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ABSTRACT 

This report describes and documents the theoretical and 

computational aspects of a three-dimensional computer code for 

environmental fluid flows. The code solves the three-dimensional 

primitive variable v1ertically hydrostatic equations of motion for 

turbulent flow in a coordinate system which is curvilinear and 

orthogonal in the horizontal plane and stretched to follow bottom 

topography and free surface displacement in the vertical direction 

which is aligned with the gravitational vector. A second moment 

turbulence closure scheme relates turbulent viscosity and diffusivity 

to the turbulence intensity and a turbulence length scale. Transport 

equations for the turbulence intensity and length scale as well as 

transport equations for 

and a dye tracer are also 

to pressure, salinity, 

concentration. 

salinity, temperature, suspended sediment 

solved. An equation of state relates density 

temperature and suspended sediment 

The computational scheme utilizes an external-internal mode 

splitting to solve the horizontal momentum equations and the 

continuity equation on a staggered grid. The external mode, 

associated with barotropic long wave motion, is solved using a semi

implicit three time level scheme with a periodic two time level 

correction. A multi-c:olor successive over relaxation scheme is used 

to solve the resulting system of equations for the free surface 

displacement. The internal mode, associated with vertical shear of 

the horizontal velocity components is solved using a fractional step 

scheme combining an implicit step for the vertical shear terms, with 

an explicit step for all other terms. The transport equations for the 

turbulence intensity, turbulence length scale, salinity, temperature, 

suspended sediment and dye tracer are also solved using a fractional 

step scheme with implicit vertical diffusion and explicit advection 

and horizontal diffusion. A number of alternate advection schemes 

are implemented in th1e code. 
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1. INTRODUCTION 

The ability to predict the transport and mtxmg of materials 

discharged into the hydrosphere and atmosphere is an essential 

element in environmental management. The field of environmental 

fluid dynamics has emerged in response to the need to understand 

and predict env:ironm~~ntal fluid flows and the associated transport 

and mixing for dissolved and suspended materials in these flows. A 

large range of space: and time scales characterize transport and 

mixing in the hydrologic and atmospheric environments. For 

example, local mixing associated with the discharge of a buoyant 

waste fluid into an ambient environmental flow can be described in 

terms of the three dimensional dynamics of buoyant turbulent jets 

and plumes (Fischer ~?t al, 1979). Outside of this region of local or 

initial mixing, the further mixing and transport of discharged 

material is gove1rned by the dynamics of the ambient environmental 

flow. 

A large class of incompressible ambient environmental flows are 

characterized by horizontal length scales which are orders of 

magnitude greater than their vertical length scales or length scales in 

the direction aligned with the gravitational vector. Such flows are 

essentially hydrostatic in the vertical and of the boundary layer 

type. Example flows in the hydrosphere range from rivers and lakes 

through estuaries and coastal seas to ocean basins. Similarly in the 

atmosphere, mesoscale through global scale circulation can be 

described by equations of motion simplified by the hydrostatic and 

boundary layer approximations. This class of natural environmental 

flows is also characterized by complex boundaries and topography 

and a host of nonlinear processes. The realistic simulation of these 

complex flows necessitates the numerical solution of the equations of 

motions and transport equations describing the transport and mixing 

of dissolved and suspended materials. 

The development of numerical or computational techniques 

appropriate for the solution of the incompressible, vertically 
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hydrostatic equations of motion occurred largely in the field of 

numerical weather prediction. The monograph by Haltiner and 

Williams (1980) and the volume edited by Chang (1977) provide 

excellent descriptions of the techniques developed through the late 

1970's. These techniques provided the basis for the development of 

numerical ocean circulation models such as those of Bryan (1969) 

and Semtner (1974). The growing concern for environmental 

problems in lakes, estuaries and the coastal ocean lead to further 

development in numeric:al techniques and models appropria~e · for 

these flow environments as typified by the work of Simons (197 4 ), 

Liu and Leendert:se (1975), and Blumberg and Mellor (1987). 

Continuing developments in estuarine and oceanic 

modeling are presented in the recent volumes edited 

(1987) and Nihoul and Jamart (1987), while the text 

numerical 

by Heaps 

by Pielke 

(1984) presents parallel developments in the modeling mesoscale 

atmospheric flows. 

The purpose of the work presented herein is to formulate a 

numerical solution scheme for incompressible, vertically hydrostatic 

environmental flows in the hydrosphere and atmosphere, and to 

implement computationally that scheme tn a computer code 

appropriate for the rang~~ of computing platforms from personal to 

super computers. In formulating the numerical solution scheme, the 

goal is not to reinvent the wheel. but to build upon the large 

foundation of previous work briefly referenced in the preceding 

paragraph, and extend it when appropriate to achieve improvements 

in accuracy, stability and performance. The first version of the code 

and certain terminology in this report is focused toward 

hydrospheric flows in estuaries and the coastal ocean, as well as 

lakes, reservoirs and rivers. However, care has be taken to make the 

solution scheme and code readily applicable to analeastic hydrostatic 

atmospheric flows by a simple substitution of an appropriate 

equation of state. The remainder of the paper is organized as 

follows. The governing equations of motion and transport equations 

are formulated in Section 2. The overall numerical scheme for the 

equations of motion based on internal, external mode splitting is 
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presented in Section 3. Section 4 contains the formulation of the 

numerical schem€~ for the external or long surface gravity wave 

mode and an analysis of its stability and propagation characteristics. 

The internal, ve:rtical shear or boundary layer mode numerical 

scheme is presented in Section 5. The numerical schemes for the 

transport equations are presented in Section 6. The computational 

aspects of the various numerical schemes are also discussed in 

Sections 4, 5, and 6. Section 7 describes the computational 

implementation of the numerical schemes in Environmental Fluid 

Dynamics Computer Code (EFDC), and outlines a strategy for the 

code's application to environmental fluid flow simulation and its 

complementary usc~ as a research tool. Lastly, Section 8 summarizes 

the important features of the numerical scheme and the 

environmental fluid dynamics computer code. 

2. FORMULATION OF THE GOVERNING EQUATIONS 

The formulation of the governing equations for ambient 

environmental flows characterized by horizontal length scales which 

are orders of magnitude greater than their vertical length scales 

begins with the vertically hydrostatic, boundary layer form of the 

turbulent equations of motion for an incompressible, variable density 

fluid. To accommodate realistic horizontal boundaries, it is 

convenient to formulate the equations such that the horizontal 

coordinates, x and y, are curvilinear and orthogonal. To provide 

uniform resolution in the vertical direction, aligned with the 

gravitational vector and bounded by bottom topography and a free 

surface permitting long wave motion, a time variable mapping or 

stretching transformation is desirable. The mapping or stretching is 

given by: 

z=(z*+h)!(C+h) (1) 
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where * denotes the original physical vertical coordinates and -h and 

~ are the physical vertical coordinates of the bottom topography and 

the free surface respectively, Figure 1. Details of the transformation 

may be found in Vinokur (1974), Blumberg and Mellor (1987) or 

Hamrick ( 1986). Transforming the vertically hydrostatic boundary 

layer form of the turbulent equations of motion and utilizing the 

Boussinesq approximation for variable density results in the 

momentum and continuity equations and the transport equations for 

salinity and temperature in the following form: 

a,(mllu) + a%(m
1
Huu) + a,(m%Hvu) + a,(mwu)- (mf + va%m

1
- ua,m%)Hv 

= -m,Ha%(gC + p)-m,(a%h- za%H)a,p+ a,(mi-r
1
A,a,u)+Q, 

a,(mllv)+ a%(m
1
Huv)+ a,(m%Hvv)+ a,(mwv) + (mf + va%m

1 
-ua,m%)Hu 

= -m%Ha,(gC + p)- m%(a,h- za,H)a,p+ a,(mH-
1
A,a, v)+Q., 

a,p = -gH(p- Po)P~
1 
= -gHb 

p=p(p.S.T) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

In these equations, u and v are the horizontal velocity components in 

the curvilinear, orthogonal coordinates x and y, mx and my are the 

square roots of the diagonal components of the metric tensor, m = 

m xm y is the Jacobian or square root of the metric tensor 

determinant. The vertical velocity, with physical units, in the 
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stretched, dimensionless vertical coordinate z ts w, and is related to 

the physical vertical velocity w* by: 

(10) 

The total depth, H== h + ~' is the sum of the depth below and the free 

surface displacemc~nt relative to the undisturbed physical vertical 

coordinate origin, z* = 0. The pressure p is the physical pressure in 

excess of the reference density hydrostatic pressure, p o g H ( 1 - z), 

divided by the reft~rence density, po. In the momentum equations (2, 

3) f is the Coriolis parameter, Av is the vertical turbulent or eddy 

viscosity, and Qu and Qv are momentum source-sink terms which will 

be later modeled as subgrid scale horizontal diffusion. The density, 

p, is in general a function of temperature, T, and salinity or water 

vapor, S, in hydrospheric and atmospheric flows respectively and can 

be a weak function of pressure, consistent with the incompressible 

continuity equation under the anelastic approximation (Mellor, 1991, 

Clark and Hall, 1991). The buoyancy, b, is defined in equation (4) as 

the normalized deviation of density from the reference value. The 

continuity equation (5) has been integrated with respect to z over 

the interval (0,1) to produce the depth integrated continuity 

equation (6) using the vertical boundary conditions, w = 0, at z = 
(0, 1 ), which follows from the kinematic conditions and equation ( 1 0). 

In the transport equations for salinity and temperature (8,9) the 

source and sink terms, Qs and QT include subgrid scale horizontal 

diffusion and thermal sources and sinks, while Ab is the vertical 

turbulent diffusivity. It is noted that constraining the free surface 

displacement to be time independent and spatially constant yields 

the equivalent of the rigid lid ocean circulation equations employed 

by Smetner (1974) and equations similar to the terrain following 

equations used by Clark (1977) to model mesoscale atmospheric 

flow. 

The system of e:ight equations (2-9) provides a closed system for 

the variables u, v, w, p, ~, p, S, and T, provided that the vertical 
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turbulent viscosity and diffusivity and the source and sink terms are 

specified. To provide the vertical turbulent viscosity and diffusivity, 

the second mom1ent turbulence closure model developed by Mellor 

and Yamada (1982) and modified by Galperin et al (1988) will be 

used. The model relates the vertical turbulent viscosity and 

diffusivity to the turbulent intensity, qq, a turbulent length scale, I, 

and a Richardson number Rq by: 

(11) 

(12) 

(13) 

where the so-callted stability functions cpv and cpb account for reduced 

and enhanced vertical mixing or transport in stable and unstable 

vertically density stratified environments, respectively. The 

turbulence intensity and the turbulence length scale are determined 

by a pair of transport equations: 

a,(mllq
2
)+ a"(m,Huq

2
)+ a,<m"Hvq

2
)+ a,(mwl) = a,(mll-

1
Aqa,l)+Q, 

+2mll-
1
A,((a,u)

2 
+(a,. v)

2)+ 2mgAba,b- 2mH(B.)f
1l 

a, (mllq
2
1) +a" (m,Hut/1) +a, (m"Hvq

2
l) +a, (mwq

2
1) = a, (mH-

1 
Aqa, q

2
l) + Q1 

+mH-1E
1
lAY((d,u)2 + (d, v)

2
) + mgE

1
EiAba,b- mHB1-

1
q

3
(1 + E

2
(1CL)-

2 l
2

) 

ct = n-t(z-t + (1- zft) 
, 

(13) 

(14) 

(15) 

where B 1, E1, E2, and E3 are empirical constants and Qq and Qz are 

additional source-sink term such as subgrid scale horizontal 

diffusion. The vertical diffusivity, Aq, is in general taken equal to the 

vertical turbulent viscosity, Av. 
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3. NUMERICAL SOLUTION TECHNIQUES FOR THE EQUATIONS 

OF MOTION 

The equations of motion (2-6) will be solved in a region subdivided 

into six faced cells. The projection of the vertical cell boundaries to a 

horizontal plane' forms a curvilinear, orthogonal grid in the 

orthogonal coordinate system (x,y). In a vertical (x,z) or (y,z) plane, 

the cells bounded by the same constant z surfaces will be referred to 

as cell layers or layers. The equations will be solved using a 

combination of finite volume and finite difference techniques, with 

the variable locations shown in Figure 2. The staggered grid location 

of variables is often referred to as the C grid (Arakawa and Lamb, 

1977) or the MAC grid (Peyret and Taylor, 1983). To proceed, it is 

convenient to modify equations (2,3) by eliminating the vertical 

pressure gradients using equation ( 4 ). After some manipulation, the 

horizontal momentum equations become: 

a,(mHu) + az(m,Huu) + a,(mzHvu) + a,(mwu)- (mf + vazm,- ua,mz)Hv 

=-m,Hazp-m,HgazC +m,Hgbazh-m,HgbzazH +a,(mH-'~a,u)+Q, (16) 

a,(mHv)+ az(m,Huv)+ a,(mzHvv)+ a,(mwv)+ (mf + vazm, -ua,mz)Hu 

= -mzHa,p-mzHga,C +mzHgba,h-mzHgbza,H + a,(mH-'~a, v)+Q, (17) 

The vertical discretization of Equations (16, 17) is considered first. 

The equations are integrated with respect to z over a cell layer 

assuming that variables defined vertically at the cell or layer centers 

are constant and that variables defined vertically at the cell layer 

interfaces or boundaries vary linearly over the cell, to give: 

a,(mHll"u") + az(m,Hll"u"u") + a,(mzH!l"v"u") + (mwu)"- (mwuh_1 

-(mf +v"azm, -u"a,mz)ll"Hv" =- 0.5m,Hll"az(P" + P~c-~) -m,Hll"gazC 

+m,Hll"gb"azh- 0.5m,Hll"gb"(z" + z"_,)azH + m('l"za)"- m('l"za)"_' + (llQ,)" (18) 
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a,(mHli"v")" + a"(m1Hil"u"v") + a,(m"Hli"v"v1) + (mwv)"- (mwv)"_1 

+(mf +v"a"m' -u~r.a,m,.)li~r.Hu" =- 0.5m"Hli~r.a,(p~r. + pk._1)-m"Hl:J.k.ga,t; 

+m"Hli~r.gb"a,h- 0.5m"Hlik.gb~r.(z" + z"_1)a,H + m('t',.)k.- m('t',.>k.-1 + (liQ,)" (19) 

where A k is the vertical cell or layer thickness and the turbulent 

shear stresses at the cell layer interfaces are defined by: 

(20) 

(21) 

If there are K cells in the z direction, the hydrostatic equation can be 

integrated from a cell layer interface to the surface to give: 

(22) 

where ps is the physical pressure at the free surface or under the 

rigid lid divided by the reference density. The continuity equation 

(5) is also integrated with respect to z over a cell or layer to give: 

(23) 

The numerical solution of the vertically discrete momentum 

equations (18,19) now proceeds by splitting the external depth 

integrated mode associated with external long surface gravity waves 

from the internal mode associated with vertical current structure. 

The external mode equations are obtained by summing equations 

(18, 19) over K cells or layers in the vertical utilizing equation (22}, 
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and are given by: 

lC 

a,(mlfii) + L( a"(m,Hii"u"u,,) + a,(m"Hii"V"U")- H(mf + v"a"mY- u"a,m")li"v") 
k=l 

= -m.jlgiJ,t;-m,HiJ,JJ, + m,Hgli iJ,h- mjlg(t. ( A,P, + 0.5A,(z, + z,_, )b,) )a.H 

-0.5m,H'a.(t.A,P,) + m( "Z"u )K - m( "Z"u)o + Q, 

lC 

a,(mHv) + L( a"(m,H!i"u"v") + a,(m"Hii"v"v") + H(mf + v"a"m'- u"a,m")li"u") 
k•l 

= -m"Hga,,- m"Ha,P. + m"Hgba,h- m"Hg(±(!iJJ" + 0.5/i"(z" + z"_1)b"))a,H 
k=l 

-o.5m"H
2
a,(f!i"Jj")+m(1'1,)JC -m(1',,)o +Q, 

k=l 

a,(m') + a"(m
1
Hu) + «~ 1 (m"Hv) = 0 

lC 

Pt = Lliibi -0.5/i"b" 
j=k 

(24) 

(25) 

(26) 

(27) 

where the over bar indicates an average over the depth. The depth 

integrated continuity equation (26) follows from equation (6) and 

provides the continuity constraint for the external mode. Consistent 

with the form of equation (26), the external mode variables will be 

chosen to be the free surface displacement, ~, and the volumetric 

transports my Hu and mxHv. Details of the solution of the external 

mode equations (24-26) are presented in Section 4. 

A number of formulations are possible for the internal mode 

equations. Equations (18,19) have K degrees of freedom for each of 

the horizontal velocity components. However, the summation of 

these equations over K cells or layers in the vertical to form the 

external mode equations (24,25) effectively removes a degree of 
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freedom since the constraints: 

(28) 

(29) 

must be satisfied. One approach to the internal mode is to solve 

equations ( 18, 19) using the free surface slopes, or the surface 

pressure gradients in the rigid lid case, from the external solution 

and distribute the~ error such that equations (28,29) are satisfied. A 

second approach is to form equations for the deviations of the 

velocity components from their vertical means by subtracting the 

external equations (24,25) from the 'layer integrated equations 

(18,19). However, it will still be necessary to satisfy the constraints 

(28,29). The approach proposed herein is to reduce the systems of K 

layer averaged equations (18,19) to systems of K-1 equations and 

use equations (28,29) to provide the Kth equation consistent with the 

actual degrees of freedom. 

The internal mode equations are formed by dividing equations 

(18,19) by the ct'll layer thickness, Ak, subtracting the equations for 

cell layer k from the equations for cell layer k+ 1, and then dividing 

the results by the average thickness of the two cell layers to give: 

a,(mll!i~~ 1 .t(ut+ 1 - U~~;)) + a"(m,H!i~~ 1 .t(U~~;+ 1 Ut+l- U~~;U~~;)) + a,(m"H!i~
1
+u(vt+ 1 Ut+ 1 - V~~;U~~;)) 

+m!i~ 1 + 1 ,t(!i~~~ ( (wu)t+1- (wu)")- !i~
1
((wu)"- (wu)"_1)) 

-li~~~.t(<mf + vt+1a"m' -ut+1a,m")Hvt+1 -(mf + v"a"m' -u"a,m")Hv") 

= m,H!i~
1
+ug(b"+ 1 - b")(()"h- z"a"H)- 0.5m,H

2 
!i~

1

+ 1 ,~cg(li"+ 1 a"bt+ 1 + t:,."()"b") 

+mli~
1
+1,1c( !i~~~ ( ( 'Z'xz)t+l - ( 'Z'"' )")- li~

1 

( ( 'Z'"' )"- ( 'Z'"' )H))+ li~~u( (Q)k+l- (Q.J") (30) 

15 



o,(mHA~~ 1 .~:(V~:+t -v~:))+ ox(m,HA~~ 1 .~:(Ul+ 1 vt+ 1 - utvt)) + o,(m"HA~~t.t(vt+tvt+t -V~:V~:)) 

+mA~~u(A~~ 1 {(wv)k+t- (wv)~:)- A~ 1 {(wv)~:- (wv)~:_ 1 )) 

+A~
1
+ 1 A (mf + vk+to"m,,- u~:+ 1 o 1 m")Hu~:+ 1 - (mf + v~:o"m'- uto,m")Hu~:) 

= m"HA~~l.kg(bk+t - b~;)(o 1 h- Z~;o 1 H)- 0.5m"H
2 
A~~ 1 .~:g(Ak+to 1 bk+t + A~;o 1 b~;) 

+mA~~u( A~~~ ( ('f,.)k+l - ('f,.)~;)- A~ 1 
( ('f,. )~; - ('f,.)t-1)) + A~~1,1:( (Q,)k+1 - (Q,)~;) (31) 

(32) 

Inspection of equations (30,31) reveals that they could have also 

been obtained by differentiating the horizontal momentum equations 

(16, 17) with respect to z and introducing a finite difference 

discretion in z. Using equations (20,21) to relate the shear stresses to 

the velocity diff1erences across the interior interfaces suggest that 

equations (30,31) be interpreted as a system of K-1 equations for 

either the K-1 interfacial velocity differences or the K-1 interior 

interfacial shear stresses. Details of the solution of the internal mode 

equations (30,31) will be presented in Section 5. 

The solution of the vertical velocity, w, employs the continuity 

equations. Dividing equation (23) by ~k. and subtracting equation 

(26) gives: 

(33) 

Since wo = 0, the solution proceeds from the first cell layer to the 

surface. Provided the constraints (28,29) are satisfied, the surface 

velocity at k = K will be zero and satisfy the boundary condition. 
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4. COMPUTATIONAL ASPECTS OF THE EXTERNAL MODE 

SOLUTION 

The formulation of a computational algorithm for the numerical 

solution of the~ external mode equations (24-26) begins by 

introducing modified variables and reorganizing the equations to 

give: 

o,U =-m; 1 m 1 HgoxC-m;
1 m 1 Hoxp~ +m;

1
m

1
Hg(boxh-B()"H -0.5HoJ3) 

K K 

-m; 1 L~ 1 (ox(U 1 u 1 )+ o.,('\'tu1))+ m; 1 L~ 1 (mf + v1oxm., -u1o
1
mx)Hv1 

1=1 k=l 

-1-
+m.,Cf.a)K- m.,('f.a)o +mx Q., 

o,V =-m~; 1 Hgo.,C ·-m"m;
1
Ho

1
p6 +mxm;

1
Hg(bo1h- Bo.,H -0.5Ho.,f3) 

K K 

-m; 1 :L~k(ax(Ukvk)+ a,('\'tvk>)-m;
1 L~k(mf + vkaxm., -uka.,mx)Huk 

1=1 1=1 

-1-
+mx( 'f.,)K- mx('f.,)~, + m., Q., 

U =m.,Hii 

V =m"'Hv 

17 
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(39) 

(40) 

(41) 

(42) 



Equations (34,35) now equate the time rate of change of the external 

or depth integrated volumetric transports to the pressure gradients 

associated with the free surface slope, atmospheric pressure and 

buoyancy, the advective accelerations, the Coriolis and curvature 

accelerations, the free surface and bottom tangential stresses and the 

general source, sink terms. The staggered location of variables on 

the computational grid, Figure 2, allows most horizontal spatial 

derivatives in equations (34-36) to be represented by second order 

accurate central differences and results in conservation of volume, 

mass, momentum and energy in the limit of exact integration of the 

equations in time (Simons, 1973, Haltiner and Williams, 1980). 

When a variable is not located at a point required for 

implementation of central difference operators, averaging in either 

or both spatial directions is appropriate. The use of the spatial 

averaging scheme of Arakawa and Lamb (1977) to represent the 

Coriolis and <;urvature accelerations also guarantees energy 

conservation. 

Following the introduction of discrete finite difference and 

averaging representations in space, equations (34-36), for a 

horizontal grid of L cells, may be viewed as a system of 3L ordinary 

differential equations in time for the volumetric transport and the 

free surface displacement. The numerous techniques available to 

solve these equations generally fall within the two categories of 

explicit and semi -implicit. The most frequently used explicit scheme 

is the three time level leapfrog scheme where the time derivatives 

are approximated between time levels n+1 and n-1, and the 

rema1nmg terms are evaluated at time level n. Although 

computationally simple to implement, the maximum time step is 

restricted by the Courant-Fredrick-Levy condition based on the 

gravity wave phase speed. An alternate approach allowing larger 

time steps is the semi-implicit three time level scheme (Madala and 
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Piacsek, 1977), which when implemented for equations (34-36) is 

U 
11

+
1 = U ~~- 1 - 8(m;1m.,H)" g6;( , 11

+
1+ ,~~- 1 )- 28(m;1m,H)" 6;p. 

K 

+28(m;
1
m,Htg(b"6;h- B"6;H -0.5H"6;f3 )- 28(m;1)"Ll11 ( 6;(U1u1 )+ 6;(l-)u1 )) 

1=1 

K 

+28(m;
1)"Ll11((nif +v1d"m' -u1d,m")Hv1 )" + 28m;(cr_:-

1
)K- cr_:-1

) 0 )" 

1=1 

V
11

+
1 = v~~- 1 - 8(m"m;

1
HY g6;(, 11 + 1 +,~~- 1 )-28(m"m; 1 HY 6;p. 

K 

+28(m"m;
1
HY g(liw6;h- Bw6;H -0.5Hw6;f3)-28(m;1YLl11 ( 6;(U1v1 )+ 6;n~v 1 )) 

1=1 

K 

-28(m;
1YLl11((nif + viJ"m' -U1d1 m")Hu1f +28m:(cr;-1

)K -cr;-1
) 0r 

1=1 

(44) 

(45) 

with a being the time step. All terms in equations (43-45) are 

understood to be evaluated at the center time level n except those 

evaluated at the forward and backward time levels, n+ 1 and n-1, 

which are denoted by superscripts. The u, v, and ~ superscripts 

indicate that a variable is evaluated, or that a spatial derivative is 

centered, at the corresponding spatial point. 

The subscript of the spatial central difference operator, B, 

indicates direction. The grid cells are presumed to be bounded in the 

horizontal by lines of constant integer values of the dimensionless 

orthogonal coordinates x and y, resulting in the central spatial 

differences having the forms: 

6" ( tjJ(x,y)) = f/J(x + 0.5, y)- f/J(x- 0. 5,y) (46) 
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o,( <f>(x,y)) = <f>(x,y + 0.5)- <f>(x,y- 0.5) 
(47) 

Application of these finite difference operators to the advective 

accelerations is illustrated by: 

(48) 

where the constant y dependence of the variables is implied. Since 

the u type variables are located at integer values of x, averaging is 

necessary to obtain values at the half intervals. Averaging both the 

transport and the velocity gives: 

o;(U1(x)u1 (x)) = 0.25(U1(x+ 1)+U1 (x))(u1 (x + 1)+ u1 (x)) 

-o.25(U1(x) +U1(x-l))(u1 (x) +u1 (x-1)) (49) 

which is consistent with a central difference approximation of the 

nonconservative form of this portion of the advective acceleration. 

Averaging the transport and allowing the velocity to be advected 

from the upwind direction gives: 

o;(U1 (x)u1 (x)) = 0.5Max((U1 (x+ 1) +U1(x)),O)u;-
1
(x,y) 

+0.5Min((U1 (x + 1)+U1 (x)),o)u;-
1
(x+ 1,y) 

-Q.5Max((U1 (x) + U1 (x-l)).o)u;-1(x-l,y) 

-Q.5Min((U1 (x) +U1 (x -l)),o)u;-1(x,y) 
(50) 

which is consistent with an upwind or backward difference 

approximation of the nonconservative form of this portion of the 

advective acceleration. In equation (50), the transport is still at time 

level n, while the velocity is at time level n-1, for both stability and 

accuracy (Smolarkiewicz and Clark, 1986). The preference for the 

use of equation ( 49) or equation (50) will generally depend upon the 

physical situation being simulated. The central difference form 

introduces no numerical diffusion but may produce solution fields 

which exhibit cell to cell spatial oscillations. These oscillations can. be 
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eliminated by the addition of horizontal diffusion terms to the 

momentum equations. Specification of the horizontal diffusivity 

allows the degree of spatial smoothing to be controlled. The upwind 

difference form introduces numerical diffusion and does not produce 

spatial oscillations in the solution field. The Coriolis and curvature 

terms in equations (43,44) are discretized using an energy 

conserving spatial averaging and differencing ( Arakawa and Lamb 

,1977, Haltiner and Williams, 1980). For example, the Coriolis and 

curvature term in equation (43) is given by: 

Rf (x + 0.5) = fm(x + 0.5,y) + vf (x + 0.5,y)(m,(x + l,y)- m,(x,y)) 

-uf (x + 0.5,y)(m"'(x+ 0.5,y+ 0.5)- m"'(x +0.5,y-0.5)) 

vf (x + 0.5,y) = 0.5(v1 (x + 0.5,y + 0.5) + v1(x + 0.5,y- 0.5)) 

uf (x +0.5,y) = 0.5(u1 (x + l,y) +u1 (x,y)) 

where the variables locations are shown in Figure 3. 

(51) 

(52) 

(53) 

(54) 

Since the bottom tangential stresses m equations (43,44) must be 

supplied from the internal mode solution which follows the external 

solution, it is lagged at the backward time level. The general source, 

sink term has been replaced by horizontal diffusion terms having the 

form proposed by Mellor and Blumberg (1985). The horizontal stress 

tensor is taken of the form: 

(55) 

(56) 

(57) 
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The horizontal diffusion coefficient, AH, is often specified as a 

minimum constant value necessary to smooth cell to cell spatial 

oscillations in the solution field when the central difference form of 

the advective acc:eleration, equation (49) is used. When the 

horizontal turbulent diffusion is used to represent subgrid scale 

mixing, AH may be determined as suggested by Smagorinsky (1963 ). 

The solution scheme for equations ( 43-45) involves first 

evaluating all terms in the three equations at time levels n and n-1. 

On boundaries where the transports are specified, the specified 

values at time lev€~1 n+ 1 are inserted into equation ( 45). Equations 

(43,44) are then used to eliminate the unknown transports at time 

level n+ 1, from equation ( 45). The result is a discrete Helmholtz type 

elliptic equation for the free surface displacement at time level n+ 1, 

having the general form: 

(58) 

with the term cj) containing all of the previously evaluated terms and 

transport boundary conditions. For cells where the free surface 

displacement is spc~cified, equation (58) is replaced by an equation 

which enforces the specified boundary condition at time level n+ 1. 

For the rigid lid case where the free surface displacement is constant 

in time and space, equation (58) is modified to give an equation for 

the unknown surface pressure, ps, by eliminating the first term, 

replacing g~ in the discrete elliptic operator by ps, and appropriately 

modifying the last term. In the computer code, the system of 

equations corresponding to equation (58) is solved by a reduced 

system conjugate gradient scheme with a multicolor or red-black 

ordering of the cells (Hageman and Young, 1981 ). The conjugate 

gradient iterations continue until the sum of the squared residuals is 

less than a specified value. The free surface displacements or 

surface pressures are then substituted into equations (43,44) to 

determine the transports at time level n+ 1. Since the solution of 

equation (58) is approximate, equation ( 45) may not be identically 
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satisfied upon substitution of the time level n+ 1 transports and free 

surface displacement. To insure that equation ( 45) is identically 

satisfied in the case of a dynamic free surface, it is solved for a 

revised value of the time level n+ 1, free surface displacement after 

introduction of the time level n+ 1 transports. For the rigid lid case, 

an external divergence error is calculated and compensated for 

adding appropriate a volumetric source or sink terms to equation 

( 45) during the next time step. 

Some insight into the stability and accuracy of the semi-implicit 

three time level scheme for solving the external mode equations with 

a dynamically active free surface can be gained by a Fourier analysis 

of the linearized discrete equations: 

(59) 

(60) 

(61) 

Introduction of the Fourier representations: 

(62) 

(63) 

on a rectangular Cartesian grid gives the eigenvalue problem: 

(64) 
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1 

2iC sin( 0. 5k,m,) 

2im;
1
mYC sin( 0. 5kxmx )] 

2imxm;
1
C sin( 0. 5k,m,) 

1 

[ 

0 -mx~-
1

mY 
0
o

0

] 
M = 2/6cos(O.Sk,.m.)co~ O.Sk,m,) m.~;' 

0 

-1 

2iC sin( 0. 5kYmY) 

2im;
1
mYC sin( 0.5kxmx )] 

2imxm;
1c sin( 0. 5kymy) 

-1 

(65) 

(66) 

(67) 

(68) 

where ro is the frequency, kx and ky are the wave numbers and C is 

the Courant number associated with the shallow water wave speed. 

The eigenvalue, A., is related to the frequency and time step by: 

A. = IA.Iexp(im8) (69) 

The characteristic polynomial of equation (64) is: 

(70) 

. (71) 
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and the roots or eigenvalues are: 

(72) 

For linear stability, the absolute values of the eigenvalues must be 

less than or equal to one. The absolute values of the four complex 

eigenvalues are identically one, provided the absolute value of 'I' is 

less than one, which requires: 

(73) 

Thus the linearized three time level semi-implicit scheme is 

neutrally stable when equation (73) is satisfit~d. Since at mid

latitude the inverse of the Coriolis parameter is on the order of 

10,000 sec, the time step is not overly constrained. The overall 

stability of the scheme will most likely be controlled by the stability 

of the explicit advective and curvature accelerations. The form of 

the curvature terms in the momentum equatiollls suggest that they 

may increase the effective magnitude of the Coriolis parameter and 

reduce the stable time step. The stabi1ity of thf: explicit scheme for 

the advective accelerations will be discussed in subsequent sections. 

The major computational problem with three time level schemes for 

systems of first order equations is tht~ doubling of the number of 

eigenvalues over those physically characterizing the system. The 

eigenvalues in equation (72) are grouped such that the first three 

correspond to the true physical solution or physical mode of the 

system while the last three are spurious and give rise to what is 

referred to as the computational mode (Haltiner and Williams, 1980). 

Expressing the physical mode eigenvalues of the numerical scheme in 

terms of roe, using equation (69), gives the dispersion relation: 

ro(J = 0,±0.5arccos(l11'!) (74) 
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which can be compared with the dispersion relation 

(75) 

for the continuous, in time and space f01m of equations (59-61). Both 

the numerical and continuous solution are characterized by a steady 

mode and pairs of waves propagating in opposite directions. The 

major feature of the computational mode of th•e numerical solution 

scheme, represented by the last three eigenvalues in equation (72), 

is an alternating change in sign of the solution at every time step. 

Since all eigenvalues of the scheme are n·eutrally stable, the 

computational mode solution can persist and become a source of 

error. Two alternatives to eliminating the computational mode are 

the application of weak time filter or the periodic insertion of a 

single step using a two time level scheme (Haltiner and Williams, 

1980). For the present work, the insertion of a two time level step or 

possibly more appropriately termed a correction step was selected. 

The correction step used to eliminate the computational mode is a 

trapezoidal scheme. The scheme computes a corrected time level n+ 1 

solution using the initial condition at time level n and the solution at 

time level n+ 1 previously computed using the three time level 

scheme. The momentum and continuity equations, equivalent to 

equations ( 43-45), for the trapezoidal correction step are: 

I I 

U"+l = U"- 0.59(m~ 1 m,H"+y)"go;(cll+l+ C")- 8((m~ 1 m,Hto;pll)"+ 2 

I K 

+9(<m:1m,H)"g(li"o;h-B"o;H -0.5H"o;f3 ))"+2
- 9(m: 1 >"L·~t( o;(utut) + o;<v~:ut)) 

A:=l 

+9(m~ 1 )"±At(((mf + vi}xm, -utiJ,mx)Hvtrr+~ + Om;(Cl'~)"': -('l'~)or 
A:=l 

+9(m~ 1 )"±At( iJx(m,H'l':X)+ iJ,(mxH'l';,)+ iJ,mxH'l';,- iJxm,H'l'';,): 
A:=l (76) 
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v"+1 = V" -0.58(m,tn;1H"+!r go;(C"+1+ C")- B(<m;,m;1nr o;pJ.)"+! 
I K 

+B(<m"m;
1
Hr g(ii"o;h -- B"o;n -0.5H"o;f3 ))"+2

- O<m; 1 >"L~i( o;(u,yj) + o;<"tvj)) 
k=l 

-8(m; 1 (t~ 1 ((<mf + v,/J"m' -u1d1
m")Hu1 )")"+I + Om;(Ct';,)K --('t';z>o)" 

k .. l 

(77) 

(78) 

where the notation n+ l/2 implies: 

with * denoting evaluation using time level n+ 1 results from the 

previous three time level step. Because of stability restrictions, the 

advective accelerations must be of the upwind form: 

I 

o;(U1 (x)u1 (x)) = 0.5Mat((U1 (x+ 1) +U1(x)),0)"+2u;(x,y) 
I 

+0.5Min( (U1 (x + 1) + U1 (x) ),0 )"+2 u;(x + 1,y) 

I 

-o.5Max((U1 (x) + U1 (x ·-1)),0)"+2u;(x -1,y) 

-o.5Min((U1(x) + U1(x --l)),o)"+iu;(x,y) 
(79) 

The solution of semi-implicit equations (76-78) follows that outlined 

for the three time level scheme. 

To analyze the stability of the trapezoidal corr,ection step with a 

dynamically active free surface, two points of view will be 

considered. Since a single application of the trapezoidal scheme 

essentially corrects a step of the three time level scheme, it is 

actually three time level. The Fourier analysis of the combined 
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linearized three time level, trapezoidal correction scheme 

rectangular Cartf~sian grid gives the eigenvalue problem: 

[ 

0 -m;
1

m1 OJ 
N = 0.5f9cos(0.5kfllx)cos(0.5k

1
m

1
) mflJ;

1 0 0 

0 0 0 

[ 

-1 

N = 0 

iC sin( 0. 5kfllx) 

~ ~m;
1
m~C:s~n(0.5kxm~)l 

1 zmxm
1 

C sm( 0. 5k
1
m

1
) 

iCsin(0.5k
1
m

1
) -1 

on a 

(80) 

(81) 

(82) 

(83) 

The sixth order characteristic polynomial of equation (80) is 

algebraically rather complex and only the two roots or eigenvalues, 1 

and 0, can be d1etermined in closed form. The eigenvalue of one is 

associated with the steady physical mode, while the eigenvalue of 

zero is spurious but serves a useful purposf~ in eliminating the 

computational mode. A second point of view Jls that the successive 

application of the trapezoidal correction is equivalent to an iterative 

two time level scheme. The Fourier analysis of such a scheme gives 

the eigenvalue problem: 

(84) 

whose characteristic polynomial is: 

(85) 
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where 

(86) 

The roots or eigenvalues of equation (80) are: 

(87) 

Since the absolute value of chi is always less than one, the absolute 

value of the complex eigenvalues is idtmtically one and the scheme is 

neutrally and unconditionally stable. 

The results of the Fourier analysis is also useful in accessing the 

accuracy of the external mode solution schemt~ with respect to its 

ability to represent the dispersion relation and the phas·e and group 

velocities of shallow water waves (Foreman, 1983 ). The dispersion 

relations for the continuous in space and time shallow water 

equations, and tlb.e three and two time level schemes, respectively, 

are: 

m(J = 0.5arccos(yt) 

m(J = arccos(z) 

where 'I' and x are given by equations (71,86). 

velocities are given respectively by: 

(cx,cy) (kx,ky) (J)(J 

.fih: = rm(k; +k:fc 
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(89) 

(90) 

The phase and group 

(91) 



(92) 

A comparison of the dispersion relations for a square Cartesian grid 

with a Courant number of 5 and f 9 of 0.01 is shown in Figure 4. The 

dispersion relations for the three time level and the two time level, 

included for companson, differencf~ schemc~s show excellent 

agreement with the continuous equations for dimensionless wave 

numbers less than approximately 0.05. As the dimensionless wave 

number magnitude increases toward 0.1, both numerical schemes 

under predict the dimensionless frequency with tthe three time level 

scheme being less accurate than the two time level scheme. The 

magnitudes of the phase velocity as a function of the dimensionless 

horizontal wave numbers are shown in Figure 5. Both numerical 

schemes increasingly under predict the phase velocity magnitude as 

the wave number magnitude increases, but provide relatively 

accurate predictions for dimensionless magnitudes less than 0.05, 

with the two time level scheme being more accurate. The 

magnitudes of the group velocity as a function of the dimensionless 

horizontal wave numbers are shown in Figmre 6. Again the 

numerical schemes increasingly under predict the group velocity 

magnitude as the wave number magnitude increases, but provide 

relatively 

than 0.05. 

accurate~ predictions for dimensionless magnitudes less 

Although the two time level scheme is shown to be more 

accurate than the three time level scheme at higher wave number 

magnitudes, it would be computationally much more costly . to 

implement due to the iterative evaluation of the Coriolis, curvature 

and advective accelerations. 

30 



S. COMPUTATIONAL ASPECTS OF THE lNTERNAL MODE 

SOLUTION 

The internal mode equations (30,31) are solved using a fractional 

step scheme (Peyret and Taylor, 1983), with the first step being 

explicit and the se~cond step being implicit. Figure 7 illustrates the 

location variables in the x,z plane for the x 1componoent of the 

internal mode equations. The computational equations for the three 

time level explicit step are: 

(Ut+l- utf = (Ut+l -l.lt)"-1- 28(m;l)"( o;(Ut+lut+l- Utut) + o;~<Vt+lut+l- Vtut)) 

-28(m; 1 )"(L1~~ 1 ((Wu) 1 + 1 - (Wu)1)- L1~ 1 ((Wu) 1 - (Wu)1_1))" 

+28(m;
1
)"( (mf + v1+1dzm,- u1+1a,mz)Hvk+1 - (mf + v1iJzm,- u1a,mz)Hv1 )" 

+28(m;1m,H)" g((bt+1 -b1 )"8;(h- z1H)-0.5H"o;(A-1+1b1+1 + L11b1 )) 

+28(m;
1
)"((Q,.)t+l -(Q,.)t)" (94) 

(vk+l- vk)** = (Vt+l- Vt)i"-
1

- 28(m;
1Y( o;<uk+lvk+l- ukvk) + o; o~+lvk+l- Vtvt)) 

-28(m; 1 Y(~~ 1 ((Wv) 1 + 1 - (Wv)t)- L1~ 1 ((Wv)t- (Wv)A.-l)f 

-28(m;
1
Y(<mf +v1+1d%m, -uk+1a,m%)Hu1+1 -(mf +viJzm, -ui},m%)Hu1r 

+28(mzm;1HY g((b1+1 -b1 )" o;(h- z1H)-0.5H" o;(~.t+ 1 b 1 + 1 + L11b1 )) 

+26(m;
1
)"((Q..)HI- (Q..).J (95) 

where ** denotes the provisional solution, and all terms not having a 

specified time level are understood to be at the eentered time level 

n. The horizontal volume transports, U and V are as defined by 

equations (39,40) and W is the vertical volum1e transport. The 

horizontal difference operations on the horizontal advection terms 

are identical to those presented in Section 3, equations ( 48-50). The 

vertical momentum flux terms may be represented in forms 
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consistent with central or upwind differc~ncing, 

(Wu): =0.5Max((~(x-0.5)+ ~(x+0.5)),o)u;- 1 (.x) 

+0.5Min((~(x-0.5) + ~(x +0.5)),0)u;~:(x) 

(97) 

(98) 

where the advected velocity in the upwind form, equation (98) is 

evaluated at time level n-1 for stability. The horizontal difference 

operations on the buoyancy and mean and total depths are central 

difference operators defined by equations (46} and (47). The 

inclusion of horizontal diffusion in the source, sink terms in 

equations (94,95) would follow from its inclusion in equations 

(43,44). The Coriolis and curvature~ terms are averaged and 

differenced by the energy conserving scheme presented in Section 3, 

equations (51-53). The stability of the explic~it fractional step, 

equations (94,95), is governed by the stability of 1the discretization of 

the horizontal and vertical advective accelerations, which will be 

discussed in Section 5, and the discretization of the Coriolis and 

curvature terms. The results of the Fourier stability analysis of the 

external mode scheme, with respect to the Coriolis acceleration, can 

be shown to apply to the internal mode scheme as well. 

The computational equations for the second step of the three time 

level scheme are: 

(uk+1 -u,J&+
1 

= (uk+1 -uk)** +((<'t'xr>k+1-<'t'xr>k) (<'t'xr>k -crxz>k-1)]'1+
1 

29m;tt.k+1,k 29m;tt.k+1,k tt.k+1tt.k+1,k tt.ktt.k+t,k (99) 

(~+1- ~)"+ 1 
= (~+1- vkr +((<'t',,)k+1 -('t',.>k)- (<'t',,)k -('t',Jk-1))"+

1 

29m;tt.k+1,k 29m;tt.k+1,k tt.k+1tt.k+1,k tt.ktt.k+l.k 
(100) 

Using equations (20,21), the turbulent shear stressc:~s are related to 
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the horizontal transports by: 

(101) 

(102) 

Equations (101,102) could be used to eliminate the turbulent shear 

stresses from equations (99,100) to give a pair of K-1 systems of 

equations for the transport differences between 

resulting equations are poorly conditioned. 

(101,102) are used to eliminate the horizontal 

at time level n+ Jl from equations (99,100) to 

equations for the turbulent shear stresses 

layers, however, the 

Instead, equations 

transport differences 

give a. pair of K-1 

(103) 

(104) 

These equations are diagonally dominant and wdl conditioned, and 

can be solved independently at each of the horizontal velocity 

locations. Since equations ( 103,104) represent fully implicit, 

backward difference in time, schemes for one dimensional parabolic 

diffusion equations, the solutions are unconditionally stable (Fletcher, 

1988). Given the solutions of equations (103,104) the shear stresses, 

the K-1 transport differences, Uk+l-Uk and Vk+l-Vk, are determined 

from equations ( 101,1 02) and combined with the continuity 

constraints, equations (28,29), to form a pair of K equations for the 
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horizontal transports in each cell layer. To illustrate, the horizontal 

transports in the surface cell layer are determined analytically and 

given by: 

(105) 

and a similar expression for VK. Working down from the surface 

using the K-1 transport differences allows the remaining transports 

to be determined. It is noted for later use that the bottom cell layer 

transports can be expressed in terms of the depth integrated 

transports and the transport differences using: 

(106) 

and an identical equation for Vt. 

Solution of equations (103,104) requires specification of bottom 

and surface stresses at k=O and k=K, respectively. On the free 

surface, k=K, the surface wind stress components are specified. On 

the bottom fluid-solid boundary, k=O, the bottom stress must be 

specified. The simplest approach to specifying the bottom stress 

components utilizc~s the velocity component in the bottom cell layer 

and the quadratic friction relations: 

(107) 

(108) 
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Assuming a logarithmic velocity profile between the solid bottom 

and the middle of the bottom cell layer gives the bottom stress 

coefficient: 

(109) 

where zo• is the dimensional bottom roughness height. Inserting 

equation (106) and a corresponding equation for Vt into equations 

(107,108), respectively allows the bottom stres8es at time level n+1 

to be expresst~d in terms of the depth integrated transport 

components, known from the external mode solution, and the 

unknown transport differences at time level n+l. However, the 

transport differences at time level n+ 1 are related to the shear stress 

components by equations (101,102), allowing the bottom stresses to 

be expressed in terms of the depth integrated transports and the 

internal shear stresses by: 

('f ~)~+I = c,( ~lltU, + V;'v~ r ( mrH" r -~( 1-t Aj) '\+(!,~(' 
H t (110) 

and a similar expression for the y component. Inserting equation 

(110) and the corresponding y component equation for the bottom 

stress components into the k=1 pair of equations (103,104) results in 

a nearly tridiagonal system with a fully populated first row. The 

systems of equations are still efficiently solved using a tridiagonal 

equation solver and the Sherman-Morrison formula (Press et al, 

1986). 

The internal mode solution is completed by the determination of 

the vertical velocity using: 

' -1 ( '( -) '( -)) wt = wt_1 - (m ) .1t ~ oz Ut - U + o, 'Vt - V (111) 
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which follows from equation (33). The solution of equation (111), 

where all variables are at time level n+ 1, proceeds from k=1 since 

w o=O. A two time level correction step is also periodically inserted 

into the internal mode time integration on the same time step as the 

external mode correction. Since the computational equations follow 

directly from the three time level equations using the details of the 

external mode presentation in Section 4, they will not be presented 

here. 

6. Numerical Solution Techniques for the Transport 

Equations 

In this section, solutions techniques for the: transport equations 

for salinity, temperature, turbulence intensity and turbulence length 

scale are presentc~d. Stability and accuracy aspects of the advection 

schemes common to the transport equations and the external and 

internal horizontal momentum equations are also discussed. The 

salinity transport equation (8) is used as a gem~ric example and the 

location of variables is shown in Figure 8. 

The salinity transport equation (8) 1s integrated over a cell layer 

to give: 

a,(m.HS1)+ a"(U~cS 1 )+ a,(V~cS~c)+ l1~
1
((WS)~c + (WSh-1) 

-l1~ 1 m((H- 1 AbazS)~c -(H- 1 Aba,S)~c-1)-(Qs)~c =0 (112) 

where Uk, Vk, and W are defined by equations (39,40,96). The 

source, sink, advection, and vertical diffusion portions of equation 

(112) are treated in separate fractional steps, as was done for the 

internal mode momentum equations in Section 5. The three time 

level fractional step sequence is given by: 

(113) 
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(114) 

(115) 

The source, sinllc step, equation (113), is expllicit and involves no 

changes in cell volumes. When the source, sink term represents 

horizontal turbulent diffusion, it is evaluated at time level n-1, for 

stability (Fletcht~r, 1988). The advection step, equation (114), is 

explicit and involves changes in cell volumes. The vertical diffusion 

step, equation (115), which involves no changes in cell volumes, is 

fully implicit and unconditionally stable (Fletche:r, 1988). 

Rearranging equation (115), the vertical diffusion step, gives: 

(116) 

For salinity, temperature, and suspended sedimtmt concentration, the 

generic variable S is defined vertically at cell layer centers, and the 

diffusivity is defined at cell layer interfaces. Equation (116) then 

represents a system of K equations and the boundary conditions are 

generally of the specified flux type. Specified surface and bottom 

flux boundary conditions are most conveniently incorporated in the 

surface and bottom cell layer source and sink terms allowing Ab at 

the bottom boundary, k = 0, and the surface boundary, k = K + 1, to be 

set to zero making equation (116) tridiagonal. For turbulence 

intensity and turbulence length scale, equations (13,14), the generic 

variable S is defined vertically at cell layer interfaces and the 

diffusivity is defined at cell layer centers. Equation (116) then 

represents a system of K-1 equations for the variables at internal 
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interfaces with the variable values at the fre~e surface and bottom 

being provided as boundary conditions. For the turbulence intensity 

and length scale~, the boundary conditions are: 

q~ = .a:'3l't'ol 

q_!. = Bt2'3j't'.d 

10 =0 

lx =0 

where 'to and 'tK are the bottom and surface stress vectors 

respectively. Insertion of these boundary conditions results in 

equation (116) :representing tridiagonal systems of K-1 equations for 

the turbulence intensity and length scale. 

Without loss of generality, the notation used in analyzing the 

three time level advection step, equation (1 Jl4), is simplified by 

replacing the double and single asterisk intermediate time level 

indicators by n+1 and n-1, respectively to give: 

(mllS~;)"+ 1 = (mllS~;)"- 1
- 28(U~;(X + 0.5)S~;(X + 0.5)- U~;(X- 0.5)S~;(X- 0.5) 

+\'t(y +0.5)S~:(Y+ 0.5) -\'t(Y- 0.5)S~:(Y- 0.5) + d~ 1 ((WS)~:- (WS)~:_ 1 )) (117) 

where the horizontal central difference operators have been 

expanded about the cell volume centroid (x,y), according to equations 

(46,47). The cell face fluxes can be represt!nted consistent with 

centered in time and space differencing as was illustrated by 

equations ( 48,49,97) or forward in time and backward or upwind in 

space as was illustrated by equations (50,98) for the x momentum 

fluxes. For the centered in time and space form, equation (117) 

becomes: 

(mllS~:)"+ 1 = (mHS~:)"-- 1 - e(0~:(x+0.5)(S~:(x+ 1) + S~:(x)) -U~:(x- 0.5)(S~:(x)+ S~:(x-1)) 

+V~;(y+ 0.5)(S~:(Y + 1) + S~;(Y))- V~:(Y- 0.5)(S~:(Y) + S~:(y-1)) 

+d~
1
~(S~:+ 1 +S~:)-d~

1
~-1(S~: +S~:-1)) (118) 
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The transports in equation (118) are evaluated at the centered time 

level when used in the external and internal momentum equations, 

and are averaged to the centered time level using 

0" = o.5(U;+1 + u;-1
) (119) 

when used in the transport equations for scalar variables. 

To investigate 1the stability and accuracy of the centered in time 

and space scheme, the Fourier representation: 

(120) 

is introduced into equation ( 118) giving the characteristic polynomial 

for a steady and spatially uniform velocity field. 

equation (121) are:: 

The roots of 

(121) 

(122) 

(123) 

and the scheme is neutrally stable if the absolute value of 'II is less 

than or equal to one. The most restrictive stability condition is then 

~+lviO +lwiO ~l 
mx mx Hll (124) 

which requires the sum of the directional Courant Numbers to be 

less than or equal to unity. Since the centered in time and space 

scheme is neutrally stable when equation (124} is satisfied, the 

numerical scheme, like the continuous equations, has no dissipation. 
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Since the scheme involves three time levels, a spurious solution 

mode corresponding the second eigenvalue in equation (123) is 

introduced. Using equations (69,122,123), the dispersion relation for 

the physical mode -Of the numerical scheme is: 

(125) 

The dispersion relation for the equivalent continuous equation is: 

u8 v8, w8 
m8=--(k m )--~k m )--(k HL\) 

x x ' 1 1 HA a mx mx u (126) 

Comparison of the dispersion relations shows that errors in the phase 

and propagation speed of the centered in time and space numerical 

scheme are smalle.st for directional Courant numbers near unity in 

magnitude and for small values of the wave number component, grid 

spacing products (Fletcher, 1988). Figure 9 shows equations 

(125,126) for a two-dimensional flow with directional Courant 

Numbers of 0.5. Although the centered in time and space scheme is 

desirable because it has no dissipation, its phase errors at high wave 

numbers are undesirable. For the transport of the horizontal 

momentum components in regions having large velocity gradients 

due to topographic variations, the centered in time and space scheme 

generates high wave number spatial oscillations which can corrupt 

the solution for the velocity field, (Smith and Cheng, 1987). The 

addition of horizontal diffusion to smooth the local oscillations can 

result in unrealistic damping of the surface wave propagation in 

other regions of the solution domain. When used for the transport of 

positive scalar fields, particularly in regions having high gradients or 

frontal discontinuities, the dispersive character of the centered in 

time and space scheme at high wave numbers is undesirable since it 

can lead to high wave number oscillations and unrealistic negative 

values of strictly positive scalar field variables. 
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Forward in time and backward or upwind in space representation 

of advective transport provides an alternative to the centered in 

time and space representation. The forward in time and backward 

or upwind in spac:e form of equation (117) is: 

(mHS~:)"+1 = (mHS~:)"-1 

-o((ii1 (x + 0.5)+jU1 (x+ 0.5)1)s:-1(x) +(U1 (x + 0.5)-j01 (x+ 0.5)1)s:-1
(x + 1) 

-(01(x- 0.5) + jii1 (x ·-0.5)1)s;-
1 
(x -1)- (ii1(x- 0.5) -jii1(x -· 0.5)j)s;-1(x) 

+(V1 (y + o.5) + jV1 (y + o.5)1)s;-
1
(y) + (v1(y + o.5) -IV~:<Y + o.5>j)s:-

1
<Y + 1) 

-(v~:<Y- o.5) + I'Vt<Y- o.5)1)s:-1<Y -1) + (Vt<Y- o.5) -I'Vt<Y- o .. 5)1)s;-
1
(y) 

+L\~ 1 ((wl; + jwl:l)s;-1 
+ (~ -l~l)s::-:- (~-1 + jw1:-11)s::11- (~-l -1~-11)s;- 1 

)) . 
(127) 

The transports in equation (127) are evaluated :at the centered time 

level when used in the external and internal momentum equations, 

and are averaged to the centered time level as illustrated by 

equation (119), when used in the transport f~quations for scalar 

variables. A Fourier analysis of equation (127) for a steady and 

spatially uniform velocity field gives the amplification factors or 

eigenvalues: 

A.= ±...jl- a- i/3 (128) 

The stability of the scheme is determined by noting that the absolute 
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value of A, 

(131) 

is maximum with respect to the three wave numbers when, 

1- a= lui(ZB) cos(k m ) + lvi(ZB) cos(k m ) + lwi(ZB) cos(k H~) 
.z lt y y HA z 

m.z m, u 

Requiring consistency with the one-dimensional results allows it to 

be shown that the maximum absolute value of A is equal to the 

fourth root of the maximum value with respect to the wave numbers 

of 1-a . Thus the most restrictive stability requirement for the 

absolute value of ~~ being less than or equal to one is: 

lul(28) + lvl<28) + lwl(2,(1) ~ 
1 

m.z m, HI!.. (132) 

which was previously given by Smolarkiewicz (1984). Smolarkiewicz 

also showed that when the stability condition is satisfied, the upwind 

scheme is positiv1e definite and the sign of strictly positive scalar 

variables is preserved. 

It is noted that when the stability condition, equation (132), is 

satisfied, the amplification factor or absolute value of A will in general 

be less than one and the scheme is dissipative. Figure 10 shows the 

absolute value of the amplification factor, equation ( 131 ), for two two

dimensional flows with directional Courant Numbers of 0.5 and 0.25. 

For the case of the directional Courant Numbers equal to 0.5, there is 

no dissipation of disturbances propagating diagonal to the grid, while 

dissipation otherwise increases as either wave number increases or 

the direction of propagation changes from the diagonal. For the lower 

Courant Number case, dissipation increased with increasing wave 

number magnitude.. The dissipation of high wa.ve number or short 

wave length disturbances is desirable for controlling noise in the 
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solution, but is undesirable when high wave number features such as 

strong vertical stiatification or horizontal frontal discontinuities are 

important dynamical features sought in the solution. The dispersion 

relation for the forward in time and upwind in space scheme is: 

~(1- al + /32 sin(2ro8) =- u(
2

B) sin(kllmll)- v(
2

B) sin(k
1
m

1
)-- w(

2
B) sin(k.Ht:.) 

mll m, Ht:. (133) 

Figure 9 shows the dispersion relations for the continuous advection 

equation, equation (126), the centered in time and space scheme, 

equation (125) and the forward in time and upwind in space scheme, 

equation (133), for a two-dimensional flow with directional Courant 

Numbers of 0.5. For high wave number disturbances propagating 

along either grid direction the upwind scheme,. although inaccurate 

relative to the 1:::ontinuous equations, is more~ accurate than the 

centered in time and space scheme. 

The ideal advective transport scheme for scalar variables in 

environmental flows would retain the positive definite character of 

the forward in time and upwind in space sch·eme but control the 

dissipation of the scheme. The search for an ideal advective transport 

scheme has resulted in the development of numerous high order 

upwind schemes, modified centered in space schemes, and combined 

schemes as evidenced in the review by Rood (19'86). Many of these 

schemes, although successful, are difficult to apply near boundaries in 

multi-dimensional flow fields. A high order upwind scheme 

developed by Smolarkiewicz (Smolarkiewicz, 1984, Smolarkiewicz and 

Clark, 1986, and Smolarkiewicz and Grabowski, 1990) and referred to 

as the multi-dimensional positive definite advective transport 

algorithm is particularly attractive because it is simple to apply near 

boundaries and has a sound and transparent theoretical basis. Since 

this scheme is used for scalar advective transport in the 

environmental fluid dynamics computer code, an outline of the scheme 

is presented here for completeness. 
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The central c:oncept in the development of the Smolarkiewicz or 

MPDAT A scheme is the determination of the sources of dissipation or 

damping in the forward in time and upwind in space scheme and the 

modification of the scheme to compensate or eliminate a significant 

portion of the dissipation. The sources of dissipation are identified by 

a consistency analysis of equation (127) which involves the use of 

Taylor series to determine the actual continuous equation represented 

by the finite difference equation. The resulting continuous equation, 

to second order in time and space, is: 

a, (m"m1hS) + a" (m1HuS) +a, (m"HvS) + a"(m"m1 wS) 

= a"(m,H(m"lul(1_1u1(28))-1 a"S- u(28)v 1 a,s- u(28)w .!.a~s)) 
2 m" m" 2 m1 2 H 

+a,(m"H(- v(28)u _.!_a"s + m,lv1(1_1vl(28))-1 a,s _ v(28)w .!.a.s)J 
2 m" 2 m1 m1 2 H 

+a (m m (- w(28)u 1 a S _ w(28)v 1 a S + Hal~ ( 1 _1~(28)).!_ a s)) 
1 

" 
1 2 m" " 2 m

1 

1 2 H. .6. H 
1 

(134) 

The appearance of the second order diffusion terms in equation 

(134), which are the source of dissipation or damping, indicates that 

the scheme is only first order accurate in spac<~. The centering of 

the advective fie:ld at time level n or as an average between time 

levels n-1 and n+1 in equation (127) eliminate:s a second order in 

time truncation term that would otherwise appear in equation (134), 

(Smolarkiewicz and Clark, 1986). Thus the scheme is formally 

second order in time. The diffusion terms in equation (134) are 

generally referred to as numerical diffusion and are represented by 

44 



a symmetric diffusion coefficient tensor, 

~( 1-lui(28)) u(28)v u(28)w 

2 m" . 2 2 

D= 
v(28)u m,lvJ ( 1_ Jvl(28)) v(28)w 

2 2 m, 2 

w(28)u w(28)v H~lwl ( 1 _1wl(28)~) 
2 2 2 H~ 

(135) 

The magnitude of the diagonal components of the tensor increase as 

the directional Courant Numbers decrease, while off diagonal 

components or cross wind diffusivities tend to increase in magnitude 

as the velocity vector becomes diagonal to the gri[d. 

To compensate~ for the diffusion terms in equation ( 134 ), the 

velocity field is modified by the vector addition of an anti-diffusive 

velocity field, 

u = _!_(m"lul ( 1_juj(2B2J_1 a S _ u(28)v 1 a S _ u(28)w 1 a s) 
S 2 m" m" " 2 m, ' 2 H • 

v = .!.(- v(28)u 1 as+ m,lv1(1-lvl<28))_1 as- v(28)w l.a sJ 
S 2 m" " 2 m, m, ' 2 H • 

w = .!.( w(28)u 1 a S _ w(28)v 1 a S + H~lwl ( 1_1wl(28) }!_as) 
S 2 m" ·' 2 m, ' 2 H~ ~ H • 

(136) 

which in principle exactly cancels the diffusion terms in equation 

(134). As implemented in the MPDATA scheme, the anti-diffusive 

velocity field is introduced in a fractional step process. The first step 

involves calculating a low order solution for S at time level n+ 1 using 

equation (127) and the actual velocity field. Using the actual velocity 

field and the low order solution at time level n+l, the anti-diffusive 

velocity field is calculated using equation (136). A corrected or high 

order solution for S at time level n+ 1 is then calculated using 
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equation (127) i:n the form: 

(mHS
1
,)"+1

'
8 = (mHSj~)"+ 1 .L 

-e(( U"(x + 0.5) + IO~(x + 0.5~)s;+ 1 ,L(x) + ( U"(x + 0.5) -IU"<x + 0.5>1)s;+1·L(x + 1) 

-(u"(x- 0.5) + lff"<x- o.5>1)s;+1.L(x -1)- (u"(x- 0.5) -IU1(x- 0.5>1)s;+1.L(x) 

+( vk (y + 0.5) + ~k(y + 0.5>1)s;+l,L (y) + ( ~(y + 0.5) -I~<Y + 0.5>1)s:+l,L (y + 1) 

-( ~ (y- 0.5) + I~<Y- o.5>l)s;+l·L(y -1) + ( vk(Y- o.5) -I~ (y- o.5>1)s;+1.L(y) 

+~~~((w" +l~l)s;+l,J~ +(~ -lw"l)s:::,L- (wk-1 +1~-~l)s:~~~,L ·- (wk-1 -lw"-~l)s:+l,L)) 
037

> 

Since the anti--diffusive velocity field, equation (136), does not 

satisfy the continuity equations (45,111), the anti-diffusive velocity 

should be set to zero on all open boundaries such that global 

continuity of tbe transported variable is maintained. The application 

of equation (137) will also introduce numerical diffusion, and 

another anti-diffusive velocity field can be~ calculated and an 

additional application of equation (137) can b~~ made. In principle 

this can continue until the numerical diffusion is insignificantly 

small, however computationally more than two anti-diffusive steps 

tends to be inefficient. 

The MPDA TA scheme, althought strictly sign preserving, can 

suffer from dispersive ripples similar to other higher order advection 

schemes, (Smolarkiewicz and Grabowski, 1990). The dispersive 

ripples can be controlled by applying the scheme in conjunction with 

flux corrected transport methodology (Zalesak, 1979) as described by 

Smolarkiewicz and Grabowski. When applied in the flux corrected 

transport form, the solution of equation (127) is the low order 

positive definite solution, while the solution of equation (137) is the 

high order solution. The advective fluxes in the high order solution 

are however multiplied by a flux limiter, which is less than unity, 

such that the high order solution is free of dispersive ripples. The 
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calculation of the flux limiter is described by Smolarkiewicz and 

Grabowski (1990) and Zalesak (1979). 

Since the three time level fractional step scheme, equations (113-

115), for the transport equations introduces a spurious 

computational solution mode, periodic insertion of a two time level 

correction step as discussed in Section 4 is necessa~y. The two time 

level fractional step scheme is given by: 

(138) 

(139) 

(140) 

The vertical diffusion fractional step, equation (140) is rearranged to 

give a tridiagonal system similar to equation (lll6). The vertical 

diffusivity divided by depth in equation (140) can be an arithmetic 

or geometric average between the value at time level n and the 

value at time level n+ 1 from the three time level step. 
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The advective fractional step, equation (139), ts forward in time 

and upwind in space and is given by: 

(mHS,J"+1 = (mHS1)" 

- ~ (cit(x+0.5)+1cit(x+ 0.5~)"+zs;(x) +(cit(x +0.5)-l0t(x+0.5)1)"+2s;(x+ 1) 
( 

1 1 

1 1 

-(cit(x- 0.5) + lcit(x- 0.5>1)"~ s:<x -1)- ( Ot<x- 0.5) -lcik(x- 0.5>1)"~ s;(x) 
1 1 

+(Vt<Y + 0.5) + lvt<Y + o.5>1)"+z s;(y) + (~<Y + 0.5) -jVt<Y + o.5>1r·2 s;<y + 1) 

1 1 

-(~ <Y- o.5) + I"Vt<Y- o.5>1)"+2 s:<Y -1> + (vt<Y- o.5) -lvl <Y- o.5)1)"+2 s:<Y> 

+A~ 1 (~ + 1~1)"+ 2 s; + (~ -1~1)"+ 2 s;+1- (~-1 + lwl-11)"+2 s;_1 - (~-1 -1~-11)"+ 2 s; 
( 

1 1 1 1 )J 
(141) 

where the single and double asterisks have been r~eplaced by n and 

n+ 1. The flows in ~~quation (141) are averages of the values at n and 

the values at n+ 1 computed from the three time level scheme. The 

stability condition and dispersion relation for tht~ two time level 

advection scheme are given by replacing 26 in equations (132,133) 

with e. The anti--diffusive correction to equation (141) follows 

directly from equations (136,137) with 26 being replaced by e. 

7. THE ENVIRONMENTAL FLUID DYNAMICS COMPUTER CODE 

The computational algorithms or schemes described in Sections 3-

6 for the solution of the momentum, continuity and transport 

equations (2-9) have been implemented in the Environmental Fluid 

Dynamics Computer Code using the Fortran 77 language. The code is 

organized into preliminary processing, 

processing and post processing sections. 

computational, continuous 

The preliminary processing 

section includes subroutines for data input, initialization, and 

restarting. A separate Fortran program is used for curvilinear 

orthogonal horizontal grid generation using the weak constraint 
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method of Ryskin and Leal (1983) with modifications proposed by 

Chikhliwala and Yortsos (1985). 

The computational sections of the code sequentially solve the 

external mode equations, the internal mode e:quations, and the 

transport equations for salinity, temperature, turbulence intensity, 

and turbulence length scale. Two time level correction steps are 

periodically inserted at user specified intervals, usually every four to 

eight three time le:vel steps. To reduce memory requirements, three 

dimensional variables are stored in two-dimensional arrays with the 

inner array index used for active water cells in the horizontal and 

the outer index us<~d for the vertical cell layer. Since the number of 

horizontal cells will greatly exceed the number of vertical cell layers, 

the inner do loops: over the horizontal are very long relative to the 

outer do loops over the vertical allowing efficient vectorization of the 

code. 

The continuous processing section of the code includes subroutines 

for writing files for graphics and visualization of the transient 

behavior of vector and scalar variables and subroutines for inplace 

least squares harmonic analysis and filtering of variables at user 

specified locations. Two specialized subroutines 1::an be activated to 

write filtered or time averaged transport files to drive long term 

contaminant transport and water quality simulation models. A 

Lagrangian trajectory subroutine allows simulation of floating and 

neutrally buoyant drifter and particle trajectories from specified 

time and space release points. Files for restarting the simulation in 

progress can also be written at specified intt~rvals. The post 

processing section of the code produces a final restart file and 

various graphics and visualization files for mean or averaged 

variables. 

The code is designed to be an engineering tool for environmental 

impact assessment and management and a scientific tool to 

investigate environmental flow dynamics in real and hypothetical 

situations. When the code is used as an engineering or scientific tool 
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applied to model a prototype flow, a calibration and verification 

process is essential. The calibration of the •::ode to a prototype 

situation involves adjustment of boundary conditions and forcing 

functions and boundary roughness, equation ( 1 09), such that the 

model reasonably reproduces a known response. For estuarine and 

coastal ocean flows, the known response would include time series of 

field measurements of free surface displacement, horizontal velocity 

magnitude and direction, salinity and temperature. The calibrated 

model is then verified by simulating or prc~dicting an entirely 

different response. The inplace filtering and least squares harmonic 

analysis features of the code are particularly useful in extracting 

information for comparsion with field measurements in the 

calibration and verification processes. After calibration and 

verification, the code or model can be used to simulate the impacts of 

engineering projects or extreme hydrologic conditions for example, or 

to investigate basic flow processes. 

8. SUMMARY 

The theoretical[ and computational aspects of a three-dimensional 

computer code for environmental fluid flow simulation have been 

presented. The code is applicable to a wide range of environmenatal 

flows which are vertically hydrostatic and of the boundary layer 

type. The computer code solves the vertica1ly hydrostatic, free 

surface, variable density, turbulent-averaged equations of motion 

and transport equations for turbulence intensity and length scale, 

salinity and temperature in a stretched, vertical coordinate system, 

and horizontal coordinate systems which may be Cartesian or 

curvilinear-orthogonal.. Equations describing the transport of 

suspended sediment and dynamically neutra1 conservative and 

nonconservative tracers are also solved. The code uses a three time 

level, finite difference scheme with a inte:rnal-external mode 

splitting procedure to separate the internal shear or baroclinic mode 

from the external free surface gravity wave or barotropic mode. The 

external mode solution is implicit, and simultam~ously computes the 
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two-dimensional surface elevation field by a multicolor SOR 

procedure. The external solution is completed by the calculation of 

the depth integrated barotropic velocities using the new surface 

elevation field. The implicit external solution allows large time steps 

which are constrained only by the stability criteria of the explicit 

advection scheme used for the nonlinear accelerations. The internal 

solution, at the same time step as the external, is implicit with 

respect to vertical diffusion. The internal solution of the momentum 

equations is in terms of the velocity shear, which results in the 

simplest and most accurate form of the baroclinic pressure gradients 

and eliminates the over determined character of alternate internal 

mode formulations. The vertical diffusio)[l coefficients for 

momentum, mass and temperature are determined by the second 

moment closure s<;heme of Mellor and Yamada, (Mellor and Yamada, 

1982, Blumberg and Mellor, 1987, and Galperin et al, 1988) which 

involves the use of analytically determined stability functions and 

the solution of transport equations for the turbulence intensity and 

length scale. Time splitting inherent in the three time level scheme 

is controlled by periodic insertion of a two time level step. The code 

include various options for advective transport, including the 

centered in time and space scheme, the forward in time and upwind 

in space schem€~, and Smolarkiewicz's multidimensional positive 

definite advectiv~e transport algorithm, (Smolarkiewicz and Clark, 

1986, Smolarkiewicz and Grabowski, 1990), which is used in the 

scalar transport e:quations. The code is written in standard Fortran 

77, and is designed to economize mass storage by storing only active 

water cell variables in memory. Particular att€mtion has also been 

given to minimizing logical operations, and the code is highly 

vectorizable. The code was originally developed on a DEC VAX 

computer and has been ported to Sun worksta1tions, Macintosh and 

386 PC's, and Cray and Convex supercomputers. 
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Figure 2. Free surface displacement centered horizontal grid. 
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Figure 3. U centered grid in the horizontal (x,y) plane. 
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Figure 4. Dispersion relations: roe, vertical axis, versus kxm x and 
kym y, horizontal axes, for wave propagation schemes. 
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Figure 5. Magnitude of phase velocity, lcl/sqrt(gh), vertical axis, as a 
function of horizontal wave number, kxmx and kymy, horizontal axes. 
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Figure 6. Magnitude of group velocity, 101/sqrt(gh), vertical axis, as a 
function of horizontal wave number, kxmx and kymy, horizontal axes. 
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Figure 9. Dispersion relations: roe, vertical axis, versus kxm x and 

kymy, horizontal axes, for advection scheme. Courant Numbers = 0.5. 
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Figure 10. Magnitude of amplification factor, vertical axis, versus 

kxmx and kymy, horizontal axes, for upwind advection scheme 
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