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SUMMARY

This paper is concerned with the development of a numerical algorithm for the solution of the uncoupled,
quasistatic initial/boundary value problem involving orthotropic linear viscoelastic media undergoing thermal
and/or mechanical deformation. The constitutive equations, expressed in integral form involving the relaxation
moduli, are transformed into an incremental algebraic form prior to development of the �nite element formu-
lation. This incrementalization is accomplished in closed form and results in a recursive relationship which
leads to the need of solving a simple set of linear algebraic equations only for the extraction of the �nite
element solution. Use is made of a Dirichlet–Prony series representation of the relaxation moduli in order
to derive the recursive relationship and thereby eliminate the storage problem that arises when dealing with
materials possessing memory. Three illustrative example problems are included to demonstrate the method.
? 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Applications of the FEM to the solution of initial/boundary value problems involving materials
exhibiting viscoelastic behaviour have evolved over a period of time that now spans approximately
thirty years. Only a brief discussion of a small sampling of the literature from this period will
be provided here. This sampling will be taken from the open literature and will overlook possible
sources of information such as industry or government reports. Documentation regarding the large
commercial codes such as NASTRAN or ABAQUS will also be neglected in the following. For
a much more in-depth review, the reader is referred to Zocher.1

The criterion used in the selection of papers for discussion herein was that the focus be on �nite
element methods as opposed to �nite element analysis (i.e., code development as opposed to code
use). Before launching into this discussion, however, we would be remiss if we overlooked the
works of Lee and Rogers2 and of Hopkins and Hamming.3 It was here that the direct solution of
the Volterra type integrals that arise in viscoelastic stress analysis was �rst accomplished. This was
achieved through the application of a step-by-step �nite di�erence (FD) integration with respect to
time. Although the FEM was not used in either of these papers, they are important to the current
discussion because the FD approach that was employed in them was adopted by many of the early
FEM developers. It is noted that the methods of Lee and Rogers2 and of Hopkins and Hamming3

included no recursive relations. Consequently, the results from all previous time steps would have
to be kept in memory in order to �nd a solution at the current time step. This requirement obviously
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limited the method to the solution of relatively simple problems. Another non-FEM paper that is
important to the discussion is that of Zak.4 In this work, a thermoviscoelastic problem is solved
using the FD method only. The method involves a stepwise integration through time similar to that
of Lee and Rogers2 except for one important di�erence—elimination of the storage problem. The
key to accomplishing this was the use of a Dirichlet–Prony series (in this case a Kelvin model) to
represent the kernel of the Volterra integral equation. Zak’s method made the solution of ‘large’
problems possible.
King5 developed the �rst viscoelastic �nite element code that the authors are aware of. This

program was applicable to plane stress and plane strain problems. The theory was developed
using integral constitutive equations in terms of creep compliance. Central to the method was
the assumption that the creep compliance could be separated into an ‘elastic part’ and a ‘creep
part’ and that the strain could be considered to remain constant across a time step. Taylor and
Chang6 developed a FE procedure that was limited to axisymmetric problems involving isotropic
thermorheologically simple materials. The constitutive equations were expressed in integral form
in terms of reduced time. The kernels in these equations were relaxation moduli. Chang7 extended
this work to include the analysis of two-dimensional problems. More importantly, Chang7 discussed
two conditions under which the requirement of storing all previous solutions could be avoided.
Taylor et al.8 can be thought of as a completion of the work begun in the two previous references.
In this paper, the authors devise an e�cient recursive relation, thereby enabling the solution of
‘large’ problems (this method is distinct from Zak’s).
Zienkiewicz and Watson9 developed a two-dimensional linear isotropic �nite element code with

which the analyst could account for both thermal and ageing e�ects. This theory is developed in
terms of creep compliance. As King5 had done, the creep compliance is, at the outset, separated
into two parts: an ‘elastic part’ and a ‘creep part’. The creep part is eventually expressed in terms
of a Kelvin model. Problem solution is accomplished in a step-by-step manner using small time
intervals during which the stresses are taken to remain constant (King5 had taken the strains to
remain constant). Rashid and Rockenhauser10 developed a �nite element program for the analysis of
prestressed concrete pressure vessels. The method is developed using a single integral constitutive
formula involving the relaxation modulus. In this method, the Volterra integral equations that arise
in the formulation are solved using the FD procedure of Lee and Rogers.2 White11 included Zak’s
recursive relations as an option in the �nite element program that he developed. If this option is
not selected, however, the time integration scheme employed by White proceeds in the manner of
Lee and Rogers.2

All of the FE papers discussed to this point have been based upon constitutive relationships
of the single integral form (hereditary integrals). Zienkiewicz et al.12 developed a general two-
dimensional FE code in which the constitutive equations are expressed in di�erential form and are
assumed to be modelled by Kelvin analogues. The use of Kelvin models enabled the authors to
overcome the storage problem. This work employs an initial strain approach to the FD approxi-
mations. Greenbaum and Rubinstein13 also developed a �nite element program based on the use
of di�erential constitutive equations and the initial strain method.
The paper presented by Webber14 is somewhat unique among the early FE developments. In

this work, he does not use a direct step-by-step integration in time. Instead, he combines a �nite
element formulation with the standard viscoelastic correspondence principle to bypass the solution
of a Volterra integral in time. The key to the method is the use of simplex elements (e.g. the CST
is one such element).
Lynch15 developed a �nite element procedure for the analysis of viscoelastic forming processes.

In this work, an example problem involving viscoelastic sheet rolling is presented. The �rst step in
the development of the method is to cast the constitutive equations (given in single integral form
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involving relaxation moduli) into a numerical form. This is accomplished using a FD method.
Then a �nite element procedure is pursued resulting in a global set of algebraic equations which
are solved using Gauss–Seidel iteration. The methods used by Lynch15 have been extended by
Batra et al.16 Batra,17 and Purushothaman et al.18

As discussed above, Zienkiewicz et al.12 and Greenbaum and Rubinstein13 have used an initial
strain method to adapt the �nite element method to problems of viscoelasticity. While this method
possesses the very attractive feature that the sti�ness matrix is time independent and therefore need
not be regenerated on each time step, it must be recognized that the method is very sensitive to
time-step size. This is a direct result of the assumption, inherent in the method, that the stress is
constant during a time step. To be consistent with this assumption, very small time steps may be
required. Cyr and Teter,19 Kim and Kuhlemeyer,20 and Krishnaswamy et al.21; 22 represent modi�-
cations of the basic initial strain method which employ variable sti�ness. These methods are much
more stable but the sti�ness matrix changes with time. It is also worth noting that methods such as
those employed by Zienkiewicz et al.12 and Greenbaum and Rubinstein13 which are based on a dif-
ferential form of constitutive relationship result in the requirement of solving a set of ordinary dif-
ferential equations simultaneously. In each of these papers, as in others, a �rst-order numerical pro-
cedure (the Euler method) is employed to accomplish this task. Ba�zant23 and Carpenter24 have de-
veloped methods employing higher-order numerical procedures, namely the Runge–Kutta methods.
Viscoelastic �nite element analysis of bonded joints has been conducted by Nagaraja and

Alwar,25 Yadagiri et al.26 and Roy and Reddy.27; 28 Applications of the �nite element method in
the �eld of viscoelastic fracture mechanics have been presented by Krishnaswamy et al.,21 Moran
and Knauss,29 and Warby et al.30 Brinson and Knauss31 have used the �nite element method to
conduct an investigation of viscoelastic micromechanics. The problem of coupled thermoviscoelas-
ticity has been addressed in the work of Oden,32 Oden and Armstrong,33 Batra et al.16 and Batra.17

Non-linear thermoviscoelastic analyses were presented by Ba�zant,23 Henriksen,34 Krishnaswamy
et al.,22 Moran and Knauss,29 Oden,32 Oden and Armstrong,33 and Roy and Reddy.27; 28 Srinatha
and Lewis35; 36 have addressed the problem of material incompressibility.
The references cited to this point have dealt primarily with isotropic viscoelasticity. We turn

our attention now to a discussion of codes that have been developed for orthotropic viscoelasticity.
Lin and Hwang37; 38 were perhaps the �rst to produce a FE code with the capability of predicting
the time-dependent response of orthotropic viscoelastic materials. The method of Lin and Hwang
assumes a plane stress constitutive relationship expressed in terms of relaxation moduli that corre-
spond to the transformed reduced sti�ness matrix of classical lamination theory.39. It is assumed in
this formulation that Q11 is time independent. Time-dependent expressions of Q12(t), Q22(t) and
Q66(t) are obtained by multiplying the elastic Qij by a given function of time (this function being
in the form of a Wiechert model). The same time-dependent function is used for each of these
relaxation moduli. Lin and Hwang37; 38 employed a numerical scheme similar to Taylor et al.8 to
solve the resultant set of integral equations. The method is extended in Lin and Yi40 to account
for free edge e�ects.
Hilton and Yi41 have also developed a two-dimensional FE code for the plane stress analysis

of laminated viscoelastic composites. In this work, the form of the constitutive equations and the
kernels therein are precisely the same as in Lin and Hwang.37; 38 Also as in Lin and Hwang,
the minimization of a variational statement produces a set of integral equations which must be
solved for the unknown displacements. The approach taken by Hilton and Yi in solving this set of
equations is very di�erent, however, from that used by Lin and Hwang.37; 38 Instead of solving by
direct integration, Hilton and Yi chose to use the Laplace transform and solve this set of equations
in Laplace space as opposed to the space of reduced time. This work has been extended in Yi,42

wherein an ability to predict delamination onset has been added.
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Kennedy and Wang43 have developed a fully three-dimensional orthotropic viscoelastic FE code.
This code uses a 20-node isoparametric solid element. The constitutive equations upon which this
code is based are expressed in integral form in terms of creep compliances using a non-linear
viscoelastic model proposed by Lou and Schapery.44 The kernels are expressed in terms of Kelvin
analogs.
The objective of the current work is to present a new three-dimensional �nite element formu-

lation that is suitable for the analysis of orthotropic linear viscoelastic media. This formulation
has been incorporated into the three-dimensional FE program ORTHO3D. This code is a general
purpose tool capable of predicting the response of a structure to complex loading/thermal histories.
Phenomena such as creep, relaxation, and creep-and-recovery can all be predicted using this pro-
gram. The code also includes automated mesh generators which enable convenient grid generation
for problems involving internal boundaries such as matrix cracks or delaminations (see Zocher
et al.45 for a demonstration of this capability).
The authors bene�ted greatly in the development of this new formulation from the work that

has preceded it. Some of the similarities to and distinctions from the papers discussed above will
be mentioned here. Since this formulation is based on constitutive equations of the single inte-
gral form, it is more closely related to those papers which also assume an integral form of the
stress–strain relationship. All of the papers discussed above, with the exception of References 12
and 19–24, assume such a relationship. As Lynch15 has done, the constitutive equations in the
current work are converted from integral to numerical form prior to the development of a �nite
element formulation. This approach has been taken by few others. As was done in many of the
cited references, use is made here of a Dirichlet–Prony series in order to derive a recursive re-
lationship, thereby obviating the need to store the results from all previous time steps. Many of
the papers discussed above assume either constant stress or constant strain across a time step.
Those which assume constant stress predict creep-like behaviour adequately but are ill-suited for
the prediction of relaxation. Those which assume constant strain do a �ne job with relaxation but
are not well suited for creep. The current work assumes constant strain rate across a time step
and as such is equally well suited for the prediction of creep or relaxation phenomena. Since the
current work has been developed with the analysis of orthotropic media in mind, it is most closely
aligned with the work presented in References 37, 38 and 40–43. Of these, only Kennedy and
Wang43 is three-dimensional. The current work then compliments the work of Kennedy and Wang
for three-dimensional thermoviscoelastic analysis of laminated composites. A major di�erence be-
tween the present work and that of Kennedy and Wang is that they developed their method upon
constitutive equations expressed in terms of creep compliances, whereas relaxation moduli are
used here.
In the following, a formal statement of the uncoupled thermoviscoelastic initial/boundary value

problem is provided. This is followed by a discussion of the conversion through incrementalization
(essentially a FD procedure) of the thermoviscoelastic constitutive equations into a form suitable
for implementation in a �nite element formulation. Next the �nite element formulation which
is based on these incrementalized constitutive equations is presented. Solutions to three example
problems for which accepted analytical solutions are available are presented for the purpose of
code veri�cation.

2. PROBLEM STATEMENT

The problem to be solved in this research, or more precisely, the class of problems for which
a method of solution is presented, may be referred to as the linear three-dimensional quasistatic
orthotropic uncoupled thermoviscoelastic initial/boundary value problem, hereafter referred to as
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Figure 1. General three-dimensional IBVP

the IBVP. A concise statement of this problem, formulated in the context of continuum mechanics
is provided below.
Consider a general three-dimensional domain 
, bounded by surface @
, and subjected to ther-

mal and/or mechanical loading, as depicted in Figure 1. Essential boundary conditions are imposed
over @
1; natural boundary conditions over @
2. Any division of @
 into essential and natural
parts is permissible provided the following relationship is not violated:

@
1 ∪ @
2 = @
 and @
1 ∩ @
2 = ∅ (1)

The domain may be simply or multiply connected. In addition to spatial variation, material prop-
erties may be dependent upon time and temperature. Material properties may be isotropic, trans-
versely isotropic, or orthotropic. Our goal, to be accomplished through the solution of the IBVP, is
to accurately predict the response of the body to the applied loading. The variables of state which
are used to assess this response are the displacement vector ui(xk ; t), the stress tensor �ij (xk ; t),
and the strain tensor �ij (xk ; t).
The governing equations which enable us to solve the IBVP are equilibrium,

�ji;j + �fi = 0 (2)

strain displacement,

�ij = 1
2

(
ui;j + uj;i

)
(3)

and constitution,

�ij(xk ; �) =
∫ �

0
Cijkl

(
xk ; �− �′

) @�kl(xk ; �′)
@�′

d�′ −
∫ �

0
�ij
(
xk ; �− �′

) @�(xk ; �′)
@�′

d�′ (4)
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with constraints imposed on the solution by the following boundary and initial conditions:

ui = ûi on @
1
Ti = �jinj = T̂ i on @
2

(5)

�(xk ; t) = 0

ui(xk ; t) = 0 for t ¡ 0 (6)

�ij(xk ; t) = 0

In the above, fi is the body force, Ti is the surface traction, nj is the unit outer normal on @
,
and � is the mass density. The terms Cijkl and �ij represent the fourth-order tensor of orthotropic
relaxation moduli relating stress to mechanical strain, and the second-order tensor of relaxation
moduli relating stress to thermal strain, respectively. The symbol � is used to represent the dif-
ference between the current temperature and a stress-free reference temperature. The reader will
recognize from the form of the constitutive relationship that we have assumed the material to be
possibly non-homogeneous, non-ageing, orthotropic, and thermorheologically simple. The symbol
� in (4) is referred to as the reduced time and is de�ned as:

� = �(t) ≡
∫ t

0

1
aT

d�; �′ = �(t′) ≡
∫ t′

0

1
aT

d� (7)

where

aT = aT (T (�)) or equivalently aT = aT (�(�)) (8)

The term aT is the shift factor of the time-temperature superposition principle. The shift factor is
essentially a material property; it will often be expressed in terms of an Arrhenius relation or the
familiar WLF formula. The symbol ≡ is used herein to mean ‘is de�ned as’.

3. INCREMENTALIZATION OF THE CONSTITUTIVE EQUATIONS

We have stated that the constitutive relationship for the class of materials considered in this work
is given by (4). While it is possible to work with such a relationship in the development of a
�nite element method (doing so leads to the requirement of solving a set of Volterra integrals in
order to extract the FE solution), a di�erent approach is taken here. Rather than incorporating (4)
directly into a �nite element formulation, we shall develop a numerical incrementalization of the
constitutive equations which will prove to be quite amenable to implementation in a �nite element
program. Use of this numerical approximation will lead to the requirement of solving a simple set
of algebraic equations in order to extract the FE solution. A similar approach has been taken by
Ghazlan et al.46

Let the time line (reduced time) be subdivided into discrete intervals such that �n+1 = �n +��
and let us assume that the state of stress is known at reduced time �n. We seek a means of
expressing the state of stress at reduced time �n+1 that will be amenable to implementation in a
�nite element program. The state of stress at reduced time �n+1, according to (4), is given by

�ij (xk ; �n+1)

=
∫ �n+1

0
Cijkl

(
xk ; �n+1 − �′

) @�kl (xk ; �′)
@�′

d�′ −
∫ �n+1

0
�ij
(
xk ; �n+1 − �′

) @�(xk ; �′)
@�′

d�′ (9)
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This may also be written as:

�ij (xk ; �n+1)

=
∫ �n

0
Cijkl

(
xk ; �n+1 − �′

) @�kl (xk ; �′)
@�′

d�′ +
∫ �n+1

�n
Cijkl

(
xk ; �n+1 − �′

) @�kl (xk ; �′)
@�′

d�′

−
∫ �n

0
�ij
(
xk ; �n+1 − �′

) @�(xk ; �′)
@�′

d�′ −
∫ �n+1

�n
�ij
(
xk ; �n+1 − �′

) @�(xk ; �′)
@�′

d�′ (10)

Let us de�ne �Cijkl and ��ij as follows:

�Cijkl ≡ Cijkl
(
xk ; �n+1 − �′

)− Cijkl
(
xk ; �n − �′

)
(11)

��ij ≡ �ij
(
xk ; �n+1 − �′

)− �ij
(
xk ; �n − �′

)
(12)

Substituting (11) and (12) into (10) yields

��ij =
∫ �n+1

�n
Cijkl

(
xk ; �n+1 − �′

) @�kl (xk ; �′)
@�′

d�′

−
∫ �n+1

�n
�ij
(
xk ; �n+1 − �′

) @�(xk ; �′)
@�′

d�′ +��ij
R (13)

where

��ij
R =

∫ �n

0
�Cijkl

@�kl (xk ; �′)
@�′

d�′ −
∫ �n

0
��ij

@�(xk ; �′)
@�′

d�′ (14)

and ��ij is de�ned as

��ij ≡ �ij (xk ; �n+1)− �ij (xk ; �n) (15)

Let us now suppose that each member of Cijkl (xk ; �n+1 − �′) and �ij (xk ; �n+1 − �′) can be �t with
a Wiechert model, i.e.

Cijkl
(
xk ; �n+1 − �′

)
= Cijkl∞ +

Mijkl∑
m=1

Cijklme
−(�n+1−�′)=�ijklm (no sum on i; j; k; l) (16)

�ij
(
xk ; �n+1 − �′

)
= �ij∞ +

Pij∑
p=1

�ijpe
−(�n+1−�′)=�ijp (no sum on i; j) (17)

where

�ijklm = �ijklm =Cijklm �ijp = �ijp =�ijp (no sum on i; j; k; l) (18)

In the above, the �ijklm and �ijp are dashpot coe�cients and the Cijklm and �ijp are spring constants.
The �’s are generally referred to as relaxation times. The reader is urged to note that the whenever
a � or � possesses four subscripts, it is associated with the Wiechert model of a particular member
of Cijkl whereas those with two subscripts are associated with the Wiechert model of a particular
member of �ij. Hence the four-subscripted �’s and �’s are distinct from the two-subscripted variety.
The use of � and � to represent relaxation times and dashpot coe�cients for the Wiechert models
of both Cijkl and �ij is admittedly potentially confusing, but should cause the reader no undue
burdon with the foregoing note of caution.
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Figure 2. Approximations of �kl (x̂k ; �) and �(x̂k ; �) over �n → �n+1

In addition, let us suppose that �kl(xk ; �) and �(xk ; �) can be approximated over the interval
�n6�6�n+1 by the following:

�kl (xk ; �) = �kln + R� (�− �n)H (�− �n) (19)

� (xk ; �) = �n + R� (�− �n)H (�− �n) (20)

where �kln and �n represent the values at the beginning of the time interval, R� and R� are
constants representing the time rate of change over the interval, and H (� − �n) is the Heaviside
step function. These approximations are depicted graphically in Figure 2.
With these two approximations, (13) may be integrated in closed form to produce:

��ij = C′
ijkl��kl − �′ij��+��ij

R (21)

where

C′
ijkl ≡ Cijkl∞ +

1
��

Mijkl∑
m=1

�ijklm

(
1− e−��=�ijklm

)
(no sum on i; j; k; l) (22)

�′ij ≡ �ij∞ +
1
��

Pij∑
p=1

�ijp

(
1− e−��=�ijp

)
(no sum on i; j) (23)

��kl ≡ R���; �� ≡ R��� (24)

Note that C′
ijkl and �′ij are independent of time if �� remains constant. In that case, all time

dependence in the material behaviour resides in ��ij
R. A fortuitous consequence of this is that
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in those analyses for which it is reasonable to use a constant time step, the sti�ness matrix will
remain constant and will not have to be regenerated on each time step (this will become apparent
in the following section). There will of course be analyses (such as in example three presented
later) for which the costs involved in using a variable time step are justi�ed.
Let us now redirect our attention to ��ij

R for the purpose of converting (14) into a more
convenient form. The steps involved in a�ecting this conversion are set forth as follows. First,
the Wiechert models of (16) and (17), along with analogous expressions for Cijkl (xk ; �n − �′) and
�ij (xk ; �n − �′), are used in equations (11) and (12) so that �Cijkl and ��ij can be rewritten as:

�Cijkl = −
Mijkl∑
m=1

Cijklme
−(�n−�′)=�ijklm

(
1− e−��=�ijklm

)
(no sum on i; j; k; l) (25)

��ij = −
Pij∑
p=1

�ijpe
−(�n−�′)=�ijp

(
1− e−��=�ijp

)
(no sum on i; j) (26)

Equations (25) and (26) are then substituted into (14) so that ��ij
R may be expressed as:

��ij
R = −

3∑
k=1

3∑
l=1

Aijkl +
Pij∑
p=1

(
1− e−��=�ijp

)
Bijp (�n) (no sum on i; j) (27)

where

Aijkl =
Mijkl∑
m=1

(
1− e−��=�ijklm

)
Sijklm (�n) (no sum on i; j; k; l) (28)

Sijklm(xk ; �n) ≡
∫ �n

0
Cijklm

(
e−(�n−�′)=�ijklm

) @�kl (xk ; �′)
@�′

d�′ (29)

Bijp(xk ; �n) ≡
∫ �n

0
�ijp

(
e−(�n−�′)=�ijp

) @�(xk ; �′)
@�′

d�′ (30)

The �nal step in the conversion of (14) is to develop reasonable approximations to (29) and (30).
If we assume that the partial derivatives appearing in (29) and (30) can be approximated as

@�kl (xk ; �′)
@�′

≈ R� ≡ ��kl
��

(
�n −��6�′6�n

)
(31)

@�(xk ; �′)
@�′

≈ R� ≡ ��
��

(
�n −��6�′6�n

)
(32)

where ��kl=�� and ��=�� are determined from the previous time step, Sijklm and Bijp may then
be determined recursively as follows:

Sijklm (xk ; �n) = e−��=�ijklm Sijklm (xk ; �n −��) + �ijklmR�
(
1− e−��=�ijklm

)
(no sum on i; j; k; l)

(33)

Bijp (xk ; �n) = e
−��=�ijp Bijp (xk ; �n −��) + �ijpR�

(
1− e−��=�ijp

)
(no sum on i; j) (34)

The fundamental step in deriving this recursive relationship was to divide the domain of integration
(06�′6�n) in (29) and (30) into two parts: (06�′6�n−1) and (�n−16�′6�n), similar to the
step taken on going from (9) to (10). We have now completed the conversion of (14) into the
form we desire. It is noted that the values of S and B from the previous time step must be kept
in storage much as if they were internal variables.
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3.1. Summary of incrementalization

In summary, we have now succeeded in converting the constitutive equations:

�ij (xk ; �) =
∫ �

0
Cijkl

(
xk ; �− �′

) @�kl (xk ; �′)
@�′

d�′ −
∫ �

0
�ij
(
xk ; �− �′

) @�(xk ; �′)
@�′

d�′

into an incremental form given by

��ij = C′
ijkl��kl − �′ij��+��ij

R

where C′
ijkl, �

′
ij, ��kl and �� are given by

C′
ijkl ≡ Cijkl∞ +

1
��

Mijkl∑
m=1

�ijklm

(
1− e−��=�ijklm

)
(no sum on i; j; k; l)

�ij
′ ≡ �ij∞ +

1
��

Pij∑
p=1

�ijp

(
1− e−��=�ijp

)
(no sum on i; j)

��kl ≡ R���; �� ≡ R���

and ��ij
R is given by:

��ij
R = −

3∑
k=1

3∑
l=1

Aijkl +
Pij∑
p=1

(
1− e−��=�ijp

)
Bijp (�n) (no sum on i; j)

where

Aijkl =
Mijkl∑
m=1

(
1− e−��=�ijklm

)
Sijklm (�n) (no sum on i; j; k; l)

Sijklm (xk ; �n) = e−��=�ijklm Sijklm (xk ; �n −��) + �ijklmR�
(
1− e−��=�ijklm

)
(no sum on i; j; k; l)

Bijp (xk ; �n) = e
−��=�ijp Bijp (xk ; �n −��) + �ijpR�

(
1− e−��=�ijp

)
(no sum on i; j)

This incremental form of the constitutive equations is well suited to implementation in a �nite
element program.
It must be recognized that the incremental reformulation of the constitutive equations just pre-

sented includes some approximations that can lead to error in the solution of the IBVP. Approx-
imations were introduced in equations (19), (20), (31) and (32). The nature of each of these
approximations is the same: that the variation in a quantity across some �� shall be assumed to
be linear. This assumption introduces error if the relevant change is actually non-linear (of course
no error is introduced if the relevant change is linear). Fortunately, for cases in which the relevant
change is non-linear, the user can drive the error to as small a value as is considered acceptable
merely by using small time steps. An additional note on convergence and time-step size is provided
later. Another potential source of error is the assumption that each term of Cijkl and �ij can be �t
with a Wiechert model. Fortunately, it has been the experience of the authors that these quantities
can indeed be �t with a Wiechert model so accurately as to make the �t indistinguishable from
the experimental data.

4. FINITE ELEMENT FORMULATION

We showed in the previous section how the constitutive equations (4) can be recast in an incre-
mentalized form (as given in (21)). This incrementalized constitutive formula now becomes the
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basis for the following �nite element formulation. Applying the method of weighted residuals, the
governing di�erential equation which is given in (2) can be converted to the symmetric variational
form given by ∫



�ji�ij dV =

∫


�fivi dV +

∫
@
2

Tivi dS (35)

where vi is an arbitrary admissible test function (in this case test displacement) and �ij is de�ned
as follows:

�ij ≡ 1
2

(
vi;j + vj;i

)
Equation (35), evaluated at time �n+1 (remember that we assume that the solution is known at
time �n) is given by∫



�ji

n+1�ij
n+1 dV =

∫


�fi

n+1vin+1 dV +
∫
@
2

Ti
n+1vin+1 dS (36)

where the superscript ‘n+1’ denotes ‘at reduced time �n+1’. Since the stress–strain relations (21)
are incrementalized, it is necessary to incrementalize (36). Let us de�ne the following:

��ji ≡ �ji
n+1 − �ji

n ⇒ �ji
n+1 = �ji

n +��ji

��ij ≡ �ij
n+1 − �ij

n ⇒ �ij
n+1 = �ij

n +��ij
(37)

�ui ≡ ui
n+1 − ui

n ⇒ ui
n+1 = ui

n +�ui

�vi ≡ vin+1 − vin ⇒ vin+1 = vin +�vi

Now recognizing that vin and �ij
n are zero (a consequence of ui

n being known), substitution of (37)
into (36) yields∫




(
�ji

n +��ji
)
��ij dV =

∫


�fi

n+1�vi dV +
∫
@
2

Tn+1
i �vi dS (38)

Or, upon rearranging terms:∫


��ji��ij dV =

∫


�fi

n+1�vi dV +
∫
@
2

Tn+1
i �vi dS −

∫


�ji

n��ij dV (39)

We now reintroduce thermomechanical constitution (21) onto the formulation by way of substitu-
tion into (39); doing so yields∫




[
C′

ijkl��kl − �′ij��+��ij
R
]
��ij dV

=
∫


�fi

n+1�vi dV +
∫
@
2

Tn+1
i �vi dS −

∫


�ji

n��ij dV (40)

Rearranging gives∫


C′

ijkl��kl��ij dV =
∫


�fi

n+1�vi dV +
∫
@
2

Tn+1
i �vi dS

−
∫


�ji

n��ij dV −
∫


��ij

R��ij dV +
∫


�′ij����ij dV (41)
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which can be equivalently expressed in matrix notation as:∫


([D] [�v])T [C′] [D] [�u] dV =

∫


[�v]T�[fn+1] dV +

∫
@
2
[�v]T[Tn+1] dS

−
∫


([D] [�v])T [�n] dV −

∫


([D] [�v])T [��R] dV +

∫


([D] [�v])T [�′] dV (42)

where [D] is the typical strain–displacement relations operator. We now turn to a discussion of
�nding an approximate solution to the IBVP. The nature of the approximation is that we shall
assume that the integrals appearing in (42) can be calculated as the sum of contributions furnished
by each element in the mesh, and that the test and trial functions (which are in�nite dimensional)
can be approximated within an element by the following �nite dimensional series:

�ueih (x; y; z; �) =
Ne∑
I=1
�uI

i  
e
I (x; y; z; �) (43)

�vejh (x; y; z; �) =
Ne∑
J=1
�vJ

j  
e
J (x; y; z; �) (44)

where the range on i and j is three, �uI
i and �vJ

j are the changes in displacement vectors at nodes
I and J , respectively, and Ne is the number of shape functions ( ’s) used in the approximation
for the element (Ne is also equal to the number of nodes in the element). The discretization of
(42), written in terms of the �nite element interpolants �ueh and �veh is now expressed as:∫


e

([D] [�veh])
T [C′e] [D] [�ueh] dV =

∫

e
[�veh]

T�[fn+1] dV +
∫
@
e2h

[�veh]
T[Tn+1] dS

−
∫

e

([D] [�veh])
T [�n] dV −

∫

e

([D] [�veh])
T [��R] dV +

∫

e

([D] [�veh])
T [�′e] dV (45)

The matrices [�ueh] and [�veh] which are introduced in (45) are given by

[�ueh] = [ 
e] [�ue]; [�veh] = [ 

e] [�ve] (46)

where [ e] is the typical matrix of shape functions and [�ue], and [�ve] are vectors of the change
in nodal displacement during ��. To get (45) into the form we desire, we introduce the following:

[D] [�ueh] = [D] [ 
e] [�ue] = [Be] [�ue] (47)

[D] [�veh] = [D] [ 
e] [�ve] = [Be] [�ve] (48)

Using (46)–(48), we may rewrite (45) as:∫

e

([Be] [�ve])T [C′] [Be] [�ue] dV =
∫

e

([ e] [�ve])T �[fn+1] dV

+
∫
@
e2h

([ e] [�ve])T [Tn+1] dS −
∫

e

([Be] [�ve])T [�n] dV

−
∫

e

([Be] [�ve])T [��R] dV +
∫

e

([Be] [�ve])T [�′e] dV (49)

Acknowledging that [�ve]T is arbitrary, (49) simpli�es to

[ke] [�ue] = [fe1] + [f
e
2] + [f

e
3] + [f

e
4] + [f

e
5] (50)
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where

[ke] =
∫

e

[Be]T [C′e] [Be] dV

[fe1] =
∫

e

[ e]T �[fn+1] dV

[fe2] =
∫
@
e2h

[ e]T [Tn+1] dS

[fe3] =
∫

e
[Be]T[�n] dV

[fe4] =
∫

e
[Be]T[��R] dV

[fe5] =
∫

e
[Be]T[�′e] dV

(51)

In the above, [ke] is referred to as the element sti�ness matrix, [fe1], [f
e
2], [f

e
3], [f

e
4] and [f

e
5],

are contributions to the element load vector due to body forces, surface tractions, stresses at the
start of the time step, change of stresses during the time step, and thermal e�ects, respectively.
Summation of the contributions from all elements yields,

[K] {�u} = {F} (52)

where [K] is the global sti�ness matrix, {F} is the global load vector, and {�u} is the change
in the displacement vector during the time step. The global sti�ness matrix and load vector are
arrived at through appropriate assembly of element contributions. Equation (52) is a system of
linear algebraic equations which can be solved by Gauss elimination.

5. CODE DESCRIPTION AND VERIFICATION

The authors have incorporated the numerical methods outlined in the two previous sections into the
FE code ORTHO3D. This program, which was written by the authors, now provides considerable
capability for the solution of thermoviscoelastic IBVPs. Developed with the analysis of polymeric
composites in mind, the code represents a versatile tool for the analysis of orthotropic media. The
preprocessor is written so as to enable the user to work with equal ease in either cylindrical or
cartesian co-ordinates (cylindrical co-ordinates are convenient when dealing with �lament wound
composites). All results will be output in cylindrical co-ordinates if the user has selected this option.
The program is capable of predicting the response to complex loading/thermal histories. Phenomena
such as creep, relaxation, and creep-and-recovery can all be predicted using this program. The code
also includes automated mesh generators which enable convenient grid generation for problems
involving internal boundaries such as matrix cracks or delaminations. The element that has been
employed in ORTHO3D is an eight-node isoparametric brick. A more detailed description of the
code may be found in Zocher.1

For veri�cation purposes, we shall now present the solution to three illustrative example problems
(several more example problems may be found in Reference 1). Examples one and two involve
isotropic bodies which are constructed from a hypothetical material system: material system A.
The uniaxial relaxation modulus of material system A is given as:

E(t) = E∞ + E1 e−t=�1 (53)
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Table I. Wiechert constants for material system A

MATL. ij k Cijk �ijk

A 11, 22, 33 ∞ 134, 615 —
1 538, 462 538, 462

44, 55, 66 ∞ 38, 462 —
1 153, 846 153, 846

12, 13, 23 ∞ 57, 692 —
1 230, 769 230, 769

Figure 3. Beam and encased cylinder of Examples 1 and 2

The values of E∞ and E1 in the above are 0·1, and 0·4 MPa, respectively; the value of �1 is
1·0. It is noted that the relaxation modulus of material system A is in the form of a standard
linear solid (a one-element Wiechert model). Poisson’s ratio of material system A is taken to
be 0·3 (a constant). A full description of the corresponding Wiechert model for the Cijkl (Cij in
Voigt notation) of (16) is provided in Table I. Example three involves a cylindrically anisotropic
material system, properties of which will be given later.

5.1. Example one (beam with tip load)

Consider the cantilever beam shown in Figure 3. The beam has a length, L, of 20 and a cross-
sectional area, A, of 1m2 (an aspect ratio of 20 : 1). The beam is subjected to the tip load

P = P0[H (t)− H (t − t1)]

where P0 = 1N and t1 = 10 s. We seek the tip displacement wL . This is similar to a creep-and-
recovery test, but with spatially varying stress and strain.
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It is easy to derive an analytical solution to the IBVP by applying the standard viscoelastic
correspondence principle to the elastic solution for tip de
ection from strength of materials. Doing
so yields:

wL =
P0L3

3I
[D(t)− D(t − t1)H (t − t1)] (54)

where I is the area moment of inertia of the beam (assumed to have a value of 1/12) and D is the
creep compliance. The creep compliance is easily determined from the relaxation modulus (53)
and is given by

D(t) = D0 + D1(1− e−t=�1 ) (55)

where

D0 ≡ 1
E0

; E0 ≡ E∞ + E1; D1 ≡
(
1

E∞
− 1

E0

)
; �1 ≡ E0�1

E∞
The strength of materials solution is not exact but is considered a good approximation for a beam
with an aspect ratio of 20 : 1. It follows that the analytical solution represented by (54) is not
exact but is expected to be a good approximation.
Finite element results, produced by ORTHO3D, are compared to the analytical solution in

Figure 4. The �nite element prediction and the analytical solution are close (maximum di�er-
ence 1·89 per cent). A �t of 0·1 s was used in the �nite element calculations. The mesh used in
the analysis of example one is shown in Figure 5.

5.2. Example two (encased cylinder)

Consider a long thick-walled viscoelastic cylinder encased in a shell of in�nite sti�ness and
subjected to internal pressure p (Figure 3). This geometry is representative of a solid propellant
rocket motor. The viscoelastic cylinder represents the fuel and the sti� shell is representative of
the rocket motor casing. Let the internal pressure, p, be given by p = p0H (t) (similar to a creep
test but involving spatial inhomogeneity).
Employing the elasticity solution along with the viscoelastic correspondence principle, it is easy

to derive the following analytical solution for the radial displacement ur:

ur(r; t) =
p0a

2b(1 + �)(1− 2�)
a2 + (1− 2�)b2

(
b
r
− r

b

)
D(t) (56)

For purposes of numerical calculations, let a = 2m, b = 4m, and p0 = 100 Pa. Analytical and
�nite element results are presented in Figure 6 for the radial displacement of the mid-thickness
datum. The �nite element model used in the analysis employed a mesh consisting of 72 elements
(Figure 5). Symmetry conditions were exploited so that the entire cylinder did not have to be
modelled. A �t of 0·1 s was used in the �nite element calculations. It is seen that the analytical
solution and the �nite element prediction are in close agreement.

5.3. Example three (orthotropic cylinder)

In this example we investigate the response of a long thick-walled cylindrically anisotropic
cylinder subjected to the internal pressurization p = P H (t); a problem which has been previously
investigated by Schapery.47 In Schapery’s analysis, the response of the cylinder was predicted by
three di�erent methods: (1) correspondence principle, (2) quasielastic method, and (3) collocation.
In the present, we duplicate the �rst two analyses of Schapery (correspondence principle and

? 1997 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 2267–2288 (1997)



2282 M. A. ZOCHER, S. E. GROVES AND D. H. ALLEN

Figure 4. Loading history and response of Example 1

Figure 5. Finite element meshes used in Examples 1–3
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Figure 6. Loading history and response of Example 2

quasielastic method) and compare the results to �nite element prediction. Following Schapery, we
concern ourselves only with the prediction of the hoop stress, ��� at the inner wall of the cylinder;
at r = a (the cylinder has inner radius a and outer radius b).
In his analysis, Schapery47 assumed the relaxation moduli in the radial and circumferential (or

hoop) directions to be given by the following:

Er = Ee

[
1 + 100

(
t
t0

)−0·5]

E� = Ee

[
1 + 100

(
t
t0

)−0·1]
(57)

Then using an elastic solution previously presented by Leknitskii,48 Schapery showed the vis-
coelastic solution (as derived by correspondence principle) to be given by

���(a; t) = �̃��(a; s)|s=1=2t (58)
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Table II. Wiechert models of Er and E�

Er E�

m Em �m Em �m

∞ 1000 — 1200 —
1 0·96405 E07 0·19281 E04 0·57445 E05 0·11489 E02
2 0·29396 E07 0·58792 E04 0·44981 E05 0·89963 E02
3 0·93082 E06 0·18616 E05 0·35735 E05 0·71469 E03
4 0·29434 E06 0·58867 E05 0·28387 E05 0·56775 E04
5 0·93077 E05 0·18615 E06 0·22548 E05 0·45096 E05
6 0·29434 E05 0·58867 E06 0·17910 E05 0·35821 E06
7 0·93086 E04 0·18617 E07 0·14227 E05 0·28454 E07
8 0·29427 E04 0·58854 E07 0·11301 E05 0·22602 E08
9 0·93112 E03 0·18622 E08 0·89764 E04 0·17953 E09
10 0·29454 E03 0·58908 E08 0·71307 E04 0·14261 E10
11 0·91943 E02 0·18389 E09 0·56634 E04 0·11327 E11
12 0·30384 E02 0·60767 E09 0·44989 E04 0·89978 E11
13 0·85414 E01 0·17083 E10 0·35747 E04 0·71494 E12
14 0·48513 E01 0·97026 E10 0·28376 E04 0·56751 E13
15 0·22561 E04 0·45122 E14
16 0·17896 E04 0·35791 E15
17 0·14232 E04 0·28465 E16
18 0·11299 E04 0·22599 E17
19 0·89863 E03 0·17973 E18
20 0·71182 E03 0·14236 E19
21 0·56744 E03 0·11349 E20
22 0·44914 E03 0·89828 E20
23 0·35763 E03 0·71527 E21
24 0·28336 E03 0·56672 E22
25 0·22673 E03 0·45345 E23
26 0·17773 E03 0·35546 E24
27 0·14384 E03 0·28767 E25
28 0·11040 E03 0·22080 E26
29 0·95272 E02 0·19054 E27
30 0·59356 E02 0·11871 E28
31 0·83425 E02 0·16685 E29

where

�̃��(a; s) =
k̃

1− ( a
b

)2k̃
[
1 +

(a
b

)2k̃ ]
P

k̃ =

√
1 + 107(t0)0·1s0·1

1 + 177(t0)0·5s0·5

The quasielastic solution to the IBVP (Schapery47) is given by

���(a; t) =
k

1− ( a
b

)2k [1 + (ab)2k
]
P (59)

where

k =

√√√√√√1 + 100
(

t0
t

)0·1
1 + 100

(
t0
t

)0·5
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Figure 7. Loading history and response of Example 3

In order to solve this problem using ORTHO3D, we must �rst express Er and E� in terms of
Wiechert models. This is easily accomplished using collocation. The resultant Wiechert models for
Er and E� are given in Table II. The corresponding Wiechert models for the Cijkl (Cij in Voigt
notation) of (16) are given as follows: C11 = Ee = 1000, C22 = E�, C33 = Er , C44 = C55 = C66 =
2000, and C12 = C13 = C23 = 0. The value of 2000 for C44, etc., is really an arbitrary number in
this problem since its value has no in
uence on the results.
Finite element results are compared to the solution by correspondence principle (58) and by

the quasielastic method (59) in Figure 7. Of the three methods compared in Figure 7, the �nite
element prediction is considered by the authors to be the more accurate. This claim is supported to
some degree by Schapery’s collocation results.47 Figure 7 also shows that anisotropy can have a
dramatic in
uence on the response of a viscoelastic body by including the response of an isotropic
body for comparison. The �nite element mesh used in the analysis consisted of 120 elements and
is shown in Figure 5. The value of ��� at the inner radius was determined through extrapolation
of the value of ��� at neighbouring integration points. Time steps of variable length were used in
the analysis with the magnitude of the time step slowly increasing as time progressed. It is noted
that this variability in time step size was not accomplished adaptively, but merely assigned in the
input �le.
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5.4. A note on convergence

A formal convergence study pertaining to the sensitivity of time step size has not at this time
been conducted. Consequently, such an endeavor represents an obvious arena for further study.
While the authors are unable to give the reader formal guidance concerning temporal convergence
issues, we can at least provide him with a qualitative sense of time step sensitivity by way of
illustration with respect to examples one and two presented above. We will not address example
three since this example involved a variable time step size and as such does not provide as clear an
illustration. The result presented for example one was produced from calculations involving a �t
of 0·1 and as stated previously resulted in a maximum di�erence between �nite element prediction
and the analytical solution of 1·89 per cent. A �t of 1·0 produces a maximum di�erence of 22·24
per cent and a �t of 0·01 produces a maximum di�erence of 0·94 per cent. The result presented
for example two was produced from calculations involving a �t of 0·1, and had a maximum error
of 1·96 per cent. A �t of 1·0 produces a maximum error of 19·94 per cent and a �t of 0·01
produces a maximum error of 0·21 per cent for this example.

6. CONCLUSIONS

A three dimensional FE formulation has been developed and incorporated into ORTHO3D. This
development provides the analyst with a versatile tool with which he can easily predict the response
of an orthotropic body (isotropic and transversely isotropic bodies are considered subsets) to
a wide range of loading/temperature histories. The primary motivation behind the development
was to enable accurate analysis of laminated polymeric composite structures subjected to a high-
temperature environment. Such analysis is expected to be critical in developing predictions of
component life.
The code developed here is easy to use and provides the capability of solving many interesting

IBVPs involving viscoelastic media. It is, however, limited. Some of the most obvious limita-
tions are as follows: (1) it has no dynamic capability, (2) it is linear, and (3) it is restricted
to thermorheologically simple non-ageing materials. Having noted these restrictions, it should be
recognized that the code is far more robust than many of its predecessors that have appeared in
the literature. For example, some predict creep behaviour well but not relaxation, while the case
is just the opposite for others. In addition, many programs (even some of the big commercial
codes) restrict the user to very simple viscoelastic behaviour, such as standard linear solid or
Maxwell. Moreover, very few viscoelastic codes have been developed to handle full orthotropic
behaviour. In summary, ORTHO3D provides the user with the ability to handle a wider range of
loading/temperature histories imposed on a wider range of materials than many of its predecessors.
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