
1. Introduction

Mechanical properties of casting products are closely as-
sociated with their solidification microstructures. It is there-
fore very important to control solidification microstructures
to obtain high quality products in practical casting process-
es. Over the last decade, significant advances have been
made in the fundamental understanding of microstructure
evolution in solidification of alloys. In parallel to the devel-
opment of rigorous analytical models and more refined ex-
perimental techniques, numerical modeling has presented
its considerable potential for quantitatively understanding
the solidification microstructure evolution.1) With the devel-
opment of powerful computers and advanced numerical
techniques, it is possible to analyse transport phenomena
including heat, mass and fluid flow in the mushy zone to a
high level of details.2)

Coupling of the macroscopic heat transfer analysis and
the microscopic modeling of solidification has been recent-
ly focused on in order to predict solidification structures. A
series of studies, applying the two-dimensional and three-
dimensional cellular automaton models coupled with the fi-
nite volume method (CA-FVM) or finite element method
(CAFE) for the macroscopic heat flow calculation, have
been reported to simulate the solidification grain structures
formed in various casting processes.3–16)

However, it is well known that the classical CA models
mentioned above have the limitation that they are unable to
describe the detailed microstructure evolution including the

dendritic side branching and the formation of second phas-
es (eutectic). This limitation has been solved by a two-di-
mensional modified cellular automaton (2-D MCA) model
which has been recently developed by the authors.17) The
MCA model can quantitatively describe the evolution of
dendritic growth features, including the growing and coars-
ening of the primary trunks, the branching of the secondary
and tertiary dendrite arms, as well as the solute segregation
patterns. The MCA model can successfully predict multi-
dendritic growth in solidification of alloys and can also be
used for the prediction of non-dendritic or globular struc-
ture evolution in the semi-solid casting process.18) It was
found that the newly developed 2-D MCA model is able to
bridge the gap between the phase field models, which are in
the microscopic scale and presently limited to a very small
calculation domain,19–24) and the classical CA models which
are limited to simulate the macroscopic grain structures.

The aim of the present study is to extend the 2-D MCA
model into the three dimensional model in order to simulate
three-dimensional microstructure evolution in solidification
of alloys. Different from the classical cellular automaton
models in which only the temperature field is calculated, the
present model includes the curvature effect and the solute
redistribution in the liquid and solid phases during solidifi-
cation. The present model was applied to simulate the three
dimensional microstructure evolution in solidification of al-
loys for various casting processes. Some of the simulated
results were compared with those obtained experimentally.
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2. Model Description

2.1. The Stochastic Cellular Automaton

A cellular automaton is a mathematical idealization of
physical systems in which space and time are discrete, and
physical quantities take on a finite set of discrete values.25)

In this work, the calculation domain is divided into uniform
cubic cells in the three dimensions. Each cell is character-
ized by different variables (such as temperature, concentra-
tion, crystallographic orientation and solid fraction) and
states (solid or liquid). The definition of neighborhood in-
cludes the 26 surrounding neighbor cells of the first layer.
The cellular automaton evolves in discrete time step, and
the state of a cell at a particular time is calculated from the
local rule, such as the nucleation and growth kinetics.
Similar with other CA models, the present model uses a de-
terministic growth algorithm, but the location and crystallo-
graphic orientation of nuclei are randomly chosen. 

2.2. Nucleation and Growth Kinetics

Nucleation conditions are very important in determining
the characteristics of microstructures. The number, shape
and size of grains vary according to the solidification con-
ditions. In the present study, the continuous nucleation
model was adopted for describing the heterogeneous nucle-
ation both on the mold wall and in the bulk liquid. The
grain density increase dn is induced by an increase in the
undercooling d(DT) according to the Gaussian distri-
bution,17,26) which is characterized by the mean nucleation
undercooling DTmn, the standard deviation DTs and the
maximum density of nuclei nmax.

The characteristics of dendritic growth can be represent-
ed by two analytical models, the KGT (Kurz–Giovanola–
Trivedi) model27) and the LKT (Lipton–Kurz–Trivedi)
model.28) In the KGT model, the constrained dendritic
growth is considered with a positive temperature gradient
in the liquid at the solid/liquid (S/L) interface. On the other
hand, the LKT model describes the dendritic growth into an
undercooled melt in which the thermal gradient in the liq-
uid at the S/L interface is assumed negative. In many rapid
solidification processes, such as splat cooling on a sub-
strate, melt spinning and atomization, the existence of neg-
ative undercooling in the liquid ahead of the S/L interface
has been demonstrated both by experiments and heat trans-
fer analyses.29) In the present simulation, the growth veloci-
ty of a dendrite tip was calculated by the KGT model for
normal solidification condition and by the LKT model for
gas atomization. 

2.3. Solute Redistribution 

The assumptions used for solute redistribution are as fol-
lows:

(1) The local equilibrium at the S/L interface is pre-
served as follow.

Cs*5kCl* .................................(1)

where k is the partition coefficient, Cs* and Cl* are the inter-
face equilibrium concentrations in the solid and liquid
phases, respectively.

(2) The solute field during solidification is mainly con-
trolled by diffusion in liquid and solid, and no consideration
on convective mass transfer is made. 

As the solidification proceeds, the solidified cell rejects
solute to its neighbor liquid cells. The governing equation
for the solute redistribution in the liquid region is given by

.................(2)

where t is the time, Dl is the solute diffusion coefficient in
the liquid phase, fs is the solid fraction, and k is the parti-
tion coefficient. The last term on the right hand side of the
Eq. (2) indicates the amount of solute rejected at the S/L in-
terface.

The governing equation for diffusion in solid phase is
given by

..............................(3)

where Ds is the solute diffusion coefficient in the solid
phase.

2.4. Macroscopic Thermal Transport

In order to verify the present model, three cases were ex-
amined: i) isothermal dendritic growth from an under-
cooled melt; ii) directional solidification and iii) dendritic
growth of atomized droplets.

The finite volume method was used to calculate three-di-
mensional transient heat transfer in directional solidifica-
tion and gas atomization processes. The governing equation
is given by

................(4)

where T is temperature, r is the density, Cp is the specific
heat, l is the thermal conductivity, fs is the solid fraction
and DH is the latent heat of freezing, respectively.

The boundary conditions at the melt/mold interface and
droplet/atmosphere could be found elsewhere.11,17)

3. Numerical Method

3.1. Nucleation and Growth Algorithm

Heterogeneous nuclei formed on the mold wall or in the
bulk liquid were assumed to have random crystallographic
orientations. The preferential growth orientation corre-
sponds to k100l for cubic metals in the present three-dimen-
sional model. At the beginning of simulation, nucleation
sites are randomly set according to Gaussian distribu-
tion,17,26) and each nucleation site is identified with refer-
ence integer that is related to a corresponding undercooling
for nucleation. During a time step interval, if a given cell is
a predetermined nucleation site and the local undercooling
is larger than that which is necessary for nucleation, this
cell changes its state from liquid to solid. At the same time,
the preferential growth orientation of a new crystal is deter-
mined by a random process. In the present study, each pos-
sible growth orientation is constructed by three Euler an-
gles. As shown in Fig. 1(a), the orientation of the [001]
dendrite arm can be characterized by two Euler angles, f
and q . The values of f and q are in the ranges of f(2p , p)
and q(0, p /2), respectively. The third Euler angle j , charac-
terizing the spin of the [001] dendrite arm, is in the range of
j(2p /4, p /4). Figure 1(b) indicates the definition of a crys-
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tallographic orientation by three Euler angles. The detailed
procedure of randomly determining three Euler angles for
the possible orientation could be found elsewhere.11)

Once a cell has nucleated, it will grow with a preferential
direction corresponding to its crystallographic orientation
having a growth velocity determined by the local under-
cooling. Let us consider a solidified cell labeled “A” which
lies at the S/L interface, as shown in Fig. 2. There must
exist at least one liquid cell within its 26 surrounding
neighbors. Figure 2 describes the details of the growth al-
gorithm between the solid cell A and its liquid neighbor cell
i. The l i

A(tn) in Fig. 2 is the growth length of the solid cell A
respecting to its liquid neighbor cell i at time tn, which can
be calculated by

..............(5)

where D tn is the time step and N indicates the iteration
number. Wi

A is the orientation weight coefficient related to
the angle between the cell A’s preferential growth direction
and vector $Li

A. As shown in Fig. 2, $Li
A indicates the vector

from the cell A linking to its neighbor cell i. The orientation
weight coefficient Wi

A is given by

Wi
A5Max[|Xw |, |Yw |, |Zw|] .....................(6) 

here Xw, Yw and Zw can be calculated by 

...................(7)

where (xp, xq, xr), (yp, yq, yr) and (zp, zp, zr) are the direction
cosines of the [100], [010] and [001] dendrite arms relating
to the coordinate x, y and z axes, respectively. ( pi

A, qi
A, ri

A) are
the direction cosines of the vector $Li

A, relating to the coordi-
nate x, y and z axes.

vn{DT(tn)} in Eq. (5) is the growth rate, which can be cal-
culated using the KGT or the LKT model depending upon
the local undercooling, DT(tn), taken at the center of the cell
i. In the present simulation, the relationships between the

growth velocity and the local undercooling for Al–Cu al-
loys are taken from the literatures.10,11) The present model
takes account of the contributions associated with thermal,
solutal and curvature undercoolings. Therefore, the local
undercoling DT(tn) is given by

DT(tn)5Tl2Ti(tn)1m · (Ci(tn)2C0)2G K̄i(tn) ..... (8)

where Tl is the equilibrium liquidus temperature, m the liq-
uidus slope, C0 the initial concentration and G the Gibbs–
Thomson coefficient. K̄i(tn), Ci(tn) and Ti(tn) are the mean
curvature, the concentration and the temperature of the cell
i on the S/L interface at time tn, respectively. Then, the solid
fraction of the cell i at a certain time f i

s(tn) can be expressed
by

..............................(9)

where Li
A is the spacing between the cell A and the cell i, as

shown in Fig. 2: if i is one of the six nearest neighbors,
Li

A5dx; if i is one of the twelve second-nearest neighbors,
Li

A5√·2dx; and if i is the one of the eight third-nearest
neighbors, Li

A5√·3dx. When f i
s(tn)$1, which means that the
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Fig. 1. Crystallographic orientation of a nucleus: (a) the definition of the first and second Euler angles, f and q ; and (b)
crystallographic orientation defined by three Euler angles.

Fig. 2. A schematic diagram of the growth algorithm used in the
3-D MCA model.



growth front of the solid cell A can touch the center of the
liquid cell i, the cell i will then transform its state from liq-
uid to solid and get the same orientation index as the cell A. 

By means of the algorithm described above, the primary
dendrite will grow and coarsen with the preferential k100l
direction. As the growing and the coarsening of a primary
trunk proceed, the solute will be enriched in the liquid near
the S/L interface due to the solute redistribution, which will
destroy the interface stability and therefore cause the side
branching of dendrite arms.

3.2. Calculation of the Interface Curvature

The interface curvature in a cell with a solid fraction fs

for the 3-D model is calculated in the same way as in the 2-
D MCA model.17,30) In the present 3-D model, the number
of the neighboring cells is equal to 26, which includes the
surrounding neighbor cells of the first layer. The values of
the curvature vary from 1/dx to 0 for convex surface and
from 0 to 21/dx for concave surface.

3.3. Calculation of the Concentration and Tempera-
ture Fields 

When a cell transforms its state from liquid to solid by
nucleation or growth, its concentration will be changed ac-
cording to Eq. (1). Consequently, this cell will liberate the
amount of solute, dC5Cl*2kCl*, which is assumed to be
distributed to its liquid neighbor cells. An explicit finite dif-
ference scheme was applied for calculating the solute diffu-
sion in both the solid and liquid phases using Eqs. (2) and
(3), and transient heat transfer using Eq. (4). The thermal
and physical properties used in the present calculation were
taken from literature.17)

4. Results and Discussion

4.1. Free Dendritic Growth in an Undercooled Melt

In order to simulate free dendritic growth into an under-

cooled melt, the calculation domain is divided into
16031603160 cubic cells with a cell size of 1 mm. In the
beginning of simulation, one nucleus with the crystallo-
graphic orientation of three zero Euler angles, f50°, q50°
and j50°, was assigned in the center of the area. 

The simulated dendrite morphology of an Al–15mass%
Cu alloy solidified into an undercooled melt (DT510 K) is
shown in Fig. 3. The figures on the upper row indicate the
dendrite shapes shown in the three dimensions and the ones
on the bottom row shown in 2-D section, respectively. The
darkness of the figures in 2-D section indicates the concen-
tration profiles in both the solid and liquid phases. Within
the solid region, along the centerline of primary trunks or
side arms, there exists a spine with lower concentration. 

As the previously developed 2-D MCA model, the pre-
sent 3-D MCA model also has significant advantages com-
pared to the phase field models, such as the excellent com-
putational efficiency and no cell size limitation. The com-
putational time for Fig. 3 was only about 1.43 h on a
Pentium III PC-1000 MHz. Whereas in the case of the
phase field models, it should take about 6 h to calculate a
very small 3-D primary trunk formation before emitting the
side branch on 64 processors of the CRAY T3E at NerSC
and use up to 53106 walkers.31)

4.2. Grain Selection in Directional Solidification

In order to investigate the mode of grain selection in di-
rectional solidification, the “pigtail” grain selector was used
as shown in Fig. 4. The helix selector stands over a thin
disk with a diameter of 500 mm and a thickness of 50 mm.
The total cell number was 638 886 and the cell size was
taken to be 5 mm. The selected grain number could be con-
trolled by changing the helix diameter. Over the helix part,
there is a cylinder letting the selected dendritic grains fur-
ther grow. The selector connects the bottom disk over to a
copper chill with a constant temperature of 298 K, whereas
the other surfaces of the selectors are considered as almost
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Fig. 3. Growth sequence of a 3-D dendrite during isothermal growth of an Al–15mass%Cu alloy at 878 K (DT510 K) for
various growth time: (a) 0.016 s, (b) 0.03 s, (c) 0.045 s and (d) 0.06 s. The calculation domain was divided into
16031603160 cubic cells and the cell size was 1 mm.



adiabatic. The heat transfer coefficient at the disk/chill in-
terface and the superheat of melt were chosen to be
1 000 W/m2 K and 30 K, respectively. In this simulation, the
surface nucleation and bulk nucleation were only consid-
ered for the disk-chill surface and disk bulk, respectively.
The nucleation parameters nmax, DTmn and DTs, are listed in
Table 1. The symbols indexed “s” and “b” are correspond-
ing to nucleation parameters on the mold surface and in the
bulk liquid, respectively. 

Figure 4 shows the dendritic grain structures of an Al–
4.5mass%Cu alloy solidified in the pigtail selectors. The
different darkness of dendrite indicates its crystallographic
orientation. It could be seen that many dendritic grains with
different preferential growth orientations form on the bot-
tom disk as shown in Figs. 4(a) and 4(d). Some of them
enter the restrictive entry of the selector. As the dendrites
competitively grow up in the helix part along the Z-axis,
few dendritic grains could survive as shown in Figs. 4(b)
and 4(e). In case of Fig. 4(c), two grains are selected.
However, when the grain selector becomes narrow, as
shown in Fig. 4(f), a single grain could form.

4.3. Dendritic Structures of Gas-atomized Al–Cu Al-
loy Droplets

The present model was also applied to predict the den-
dritic structure evolution of gas-atomized Al–10 mass%Cu

alloy droplets under the non-uniform temperature field con-
dition. The calculation domain consisted of 491 864 uni-
form cubic cells and the cell size was chosen to be 1 mm.
The temperature of atmosphere was considered to be 298 K.
The heat transfer coefficient at the droplet/air interface and
the superheat of droplet were chosen to be 5 000 W/m2 K
and 30 K, respectively. The nucleation parameters used for
the simulations are listed in Table 1.

Figure 5 indicates the sequences of microstructure evo-
lution in an atomized Al–10mass%Cu droplet. The differ-
ent darkness of each dendrite is an indication of its crystal-
lographic orientation. The darkness of liquid indicates the
concentration profile in the liquid phase. At the beginning
stage of nucleation and dendrite growth, most crystals were
normally nucleated in the vicinity of the surface due to the
rapid heat extraction. It could be noted that as the nucle-
ation and growth proceeds, the darkness of liquid near the
S/L interface increases, which indicates that the liquid con-
centration in the region near the S/L interface increases
owing to the solute redistribution during solidification.
Finally, when all the regions completely solidified, the high
concentration liquid within the dendrite arms became the
eutectic phase.

The effect of the droplet size on microstructure was sim-
ulated by the present model and compared with the experi-
ment results. Figure 6 indicates the obtained microstruc-
tures with droplet sizes of (a) 40 mm, (b) 100 mm, and (c)
200 mm, which are shown in 2-D section. Figure 6(d) shows
the three-dimensional outlook of dendritic morphology of a
droplet with the diameter of 100 mm. The figures on the
upper row indicate the predicted microstructures and on the
bottom row the experimental ones. The different darkness
represents the different crystallographic orientation of den-
dritic grains and the black color within the dendrite arms
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Fig. 4. Dendritic grain selection of an Al–4.5mass%Cu alloy in directional solidification: (a), (b) and (c) two grains se-
lected; (d), (e) and (f) one grain selected.

Table 1. The nucleation parameters used in the present calcu-
lation.



indicates the eutectic phase. It could be seen from the fig-
ures that as the droplet diameter increases from 40 to
200 mm, the number of dendritic grains in a droplet gradu-

ally increases. The figures also show that the present 3-D
MCA model can predict not only the solidification grain
structures, but also the dendritic morphology inside the

ISIJ International, Vol. 42 (2002), No. 5
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Fig. 5. The microstructure evolution of an atomized Al–10mass%Cu alloy droplet with for various solid fractions: 
(a) fs50.1, (b) fs50.2, (c) fs50.3, (d) fs50.4, (e) fs50.6, (f ) fs50.7, (g) fs50.9, and (h) fs51.0.

Fig. 6. Comparison between simulated and experimental microstructures of atomized Al–10mass%Cu droplets with vari-
ous droplet sizes: (a) 40 mm, (b) 100 mm (c) 200 mm and (d) 100 mm. Here (a), (b) and (c) indicate the microstruc-
tures shown in 2-D cross section and (d) the three dimensional view of a droplet.



grains. The predicted microstructures are in good agree-
ment with those obtained experimentally. The computation-
al time for the calculations of Fig. 5 and Fig. 6 was about
20 to 25 min on a Pentium PC-1000 MHz.

5. Conclusion

A three-dimensional modified cellular automaton model
has been developed in order to simulate the evolution of
microstructures in solidification of alloys. The present 3-D
MCA model includes the nucleation, growth kinetics, and
the preferred growth orientation of a dendrite tip. It is also
coupled with the curvature and solute redistribution both in
liquid and solid phases during solidification. The free den-
dritic growth in three dimensions from an undercooled melt
can be modeled by the present model with the excellent
computational efficiency compared with the phase field
models. The present 3-D MCA model can predict satisfac-
torily the multi-dendritic growth under the non-uniform
temperature conditions, such as the dendritic grain selec-
tion in directional solidification and the dendritic mi-
crostructures of gas-atomized Al–Cu alloy droplets. It was
found that as the previously developed 2-D MCA model,
the 3-D MCA model can simulate not only the evolution of
solidification grain structures, but also the detailed dendrit-
ic morphology inside the grains. Therefore, it can be con-
cluded that the present 3-D MCA model can be used as a
powerful tool to predict the microstructures in the practical
castings. It is also expected that the simulated 3-D mi-
crostructures can be used as the valid information for the
prediction of mechanical properties associated with mi-
crostructure features.
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