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Abstract  

A three-dimensional Immersed Smoothed Finite Element Method (3D IS-FEM) using 4-node 

tetrahedral element is proposed to solve 3D fluid-structure interaction (FSI) problems. The 3D IS-

FEM is able to determine accurately the physical deformation of the nonlinear solids placed within 

the incompressible viscous fluid governed by Navier-Stokes equations. The method employs the 

semi-implicit Characteristic-Based Split (CBS) scheme to solve the fluid flows and Smoothed 

Finite Element Methods (S-FEM) to calculate the transient dynamics responses of the nonlinear 

solids based on explicit time integration. To impose the FSI conditions, a novel, effective and 

sufficiently general technique via simple linear interpolation is presented based on Lagrangian 

fictitious fluid meshes coinciding with the moving and deforming solid meshes. In the 

comparisons to the referenced works including experiments, it is clear that the proposed 3D IS-

FEM ensures stability of the scheme with the second order spatial convergence property; and the 

IS-FEM is fairly independent of a wide range of mesh size ratio. 
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1. Introduction 

Fluid-Structure Interaction (FSI) with moving boundaries and largely 

deformable nonlinear solids and structures are challenging problems in numerical 

simulations in terms of accuracy, robustness and efficiency. With the continual 

improvements in computer hardware, great efforts have been made by the 

numerical scientists in the community of computational solid mechanics and fluid 

dynamics to develop increasingly robust and accurate numerical 

methodology/technique for the FSI simulation. Among numerous numerical 

methods for FSI problems, one typical class of methods have been proposed based 

on the moving-mesh techniques, such as Arbitrary Lagrangian-Eulerian (ALE) 

methods [1-4], space-time (ST) methods [5-12] and so on. Based on the moving-

mesh techniques, the fluid-structure interfaces are explicitly depicted in the 

discrete model of the FSI system, and the meshes for the fluid and solid structures 

are movable in the FSI simulations with the moving boundaries or interfaces. 

Alternatively, based on the immersed-type methods a class of methods using fixed 

fluid grid or mesh have been proposed, such as the Immersed Boundary (IB) 

methods [13-18], Immersed Finite Element Method (IFEM) [19-23], 2D 

Immersed Smoothed Finite Element Methods (2D IS-FEM) [24, 25] and so on. 

These effective numerical methods to solve FSI problems broadly include three 

key modules: (1) implementation of the fluid-structure interactions; (2) solver for 

transient responses of the nonlinear solids; (3) solver for transient fluid flows.  

The first module is always embedded in the process of solving the fluid and 

solid problems so as to implement the fluid-structure interactions correctly. The 

numerical methods for the fluid and solid problems may need meshes or grids to 

discretize the fluid and solid domains. In the methods based on the moving-mesh 

techniques, the fluid-structure interface always coincide with the fluid mesh or 

grid, such as the adaptive meshing technique, Arbitrary Lagrangian-Eulerian 

(ALE) methods or space-time (ST) methods, as illustrated in Fig. 1(a). In this 

class of methods the fluid-structure interactions can be directly imposed on the 

interface by either the monolithic approach (i.e., the fluid and solid problems are 

solved simultaneously using a single solver) or the partitioned approach (i.e., the 

fluid and solid problems are solved separately using two distinct solvers). 

However, dealing with the problems with moving boundaries, the re-meshing 

operation is often necessary which is difficult and computational expensive 



 

especially for 3D FSI problems. In order to avoid re-meshing, a class of 

immersed-type methods using fixed fluid grid or mesh has been proposed 

following the original immersed boundary (IB) method [13, 14], such as the 

hybrid Cartesian/immersed boundary (HCIB) methods [15-18], immersed finite 

element method (IFEM) [19-23], 2D Immersed Smoothed Finite Element Method 

(2D IS-FEM) [24, 25] and so on. The immersed-type methods allow the fluid-

structure interface to cut cross the fluid mesh or grid, as shown in Fig. 1(b). In 

most of the IB methods, the fluid domain is discretized by fixed Eulerian mesh or 

grid, whereas a set of Lagrangian fiber network is used to present the structure 

being immersed inside the fluid [15-18]. As such, the interactions between the 

fluid and solid should be carefully treated. A smoothed approximation of the 

Dirac delta function is designed to distribute the nodal FSI forces and velocity 

fields between the Eulerian and Lagrangian domains. In 2D problems, the major 

disadvantage of the IB methods results from the assumption of the one-

dimensional fiber-like immersed structure, by which the structure only carries 

mass but does not occupy volume. Therefore, it is difficult to use IB methods to 

represent the solids with the complex nonlinear constitutive law, which occupy 

finite volume in the fluid. To overcome this drawback, IFEM [19-23] has been 

developed and is able to represent the true physics of the nonlinear solids with the 

use of the standard FEM procedure. IFEM immerses the whole solid body inside 

the fluid and imposes the FSI conditions by means of meshfree approximation or 

FEM interpolation.  

Being inspired by the IB and IFEM methods and with the goal of solving 

general 3D FSI problems, a novel three-dimensional Immersed Smoothed Finite 

Element Method (3D IS-FEM) is proposed in this work, which follows the main 

frame and procedure of the 2D IS-FEM in [25]. This approach adopts the efficient 

direct forcing technique from IB/HCIB to calculate the fluid-structure interaction 

force, thus enabling the IS-FEM to analyze the physical motion and deformation 

of the nonlinear solid as per IFEM. The solvers for the solid and fluid problems in 

the IS-FEM employ the well-developed numerical methods, such as the Smoothed 

Finite Element Methods (S-FEMs) for the solid part, and the semi-implicit 

Characteristic-based Split (CBS) method for the fluid part.  

FEM is a popular choice for solving the transient responses of solids and 

structures. For simple preprocessing, 3-node triangular (T3) element for 2D cases 



 

and 4-node tetrahedral (T4) element for 3D cases are preferred for meshing the 

domain with complex geometry. However, due to several undesired features such 

as the overly-stiff behavior, poor accuracy, and difficulties in handling 

incompressibility, T3 and T4 element are usually not adopted in the standard 

commercial FEM procedure for solids in which robustness is key. Based on the 

gradient/strain smoothing technique [26] and the Generalized Smoothed Galerkin 

(GS-Galerkin) weak form or weakened weak (W2) form [27-33], a family of 

Smoothed Finite Element Methods (S-FEM) [34, 35] has been proposed, which 

can greatly improve the performance of the T3 and T4 elements. The 3D IS-FEM 

mainly utilizes two types of S-FEMs: Face-based S-FEM using T4 element (FS-

FEM-T4) for compressible solids, and Selective S-FEM using T4 element 

(Selective S-FEM-T4) for nearly incompressible solids. Moreover, as a special 

case of S-FEM [35], FEM-T4 is adopted in some numerical examples, which 

serves to demonstrate that our proposed scheme is also available for the standard 

FEM procedure. 

For solving the fluid flow in the FSI problems, any stable and robust 

numerical method, which is able to use T3 or T4 element and effectively suppress 

spurious oscillations resulting from the convective characteristic of convection-

dominated flows, the restriction of LBB condition and so on, can serve as a 

suitable candidate for the fluid solver in IS-FEM. Various reliable numerical 

methods have been reported to solve the incompressible Navier-Stokes fluid flow 

under the framework of Galerkin procedure, such as the pressure-stablizing 

method introduced in [36] for the Stokes flow and the Pressure-Stablilizing 

Pertrov-Galerkin (PSPG) formulation introduced in [37] for Navier-Stokes 

equations, streamline upwinding / Petrov-Galerkin (SUPG) formulation [38], 

Galerkin Least-Square techniques (GLS) [39], Taylor–Galerkin method [40], 

Characteristic-based Split (CBS) algorithm [41, 42] and so on. In this work, the 

semi-implicit CBS scheme is employed, which avoids any possibility of spurious 

solutions. Moreover, one important feature of CBS scheme is that it allows equal 

interpolation for all the primitive variables, such as the fluid velocity and pressure. 

Users can employ the simplest 4-node triangular (T4) elements for the efficient 

preprocessing and numerical calculations.  

In Section 2, the explicit scheme for dynamics analysis of nonlinear solids 

based on central difference time integration combined with the S-FEM is 



 

described. Galerkin procedure based on the semi-implicit CBS method for the 

incompressible viscous fluid flow is reviewed in Section 3. In Section 4, the 

immersed methodology for coupling of the solid and fluid by means of the 

fictitious Lagrangian fluid mesh is proposed. Following various numerical 

examples provided in Section 5, the conclusions are drawn in Section 6.  

 

2. Brief review of S-FEM for explicit dynamics 

analysis of solids  

In order to describe the motion and deformation of the nonlinear solid, 

assume at the time  t   the solid body occupies the solid domain s  with a 

closed boundary s  . Here, s  denotes the solid appearing as the superscript on 

the right, while   denotes the time step number appearing as the superscript on 

the left. At the initial stage ( 0  ) the solid occupies the domain 0 s  (so called 

the initial or referential configuration) with the boundary 0 s . The material 

coordinates of the solid are denoted as 0s s

i iX x , ( 1,2,3i   for 3-D) at the initial 

configuration, and at the current configuration of the time  t   the spatial 

coordinates are denoted as s

ix
 . The governing equation can be written as the 

following total Lagrangian description 
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Here, N.B.C. denotes the natural boundary conditions, V.B.C. denotes the velocity 

boundary conditions, and I.C. denotes the initial conditions. In Eq.(1), 
s

jiP  is the 

first Piola-Kirchhoff stress tensor, s  is the initial density of the solid, s

iu is the 

displacement, s

ia  is the acceleration, s

iv  is the velocity, s

t  is the natural 

boundary with the outward surface normal 
s

jn  and the prescribed traction force 



 

,t s

if , 
s

ij  is the Cauchy stress tensor and s

v  is the essential boundary with the 

prescribed velocity s

iv . 

Both S-FEM and the standard FEM (regarded as the special case of S-FEM) 

are employed in this work. The main difference between S-FEM and FEM is the 

smoothing operation on the spatial gradient or strain field in S-FEM. Suppose that 

the initial solid domain 0 s  is discretized by a set of s

nN  nodes and s

eleN  

elements. The material coordinates of the solid nodes are denoted as 

 1s s

Ii nX I to N . In both FEM and S-FEM, the displacement s

iu  and velocity s

iv  

are interpolated by the standard FEM procedure:  

 0 0, ,s s s s s s

i I Ii i I Ii

I I

u u v v      (2) 

where 0 s

I  is the FEM shape function calculated at the initial configuration. In 

the standard FEM, the spatial gradient of the field is directly calculated as follows:  

 
0 0 0 0

, , , ,, ,s s s s s s

i j I j Ii i j I j Ii

I I

u u v v      (3) 

where 
0 0

, /s s s

I j I jX     is the derivatives of the shape function at the initial 

configuration. However, generally the above direct calculations of the spatial 

gradient are not used in S-FEM, and the smoothing operations on the spatial 

gradient of the field in the smoothing domains are alternatively required.  

In S-FEM, the domain 0 s  is divided into s

sdN  non-overlapped smoothing 

domains 0 sd

isd  with the boundaries 0 sd

isd   1,2, , s

sdisd N , as illustrated in 

Fig. 2(a). Each smoothing domain 0 sd

isd  is associated with a representative 

material point s

isdX . The smoothing of the gradient of the displacement field in 

0 sd

isd  can be implemented as follows:  

      0, , ;
sd
isd

s s s s s s s

i j isd i j isd
u u W d


  X X X X X  (4) 

where , /s s s

i j i ju u X    are the gradient of the displacement field, and ,

s

i ju  are 

the so-called smoothed gradient. The smoothing function  ;s s s

isdW X X X  

should satisfy partition of unity and the following Heaviside type piecewise 

constant function is employed:  
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Introducing the divergence theorem, Eq.(5) can be recast to 

    0

0

,

1
sd
isd

s s s s sd

i j isd i isd jsd

isd

u u n d
V 

 X X  (6) 

where 
0 sd

jn  is the outward surface normal of the smoothing domain boundary 

0 sd

isd . Substituting Eq.(2) into Eq.(6), the smoothed gradient of the displacement 

field can then be written as 

      0

0 0 0

, ,

1
sd
isd

s s s s sd s s s s

i j isd I isd j Ii I j isd Iisd
I Iisd

u n d u u
V 

 
     

 
 X X X  (7) 

where ,

s

I j  is the smoothed derivatives of shape function. 

In the finite deformation analysis, the deformation gradient, ,ij i j ijF u   , is 

the primary strain measure. The smoothing operation on the deformation gradient 

ijF  yields the following smoothed deformation gradient ijF : 

    0

0 0

,

1
.

sd
isd

s s s sd s s s

ij isd i j ij I j isd Ii ijsd
Iisd

F u n d u
V

 


    X X  (8) 

Using ijF , one can easily construct the smoothed Green strain, the smoothed right 

Cauchy-Green deformation tensor, the smoothed Piola-Kirchhoff stress and so on. 

There are mainly two types of smoothing domain in 3D S-FEM with T4 

element, such as the face-based smoothing domain as shown in Fig. 2(b) and the 

node-based smoothing domain as shown in Fig. 2(c), leading to Face-based 

Smoothed FEM (FS-FEM-T4) and Node-based Smoothed FEM (NS-FEM-T4), 

respectively. The employment of FS-FEM-T4 can greatly improve the 

performance of the simplest linear T4 elements and provide superior 

computational efficiency and accuracy on comparing with the standard FEM-T4 

procedure [34, 35]. The combination of these two types of S-FEM as Selective S-

FEM is used to remove volumetric locking in the analysis of the nearly 

incompressible solids. The detailed implementations of FS-FEM, NS-FEM and 

Selective S-FEM can be found in [35]. 

In this work, the explicit time integration based on the central difference 

algorithm is employed to obtain the transient dynamics solutions of the nonlinear 

solids [43]. The well-known equation of motion is given in the following form:  



 

 
, ,s s s ext s int

IJ Ji Ii IiM a f f   (9) 

subject to the boundary conditions. Here, s

IJM  is the entry of the lumped mass 

matrix, ,s ext

Iif  is the external force vector in the standard FEM form, ,s int

Iif  is the 

internal force vector, defined in the total Lagrangian formulation as  

 
0

, 0

, .
s

s int s s

Ii I j jif P d


    (10) 

If FEM is employed, ,s int

Iif  is calculated following the standard FEM procedure. 

In S-FEM, ,s int

Iif  is evaluated based on the smoothed derivatives of the shape 

function (see [34, 35] for details).  

In this research, two types of nonlinear elastic materials are employed in the 

numerical examples. One is the isotropic Saint Venant-Kirchhoff elastic material 

with the following strain energy density function, 

    2 21
tr tr

2
   E E E  (11) 

where E  is the Green strain tensor, and   and   are the Lamé constants of 

the linearized theory. The second type is the nearly incompressible Mooney-

Rivlin hyperelastic material, defined by the following strain energy density 

function, 

      10 1 01 2

1
3 3 1

2
A I A I J        (12) 

where 
10A  and 

01A  are the material constants,   is the bulk modulus, 

1/3

1 1 3I I I
  and 2/3

2 1 3I I I
 . Here, 

1I , 
2I  and 

3I  are the three invariants of the 

right Cauchy-Green deformation tensor C , and J is the determinant of the 

deformation gradient F . For the nearly incompressible materials some special 

techniques should be adopted to remove volumetric locking, such as selective 

reduced integration (SRI) in FEM or Selective S-FEM. If 
01 0A  , the description 

in Eq.(12) is reduced to Neo-Hookean description. 

Using the explicit time integration based on the central difference method 

[43], we provide the following flowchart to perform the dynamics analysis of the 

nonlinear solids. 

 



 

Flowchart 1: Explicit dynamics analysis for nonlinear solids 

(1) Loop over all the solid elements, and compute 0 s

I
 
and 

0

,

s

I i  at the initial 

configuration. 

(2) Compute the lumped mass matrix s

IJM . 

(3) Set up the I.C., 0 s

Iiv , 
0 s

IijP , 0 s

Iiu , and   0t    with the time step number 

0  . 

(4) Compute the external force 1 ,s ext

If
  . 

(5) Call the subroutine Solid_ExDyna_3D( 1 ,, , , , , ,s s s s s ext

Ii Ii Ii IJ Iit u v a M f
     ) . 

(5.1) Compute the (smoothed) internal force ,s int

Iif
 , and the residual force 

1 1 , ,s s ext s int

Ii Ii Iif f f
     . 

(5.2) Compute the nodal acceleration 1 1s s

Ii IJ Iia M f
    . 

(5.3) Partially update the nodal velocity 1/2 / 2s s s

Ii Ii Iiv v t a
      . 

(5.4) Apply the velocity boundary conditions, and update the nodal 

displacement 1 1/2s s s

Ii Ii Iiu u t v
      . 

(5.5) Compute the internal force 1 ,s int

Iif
  , and the residual force 

1 1 , 1 ,s s ext s int

Ii Ii Iif f f
       . 

(5.6) Compute the nodal acceleration 1 1 1s s

Ii IJ Iia M f
     . 

(5.7) Update the nodal velocity, 1 1/2 1 / 2s s s

Ii Ii Iiv v t a
       . 

(5.8) Return  1 s

Iiu
  , 1 s

Iiv
  , 1 s

Iia
   to the main routine . 

(6) Update the solid nodal variables 1s s

Ii Iiu u
   , 1s s

Ii Iiv v
   , 1s s

Ii Iia a
   , 

1   , t t t  . Go to Step(4) and continue with the next time step. 

 

3. Brief Review of CBS method for incompressible 

viscous fluid flow 

The conservation form of Navier-Stokes (N-S) equations for the 

incompressible viscous fluid flow are given as follows 
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where f f f

i iV v . Here, P.B.C. denotes the pressure boundary condition. f  is 

the fluid density, f  is the fluid dynamic viscosity, f

iv  is the fluid velocity, 

f
p  is the fluid pressure, 

ig  is the acceleration of gravity, and 
f

ijT  is the 

deviatoric stresses. The superscript f  on the right denotes the fluid. The fluid 

problem is solved based on the Eulerian mesh, hence the nodes of the fluid mesh 

are fixed with the coordinates f

ix .  

The Galerkin procedure based on the semi-implicit form of CBS method [41, 

42] is employed to solve the incompressible viscous fluid flow. For the sake of 

simplicity only the fully-discrete equations are provided here (see [41, 42] for the 

detailed derivations). A set of finite element mesh using T4 elements with f

nN  

nodes and f

eleN  elements is used to discretize the fluid domain f . The 

coordinates of the fluid nodes are denoted by  1f f

I nI to Nx . The primitive 

unknown variables, the fluid velocity f

iv  and the pressure f
p , can be 

interpolated by the following standard FEM procedure 

 ;f f f f f f

i I Ii I I

I I

v v p p
         (14) 

where f

I  is the shape function of the fluid node I . Using the above spatial 

discretization, the time discretization based on the CBS algorithm leads to the 

following three steps to calculate the fluid velocity and pressure at the new time 

 1t   . 

 

Step 1: On the intermediate momentum calculation 
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Step 2: On the pressure calculation 
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Step 3: On the momentum correction 
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i

f
f f J

IJi I f

i

d
x

G d
x








  







 (18) 

The mass matrix f

IJM  in the above equations is lumped. Under Step 2, the 

iteration scheme, the Preconditioned Conjugate Gradient (PCG) scheme, is 

employed to solve Eq.(16). The invariant matrices f

IJH  and f

IJM  are assembled 

only once at the beginning. The right hand sides under Step 1 and Step 3, denoted 

by * f

IiRHS  and 1 f

IiRHS
  , respectively, will be used in the calculation of the FSI 

forces. The above semi-implicit CBS algorithm is conditionally stable, and the 

critical time step t  can be determined accordingly [42, 44]. The flowchart to 

calculate the incompressible viscous fluid flow is given below. 

 

Flowchart 2: CBS for incompressible viscous fluid 

(1) Loop over all the fluid elements, and compute f

I  and /f f

I ix  . 

(2) Compute the lumped mass matrix f

IJM  and the matrix f

IJH . 

(3) Set up I.C., 0 f

Iiv , 0 f

Iip ,   0t   , and the time step number 0  . 

(4) Call subroutine Fluid_CBS_3D( , t , f

Iiv
 , f

Iip
 , f

IJM , f

IJH ,  1 f f

vbc Iig v
  ) . 

(4.1) Compute * f

Jiv  using Eq.(15). 



 

(4.2) Apply the P.B.C., and obtain 1 f

Jp
   using Eq.(16) . 

(4.3) Use Eq.(17) and apply V.B.C.  1 f

vbc Iig v
 

  to  get 1 f

Jiv
  . 

(4.4) Return 1 f

Jiv
   and 1 f

Ip
   to the main routine. 

(5) Update 1f f

Ii Iiv v
   , 1f f

I Ip p
   , 1    and t t t  . Go to Step(4) 

and continue with the next time step. 

 

4. Immersed S-FEM for Fluid-Structure Interaction 

4.1 Governing equations and FSI conditions 

In this work, the 3D FSI problem involves a deformable nonlinear solid body 

immersed within the incompressible viscous fluid. As illustrated in Fig. 3, firstly 

we assume that the fluid always exists everywhere in the fluid domain f . The 

solid domain s  is always completely immersed inside f . The sub-domain 

of f  overlapping the solid domain s  is denoted by fs s     with a 

closed fluid-structure interface fs s    . Obviously, this FSI problem consists 

of a fluid and a solid part. These two parts are coupled by additional FSI 

conditions. The FSI conditions in this research are introduced based on the 

following assumption: the fluid particles residing in fs are bound to the solid 

particles, i.e., the motions of the fluid particles in fs  are identical to the 

motions of the bound solid particles. This assumption is presented by the FSI 

velocity condition in Eq.(19). The mentioned assumption indicates the non-slip 

condition at the fluid-structure interface. The FSI forcing condition in Eq.(19) 

reveals that, when the solid and fluid particles in fs  are constrained to satisfy 

the first equation of Eq.(19), a pair of interacting forces, ,s FSI

if  and ,f FSI

if , 

appear and are applied on the solid and fluid particles, respectively. 

Overall, the governing equations for the FSI problems comprise three parts: 

(1) the governing equations for the fluid flow given by Eq.(13); (2) the governing 

equation for the solid given by Eq.(1); (3) the FSI conditions given as follows .  

 

, ,

FSI velocity condition: for ;

FSI forcing condition: for .

f s fs

i i

s FSI f FSI fs

i i

v v

f f

 

  

FSI conditions

x

x

 (19) 



 

The solution scheme for the IS-FEM is composed of three main modules: (1) 

solving the fluid problem with the FSI conditions; (2) solving the solid problem 

with the FSI conditions; and (3) identify the FSI conditions. The key point is to 

identify and implement the FSI conditions in Eq.(19) properly and accurately. In 

the proposed IS-FEM, the FSI velocity condition is imposed on the fluid particles 

in fs , and the corresponding FSI forcing condition is applied as the external 

force acting on the solid particles. The FSI velocity condition can be achieved 

straightforwardly from the solid velocity field. However, the FSI forces have to be 

determined carefully. Below shows the detailed algorithm to advance the 

solutions at the next time step 1   from the time step  . 

In the formulations, the fluid problem is solved in the whole fluid domain 

including the overlapping domain fs , with the proper B.C., I.C. and FSI 

conditions. Similarly, under the given I.C., B.C. and the proper FSI conditions, the 

motion and deformation of the nonlinear solid body are calculated taking into 

account simultaneously the interactions with the fluid.  

The fluid domain f  and the solid domain s  are discretized by two 

different sets of meshes, respectively. The fluid problem is solved using Eulerian 

mesh, and the solid problem is solved using Lagrangian mesh. These two sets of 

meshes are not required to coincide. It is also not necessary to adopt the same type 

of the element. In this work, only the simplest linear element, 4-node tetrahedral 

(T4) element, is employed for the 3D simulations. 

To establish the solution procedure of IS-FEM in the following sub-sections, 

firstly we assume that, at the time  t  , the status of the fluid and solid are 

already known, i.e., f

Iiv
 , f

Ip
 , s

Iiv
 , s

Iia
 , s

Iiu
 , and the FSI force ,s FSI

Iif
  are 

known variables. At the initial stage 0  , all these variables can be given as the 

initial conditions. The boundary conditions for the solid and fluid problems 

expressed in Eq.(1) and Eq.(13) apart from the fluid-structure interaction, are 

satisfied by default without special indication in this section.  

 

4.2 Solving the solid problem with FSI forcing condition 

We start the FSI analysis by solving for the motion and deformation of the 

solid in terms of the known nodal values s

Iiv
 , s

Iia
 , and s

Iiu


 at the time step  . 



 

The nodal FSI forces ,s FSI

Iif
  are computed from the fluid status f

Iiv
  and f

Ip


 

at the time step   (see details in the subsection 4.4), and assembled to the total 

external force as follows 

 
1 , 1 , , .s ext s ext s FSI

Ii Ii Iif f f
      (20) 

Applying the total external force 1 ,s ext

Iif
   on the solid nodes, and calling the 

subroutine Solid_ExDyna_3D in the Flowchart 1, one can solve for the solid 

variables 1n s

Iiv
 , 1n s

Iia
 , and 1n s

Iiu
 . And the configuration s  of the solid is then 

transformed to 1 s   . The overlapping domain fs  is transformed to 

1 1fs s     , as plotted in Fig. 3(a) 

 

4.3 Identifying FSI velocity condition and solving fluid problem 

As the outcome of the subsection 4.2, the nodal velocities n s

Iiv  and 1n s

Iiv
  are 

known for all the solid nodes. Because the fluid and solid meshes usually do not 

coincide, the FSI velocity condition for f s fs

i iv v x  can not be imposed on 

the fluid nodes 1f fs

I

  x  directly. Hence, data fitting techniques have to be 

employed to map the solid velocity field to the fluid nodes. One of the most 

frequently used tools is the discretized Dirac delta function in IB methods [13, 

14], and the similar procedure using meshfree approximation [21]. In this work, a 

simple linear interpolation scheme with the help of the fluid and solid FEM 

meshes is utilized, which has been reported in [23].  

To implement the FEM interpolation, a search algorithm has to be carried out 

to find which solid element at the configuration 1 s    covers the fluid node 

1f fs

I

  x  of interest. Due to the motion and deformation of the solid body, this 

searching procedure has to be carried out at every time step after the new 

configuration 1 s    is obtained. After searching, for every fluid node 

1f fs

I

  x  , one can find a corresponding solid element covering it. One should 

note that one solid element may cover more than one fluid node. Suppose a solid 

element with the nodes 1 s

I

  x , 1 s

J

  x , 1 s

K

  x , and 1 s

L

  x  is found to be covering 

the fluid node 1f n fs

I

 x  of interest, as shown in Fig. 3(b). The solid velocity 



 

field can be interpolated to this fluid node so as to obtain the velocity 1 ˆ fs

Iiv
   as 

follows 

    1 1 1 1 1

, , ,

ˆ for fs s f s f fs

Ii a I ai I

a I J K L

v v
        



    x x  (21) 

where  1 1s f

a I

   x  is the FEM shape function at the configuration 1 s   . The 

FSI velocity condition can then be identified, and imposed on the fluid nodes 

1f n fs

I

 x  in the following form 

  1 1 1 1ˆ 0 , .f f f fs f fs

FSI Ii Ii Ii Ig v v v
          x  (22) 

Appending  1n f f

FSI Iig v
  to  1n f f

vbc Iig v
  leads to the following modified fluid 

V.B.C: 

  1 1 1 1 1 1 1ˆ: ,   and  , .f f f f f f f fs f fs

vbc FSI Ii Ii Ii I v Ji Ji Jg v v v v v
                x x (23) 

Simply replacing  1 f f

vbc Iig v
   by  1 f f

vbc FSI Iig v
   in the call on the 

subroutine Fluid_CBS_3D in the Flowchart 2, the fluid status will be updated. The 

results of this step are the fluid velocity 1 f

Iiv
   which satisfies the fluid V.B.C. 

and the FSI velocity condition, and the fluid pressure 1n f

Ip
  which satisfies the 

fluid P.B.C.  

 

4.4 Identifying FSI forcing condition 

The scheme to calculate the FSI forces acting on the fluid and solid particles 

is similar to the direct forcing method [15] or the first-order temporal differencing 

method [16]. As described in Section 4.2, the FSI velocity condition is directly 

imposed on the fluid nodes. However, if the Navier-Stokes equations are solved 

without the FSI velocity condition  1 f f

FSI Iig v
  , i.e., the fluid particles 

1f fs  x  are not bound to the corresponding solid particles, the CBS 

procedure will lead to the nodal fluid velocities 1 f

Iiv
  , which can be written in the 

following form in terms of Eq.(17) 

 

1
1 .

f f
f fJi Ji

IJ Ii

v v
M RHS

t

 








 (24) 



 

In the subsection 4.3, the nodal fluid velocities solved satisfying the FSI 

velocity condition are 1 f

Iiv
  . On the fluid nodes 1f fs

I

  x , one may note that 

1 f

Iiv
   are different from the 1 f

Iiv
  . Suppose the nodal force 1 ,f FSI

Iif
   is applied 

on each of the fluid nodes 1f fs

I

  x  so as to introduce a velocity increment 

f

Jiv  thereby enabling the 1 f

Jiv
   to take on 1 f

Iiv
 

,(as illustrated in Fig. 3(c)), we 

have 

  1 1 1 .f f f f fs

Ii Ii Ii Iv v v
       x  (25) 

Furthermore, the change of f

Iiv
  to 1 f

Iiv
   can be viewed as the result of the 

nodal forces 1 f

IiF
   acting on the fluid nodes 1f fs

I

  x  through the period 

from ( )t   to ( 1)t   , as provided in the following form 

  
1

1 1for .
f f

f f f fsJi Ji
IJ Ii I

v v
M F

t

 
 


 

  


x  (26) 

Substitution of Eq.(24) and Eq.(25) into Eq.(26) yields  

 

   
11

1 1 , 1for .

f f ff f
Ji Ji Jif f f f FSI f fsJi Ji

IJ IJ Ii Ii I

v v vv v
M M RHS f

t t

  
  


  

 
    

 
x

 (27) 

Next, one can recast the above equation considering Eq.(15) and Eq.(17) as 

 

1
1 , 1

1
* 1 .

f f
f FSI f fJi Ji

Ii IJ Ii

f f
f f f fJi Ji

IJ Ii IJi J

v v
f M RHS

t

v v
M RHS G p

t

 
 

 



 





 




  


 (28) 

According to the FSI forcing condition, the FSI forces as applied on the solid can 

be obtained by 1 , 1 ,s FSI f FSI

i if f
    . However, because the solid mesh usually 

does not coincide with the fluid mesh, the FSI force 1 ,s FSI

if
   can not be directly 

achieved by the integrations in Eq.(18) on the fluid mesh.  

Note the assumption that the fluid particles are bound to the solid particles, so 

that each solid node 1 s

I

  x  carries one fictitious fluid node 1 1fc s

I I

  x x . 

Naturally, these fictitious fluid nodes can be used to construct a mesh coinciding 

with the solid mesh, so called the fictitious fluid mesh. The fictitious nodes and 

fictitious fluid mesh defined on the fictitious fluid domain 1 fc    are illustrated 

in Fig. 3(d). All these fictitious fluid particles possess the fluid properties, velocity 



 

and pressure. Due to the FSI velocity condition, the nodal velocities 1 fc

Iiv
   of 

these fictitious fluid nodes 1 fc

I

  x  can be immediately obtained via 

  1 1 1 1;fc s fc s fc s

Ii Ii Ii Ii I Iv v v v
          x x  (29) 

A search process is invoked to find the fluid element covering the fictitious fluid 

node 1 fc

I

  x  of interest for obtaining the value of the fluid pressure field on these 

fictitious fluid nodes. Suppose the fluid element with the nodes 1 f

I

  x , 1 f

J

  x , 

1 f

K

  x , and 1 f

L

  x  is found which covers the fictitious fluid node 1 fc

I

  x  of 

interest, one can perform the following interpolation to calculate the pressure 

value on the fictitious fluid node fc

Ix  

  1

, , ,

fc f fc f

I a I a

a I J K L

p p
  



  x  (30) 

where  1f fc

a I

  x  is the shape function of the fluid element. It is worth noting 

that, the fictitious fluid mesh is not featured in the calculations for the fluid part as 

outlined in the subsection 4.5, and is only used to perform the FEM interpolation 

and to evaluate the following numerical integration.  

The FSI force 1 ,s FSI

Iif
   can be evaluated on the fictitious fluid mesh, as 

follows  
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1

1
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1

1
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j
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



 T
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1

1
.

fc

fc

fc fc

j J fc

Jifc fc

k j

fc
fc fcJ
I Jfc

i

v
v d

x x

p d
x


















 


 


  







(31) 

The gradient of the velocity /fc fc

i jv x
   and the spatial derivatives of the shape 

function /fc fc

I ix
    need to be updated at the current configuration 1 fc   , 

and the integrations are computed numerically using the fictitious fluid mesh.  

Strictly, the components of the FSI force in Eq.(31) are equivalent to the 

drag and lift forces applied on the solid immersed in the fluid. Neglecting the 



 

second order term of t  on the right hand side of Eq.(31), one can recast Eq.(31) 

in terms of the divergence theorem 

 

 
,

.

j is FSI i I
Ii I I ij I

j j i

i
I I i i I ij j I i

v vv p
f d d d d

t x x x

v
d v n d n d pn d

t

 

 

   

   

  
        

   


         



   

   

T

T
 

(32) 

The summing up of the nodal forces ,s FSI

Iif  yields the following which are 

the same as the drag and lift forces found in [45] often used in CFD,  

 
, , .s FSI s FSI i

i Ii i i ij j i

I

v
f f d v n d n d pn d

t
 

   


      

    T  (33) 

 

4.5 Solution procedure for IS-FEM 

Following the detailed discussions in the above subsections, the overall 

procedure for 3D IS-FEM is presented below. 

 

Flowchart 3: 3D IS-FEM for FSI problems 

(1) Initialization: Discretize the fluid domain f  and solid domain 0 s  at 

initial configuration; compute 0 s

I , 
0

,

s

I i , f

I , ,

f

I i , the lumped the mass 

matrices s

IJM , f

IJM  , fc s

IJ IJM M and the matrix f

IJH . 

(2) Set up the I.C.: for fluid, 0 f

Iiv  and 0 f

Iip ; for solid, 0 s

Iiv  and 0 s

IijP ; and the 

initial FSI force 0 ,s FSI

Iif . 

(3) Set the time step counter 0   and   0t    . 

(4) Calculate  
1 , 1 , ,s ext s ext s FSI

Ii Ii Iif f f
      . 

(5) Call the subroutine Solid_ExDyna_3D( 
1 ,, , , , , ,s s s s s ext

Ii Ii Ii IJ Iit u v a M f
     ) and 

obtain 1 s

Iiu
  , 1 s

Iiv
  , and 1 s

Iia
  . Update the coordinates of solid nodes as 

1 1s s s

Ii Ii Iix x u
     . 

(6) Calculate 1 ˆ f

Iiv
   for 1f fs

I

  x  via the FEM interpolation in Eq.(21). 

(7) Construct the new modified fluid V.B.C.  1 f f

vbc FSI Iig v
   in Eq.(23) . 

(8) Call the subroutine Fluid_CBS_3D( , t , f

Iiv
 , f

Iip
 , f

IJM , f

IJH ,

 1 f f

vbc FSI Iig v
  ) and obtain 

1 f

Iiv
   and 1 f

Ip
  . 

(9) Call the subroutine FSI_Force_3D( 1 s

Iix
  , 1 s

Iiv
  , 1 fc

Ip
  ). 



 

(9.1) Update the coordinates of fictitious fluid node 1 1fc s

Ii Iix x
   ;  

(9.2) Calculate 
1

,

fc

I i

   . 

(9.3) Get the nodal fluid velocities at fictitious fluid nodes 1 1fc s

Ii Iiv v
   , 

fc s

Ii Iiv v
  . 

(9.4) Calculate 1 fc

Ip
   via the FEM interpolation in Eq.(30). 

(9.5) Calculate 1 ,s FSI

Iif
   using Eq.(31), and return to the main routine. 

(10) Update the variables: 1f f

Ii Iiv v
   , 1f f

I Ip p
   , 1s s

Ii Iiu u
   , 1s s

Ii Iiv v
   , 

1s s

Ii Iia a
   , , 1 ,f FSI f FSI

Ii Iif f
   , 1s s

Ii Iix x
   , 1   ,    t t t   ; go 

to Step. (6) and continue with the next time step. 

 

In the solution procedure, both the CBS for the fluid part and the explicit time 

integration for the solid part are conditionally stable, so the time step t  has to 

be chosen carefully. The critical time step 
crt  is determined by 

crt 

 min ,s f

cr crt t  . The s

crt is the critical time step for the solid problem, 

determined by the size of solid elements and material properties (see details in 

[43]). The CBS method in [41, 42] provides the means to determine the critical 

time step f

crt . In this research, the constant time step is used which satisfies 

cr
t t   . 

Previous works on Finite Element Immersed Boundary Method have reported 

that the ratio /f s
h h  between the Eulerian fluid mesh size f

h  and Lagrangian 

solid mesh size s
h  can affect the stability of IB method [22, 46]. There is also a 

suggestion that the size of the fluid mesh should not be too small compared to the 

solid mesh in order to prevent any unphysical “leaking” phenomenon [20, 23] in 

IFEM. In the proposed 2D IS-FEM [25], the effect of the ratio /f s
h h  is 

investigated numerically, which clearly demonstrates no numerical artifact is 

observed even for very fine fluid mesh used, and the stability fairly independent 

of a wide range of the mesh size ratio is assured. In the 3D IS-FEM, the numerical 

examples in Section 5 also demonstrate the stability of the 3D IS-FEM is not 

affected by the ratio /f s
h h  for a wide range similar to the 2D IS-FEM. In the 

3D IS-FEM, there is no strict limitation to /f s
h h , which is usually selected to be 

0.25 to 2.0.  



 

Another common numerical issue is the incompressibility constraint of the 

solid. Some numerical methods require computational expensive volume 

correction algorithms [23]. For the IS-FEM using volumetric-locking-free 

Selective S-FEM, there is no additional volume correction operation required to 

satisfy the incompressibility constraint, because it is able to solve the physical 

deformation of the nearly-incompressible solids in terms of the constitutive law. If 

the solid material is compressible, the IS-FEM using FS-FEM for 3D or ES-FEM 

for 2D also works for the cases with small strains or small volume changes such 

as beam bending problem. 

 

5. Numerical Examples 

5.1 Piston in a tunnel with incompressible viscous fluid (Example 5.1) 

A solid piston moving inside a tunnel with a square cross section is analyzed 

in this example, as illustrated in Fig. 4. The geometry parameters of the fluid and 

solid domains are given by a=0.5m, b=2m, d=0.5m. At the initial position of the 

piston, l=0.1m. The properties of the incompressible viscous fluid are 

31.0 kg/mf   and 0.1Pa sf   . The solid piston is modeled as St. Venant 

material with the following properties: the density 3 31.0 10 kg/ms   , Young’s 

modulus 6E 1.0 10 Pas    and Poisson’s ratio 0.3s  . The deformation of the 

piston is very small; hence, the piston can be viewed as a “rigid” body. The fluid 

and solid domains are discretized using irregular T4 elements, as plotted in Fig. 4. 

In order to study the convergence properties of 3D IS-FEM in space, the fluid 

domain is discretized by a series of meshes as tabulated in Table 1.  

 

Table 1 Meshes for Example 5.1 

 Meshes for fluid Meshes for solid 

 MS(1) MS(2) MS(3) MS(4) MS(i) MS(ii) 

nd
N  2745 10956 43754 182819 1383 135 

ele
N  12674 56844 239925 1040793 6081 400 

h  1/16 1/24 1/40 1/64 h/24 h/8 

nd
N : number of nodes; 

ele
N : number of elements; h : average element size 

 



 

The solid piston is forced to move inside the fluid tunnel along the 
2x  

direction with a constant velocity 
2

s
v . Consequently, a laminar fluid flow will be 

induced due to the motion of the solid piston. The I.C. and B.C. for the fluid and 

solid piston are given as follows.  

V.B.C. for fluid: slip boundary condition on 1 0f
x  , 1

f
x a , 3 0f

x   and 3

f
x a

;  

P.B.C. for fluid: 0f
p   on 2 0f

x   and 2

f
x b ;  

I.C. for fluid: 0 0f

iv  ,  1,2,3i  .  

V.B.C. for solid: 1 0s
v  , 3 0s

v   and 2 2.0 m/ss
v   on 1 0s

x  , 1

s
x a , 3 0s

x   

and 3

s
x a .  

I.C. for solid: 0 0s

iv  ,  1,2,3i  . 

Under the above boundary and initial conditions, the exact velocity solution 

of the fluid flow can be determined as 1 3 0f f
v v   and 2 2.0m/sf

v  . Using the 

proposed IS-FEM procedure and the standard FEM discretization for the fluid and 

solid parts, one can easily solve this simple 3D FSI problem and implement the 

convergence and accuracy studies. Fig. 5 shows the contour plots of the velocity 

component 2

f
v  and the pressure f

p  with the streamlines on the slice surfaces 

1 / 2f
x a  and 3 / 2f

x a  at the time 0.6st  . The streamlines and the velocity 

contour plots clearly show the stable laminar flow solved using different 

combinations of the solid and fluid meshes.  

Notably, Fig. 5(b) shows that, when using quite small mesh size ratio 

/ 1/ 8f s
h h  , the proposed IS-FEM still works well and can produce the stable 

fluid velocity and pressure solutions with no numerical artifact and unphysical 

oscillations observed.  

The spatial convergence and accuracy studies are carried out in virtue of the 

errors in the fluid velocity and pressure solutions. The L2 error norms 
ve  and pe

 

in the fluid velocity and pressure solutions are defined by 

    2 2

1 1

; .
DOF ndN N

num ref num ref

v i i p i i

I I

e v v e p p
 

      (34) 



 

In this example, the reference solution ref

iv  is given by the exact solution. All the 

errors are calculated at the time 0.6st  .  

Fig. 6 shows that the convergence rates for the fluid velocity solutions are 

1.88 using the finer solid mesh MS(i) and 1.84 using the coarser solid mesh 

MS(ii), and the convergence rates for the fluid pressure solutions are 1.86 using 

the finer solid mesh MS(i) and 1.80 using the coarser solid mesh MS(ii).The 

convergence rates are very close to the theoretical convergence rate 2.0. One can 

clearly observe that the coarse solid mesh degrades the convergence rate and the 

computation accuracy. 

 

5.2 3D lid-driven cavity flow with a hyperelastic solid wall (Example 

5.2) 

A 3D lid-driven cavity fluid flow with an incompressible hyperelastic solid 

wall is analyzed in this example as illustrated in Fig. 7. The length and the height 

of the fluid domain are 2.0l m , and the thickness is 0.2b m . The solid wall is 

located at the bottom surface of the fluid domain, with the length 2.0l m , the 

thickness 0.2b m  and the height 0.5a m . The properties of the fluid are 

given as 31.0f
kg m    and   1

0.2f
kg m s   . In this example, the 

constitutive model of the solid wall is set to be the incompressible neo-Hookean 

material, with the material constant   1
2

10 0.1A kg m s


  , 
01 0A   and 0  .  

This example has been solved in 2D cases under plane strain condition as a 

benchmark problem to examine the interactions between the incompressible 

viscous fluid and the hyperelastic nonlinear solid, using immersed-type methods 

and the ALE method [23, 25, 47]. In order to compare the 3D solution with the 

reported 2D plane strain solution, the proper boundary conditions for the fluid and 

solid should be enforced. Under the following boundary conditions, the 3D 

solution in the 
1 2x x  plane is comparable with the 2D plane strain solution.  

V.B.C. for fluid: 1 2 3, 0f f f
v v v v    on the top lid surface 

2x l ; non-slip 

conditions on four surfaces 
1 0x  , 

1x a , and 
2 0x  ; and 3 0f

v   on two 

surfaces 
3 0x   and 

3x b .The fluid lid velocity v  is defined as follows in 



 

order to remove the singularities at the left-top and right-top corners of the fluid 

field, 

 

   
 

    

2

1 1

1

2

1 1

sin / 0.6 0.0, 0.3

1.0 0.3,1.7

sin 2.0 / 0.6 1.7, 2.0

x x

v x

x x





 


 
  

 (35) 

P.B.C. for fluid: 0f
p   on the line  3/ 2, 0,l x . 

I.C. for fluid: 0f

iv   and 0f
p   at the time 0t  . 

V.B.C. for solid:  0 1,2,3s

iv i  on four surfaces 
1 0x  , 

1x a , and 
2 0x  ; 

and 3 0s
v   on two surfaces 

3 0x   and 
3x b . 

I.C. for solid: 0s

iv   and 0f
p   at the time 0t  . 

Both the fluid and solid domains are discretized irregularly using T4 

elements, as illustrated in Fig. 7. Several sets of the fluid and solid meshes are 

employed for the spatial convergence and accuracy studies, as listed in Table 2. 

The deformation of the solid wall is analyzed using Selective S-FEM. The cavity 

fluid flow driven by the moving lid produces the FSI force applied on the top 

surface of the solid wall and causes the soft solid wall to deform largely. The 

deformation continues until the steady state is reached where the FSI force and the 

internal force of the solid are in balance. In this example, the FSI system is 

considered to have reached the steady state if the kinematics energy of the solid 

wall is 
2

410n s

i
v

 . The fluid velocity and pressure fields and the deformed 

mesh of the solid are visualized in Fig. 8. The velocity amplitude is calculated by 

 1/2
2 2 2

1 2 3v v v v   . Fig. 8 evidently shows the fluid solutions calculated using the 

coarser fluid and solid meshes still agree reasonably well with those using finer 

meshes. In particular, the employment of much finer fluid mesh than solid mesh, 

i.e., the mesh size ratio /f s
h h  is at very small value of 1/10  ( see Fig. 8(c)), 

the proposed method is still quite stable and does not lead to numerical artifact 

solution. No unphysical velocity and pressure solutions are observed, which has 

been reported in [23]. 

 

Table 2 Meshes for Example 5.2 

 Meshes for fluid Meshes for solid 



 

 MS(1) MS(2) MS(3) MS(4) MS(5) MS(6) MS(7) MS(i) MS(ii) 

ndN  1392 4603 7626 9413 13172 18416 218636 240 1083 

h  l / 20 l / 30 l / 36 l / 40 l / 44 l / 50 l / 160 l / 16 l / 30 

ndN : number of nodes; eleN : number of elements; h : average element size 

 

Under the properly prescribed boundary conditions, the motions of the fluid 

and solid particles remain mainly in the 
1 2x x  plane, depicted by the iso-surfaces 

of the fluid velocity at the values 0.05 /v m s , 0.20 /v m s  and 0.25 /v m s  

in Fig. 8. The planar motions of the fluid and solid particles satisfy essentially the 

plane strain assumption. As such, the solutions in this 3D FSI problem can be 

compared with the referenced 2D FSI problem under plane strain condition. The 

comparisons are shown in Fig. 9 with the 2D reference solutions found in the 

references [23, 25, 47], respectively. The profiles of the 3D FSI solutions at the 

steady state are given by the nodes located on the slice surface 
3 / 2x b . There is 

a good agreement between the 2D and 3D FSI solutions. 

Spatial convergence studies are carried out using the solid mesh MS(ii) and 

the fluid meshes MS(k), (k = 1 to 6). The L2 error norms in the fluid velocity and 

pressure solutions are given in Fig. 10. The reference solutions ref

iv  and ref
p  in 

Eq.(34) are computed using the very fine fluid mesh MS(7) and the solid mesh 

MS(ii). In as much as the fluid and solid meshes are all irregular meshes, the 

nodal solutions of the fluid velocity and pressure on the meshes MS(k), (k = 1 to 

6) are obtained by the linear interpolations from the reference nodal solutions on 

MS(7). The spatial convergence rate for the fluid velocity and pressure solutions 

are 1.85 and 1.61.  

 

5.3 Sphere falling inside fluid under gravity (Example 5.3) 

A solid sphere falling under the gravity inside a cylinder tank filled with 

incompressible viscous fluid is analyzed in this example. The sphere starts falling 

from the state of rest under the gravity force. During the falling process, the FSI 

force is applied on the sphere, including buoyant force, viscous force and others. 

The sphere accelerates from the initial rest state due to the imbalance between the 

gravity and FSI forces. As the velocity increases, the FSI force becomes larger 



 

and larger and finally balances the gravity force leading to the terminal settling 

velocity v . 

In this example, the diameter of the solid sphere is given as D  and the 

diameter of the cylinder tank is 5D. The height of the tank is H , as shown in Fig. 

11. The values of D  and H  are given in Table 3. The fluid is the water at 

25℃ , with the properties: 997.13f  3
kg m

  and 48.91 10f     1
kg m s

 . 

Three experiments with different solid spheres are tested, and the corresponding 

material properties and sizes are tabulated in the Table 3. The terminal settling 

velocities for the three cases have been reported in experiments [48]. In terms of 

the experimental data, the Reynolds number can be determined according to the 

falling velocity and the diameter D . In both the experiment and numerical 

simulation, the fluid in the tank is initially unperturbed and in hydrostatic state. 

The Young’s modulus and Poisson ratio of the spheres in the three numerical 

simulations are given as   1
4 21 10s

E kg m s


    and 0.3s  . The 

deformations of the solid spheres are very small, so the spheres can be viewed as 

essentially “rigid”. Therefore this, for all practical purposes, becomes a fluid-

particle interaction (FPI) problem. Much has been accomplished in computation 

for FPI problems during the period 1996-2001. Reference [49] reported the first 

3D finite element FPI computation, where the number of particles ranged from 2 

to 5, and particle-particle interactions (collisions) were taken into account. The 

reference [50] reported the 3D computations with the number of particles reaching 

100 for the first time, and reference [51] reported the 3D computations where the 

number of particles reached 1000 for the first time. Reference [52] is where 

methods were introduced for FPI computations in spatially-periodic 3D domains, 

results were reported with the number of particles reaching 128, and an extensive 

study was presented focusing on the number particle needed in a periodic cell. 

The initial distance between the center of the spheres and the top surface of 

the tank is set at 2D. The boundary and initial conditions are given as follows: 

V.B.C for fluid:  0 1,2,3f

iv i   on all surfaces of the tank (e.g., non-slip 

condition); 

P.B.C for fluid: 0f
p   on the surface 

3 0x  ; 

I.C. for fluid:  0 1,2,3f

iv i  ; 

V.B.C for solid: no velocity boundary conditions are applied; 



 

I.C. for solid:  0 1,2,3f

iv i  . 

The acceleration of the gravity is 29.8g m s
  . 

 

Table 3 Experimental set-up of sphere falling inside the fluid medium under 

gravity 

 

 

Density 
s   

3( )kg m
  

Diameter 

D (m) 

Height of 

tank 

H (m)
 

Settling 

velocity 

v  

Reynolds Number 

 Re /f f
vD   

Case 

#1 
2560 45 10  10D 0.0741 41 

Case 

#2 
7670 32 10  30D 0.636 1400 

Case 

#3 
7700 34 10  30D 0.973 4300 

 

For the Case #1, the cylindrical fluid domain and the solid sphere are 

discretized using two sets of fluid and solid meshes: MS(1) irregular T4 meshes 

with 56248  nodes for the fluid and 514 nodes for the solid, as shown in Fig. 11; 

MS(2) irregular T4 meshes with 185329 nodes for the fluid and 1534 nodes for 

the solid. The Case #2 and Case #3 employ MS(3) : irregular T4 meshes with 

367461 nodes for the fluid and 1534 nodes for the solid. 

The results of the numerical simulations are visualized in Fig. 12 and Fig. 13 

. Fig. 12 shows the snapshots of the iso-surfaces of the fluid velocity component 

zv  at the values of 0.01 /
z

v m s  , 0.2 /
z

v m s   and 0.2 /
z

v m s   for the 

three cases, respectively.  Fig. 13 plots the contours of the fluid velocity 

component 
zv  and the fluid pressure on the slice plane 0x   at the settling 

stage. For Case #1, the maximum Reynolds number at the settling stage is a small 

value at Re 41 . As such, the fluid flow around the sphere always remains 

axisymmetric about the vertical axis passing through the center of the sphere. In 

this case, the trajectory is vertical and produces a stable wake flow, which can be 

clearly observed in Fig. 12(a) and Fig. 13(a). The pressure contour plots in Fig. 

13(a) clearly show that, in Case#1 the movement of the sphere only perturbs the 

fluid hydrostatic pressure field slightly in the regions near the solid sphere. In the 

far-zone of the wake region the fluid pressure field still retains the characteristics 

of the hydrostatic pressure. The Reynolds numbers for Case #2 and Case #3 at the 

settling stage are relatively larger at Re = 1400 and Re = 4300, respectively. In the 



 

short period after the sphere begins falling, due to the small falling velocity the 

instantaneous Reynolds number is small. Hence, the fluid flow around the sphere 

in the wake region is fairly axisymmetric, as shown in the Fig. 12(b) at 0.06t s

and Fig. 12(c) at 0.08t s , respectively. Once the falling velocity and the 

associated Reynolds number increase to sufficiently large values, the fluid wake 

flow becomes unsteady and cannot keep to the axisymmetric behavior, as 

illustrated in Fig. 12(b) and Fig. 12(c). One can observe that at the settling stage 

the wake flow of Case #3 as shown in Fig. 12(c) and Fig. 13(c) is more unsteady 

than that of Case #2 as depicted in Fig. 12(b) and Fig. 13(b). This is attributed to 

the much higher Reynolds number at the settling stage for Case #3. The pressure 

fields for Case #2 and Case #3, as depicted in Fig. 13(b, c), are significantly 

disturbed. 

The histories of the average velocity zv  of the solid sphere are compared 

with the experimental results in Fig. 14. The figure shows that for all the three 

cases the terminal settling velocities achieved by the numerical simulations 

display good agreements with the experimental results when fine meshes are used. 

It clearly demonstrates that the proposed IS-FEM scheme provides the valid FSI 

force, which is in final equilibrium with the gravity force.  

5.4 Flow passing a cylinder with a flexible flag (Example 5.4) 

In two dimensional FSI analysis, a benchmark FSI problem of a cylinder with 

a flexible flag in the downstream side is often used to verify the numerical FSI 

scheme [53, 54]. In this example, this benchmark is extended to three dimensions 

as illustrated in Fig. 15. The fluid domain is a cuboid channel with the geometry 

parameters given as: 2.5L m , 0.02W m  and 0.41H m . The geometry 

parameters of the solid cylinder and flag are: 0.05w m , 0.35l m  and 

0.02h m . The location of the cylinder is determined by 0.2c m . The inflow 

velocity  f
v t  is prescribed at the left surface 

1 0x   with the following 

parabolic profile   

  
 

  2

2 2

1 cos / 2
2.0

where 1.5 / ( / 2) .2

2.0

f

t
v t

v t v Ux H x H

v t


  

 

(36) 

The mean inflow velocity is U  when the inflow is steady after about 2.0t s . 



 

Using the same geometric model of the fluid and solid domains, three cases 

examined in [53] are tested in this example with the different solid material 

properties and inflow velocity, as tabulated in Table 4. 

Table 4 Problem set-ups for Example 5.4 

Parameter FSI-1 FSI-2 FSI-3 
3 310s
kg m   1 10 1 
s  0.4 0.4 0.4 

  1
6 210s
kg m s


  0.5 0.5 2.0 

3 310f
kg m   1 1 1 

  1f
kg m s   1 1 1 

1
U m s

  0.2 1 2 

Re 2 /f f
rU   20 100 200 

 

The calculation starts at the rest state of the fluid and solid for all the cases. 

And the boundary conditions are prescribed as follows: 

V.B.C. for fluid:  1 2 3, 0s f s s
v v t v v

      at 
1 0x  ;  0 1,2,3s

iv i
    at 

2 0x   and 
2x H ; 3 0s

v
   at 

3 0x   and 2x W ; 

P.B.C. for fluid: 0f
p

   at 
1x L ; 

V.B.C. for solid:  if    2 2

1 2x c x c r    . 

The fluid domain is discretized by the irregular T4 mesh with 145344 nodes 

and the solid domain is discretized by the irregular T4 meshes with 2084 nodes. 

The average mesh size for the solid flag is approximately / 4s
h h , and the 

average mesh size for the fluid domain in the vicinity of the flag is / 8f
h h  as 

shown in Fig. 15. FS-FEM-T3 is employed for analyzing the large deformation of 

the flexible flag. The displacement solution at the point A  0.6,0.2,0.01  on the 

right tip of the flag is measured and compared with the reported reference 

solutions. 

Due to the low Reynolds number Re 20  for the case FSI-1, it finally 

results in a steady state solution. At the steady state the FSI force applied on the 

deformed flag are in balance with the internal force, and 
s

yu  of the point A takes 

on a constant value 
48.314 10s

yu m
  , which agrees very well with the reference 

solution 
48.209 10s

yu m
   [53]. The contour of the fluid pressure field with 

 0 1,2,3s

iv i
  



 

streamlines at the steady state is plotted in Fig. 16. The Reynolds number of the 

case FSI-2 is Re=100, hence, the system settles into a large-amplitude self-excited 

oscillation following the initial transient quiescent period. The oscillating flag 

produces a regular vortex pattern that is advected along the channel, which is 

shown in Fig. 17. Fig. 17(a) provides the snapshots of the pressure contour with 

instantaneous streamlines in one period of the flag oscillation. The vertical tip 

displacement at point A in is 0.001s

yu  0.083 m , fairly comparable with the 

reference solution 0.00123 0.0806s

yu m  . The histories of 
s

yu  at the point A 

are given in Fig. 17(b). The period of the oscillation is 0.52T s . The case FSI-3 

with Re=200 also develops a periodically oscillating fluid flow with regular 

vortex pattern similar to the case FSI-2, shown in Fig. 18. The period of the FSI-3 

is approximately 0.19T s . The vertical tip displacement at point A is 

0.001 0.036s

yu m  , agreeing well with the reference solution 

0.00148 0.03438s

yu m  .  

 

7. Conclusions 

In this work, 3D FSI problems are successfully solved by the proposed 

Immersed Smoothed Finite Element Method (IS-FEM). The IS-FEM is a kind of 

partitioned approach, consisting of three main modules: semi-implicit Galerkin 

procedure based on Characteristic-based Split (CBS) scheme for the transient 

incompressible viscous flows; Smoothed Finite Element Methods (S-FEM) using 

explicit time integration for dynamics analysis of the nonlinear solids; immersed 

methodology for evaluating fluid-structure interactions based on a set of novel 

Lagrangian fictitious fluid mesh. The Lagrangian fictitious fluid mesh coincides 

with the moving solid mesh, in which the geometry information can be naturally 

achieved with ease. The method is implemented via the simplest 4-node 

tetrahedral element, which has advantages in simple pre-processing, adaptive 

analysis and convenient data exchange of the velocity and pressure fields between 

the Eulerian fluid mesh and the Lagrangian solid mesh. Numerical examples are 

compared with the reported reference numerical and experimental results leading 

to the following conclusions: 



 

(1) The moving boundary in the fluid flow can be tracked without any 

difficulty using the immersed methodology in 3D IS-FEM. No sophisticated re-

meshing is required.  

(2) Good agreements with the published reference numerical and 

experimental results verify the validity and accuracy of the 3D IS-FEM. 

(3) IS-FEM possesses the second order convergence rate for the fluid velocity 

and pressure in space, which arise from the Galerkin procedures of CBS and S-

FEM schemes. 

(4) No reported “leaking” phenomena and unphysical solutions are observed 

while employing both coarse and fine fluid mesh. The stability of 3D IS-FEM is 

not affected for a wide range of the size ratio (up to / 1/10f s
h h   is examined 

in this research). 

(5) It is worthy to note that the calculation of FSI force only needs the fluid 

pressure being interpolated, and the implementation of the nodal FSI velocity 

condition can be interpolated easily from the solid velocity field. All these 

interpolations are performed by simple linear interpolation based on T4 element.  

(6) The proposed operations in Section 4 are general algorithms, and provide 

possibility and flexibility for users to choose other fluid solvers, e.g., Finite 

Volume method (FVM) and Finite Difference Method (FDM), and so on. 
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Fig. 1 Conceptual illustrations of two types of methods for solving FSI problems: (a) the fluid-

structure interfaces always coinciding with fluid mesh or grid; (b) the fluid-structure interfaces 

immersed inside the fluid mesh or grid 

  



 

 

 

 

Fig. 2 Illustrations of the smoothing domains for S-FEM: (a) non-overlapping smoothing domain; 

(b) face-based smoothing domain for FS-FEM-T4; (c) node-based smoothing domain for NS-

FEM-T4 

 

 

 

  



 

 

Fig. 3 Procedure for the IS-FEM to solve FSI problems from the time step   to the time 

step 1  : (a) solve the solid problem and update the solid configuration, (b) obtain the 

velocity of fluid nodes 1f fs

I

  x  by FEM interpolation, (c) solve the fluid problem 

with FSI velocity condition, (d) illustration of fictitious fluid mesh and fictitious fluid 

nodes. ○: solid nodes; ■: fluid nodes; ●: fictitious fluid nodes 

  



 

 

 

 

Fig. 4 Example 5.1: a moving piston in a tunnel. Left: Fluid domain and T4 mesh for solid piston; 

right: T4 mesh for the fluid domain 

  



 

 

 

 

Fig. 5 Results for Example 5.1: contour plots of the fluid velocity component and pressure with 

streamlines on the slice surfaces at the time t=0.6s solved using meshes (a) MS(3) and MS(ii) and 

(b) MS(4) and MS(i) 

  



 

 

 

 

Fig. 6 Spatial convergence properties based on Example 5.1 for (a) fluid velocity solution and (b) 

pressure solution (c : convergence rate; h: average element size)  

 

 

 

  



 

 

Fig. 7 Example 5.2: 3D lid-driven cavity flow with a hyperelastic solid wall 

  



 

 

 

 

Fig. 8 Results for Example 5.2 solved using meshes: (a) MS(3) and MS(i); (b) MS(3) and MS(ii); 

(c) MS(7) and MS(i); (d) MS(7) and MS(ii) (top row: slice contour plots of the fluid velocity 

amplitude; mid row: slice contour plots of the fluid pressure; bottom row: iso-surfaces of the fluid 

velocity at 0.05m/s, 0.2m/s and 0.25m/s) 

  



 

 

 

Fig. 9 Profiles of the deformed hyperelastic wall solved using different meshes 

 

  



 

 

 

 

Fig. 10 Spatial convergence properties of Example 5.2 in (a) fluid velocity solutions and (b) 

pressure solutions ( h: average element size) 

  



 

 

 

 

Fig. 11 Example 5.3: sphere falling inside the fluid medium under gravity (only T4 mesh for half 

of the fluid domain is plotted) 

  



 

 

Fig. 12 Results for Example 5.3. Snapshots of iso-surfaces of 
zv : (a) 

zv =-0.01m/s for Case #1; 

(b) 
zv = -0.2m/s for Case #2; (c) 

zv = -0.2m/s for Case #3 

  



 

 

 

Fig. 13 Results for Example 5.3. Snapshots of contours of the fluid velocity 
zv  (top row) and the 

fluid pressure (bottom row) in the slice plane 0x   : (a) Case #1; (b) Case #2; (c) Case #3 

 



 

 

Fig. 14 History of the falling velocity 
zv  (a) Case #1; (b) Case #2; (c) Case #3 

  



 

 

 

Fig. 15 Example 5.4: fluid flow past a cylinder with a flag 

 

  



 

 

 

Fig. 16 Results for Example 5.4 (case FSI-1): the contour plots of the fluid pressure and 

streamlines on the slice 3 / 2x W  at the steady state 

  



 

 

 

 

Fig. 17 Results for Example 5.4 (case FSI-2) (a) snapshots of the fluid pressure contours and 

streamlines on the slice 3 / 2x W ; (b) history of displacement component of the point A 

  



 

 

 

Fig. 18 Results for Example 5.4 (case FSI-3) (a) snapshots of the fluid pressure contours and 

streamlines on the slice 3 / 2x W ; (b) history of displacement component of the point A 

 


