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A THREE-DIMENSIONAL FLUX ROPE MODEL FOR CORONAL MASS EJECTIONS
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ABSTRACT

A series of simulation runs are carried out to investigate the loss of equilibrium of the three-dimensional flux
rope configuration of Titov & De´moulin as a suitable mechanism for the initiation of coronal mass ejections. By
means of these simulations, we are able to determine the conditions for which stable equilibria no longer exist.
Our results imply that it is possible to achieve a loss of equilibrium even though the ends of the flux rope are
anchored to the solar surface. However, in order to have the flux rope escape, it is necessary to modify the
configuration by eliminating the arcade field.

Subject headings: MHD — Sun: corona — Sun: coronal mass ejections (CMEs) — Sun: flares —
Sun: magnetic fields

1. INTRODUCTION

The numerical simulations presented in this Letter were de-
signed to test an analytical model for the initiation of coronal
mass ejections (CMEs) developed by Titov & De´moulin (1999,
hereafter T&D). Their model is derived from a long line of
previous analytical models containing flux ropes suspended in
the corona by a balance between magnetic compression and
tension forces (see the reviews by Forbes 2000 and Low 2001).
In the two-dimensional models, a flux rope with currentI has
two possible equilibrium positions, provided that the current is
not too large. The one closest to the Sun is stable, but the one
farthest from the Sun is unstable. As the current in the flux rope
increases, the two equilibrium locations approach one another,
and they meet when the current reaches a critical value. There
are no equilibria for flux ropes with current above this value.
The difference in the stability properties of the two equilibria
comes from the fact that one sits in a magnetic energy valley
while the other one sits on a hill. In other words, for the unstable
equilibria, a small outward displacement of the flux rope leads
to an outward force, which acts to increase the displacement.

The T&D model uses a fully three-dimensional magnetic field
configuration that is remarkably realistic looking when compared
with observations, but until now there has been no rigorous test
to determine whether the model can produce an eruption. Pre-
vious two-dimensional MHD models (e.g., Forbes & Priest
1995), whose eruptive properties are well established, both an-
alytically (Forbes & Isenberg 1991) and numerically (Forbes
1990, 1991), suggest that an eruption will occur provided that
the anchoring of the ends of the flux rope to the solar surface
does not prevent it (Antiochos, DeVore, & Klimchuk 1999).

More recently, Amari et al. (2000) and Linker et al. (2001)
have carried out simulations that are closely related to the model
of T&D. In these simulations, a flux rope is formed by first shearing
an arcade and then subsequently pushing the opposite polarity feet
of the arcade toward one another and allowing them to reconnect.
Continued reconnection of the feet weakens the ability of the
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overlying, unreconnected field lines of the arcade to hold the flux
rope next to the surface, and eventually the flux rope erupts. In a
numerical simulation with continually evolving boundary condi-
tions, some care needs to be taken to determine whether the sub-
sequent evolution is really due to a loss of equilibrium or simply
a consequence of driving by the boundary conditions.

One way to test the equilibrium properties of a configuration
is to evolve the boundary conditions very slowly until it erupts
(Linker et al. 2001). Here, we choose a different approach by
taking advantage of the fact that our initial configuration is
derived from an analytical model for which the equilibria lo-
cations are known. We start with an initial condition that is at
rest, and we use a nonevolving boundary condition so that no
kinetic energy is fed into the system either from the initial state
or from the boundaries. Thus, any dynamical evolution that is
observed must result from the fact that the initial state is not
in a stable equilibrium.

2. NUMERICAL FORMULATION

The T&D model consists of a circular flux rope that is em-
bedded in a line-tying surface as shown in Figure 1. The hoop
force of the rope (see Shafranov 1966) is counterbalanced by
the field from two point magnetic charges buried at a depth

below the surface and located at In additionz p �d x p �L.
to the external field generated by the point charges, the model
allows a contribution from an infinitely long line current, ,I0

that coincides with thex-axis and also lies below the photo-
sphere at depthd (not shown in Fig. 1).

The purpose of the toroidal field produced by the imaginary
line current below the surface is to reduce the number of turns
of the field lines within and outside the flux rope. Without the
line current, the field lines at the surface of the flux rope are
purely poloidal, and they have an infinite number of turns in
a finite length. However, some observations (Leroy, Bommier,
& Sahal-Brechot 1983; Gaizauskas 1979) imply that the maxi-
mum number of turns is less than two, but these observations
do not include the cavity region that may comprise most of the
flux rope. Incorporating the line current eliminates this problem
by creating a toroidal field that ensures that no field lines are
highly twisted. By adjusting the strength of the line current, one
can achieve a reasonable amount of twist everywhere.

T&D have also considered the stability of their configuration
and found that it may be unstable if the large radius,R, of the
flux rope exceeds , whereL is half the distance between the�2L
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Fig. 1.—Three-dimensional view of the magnetic field configuration for the initial state. The solid lines are magnetic field lines, where the false-color code
visualizes the magnetic field strength in units of tesla. The surface shaded in gray is an isosurface ofB p 0.z

background sources�q. This is only a necessary condition for
instability because their analysis does not include the effects of
the line-tying of the poloidal field circulating around the flux rope.

In our simulations, the background atmosphere is constructed
by solving the static momentum equation with a prescribed tem-
perature variation with height (measured alongz in our notation).
In the force-free limit, the kinetic gas pressure,p, is obtained
from , while the mass density,r, is derived fromdp/dz p �rg
the perfect gas law. We assign a constant value of gravity ac-
celeration of m s�2, and all thermodynamic variablesg p 274.1
are assumed uniform in the horizontal plane. The plasma tem-
perature increases from a value of K at the photo-35.1# 10
sphere to a coronal value of K, across a narrow61.02# 10
transition region of m, as prescribed by the formula66.144# 10

. The sound speed at theT p 1 � 99.5 {1� tanh [0.1 (z � 70)]}
photosphere is m s�1, and the characteristic value36.488# 10
of mass density is chosen as kg m�3.�62.7# 10

The flux rope initially has a major radius m,8R p 1.0# 10
a minor radius , and the strength of the two subpho-a p 0.2R
tospheric sources,q, is 1014 T m2. The sources are located at

m, and . With the above choice of7d p 2.0# 10 L p 0.3R
parameters, the equilibrium toroidal current flowing inside the
flux rope is A, and it has a uniform distribution122.293# 10
over the volume. As we will discuss in § 3, we find that it is
necessary to set to zero in order for the flux rope to escape.I0

The full set of ideal MHD equations, in conservative form, are
solved using the Block Adaptive Tree Solar Wind Roe-type Up-
wind Scheme (BATS-R-US) code (Powell et al. 1999; Groth et

al. 2000), in a combination with the Artificial Wind approximate
Riemann solver (Sokolov et al. 2002). This numerical solver uses
a finite volume second-order scheme based on upwind differencing
combined with a limited linear reconstruction algorithm. The
MHD solution is advanced in time using an explicit time-stepping
algorithm. The BATS-R-US code is designed to run efficiently on
massively parallel computers and solves the MHD equations with
the use of block adaptive mesh refinement (AMR). We use a
simplified energy equation that neglects the effects of radiative
losses, heat conduction, and background heating. The dissipative
effects due to viscosity and electric resistivity are not treated ex-
plicitly, but the numerical scheme provides some finite numerical
dissipation where needed, for example, in the current sheets and
shocks. The solenoidal constraint is treated using an eight-wave
scheme (Powell et al. 1999), meaning that additional terms are
added to the equations to prevent any accumulation of errors in
the condition that∇ 7 B p 0.

The simulation region is a cube with a length of 400 Mm,
and the numerical grid is chosen to be nonuniform. In the
simulations we discuss here, AMR was not activated in order
to allow us to do a larger number of runs at reduced costs. The
total number of cells within the numerical domain is 7,281,408.
We applied six levels of torus-focused initial refinement,4 with
the intent to assign the highest spatial resolution at the region
of the flux rope and at the photosphere-corona transition layer.

4 There is a factor of 2 difference in spatial resolution at each refinement
level change.
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Fig. 2.—Height vs. time curves for the O-point (solid curve) and the X-
point (dotted curve). The vertical velocity of the O-point vs. time is shown
as the dashed curve. The escape case is shown in green, whereas the no-escape
case appears in red.

Fig. 3.—Curves of the total (solid curve), magnetic (dotted curve), thermal
(dashed curve), and kinetic energy (dash-dotted curve), in units of 1034 ergs,
vs. time for the whole duration of the simulation.

The underlying motivation was to keep the discretization errors
small during the initialization of the physical variables, to start
with an initial state as close to equilibrium as possible.

The boundary conditions consist of an impenetrable and highly
conducting bottom boundary (at ); outflow side boundariesz p 0
(at Mm and Mm); and an open top bound-x p �200 y p �200
ary (at Mm). At the bottom boundary of the numericalz p 400
domain, the velocity components are maintained at zero through-
out the simulation runs, and the normal component of the magnetic
field is fixed and set to its value at This way, we ensuret p 0.
that there is no energy flux through the boundary. Floating (zero
gradient) conditions are applied to the tangential components of
the magnetic field and mass density. The gas pressure in the ghost
cells is obtained from . The open boundary con-dp p �rg dz
ditions are implemented by applying a floating condition to all
physical variables. The side boundaries are the same as the top
boundary, except that any inflow is prevented.

By adding a photosphere-corona transition layer, the bottom
boundary of the numerical domain lies well below the physical
boundary corresponding to the photosphere. Thus, the line-
tying of the field is implemented within the numerical domain
rather than at the numerical boundary (see Karpen, Antiochos,
& DeVore 1991). This allows the surface currents associated
with the line-tying to be included in the simulations.

3. DYNAMICAL EVOLUTION

Flux ropes having a small number of turns (∼1–4) did not
manifest any loss of equilibrium, but highly twisted ones
(∼200) did. However, the resulting evolution of the system
more closely resembled an impulsive-type flare rather than a
CME-like event because the flux rope did not escape but instead
came to a stop. This is because of the overall dominance at
high altitudes of the static arcade field produced by the sub-
surface line current. Therefore, to have flux ropes that could
escape, we had to remove the arcade field by setting the sub-
photospheric line current to zero. With this modification, the
flux rope does escape, but the number of turns in the field lines
at the surface of the flux rope approaches infinity as the distance
from the axis increases toa (see Fig. 1).

The approximate analytical formulae (i.e., they assumeKa/R
1) used to construct the initial state and the discretization errors

lead to a small initial disturbance. This causes the flux rope to
drift downward for just a couple of minutes until the restoring
force due to the compression of the field reverses the direction.

After the initial adjustment, the flux rope undergoes an increase
in acceleration. As seen in Figure 2, the slope of the speed curve
for the O-point is initially shallow, just as expected for a loss of
equilibrium (Lin & Forbes 2000). The upward motion of the rope
eventually leads to the formation of a current sheet at the location
of the preexisting X-line. Once the current sheet starts forming,
the flux rope begins to decelerate. The effects of the line-tying at
the ends of the flux rope may also contribute to this deceleration.
Another effect that we see at this time (which is an entirely three-
dimensional effect) is that most of the magnetic helicity has been
transported by torsional Alfve´n waves from the footprints of the
flux rope toward its top. As a result, the restraining effect caused
by the line-tying of the feet of the flux rope becomes important.

The energetics of the eruption are presented in Figure 3. For
the escape case, at the beginning of the simulation, the thermal,
magnetic, kinetic, and gravitational energies are, respectively,
13%, 87%, 0%, and 10% of the total energy. This reflects the
initial dominance of the magnetic energy over all other forms. At

minutes, when the first outflow through the numericalt ≈ 19
boundaries starts to occur, these energy ratios are 21% (thermal),
72% (magnetic), 7% (kinetic), and 10% (gravitational). Thus,
about 17% of the initial magnetic energy has been converted into
nearly equal amounts of kinetic and thermal energy. The amount
of kinetic energy, summed over the whole computational domain,
toward the end of the experiment is of the order of 1033 ergs. The
change in gravitational energy is less than 2% over the whole
simulation.

A three-dimensional view of the magnetic field configuration
at minutes is shown in Figure 4. A close look at thet p 35
footprints of the rope reveals closed loops connecting the two
flux regions, namely, the flux rope region and the�q sources
at . The most plausible explanation of this structure isx p �L
that there is an interchange reconnection between the highly
twisted field lines of the flux rope and the overlying closed field
lines from the�q sources. As a result of this process, the newly
created closed field lines connect the two flux regions. The iso-
surface of shown in Figure 1 (shaded in gray) indicatesB p 0z

where this process preferentially takes place.
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Fig. 4.—Three-dimensional view of the magnetic field configuration at minutes. As in Fig. 1, the solid lines are magnetic field lines. The false colort p 35
shows the magnetic field strength. The lower surface, shaded in purple, is an isosurface of electric current density of magnitude 0.0015 A m�2. The upper surface,
shaded in maroon, is an isosurface of flow velocity of magnitude 200 km s�1.

4. CONCLUSIONS

Our results show that the criterion , derived in the�R 1 2L
T&D model by neglecting the effects of line-tying of the po-
loidal field, may be a necessary condition for an eruption, but
it is not a sufficient one. We find that larger values ofR in
excess of 5 are required.

We also find that even when the initial equilibrium is un-
stable, the flux rope cannot escape, unless the static arcade field
associated with the line current is removed. Thus, although the
T&D model can produce a CME-like eruption, it cannot do so
without requiring a highly twisted field at the surface of the
flux rope. It may be possible in the future to mitigate this by
using a configuration in which the infinitely long line current
is replaced by a current source whose magnetic field falls off
more rapidly with height.

Magnetic reconnection plays a crucial role in dissipating the
current sheet, thus helping the flux rope eruption to proceed.
In future investigations, a more realistic treatment of the re-
connection process in the current sheet and the incorporation
of a spherical geometry may greatly reduce the deceleration
that we observe in our modified T&D configuration.
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