across the specimen bears little influence on the

scatter of the results. However, the number of grains in the length of the specimen

does not change, and it seems that this is the dominant factor contributing to the er-

ror bars in Figure 5. Note that, the orientation of individual grains also contributes
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Fig. 5. Macroscopic tensile stresses at 0.1% strain comparing the influence of the crystal-

lographic boundary conditions. The error bars represent 99% confidence intervals obtained

for different local crystallographic orientations.

to the weakening trend observed in Figure 5, which simply results from the fact that

the behaviour in a single cross-section is governed by a single grain rather than by

an aggregate. The first-order effect and the second-order effect jointly contributed

to the weakening effect predicted, where less grains and less grain boundaries are

the physical origins.
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3.2 The bending case

While back stresses were found to contribute little to the macroscopic tensile re-

sponse, they substantially do contribute under pure bending where a significant

strain gradient develops. In the following, the configuration according to Figure

3c is subjected to bending. Varying the specimen thickness between 75 to 300 µm

by scaling the mesh in the thickness direction, generates a range of macroscopic

through-thickness strain gradients which definitely have an impact on the normal-

ized applied bending moments as plotted in Figure 6. In this figure, the normalized

bending moments (scaled by the surface parameter WT 2 with W the width and T

the thickness of the specimen) at an applied strain of 0.1% (at the outer fibre) are

plotted versus the thickness. Unlike the macroscopic tensile responses plotted in

Figure 5, the three different crystallographic boundary conditions appear to diverge

with diminishing specimen thickness. When the crystallographic no slip boundary

conditions across the grain boundaries are relaxed (along the specimen outer sur-

face only, or overall) by specifying no GND accumulation on these boundaries, the

models predict a slight decreasing trend with decreasing model thickness similar

to the response in the tensile case. However, when the crystallographic slip is sup-

pressed across all grain boundaries, including a passivating surface layer, the mod-

els predict an increasing normalized bending moment with decreasing thickness.

This increased normalized bending moment results from the increasing through-

thickness strain gradients in case of a diminishing thickness dimension. For the

bending case, the first-order effect (weakening due to the reduction of grains) works

opposite to the second-order effect (strengthening due to strain gradients). Depend-

ing on the local microstructural configuration, the overall trend may either show

weakening or strengthening upon reducing the specimen size.

4 Discussion

The simulations presented highlight the importance of utilizing a material model

capable of including the influence of second-order gradients for the simulation of

the mechanical behaviour of micromanufactured components. While the simula-

tions are qualitative in nature as they lack experimental verification, they indicate a

range of geometrical sizes where first- and second-order effects will compete, lead-

ing to the trends observed in the present analysis. Disregarding the second-order

gradients effects is found to lead to underestimating predictions of the macroscopic

forces required during plastic deformation. The simulations also indicate that size

effects in the examined range of scales are not only dependent on the external di-

mensions, but also on the ratio of the grain size with respect to the specimen size

and the presence of macroscopic strain gradients.

The strengthening effect due to strain gradients results primarily from the back

16

Page 16 of 32

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

 O
n
ly

75 100 125 150 175 200

Model thickness (µm)

10

10.5

11

11.5

12

M
Y

 /
 W

 T
2
 (

M
P

a)

Restricted Surface
Free Surface
No GNDs

Fig. 6. Normalized bending moments computed from regular microstructure MEMS mod-

els with variable thicknesses at an applied strain of 0.1% at the level of the outer fibres.

The three curves are related to the different crystallographic slip boundary conditions at the

grain boundaries.

stresses associated with the GNDs required to satisfy lattice continuity. During

monotonic loading, these back stresses will continue to resist plastic deformation

by effectively reducing the driving force for crystallographic slip, however, the op-

posite is true when the loading direction is reversed. In that case, the back stresses

associated with the dislocations will augment the driving force, producing the clas-

sic Bauschinger effect [5]. Therefore, the mechanical analysis of thin micromanu-

factured components subjected to strong strain gradients will have to include both

isotropic and kinematic hardening mechanisms to accurately predict the mechani-

cal behaviour.

By maintaining a constant grain size during the miniaturization simulations, de-

crease of the external dimensions also reduces the number of constituent grains that

make up that part. This reduction in the number of crystals introduces a weakening

effect due to the loss of crystallographic constraints between adjacent grains. This

loss of constraints is adequately captured by a first-order crystal plasticity models,

where the statistical influence of the total number of grains within a component

is naturally accounted for. However, this weakening trend would not be captured

using a conventional continuum plasticity model since the possibility to include

the heterogeneity associated with individual grains of a crystalline material fails.

Similarly, second-order continuum models that don’t account for the contribution

of individual grains such as [29] would also fail to capture this weakening trend

with diminishing dimensions. However, by incorporation of the influence of strain

gradients within a crystal plasticity framework, the resulting effect of concurrent

strengthening and weakening can be described.
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5 Conclusions

Simulations using a strain-gradient crystal plasticity formulation of MEMS-like

structures have been performed to examine the competition between first order

weakening and gradient strengthening. The analysis focused on:

• A three-dimensional description of micromanufactured samples with a limited

number of grains in a cross-section.

• A strain gradient crystal plasticity approach with an enriched back stress descrip-

tion that accounts for the internal dislocation induced stresses.

• A particular range of length scales for which a competition between first-order

and second-order effects may be expected.

• The different sources that contribute to size effects: statistical effects, internal

constraints (grain boundaries), external constraints and the externally applied

load (possibly inducing macroscopic strain gradients).

More specifically the simulations revealed:

• In the presence of large macroscopic strain gradients, strain gradient strengthen-

ing dominates, requiring a greater applied load to overcome the increased inter-

nal back stresses associated with the GNDs in accordance with other researchers

[5, 6, 9, 10, 11, 15].

• When macroscopic strain gradients are avoided, such as during uniaxial tension,

the loss of microstructural constraints between adjacent grains dominates, result-

ing in a weakening trend with decreasing dimensions (miniaturization).

• The outer surface passivity has an obvious influence on the macroscopic be-

haviour of miniaturized components, especially when they are subjected to load-

ing cases which induce large strain gradients.

• As dimensions diminish, a better qualitative agreement with the mechanical be-

haviour of micromanufactured parts (with a limited number of grains) are only

possible on the basis of an enhanced crystal plasticity description, which ac-

counts for the crystallographic orientations and volumes of each composing grain

and in which GND-driven strain gradient strengthening is included in the slip re-

sistance and the back stress calculation.
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