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1 INTRODUCTION

Three dimensional modelling of crack initiation and propagation still poses
essential difficulties, especially when crack path continuity should be en-
forced. In two dimensions, the crack is simply a line and propagation is just
the extension of this line. In three dimensions, we are dealing with a crack
surface that can be concave or convex. The crack surface can be represented
by segments or by other methods such as level sets. It is still a difficult task
to propagate the crack front in three dimensional space and many assump-
tions have to be made. Another difficulty is to model crack junctions if crack
path continuity should be guaranteed. In computational fracture dynamics,
for instance, the crack path tends to look rather erratic if no smoothing pro-
cedure is used. In finite elements, patch recovery techniques of Zienkiewicz
and Zhu type [56] is typically employed. Although the smoother shape func-
tions1 available to meshfree methods meet less difficulties, a smoothing of the
crack normal guarantees that the kinks in the crack path are less severe. If
such severe kinks remain, it is very difficult to maintain crack path continuity
without considering the joining of cracks in the background cells.

Crack branching that often occurs under dynamic loading conditions, Liu
et al. [31], is another challenging point in fracture mechanics, especially in
3D, and only few results are available.

There are very few approaches so far in the literature that can handle
arbitrary crack propagation in three dimensions and preserve crack path
continuity at the same time. One of the first methods that can handle arbi-
trary crack propagation in three dimensions was developed by Martha et al.
[36] in a finite element context. Many methods are restricted to planar crack
growth and linear elastic fracture mechanics (LEFM) or were applied only
for such cases. The methods of Xu and Ortiz [53], Xu et al. [52] and Galdos
[20], for instance, are models that can handle planar three dimensional cracks
for elastostatics.

Cervenka [13] proposed a method to model cracks in three dimensional
solids based on a fracture mechanics concept. For linear elastic fracture me-
chanics, Moes et al. [38] and Gravouil et al. [22] published two subsequent
papers how to treat arbitrary non-planar three dimensional cracks in the ex-
tended finite element method (XFEM). The crack surface was represented
smoothly and traced with level sets. They showed for several examples im-
pressive results. Bordas [10] used XFEM for damage tolerance analysis of
complex industrial structures by three dimensional crack propagation in the
LEFM context as well. Lo et al. [34]; Chopp and Sukumar [15] presented
interesting methods for multiple planar cracks in three dimension for LEFM.

Areias and Belytschko [3] employed XFEM to model three dimensional
cohesive crack initiation and propagation for non-linear materials. The crack
was represented by triangles. A similar approach was pursued by Gasser and
Holzapfel [21] within the partition of unity method (PUFEM). Though rea-
sonable results were presented, they did not enforce crack path continuity in
general but across certain lines. Simkins and Li [48] proposed a very inter-
esting technique to describe the crack surface using the parametric visibility

1 higher order of continuity
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criterion [30] and a splitting particle technique. In their method, no particles
have to be added around the crack tip such that “remeshing” and the associ-
ated mapping from the old to the new mesh can be avoided. Recently, Oliver
et al. [42] compared embedded elements and the XFEM for three dimensional
crack problems, which showed that embedded elements can give results very
comparable to the XFEM.

The only articles (according to the knowledge of the authors) that de-
scribe the application of the element-free Galerkin method to three dimen-
sional crack problems are the papers by Krysl and Belytschko [27]; Sukumar
et al. [49] and Duflot [19]. In all three papers, the visibility or the diffraction
method was used to trace the crack. While the two latter papers deal with
LEFM cracks in statics, the first paper by Krysl and Belytschko [27] proposes
a general method in elastodynamics.

We propose a simple method to model three dimensional crack initiation
and crack growth in meshfree methods when crack path continuity is desired.
Loss of hyperbolicity or Rankine criterion is chosen as transition criteria
to the discontinuity. The direction of the crack is given by a discontinuous
bifurcation analysis and completely arbitrary. When a crack advances, i.e.
when the crack front is updated, it is restricted to advance through an entire
background integration cell. The update of the crack front at each time step
is therefore governed by the size of the background integration cells ahead
of the crack front. The piecewise-continuous crack front is comprised of line
segments that always lie on the edges of the tetrahedral background cells.
From the above, we see that the crack interior is represented by piecewise
continuous planar segments, each of which is always a cross section of one
of the tetrahedral background cells. To help guarantee crack path continuity
of a propagating crack front, we smooth the crack normal obtained from the
localization analysis.

When a Gauß point loses material stability, a crack initiates (and prop-
agates). The radius of the penny-shaped crack initiation is governed by the
domain of influence of the node that is the closest to the Gauß point. The
crack is introduced through all the background cells that are covered by the
domain of influence of that node. We use a near-front enrichment function
to ensure crack closure at the crack front and use adaptivity to improve
the accuracy around the crack front. Though we do not need to remesh, a
certain refinement around the crack tip is needed to get adequate results.
This was already noted by Bordas [10]; Bordas and Moran [11] and Gasser
and Holzapfel [21] who modelled fracture of concrete in three dimensions.
Therefore, we use h-adaptivity and add nodes around the crack tip. The use
of hp-adaptivity would also be possible. Applications of hp-adaptivity and
practical implementations of hp-adaptive techniques can be found in Monk
[39]; L. and Demkovicz [28]; Demkovicz and Vardapetyan [17]; Rachowicz
and Demkovicz [46, 47].

We have developed a technique for meshfree methods which enables us
to initiate and propagate cracks arbitrarily through three-dimensional space,
based on material stability criteria and treat crack junction of not only two
previously initiated cracks but also two “simultaneously” initiating cracks.
Our method is different from the above mentioned methods in several ways.
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First, most methods described above do not consider crack initiation but
only the propagation of a pre-given crack. For instance, in finite elements, it is
very difficult or impossible to close the crack front within a single element, see
Bellec and Dolbow [6]. In contrast to most other methods mentioned above,
we use a crack tip enrichment to close the crack at the crack front. This is
a by-product of meshfree methods due to strongly overlapping domains of
shape functions and has the advantage that accuracy can be significantly
improved for certain classes of problems, e.g. in LEFM. The tip enrichment
vanishes on the crack front and thus enables the crack to close exactly along
the crack front. The minimal “radius”2 of a newly initiating crack is the size
of the domain of influence of the closest particle to the crack surface.

Second, as hinted at above, our technique treats crack junctions in three
dimensions within a single background cell, which is an essential feature of
the method, making it flexible, versatile, and robust.

Third, we use adaptivity for a better accuracy around the crack tip. Adap-
tivity is also advantageous for crack initiation, since the crack radius of newly
initiated cracks is significantly smaller, and to enforce crack path continuity
since a better resolution of the crack front can be achieved.

We would also like to mention that the crack propagation algorithm is
closely related to the cracking criteria used. We use loss of material stability
criterion where the orientation of the crack is uniquely determined by the
bifurcation analysis. With this method, it can happen that severe changes in
the crack orientation occur along a crack front, thereby requiring a very fine
mesh to ensure complete crack path continuity. The aforementioned methods
do not treat this case naturally. One type of methods described above does
not enforce crack path continuity completely, e.g. only at certain lines that
can lead to locking and a mesh orientation bias. The other type of methods
are able to enforce crack path continuity completely but they have to ignore
the normal obtained from the bifurcation analysis, since a triangular plane
segment is uniquely determined once two of its edges are defined. In this
case, the order in which cracking happens becomes also important. Again,
this is problematic for curved crack fronts where the crack orientation differs
severely. We overcome this difficulty with adaptivity that provides a fine
resolution around the crack tip and by smoothing the crack normals. In the
examples we have shown here, this was sufficient. However, we have also
tested examples with highly curved cracks where we encountered difficulties.
We have found that different crack segments maintain the correct normal
depending on the order in which background cells crack. With increasing
mesh refinement, these difficulties are alleviated.

The paper is arranged as follows: we first describe the crack kinematics
and the approximation of the displacement field. In the following section, we

2 A crack is described by a set of contiguous piecewise linear plane segments
composed of the sections of tetrahedral background cells with the cracking plane.
Moreover, the crack front is a set of piecewise linear line segments in three dimen-
sions, composed of the trace of this plane on the faces of the background cells.
Consequently, a “penny” crack is only an approximation of a disk, whose accuracy
is dictated by the refinement of the refinement of the background integration mesh.
This characteristic can be seen in Figure 7, and is revisited in the body of the
article.
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give the governing equations and derive the discrete equations. We briefly
review the constitutive models used for the uncracked continuum part and
explain crack initiation/propagation criteria, the cohesive law and some im-
plementational aspects. We finally apply the method to several static and
dynamic examples that are compared to experimental data or other results
from the literature, and close with some conclusions and future work options.

2 APPROXIMATION OF THE DISPLACEMENT FIELD

In the remainder of the paper, a node or particle is a point carrying the
primary field variables. We will use the term localization analysis and dis-

continuous bifurcation analysis interchangeably. The term background cell

refers to the integration cells used for integration of the weak form. In the
implementation, we chose to put a node on all vertices of all background
cells, but this is by no means a requirement. Shape functions are built by
the Moving Least Squares method (MLS), and a cubic B-spline is used as a
weight function.

The basic idea is the decomposition of the displacement field into a con-
tinuous part û and discontinuous part ũ:

u = û + ũ (1)

û(X) =
∑

I∈W(X)

ΦI(X) uI (2)

ũ(X) =
∑

I∈Wb(X)

ΦI(X) H̄(fI(X)) aI +
∑

I∈Ws(X)

ΦI(X)
∑

K

B̄K(X) bKI (3)

with

H̄(fI(X)) = H(f(X)) − H(f(XI))

B̄K(X) = B (X) − B (XK) (4)

where ΦI(X) are the shape functions, H and B are the enrichment functions
explained later, f is the signed distance function, W(X) are all the nodes
in the entire domain and Wb(X), Ws(X) are the nodes whose domains of
influence are completely and partially cut by a crack as shown in figure 1,
respectively. We use the element-free Galerkin method with linear complete
shape functions; for further details see e.g. Rabczuk et al. [45]; Belytschko
et al. [8]; Liu et al. [33, 32]. The test functions have the same structure.

û in eq. (2) is the usual approximation, the first and the second terms on
the RHS of Equation (3) are the enrichment. The array of coefficients a and
b, are additional unknowns introduced to represent the discontinuity across
the crack faces and the asymptotic stress state approaching the crack tip,
respectively. H(f(XI)) depends on the signed distance function f(XI) and
is defined as:

H(f(XI)) = 1 if f(XI) > 0

H(f(XI)) = −1 if f(XI) < 0 (5)



6

(a) Definition of the crack tip coordinate sys-
tem for the two dimensional case. Particles’
domains of influence may be partially or com-
pletely cut by the crack.

x3

crack front Λc

x1

x2

x

r

θ

(b) Definition of the crack front coordinate systems for the three
dimensional case

Fig. 1 Crack with partially and completely cut particle’s domain of influence
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with

f(XI) =

{

sign[n · (XI − X)]min ‖XI − X‖, for XI ∈ Wb

n · (Xtip − XI), for XI ∈ Ws
(6)

where Xtip are the coordinates of a point on the crack front and n is the crack
normal. Only nodes in Wb(X) are enriched with the additional unknowns a.
The third term of equation (3) is applied around the crack front Ws(X). Note
that we employed a shifting in Equation (4), denoted by the superimposed
bar, to make the enriched region narrower. We know from experiments that
for cohesive cracks B has the form

B =

{

rm sin
θ

2

}

m ≥ 1 (7)

where r is the minimum distance of X to the crack front and θ(X) =
sin−1 (f/r) (X) is the angle between the tangent to the crack surface and
the segment X − Xtip, see Figure 1.

Remark : since the branch function above vanishes on the crack front,
where r = 0, the approximation is such that the jump in displacement [[u]] is
zero on the front, i.e. the crack is closed.

Remark : since sin θ
2 is discontinuous when the angle θ changes from

π to −π, the branch function in Equation 7 used for the front nodes is
compatible with the discontinuous function H̄ used for the interior nodes,
thereby ensuring that the discontinuity is preserved at the front-enriched
nodes.

The crack can be represented by different techniques, e.g level sets in
Moes et al. [37]; Ventura et al. [51]; Belytschko et al. [9]. However, we do
not see any advantage of using level sets and represent the crack explicitly
with plane crack surfaces that cross an entire background cell. The signed
distance f is computed with respect to these crack surfaces.

When two cracks are joining, the crack tip enrichment is removed for the
fronts which disappear in the merging. By using the signed distance functions
of the pre-existing and approaching crack, the signed distance function of the
approaching crack is modified, see figure 2. Three different subdomains have
to be considered: (f1 < 0, f2 < 0), (f1 > 0, f2 > 0), (f1 > 0, f2 < 0) as in
figure 2b or (f1 > 0, f2 < 0), (f1 > 0, f2 > 0), (f1 < 0, f2 < 0) as in figure
2d. The signed distance function of crack 1 of a point X is then obtained by

f1(X) =

{

f0
1 (X), if f0

2 (X1) f0
2 (X) > 0

f0
2 (X), if f0

2 (X1) f0
2 (X) < 0

(8)

in which the superscript 0 stands for the function before junction, [55]. The
final approximation without the cross term reads:

u(X) =
∑

I∈W(X)

ΦI(X) uI +

nc
∑

n=1

∑

I∈Wb(X)

ΦI(X) H̄(f
(n)
I (X)) a

(n)
I

+

mt
∑

m=1

∑

I∈Ws(X)

ΦI(X)
∑

K

B̄
(m)
K (X) b

(m)
KI (9)
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Fig. 2 Sign functions for crack junction

where nc and mt are, respectively, the number of cracks that completely or
partially cross the domain of influence of the corresponding particle. The test
functions have the same structure.

We use the element-free Galerkin method with linear complete shape
functions of the form:

ΦI(X) = p(X)T A(X)−1 D(XI) (10)

A(X) =
∑

I

p(XI)p
T (XI)W (X − XI , h) (11)

D(XI) = p(XI)W (X − XI , h) (12)

where p = (1,X, Y, Z) are linear complete base polynomials, W is the kernel
function, and h is the size of the domain of influence, also called dilation
parameter.

3 GOVERNING EQUATIONS

The problem statement is given in Figure 3.
The strong form of the momentum equation in the updated Lagrangian

description is given by

̺ ü = ∇ · σ + ̺ b in Ω \ Γ c (13)

with boundary conditions:

u(X, t) = ū(X, t) on Γ u (14)
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tc

Γ c+

Γ c−

Γ u

Ω
y

b

x

z

Fig. 3 Problem statement for multiple crack initiation and propagation in three-
dimensional space. The + and − faces of the cracks are represented. Note that
the cracks are represented by the union of contiguous triangular and quadrangular
planar segments: the section of the tetrahedral background cells by the cracking
plane.

n · σ(X, t) = t̄(X, t) on Γ t (15)

n · σ− = −n · σ+ = tc on Γ c (16)

where ̺ is the current mass density, ü is the acceleration, σ are the Cauchy
stresses3 , b designates the body force, ū and t̄ are the prescribed displace-
ment and traction, respectively, n is the outward normal to the domain and
Γu

⋃

Γ t
⋃

Γ c = Γ , (Γu
⋂

Γ t)
⋃

(Γ t
⋂

Γ c)
⋃

(Γ c
⋂

Γu) = Ø. Moreover, we
assume that the stresses σ at the crack surface Γ c are bounded. Since the
stresses are not well defined on the crack, the crack surface Γ c is excluded
from domain Ω which is considered an open set. Refer to Figure 3 for a
graphical representation.

4 THE DISCRETE MOMENTUM EQUATION

In the equations below, the superscripts u, a, and b denote the standard,
discontinuous and near-tip parts respectively. In the matrix operators, when

3 the superscripts + and − designate the face of the crack under consideration,
as shown in Figure 3
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mixed terms appear, they are noted, for instance ua, meaning “mixed standard-
discontinuous term”. The subscripts int and ext stand for internal and ex-
ternal forces, respectively. Upper-case indices such as I, J denote degree of
freedom numbers.

The weak form of the momentum equation is given by

δW = δWint − δWext + δWkin = 0 (17)

where

δWint =

∫

Ω\Γ c

(∇⊗ δu) : σ dΩ (18)

δWext =

∫

Ω\Γ c

̺ δu · b dΩ +

∫

Γ t

δu · t̄ dΓ +

∫

Γ c

[[δu]] · tc dΓ (19)

δWkin =

∫

Ω\Γ c

̺ δu · ü dΩ (20)

Substituting the test and trial functions into eqs. (18) to (20), we obtain

δWkin =
∑

I

δuI

∑

J

∫

Ω\Γ c

̺ ΦI(X) · ΦJ (X) dΩ üJ

+
∑

I

δuI

∑

J

∑

n

∫

Ω\Γ c

̺ ΦI(X) · ΦJ(X) H̄(f
(n)
J (X)) dΩ ä

(n)
J

+
∑

I

δuI

∑

J

∑

m

∫

Ω\Γ c

̺ ΦI(X) · ΦJ(X) B̄
(m)
K dΩ b̈

(m)
KJ

+
∑

I

∑

n

δa
(n)
I

∑

J

∫

Ω\Γ c

̺
[

ΦI(X) H̄(f
(n)
I (X))

]

· ΦJ(X) dΩ üJ

+
∑

I

∑

n

δa
(n)
I

∑

J

∑

N

∫

Ω\Γ c

̺
[

ΦI(X) H̄(f
(n)
I (X))

]

·
[

ΦJ(X) H̄(f
(N)
J (X))

]

dΩ ä
(N)
J

+
∑

I

∑

n

δa
(n)
I

∑

J

∑

m

∫

Ω\Γ c

̺
[

ΦI(X) H̄(f
(n)
I (X))

]

·
[

ΦJ(X) B̄
(m)
K

]

dΩ b̈
(m)
KJ

+
∑

I

∑

m

δb
(m)
RI

∑

J

∫

Ω\Γ c

̺
[

ΦI(X) B̄
(m)
R

]

· ΦJ(X) dΩ üJ

+
∑

I

∑

m

δb
(m)
RI

∑

J

∑

n

∫

Ω\Γ c

̺
[

ΦI(X) B̄
(m)
R

]

·
[

ΦJ(X) H̄(f
(n)
J (X))

]

dΩ ä
(n)
J

+
∑

I

∑

m

δb
(m)
RI

∑

J

∑

M

∫

Ω\Γ c

̺
[

ΦI(X) B̄
(m)
R

]

·
[

ΦJ(X) B̄
(M)
K

]

dΩ b̈
(M)
KJ (21)

δWint =
∑

I

δuI

∫

Ω\Γ c

∇ΦI(X) · σ dΩ

+
∑

I

∑

n

δa
(n)
I

∫

Ω\Γ c

[

∇ΦI(X) H̄(f
(n)
I (X)) + ∇H̄(f

(n)
I (X)) ΦI(X)

]

· σ dΩ
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+
∑

I

∑

m

δb
(m)
KI

∫

Ω\Γ c

[

∇ΦI(X) B̄
(m)
K + ∇B̄

(m)
K ΦI(X)

]

· σ dΩ (22)

δWext =
∑

I

δuI

∫

Ω\Γ c

̺ ΦI(X) · b dΩ

+
∑

I

δuI

∫

Γ t

ΦI(X) · t̄ dΓ

+
∑

I

∑

n

δa
(n)
I

∫

Ω\Γ c

̺
[

ΦI(X) H̄(f
(n)
I (X))

]

· b dΩ

+
∑

I

∑

n

δa
(n)
I

∫

Γ t

[

ΦI(X) H̄(f
(n)
I (X))

]

· t̄ dΓ

+
∑

I

∑

m

δb
(m)
KI

∫

Ω\Γ c

̺
[

ΦI(X) B̄
(m)
K

]

· b dΩ

+
∑

I

∑

m

δb
(m)
KI

∫

Γ t

[

ΦI(X) B̄
(m)
K

]

· t̄ dΓ

+
∑

I

∑

n

∫

Γ c

[[δa
(n)
I

[

ΦI(X) H̄(f
(n)
I (X))

]

]] · tc dΓ

+
∑

I

∑

m

∫

Γ c

[[δb
(m)
KI

[

ΦI(X) B̄
(m)
K

]

]] · tc dΓ (23)

After some algebraic operations the final form of the equation of motion is

MIJ · üI = Fext
I − Fint

I (24)

with

MIJ =





muu
IJ mua

IJ mub
IJ

mau
IJ maa

IJ mab
IJ

mbu
IJ mba

IJ mbb
IJ



 (25)

üI =





üu
I

äI

b̈IK



 (26)

Fext
I =





f
u,ext
I

f
a,ext
I

f
b,ext
IK



 (27)

Fint
I =





f
u,int
I

f
a,int
I

f
b,int
IK



 (28)

with
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muu
IJ =

∫

Ω\Γ c

̺ ΦI(X) ΦJ(X) dΩ

mua
IJ =

∫

Ω\Γ c

̺ ΦI(X) ΦJ(X) H̄(f
(n)
I (X)) dΩ = mau

IJ

mub
IJ =

∫

Ω\Γ c

̺ ΦI(X) ΦJ(X) B̄
(m)
K dΩ = mbu

IJ

maa
IJ =

∫

Ω\Γ c

̺ ΦI(X) H̄(f
(n)
I (X)) ΦJ(X) H̄(f

(n)
I (X)) dΩ

mab
IJ =

∫

Ω\Γ c

̺ ΦI(X) H̄(f
(n)
I (X)) ΦJ(X) B̄

(m)
K dΩ = mba

IJ

mbb
IJ =

∫

Ω\Γ c

̺ ΦI(X) B̄
(m)
K ΦJ (X) B̄

(m)
K dΩ (29)

f
u,ext
I =

∫

Ω\Γ c

̺ b ΦI(X) dΩ +

∫

Γ t

t̄ ΦI(X) dΓ + f
u,cr
I

f
a,ext
I =

∫

Ω\Γ c

̺ b ΦI(X) H̄(f
(n)
I (X)) dΩ +

∫

Γ t

t̄ ΦI(X) H̄(f
(n)
I (X)) dΓ + f

a,cr
I

f
b,ext
I =

∫

Ω\Γ c

̺ b ΦI(X) B̄
(m)
K dΩ +

∫

Γ t

t̄ ΦI(X) B̄
(m)
K dΓ + f

b,cr
I (30)

f
u,int
I =

∫

Ω\Γ c

∇ΦI(X) · σ dΩ

f
a,int
I =

∫

Ω\Γ c

((

∇ΦI(X) H̄(f
(n)
I (X)) + ΦI(X) ∇H̄(f

(n)
I (X))

)

· σ
)

dΩ

f
b,int
IK =

∫

Ω\Γ c

((

∇ΦI(X) B̄
(m)
K + ΦI(X) ∇B̄

(m)
K

)

· σ
)

dΩ (31)

f
a,cr
I =

∫

Γ c
0

ΦI(X)[[H̄(f
(n)
I (X))]] tc dΓ

f
b,cr
I =

∫

Γ c
0

ΦI(X)[[B̄
(m)
K ]] tc dΓ (32)

Equation (25) is the consistent mass matrix. In Equation (31), the spatial
derivatives of H̄ vanish since the domain is considered as open set. The
cohesive forces are taken into account in the external forces, Equation (30).
Gauß quadrature is used to obtain the discrete equations where the nodes
are usually located on the vertices of the background cells (Figure 4).

The usual subtriangulation procedures are employed to accurately inte-
grate cracked background cells; see Figure 5 e.g. Bordas and Legay [12]; Bor-
das and Moran [11]. The crack is initiated and propagated through an entire
background cell, so that the crack front is composed of line segments lying
on the faces of background cells.
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Gauß point
Field node/particle

Fig. 4 Tetrahedral background cell, field nodes/particles, and Gauß points.

First subdivision into tetrahedra

Subdivision of the original cell

Second division of each tetrahedron:

Fig. 5 Decomposition of tetrahedra split by a discontinuity for accurate integration
of the weak form.

5 h-adaptive refinement

We use h-adaptivity to obtain a better resolution around the crack front.
A certain refinement around the crack tip is essential for the quality of the
results. Due to the lack of a mesh, meshfree methods are ideally suited for
adaptive procedures. Our adaptivity scheme is based on the estimation of
the approximation error. Other error estimators can be found e.g. in Monk
[40]; Beck et al. [5]; Houston et al. [24]. Areas with high strain gradients are
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1:4

1:8

Fig. 6 h-adaptive refinement strategy according to Loehner [35]

refined, see Rabczuk and Belytschko [44]. The new particles are added so
that they span a new tetrahedron, see Figure 6. New Gauß cells are created
such that the particles form these Gauß cells, Figure 6. All data is mapped
onto the new particle arrangement by Moving Least Squares (MLS) fit. The
refinement strategy for an unstructured particle arrangement is shown in
figure 6 according to Loehner [35]. We usually used the 1 : 8 refinement
because it yields tetrahedra with better aspect ratios. Note that we follow
the Devloo-Oden rule [18], so that too coarse a mesh never meets too fine a
mesh.

6 CONSTITUTIVE MODELS

6.1 Continuum Models

The stress in the domain except the crack surface is obtained from continuum
constitutive models. We use three constitutive models: Lemaitre’s damage
model, a neo-Hookean model and a Johnson-Cook plasticity model.
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For the Lemaitre [29] model, the stress-strain behavior is

σ = (1 − D) C0 : ǫ (33)

where D is a scalar damage variable which ranges from 0 to a maximum of 1
and C0 is the initial elasticity tensor. The damage evolution depends on the
effective strain ǭ:

D(ǭ) = 1 − (1 − A) ǫD0
ǭ−1 − A e−B(ǭ−ǫD0

) (34)

with

ǭ =

√

√

√

√

3
∑

i=1

ǫ2i H(ǫi) (35)

where ǫi are the principal strains and

H(x) = 1 if x > 0

H(x) = 0 if x < 0 (36)

A, B and ǫD0
are material parameters.

The neo-Hookian model is based on the following potential:

Ψ(C) = κ (lnJ)
2

+ 0.5ν
(

Ī1 − 3
)

(37)

with material parameters κ and ν, C = FT F is the right Cauchy-Green strain
tensor and Ī1 = trC̄ with C̄ = J−2/3C. For further details, see Gasser and
Holzapfel [21].

We also use the Johnson Cook [25] constitutive model with J2 plasticity.
The effective yield stress of the Johnson-Cook model is given by

σY = (A + Bγn) (1 + Clnǫ̇∗) (1 − T ∗) (38)

with material parameters A, B, C, ǫ̇∗ = ǫ̇/ǫ̇0 where ǫ is the effective plastic
strain and ǫ̇0 is the reference strain rate taken to be 1.0/s and

T ∗ =
T − Tr

Tm − Tr
(39)

where Tr is the reference temperature and Tm is the melting temperature.
We assume that the plastic deformation is completely transformed into heat,
so β = 1 for the temperature update:

∆T =

∫ γ

0

β

̺cv
σY dγ (40)

where cv is the specific heat and ̺ the current mass density.

6.2 Cohesive laws

The jump in the displacement is governed only by the enrichment and is
given by

[[u(X)]] = 2

nc
∑

n=1

∑

I∈Wb(X)

ΦI(X) qI +

mt
∑

m=1

∑

I∈Ws(X)

ΦI(X)
∑

K

[[B̄K(X)]] bKI(41)
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The normal part δn, i.e. the crack opening and the tangential part [[u(X)]]τ ,
the crack sliding, is given by

δn = [[u(X)]]n = n · [[u(X)]] (42)

δt = [[u(X)]]τ = ‖[[u(X)]] − ([[u(X)]] · n) n‖ (43)

We adopt the exponential cohesive law by Gasser and Holzapfel [21], that is
based on the following potential:

Ψ(i1, i4, δ) =
t0
2δ

exp
(

−aδb
)

(i4 + α(i1 − i4)) (44)

with i1 = I : (ũ ⊗ ũ) and i4 = (ũ ⊗ ũ) : (n ⊗ n) with material parameters
t0, a, b and α. With t = ∂Ψ

∂ũ
, the cohesive law reads

t =
t0
δ

exp
(

−aδb
)

(ũn + αũt) (45)

with ũn = nδn and ũt = δt
ũ−ũn

|ũ−ũn| . With the damage surface Φ(ũ, δ) =

||ũ|−δ|, the condition that the value of the internal variable is monotonically
increasing, δ = max[|ũ|]tt0 and the evolution of the internal variable δ:

δ̇ = | ˙̃u| (46)

the cohesive law is completely established. No interpenetration condition of
the crack surfaces is enforced by a penalty method.

Note that if δ = 0, t tends to zero. Therefore, we do not allow t to exceed
a certain threshold that is related to the uniaxial tensile strength.

7 Cracking algorithm

7.1 Crack initiation

For a rate-independent material, loss of hyperbolicity serves us as a criterion
for crack initiation. In the case of a rate-dependent material, the transition
criterion to discontinuum is governed by the same condition though we do not
talk about loss of hyperbolicty any more, since the equations are regularized.
Instead, the transition criterion is called loss of material stability. As shown
e.g. in Ogden [41], a material point loses stability if the minimum eigenvalue
of the acoustic tensor Q is smaller or equal to zero:

min eig(Q) ≤ 0 with Q = n · A · n (47)

where n is the normal to the crack surface when min eig(Q) ≤ 0 and A =
Ct +σ⊗ I where Ct is the tangent stiffness. For a Rankine material, a crack
is initiated when the principal tensile stress exceeds the tensile strength. The
crack is then normal to the direction of the principal tensile stress. Note that
the Rankine criterion is a special case of the loss of hyperbolicity condition
for mode I fracture.

The smoothed, non local crack normal used to determine the crack di-
rection at a given Gauß point is given by the normalized weighted average



17

influence of the closest particle
point with radius equal to the radius of
Sphere centered on the cracked Gauß

Gauß point where loss of material stability is detected (“cracked” Gauß point)

Closest particle (node) to “cracked” Gauß point

Actual crack front

Triangular and quadrangular elementary planar crack surfaces, located in the cracking plane

at Gauß point

Normal direction given by

the bifurcation analysis

Cracking plane, going through “cracked” Gauß point

n

Theoretical crack front of the penny shaped crack

Fig. 7 Representation of a penny-shaped crack as defined upon crack initiation.
Note that the crack is not exactly circular. h is the dilation parameter, i.e. the
diameter of the domain of influence of the particle closest to the Gauß point where
material instability is detected. Note that the normal, n is in fact an MLS average of
neighboring normals, themselves computed through the discontinuous bifurcation
analysis.

of the neighboring normals, where the weight functions are the MLS shape
functions:

nnon local =

∑

J∈S

ΦJ(X) nJ

∥

∥

∥

∥

∑

J∈S

ΦJ(X) nJ

∥

∥

∥

∥

, (48)

where S is the set of cells neighboring the cell of interest.
If loss of material stability is detected at a Gauß point, an “almost” –

this will be explained in the following– penny shaped crack is introduced.
We control the crack length, so that the radius of the newly initiated penny-
shaped crack is the interpolation radius of the closest particle. If a background
cell is crossed by the circle defined by the intersection of the ball of influence
of the closest particle and the cracking plane, the cell is assumed cracked.
This is illustrated in three dimensions in Figure 7 and, for clarity, in two
dimensions, in Figure 8. Possible intersections of a tetrahedron by the crack
plane are given in Figure 9a. Due to the fact that the entire background cell
is cracked, the crack will not be exactly penny shaped but will depend on
the arrangement of the background cells; as is evident in Figure 7. At this
point, it becomes obvious that crack initiation depends also on the size of the
tetrahedra background cell (and the meshfree dilation parameter). Accuracy
is improved significantly by adaptive refinement.

It may happen that several Gauß points lose material stability in a given
cell. In this case, the cracking plane is assumed to go through the iso-
barycenter of the cracked Gauß points, and the normal is taken as the average
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initiated “penny” crack

cracked cell

n

“cracked” Gauß point, where material instability is detected

particle (node) closest to “cracked” Gauß point

Fig. 8 Two-dimensional representation of a penny-shaped crack (here a line seg-
ment) as defined upon crack initiation. Note that the crack length is not exactly
equal to the radius of influence of the closest node, since all background cells that
are intersected by the crack segment are assumed completely cracked. h is the dila-
tion parameter, i.e. the diameter of the domain of influence of the particle closest
to the Gauß point where material instability is detected. Note that the normal, n
is in fact a MLS average of neighboring normals, themselves computed through the
discontinuous bifurcation analysis.

of the normals associated with each cracked Gauß point. An example of this
is shown in Figure 10. If the normals computed at the failing Gauß points
are too different, then, this is a sign that a crack is trying to branch in the
cell. However, in the examples we treated, this case never happened.

Note that the piecewise linear line used to define the front (tip) enrich-
ment functions is aligned with the edges of the background cells where the
crack front closes. A possible front is shown for illustration in Figure 11.
The union of the spherical enriched domains centered on points on the crack
front forms an enriched tube around the front. We found it advantageous
to place enriched nodes at the end of each crack front line. Difficulties arise
at sharp corners or kinks at the crack front, since a local coordinate system
cannot be defined uniquely at each of the vertices on the front. We use the
enrichment to the closest distance to the crack front and did not observe any
major difficulties. A smoothing of the crack front shape can alleviate these
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✄✄☎
☎

✆✆✝
✝

Particle

cell by the cracking plane

n

LEGEND

Cracked Gauß point

Closest particle to cracked Gauß point

Cracking plane passing through cracked Gauß point

h

Intersection of the domain of influence
with the section of the tetrahedral

(a) Triangular section

(b) Quadrangular section

Fig. 9 Elementary triangular and quadrangular sections of a tetrahedral cell by
the cracking plane, defined by its normal obtained by the bifurcation analysis.
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Gauß point
Cracked Gauß point
Iso-barycenter of cracked Gauß points

Plane in which the crack is introduced

Fig. 10 Crack initiation in the case of several cracked Gauß points in a given cell.

crack front segment

closest crack front point to the Gauß point

Gauß point where the enrichment is to be computed

enriched node

Γc, crack interior

Fig. 11 A possible piecewise linear crack front.

problems. Here, a smooth representation of the crack surface by level sets
or non-uniform rational B-splines (NURBS) can definitely be advantageous.
Another smooth-level set procedure is described by Duflot [19].

Another possible case is that of cracks initiating and joining simultane-
ously, as shown in Figures 12 and 13.
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with radius equal to the size of the domain of

GP2

GP1

influence of the particle closest to that Gauß point

Circle centered on the cracked Gauß point

initiated “penny” crack

n1

n2

particle (node) closest to “cracked” Gauß point

“cracked” Gauß point, where material instability is detected

(a) In simultaneous initiation and joining, this configuration is not allowed.

initiated “penny” crack

d2

d1 < d2

“cracked” Gauß point, where material instability is detected

particle (node) closest to “cracked” Gauß point

(b) Instead, the crack further from the failing Gauß point is cut at the intersection,
resulting in the configuration of Figure 13

Fig. 12 Two cracks initiating and joining simultaneously. All cells crossed by the
circle, and by the line with normal n and passing through the failed Gauß point
are considered cracked.
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crack cut at the intersection

crack kept

“cracked” Gauß point, where material instability is detected

particle (node) closest to “cracked” Gauß point

Fig. 13 Two cracks initiating and joining simultaneously, the one further from the
failed Gauß point is cut at the intersection with the other initiating crack.

7.2 Crack front propagation and crack junctions

A difficult task in three-dimensions is to trace the crack path, at least if crack
path continuity is desired. We propose a simple scheme to propagate and join
cracks in three dimensions; crack branching is not explicitly considered as e.g.
in Daux et al. [16] and Belytschko et al. [9].

Note, that crack path continuity cannot be ensured when the crack nor-
mals obtained by the discontinuous bifurcation analysis differ severely in
neighboring background cells. In this case, crack path continuity can gen-
erally be enforced only along certain lines and gaps might occur across the
faces of the background cells. Such gaps usually lead to a mesh dependency.
Other researchers choose to represent the crack path completely continu-
ously as described e.g in Areias and Belytschko [3]. However, if more than
one background cell neighboring a given cell of interest is cracked and crack
continuity is to be conserved (Figure 7.2), the crack direction in the cell of
interest is uniquely determined by the crack normals obtained in its neigh-
boring cells4. This direction might not coincide with that obtained through

4 Imagine a tetrahedron with two cracked neighbors. Since crack continuity is
to be fully preserved, the elementary planar crack segment in the tetrahedron of
interest must be contiguous with the crack segments of its neighbors.
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Crack interior Γ c

new crack front

old crack front

Fig. 14 Propagation of the crack front

the localization/bifurcation analysis in the cell of interest. It becomes appar-
ent that the results might then depend on the order in which background
cells crack. Consequently, enforcing “complete”5 crack path continuity might
lead to erroneous results if the crack direction of the localization analysis is
ignored. As mentioned above, a smoothing technique is usually sufficient to
avoid the need of such procedures. Remember that it is important to enforce
crack continuity, since methods that do not enforce crack path continuity
completely generally tend to lock and fail to reproduce the correct system
response.

There are two possible elemental planar crack surface shapes: triangular
and quadrangular, see Figure 9. When two cracks are joining, we assume the
propagating crack to stop at the intersection line, as outlined in Section 2
and depicted in Figure 16. In case two propagating or newly created cracks
are joining, we always stop the newly created crack and cut the crack at its
intersecting line. In rare cases, where two newly initiated cracks join in a
tetrahedral cell, as illustrated in Figure 18 simultaneously we compute the
distance of the midpoint of the crack plane to the material points where
hyperbolicity is lost. The crack surface with smaller distance is kept while
the other one will be cut at the intersection, as is shown in Figures 12 and
13. The general algorithm is illustrated in Figure 17.
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pre-existing crack

bifurfaction analysis at the Gauß pointpre-existing crack

n

crack orientation given by the two
pre-cracked neighboring cells

crack orientation given by discontinuous

(a)

pre-existing crack

bifurfaction analysis at the Gauß pointpre-existing crack

n

crack orientation given by the two
pre-cracked neighboring cells

crack orientation given by discontinuous

(b)

Fig. 15 Possible incompatibilities between neighboring crack normals, and nor-
mals given by the discontinuous bifurcation analysis.

8 NUMERICAL APPLICATIONS

8.1 Penny-shaped crack in a finite cube under uniaxial tension

Consider a cube of side length a at the center of which a penny-shaped crack
of radius r is embedded. The cube is subjected to uniaxial tension σc = 1kPa.
For an infinite plate, the analytical solution for the stress intensity factor is
given by KI = 2σc

√

r/π. For a = 50r, the error in the stress intensity
factor is computed for different refinements with different particle spacing
(30 × 30 × 30, 60 × 60 × 60 and 120 × 120 × 120); note that the mesh is
finer around the crack, see figure 19 in a two dimensional topview. For this
example, we use the Westergaard solution for the crack tip enrichment, B =

5 in the sense “everywhere”
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crack interiors at time step n + 1

pre-existing traveling crack

moving crack hitting pre-existing crack

tip at step n + 1

tip at step n

crack is stopped at the intersection

with the pre-existing crack interior

crack interiors at time step n

Fig. 16 When two cracks intersect, the moving crack is stopped at the intersection
with the existing crack. Configurations such as that of the left of the figure are not
allowed.

Table 1 Stress intensity factors for the mode I penny-shaped crack problem

Relative error on KI 30 × 30 × 30 60 × 60 × 60 120 × 120 × 120
average (%) 0.085 0.05 0.03

maximum (%) 0.2 0.112 0.068

{√
r sin θ

2 ,
√

r cos θ
2 ,
√

r sin θ
2 sin θ,

√
r cos θ

2 sin θ
}

. The average error
as well as the maximum error is given in Table 1. The results are excellent.

8.2 Arrea-Ingraffea beam

Consider the Arrea and Ingraffea [4] beam that fails in a combined tensile-
shear mode. The beam is loaded at points A and B according to figure 20. The
Young’s modulus is 28,000 MPa, tensile strength is 2.8 MPa and Poisson’s
ration ν = 0.18. We have used the Lemaitre [29] damage model in tension
and linear elasticity in compression. Loss of hyperbolicity is employed for
crack initiation. A linear decaying cohesive law is used with fracture energy
Gf = 100 N/m. We tested two different discretizations, starting with approx-
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bifurcation analysis

Discontinuous

Treat crack junction if necessary

} end loop on Gauß points

Get normal from discontinuous bifurcation analysis results (n)

If Gauß point is cracked (position XG)

Generate penny crack {XG, R, n}

Find closest particle and its radius of influence (R)

not OK

refine and regenerate

background cells

OK

Propagate existing cracks

Initiate cracks

Get and smooth crack normalsFind cracking Gauß points

Loop on crack fronts{

Loop on cells ahead of crack front{

Loop on the Gauß points in the cell{

If cell does not contain a crack segment, propagate crack front through cell

If the cell contains a crack segment, join

If another crack is entering the cell, perform crack junction (in this case, the

crack surface closer to the cracked Gauß point in the cell is kept

while the other crack surface is “cut” at the intersection with the first surface)

} end loop on points in the cell

} end loop on cells ahead of the front

} end loop on fronts

Increment load Solve for stresses

Loop on cracked Gauß points that were not considered during propagation{

Adaptivity

Add generated crack to list of cracks

Fig. 17 Algorithm for crack propagation, initiation and junction.

imately 48,000 and 12,000 particles, respectively. Two and three adaptation
steps are allowed.

The final crack path for the fine particle distribution is shown in figure
21a, the crack path for the coarse particle discretization is illustrated in figure
21b. For a better illustration, only a closeup is shown. For two earlier load
steps, the crack pattern is shown in figure 22. As can be seen, the crack front
is not straight but somewhat irregular, which is also observed experimentally
and corroborates the well-known fact that of plane-stress crack fronts are not
straight. In the Figure, the crack geometry is represented by a triangulated
surface. Of course, the crack surface is also composed of quadrilaterals (Fig-
ure 9), but for ease of representation, these quadrilaterals are split into two
triangles. The numerical crack pattern is similar to the experimental one and
does not show mesh-dependency. The load displacement curve (right of the
notch) is shown in Figure 23 and lies in the experimental scatter.

8.3 Pull-out test

Consider a pull out test of reinforced concrete as shown in figure 24. This
example was studied previously by Gasser and Holzapfel [21] and Areias and
Belytschko [3] by the PUFEM and XFEM, respectively. We also employed
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a) b)

c) d)

Fig. 18 Crack junction

symmetry conditions and modelled only one quarter of the specimen. A verti-
cal displacement boundary condition is applied to pull out the reinforcement
bar out of the concrete specimen as illustrated in figure 24. We run this exam-
ple on 16 processors. The data was distributed equally on 16 processors (16
equal slices, geometrically) and data transfer is realized using Message Pass-
ing Interface (MPI). More details about domain decomposition and solvers
can be found e.g. in Alonso and Valli [1, 2]; Hiptmair [23]. Since we expect
the crack to propagate over the entire circumference, no redistribution of the
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Fig. 19 Typical discretization of the penny crack problem; two dimensional
topview

✞✟✞✟✞✟✞✟✞✞✟✞✟✞✟✞✟✞✞✟✞✟✞✟✞✟✞✞✟✞✟✞✟✞✟✞✞✟✞✟✞✟✞✟✞✞✟✞✟✞✟✞✟✞✞✟✞✟✞✟✞✟✞✞✟✞✟✞✟✞✟✞✞✟✞✟✞✟✞✟✞✞✟✞✟✞✟✞✟✞✞✟✞✟✞✟✞✟✞✞✟✞✟✞✟✞✟✞✞✟✞✟✞✟✞✟✞✞✟✞✟✞✟✞✟✞✞✟✞✟✞✟✞✟✞

✠✟✠✟✠✟✠✠✟✠✟✠✟✠✠✟✠✟✠✟✠✠✟✠✟✠✟✠✠✟✠✟✠✟✠✠✟✠✟✠✟✠✠✟✠✟✠✟✠✠✟✠✟✠✟✠✠✟✠✟✠✟✠✠✟✠✟✠✟✠✠✟✠✟✠✟✠✠✟✠✟✠✟✠✠✟✠✟✠✟✠✠✟✠✟✠✟✠✠✟✠✟✠✟✠

✡✟✡✡✟✡☛✟☛☛✟☛☞✟☞☞✟☞✌✟✌✌✟✌

F0.13 F

1.13 F

6161397 mm 397 mm 156 mm

306

82 mm

A B

Fig. 20 The tensile/shear beam from Arrea Ingraffea

data is necessary. Redistribution of data in an adaptive parallel computation
is one of the trickiest part in the parallel implementation. We adopted the
constitutive and cohesive model in Gasser and Holzapfel [21]. The material
parameters are κ = 16, 670MPa and ν = 12, 500MPa. For the cohesive model,
we use, according to [21], t0 = 3MPa, a = 11.323mm−1, b = 0.674 and α = 1.

We tested two discretization starting with 15,000 and 45,000 nodes. A
maximum of three refinement steps are allowed. The crack pattern at differ-
ent load stages is shown in figure 25 for the finer discretization. The load-
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a) fine b) coarse

Fig. 21 Closeup of the crack for the Arrea-Ingraffea beam

deflection curve is shown in figure 26 and is similar to the on in Gasser and
Holzapfel [21] and Areias and Belytschko [3].

8.4 Flyer plate impact

The next example is a flyer plate impact problem. We assume that the flyer
plate is of the same material as the target plate. The test-set up is illustrated
in figure 27. Experimental data is available from Chevrier and Klepaczko
[14]. They varied the material and the impact velocity. We carried out two
computations, with an impact velocity of 205m/s and 290m/s. In both exper-
iments, spalling was observed through the spall plane for the higher impact
velocity was clearly visible and crossed almost the entire specimen.

We use the high strength steel material data according to Chevrier and
Klepaczko [14] and varied the strength in the specimen, i.e. we mutliplied the
material strength by a factor 0.95 < α < 1.05 obtained from a log-normal
distribution around the mean value of 1 and a standard deviation of 1.5%.
This should account for potential small imperfections.

A quarter of the specimen at the end of the computation is shown in
Figure 28 for the two different impact velocities. Note, that we did not use
symmetry conditions in the simulation. The spall plane is very similar to that
observed in the experiment. It occurs over almost the entire width of the plate
and lies almost in the same plane. A topview on the cracks at different time
steps is shown in Figure 29a-c for an impact velocity of 290 m/s. Cracking
does not happen “exactly” simultaneously and cracks are propagating and
joining. However, the final crack pattern is reached within less than five
microseconds. The crack pattern for the lower impact velocity is shown in
Figure 29d. The spall plane is located at the center of the plate, see also
Figure 28.

8.4.1 Kalthoff problem

Kalthoff and Winkler [26] performed a series of experiments where a steel
plate is subjected to impact loading with different impact velocities as shown
in Figure 30. For low impact velocities vi = 20m/s, a brittle failure occured
and two symmetric cracks propagate in a seventy degree angle through the
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a) coarse b) coarse

c) fine d) fine

Fig. 22 Closeup of the crack for the Arrea-Ingraffea beam at different load steps

entire specimen. We use the Johnson Cook model [25] with material param-
eters A = 792MPa, B = 509MPa, C = 0.014, n = 0.26, m = 0.55. The
density is ̺ = 7800kg/m3, K = 157GPa, ν = 76GPa and the specific heat
is cv = 477J/kg C, Tr = 296K, Tm = 1033K and β = 1. Crack initiation is
governed by the Rankine criterion with ft = 2A. Figure 31 shows the final
crack pattern for two different refinements. In the first computation, we did
not use adaptivity while in the second one, we allowed two refinement steps.
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Fig. 23 Load deflection curve of the tensile/shear beam from Arrea Ingraffea
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Fig. 24 Test-setup of the Pull out test

The crack speed is shown in Figure 32 and agrees well with computations
of other numerical studies, Rabczuk et al. [43]; Belytschko et al. [7]; Xu and
Needleman [54]. The crack speed does not exceed the Rayleigh wave speed.

8.5 Taylor bar impact

To test the method for multiple cracks with crack junction, we consider a Tay-
lor bar impact. There are experimental results available, see Teng et al. [50].
The Taylor bar has a diameter of 6mm and length 30mm. We consider mod-
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a) b)

c)

Fig. 25 Crack pattern of the pull-out test

erate impact velocities of 240m/s. The material was a 2024-T351 aluminium
alloy. We use the Johnson Cook model [25] as in the previous section with

Young’s modulus E = 74GPa, Poisson ratio ν = 0.3, density 0.0027g/mm
3
, a

reference strain rate of 3.33×10−4, A = 352MPa, B = 440MPa, C = 0.0083,
n = 0.42, m = 1, cv = 875 J/kg C, Tr = 296K, Tm = 775K and β = 1.
We tested two different discretizations, with approximately 30,000 particles
and 70,000 particles. The final deformation of the Taylor bar is shown in
Figure 33 for both discretizations. As can be seen, multiple cracking occurs
including crack junctions. The results look almost identical and agree well
with the results in Teng et al. [50].

9 CONCLUSIONS AND FUTURE WORK

This paper presented a local partition of unity enriched6 EFG method to
simulate crack initiation and propagation (including joining cracks) in non-

6 extrinsic enrichment
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Fig. 26 Load deflection curve of the pull-out test
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Fig. 27 Schematic test set-up of the flyer plate impact problem

a) 290 m/s b) 205 m/s

Fig. 28 One quarter of the impacted plate of the flyer-plate problem for different
impact velocities

linear three dimensional solids. The loss of material stability criterion is used
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a) 290 m/s b) 290 m/s

c) 290 m/s d) 205 m/s

Fig. 29 Crack pattern of the flyer-plate problem; topview

as transition criterion from the continuum to the discontinuum. The dis-
placement jump is described by additional unknowns and crack front branch
enrichment functions are added in the approximation space to close the crack
and help represent the asymptotic fields7. The crack is discretized by linear
triangular elements, and hence, can open only linearly. Adaptivity is em-
ployed to improve accuracy.

The most salient feature of the method is that it ensures crack path conti-
nuity, thereby avoiding the locking and inaccuracies associated with methods
in which crack path continuity is not enforced. The method can handle ar-
bitrary continuum constitutive and cohesive laws. We used the Lemaitre’s
damage model, a neo Hookean material and the Johnson-Cook plasticity
model for the bulk solid and exponential cohesive laws for mixed mode fail-
ure. We assure non-penetration of the crack faces by a penalty method.

7 Two near-front enrichment schemes are utilized: the standard Westergaard so-
lution for the purely elastic cases without cohesive zone, and a power law for the
cohesive cracks.
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Fig. 30 The Kalthoff problem: test setup

We described in detail the cracking algorithm including crack initiation,
crack branching and crack junctions. The most important features of our
algorithm are:

1. Cracks may initiate anywhere in the mesh, and we handle complex cases
such as those when cracks merge during initiation. Most methods available
in the literature do not consider the initiation, but only the propagation
of preexisting cracks.

2. We assure crack front continuity, and thereby avoid locking and inaccu-
racies.

3. We use an adaptive scheme based on the evaluation of the stress gradients
to resolve the finest intricacies of the crack surfaces. This is advantageous,
since it allows cracks to initiate with a sufficiently small radius, and helps
enforcing crack front continuity, through a much better resolution of the
crack surface and front.

We applied our method to several static and dynamic problems where
experimental data or other numerical results are available. In addition, we
tested our method for a penny-shaped mode-I crack problem. In that prob-
lem, numerical stress intensity factors were compared to analytical stress
intensity factors at different positions along the crack front. The maximum
and average error on the stress intensity factor along the front for the coarsest
discretization are 0.2% and 0.085% respectively.

Our method performed very well for a beam in bending under mixed-
mode failure and a pull-out test in concrete. Load deflection curves as well
as crack patterns agreed with the experimental results and the results did
not show mesh-dependency. Using adaptivity, even for very coarse meshes, a
high accuracy could be obtained.
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a) b)

Fig. 31 Crack pattern of the Kalthoff problem

The method was also able to handle dynamic problems with multiple
cracking including crack junctions. This was shown by the study of a Taylor
bar impact, i.e. a bar shot against a rigid wall with a low-to moderate velocity
of 240m/s. The crack pattern of the numerical solution agreed well with the
experimental results and results of other numerical schemes. For the flyer-
plate impacts and Kalthoff problem with brittle failure, we obtained equally
good results. The spalling plane in the flyer-plate impact simulations agreed
well with the experimental results and in the Kalthoff problem, the crack
propagation speed was below the Rayleigh wave speed and the different crack
speed-time history curves of adaptive and non-adaptive computations agreed
very well. Moreover, the crack pattern agreed well with the one of Kalthoff’s
experiments.
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Fig. 32 Crack speed of the Kalthoff problem for different discretizations

a) 30,000 particles b) 70,000 particles

Fig. 33 Final crack pattern of the Taylor bar problem

There are a few ways in which the proposed method could be improved.
For instance it might be advantageous to develop a method where no crack
front enrichment is needed. Omitting the crack front enrichment improves
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computational efficiency and removes inherent difficulties when kinks and
sharp corners occur at the crack front.

A representation of the crack surface with high-order level sets or Non-
Uniform Rational B-Splines (NURBS) might be advantageous since crack
opening can be non-linear as observed in experiments. Of course, in that
case, we need a robust integration sheme to track the nonlinear path of the
discontinuity.
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