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Although there is growing interest in finding mouse models of
human disease, no technique for quickly and quantitatively de-
termining anatomical mutants currently exists. Magnetic resonance
imaging (MRI) is ideally suited to probe fine structures in mice. This
technology is three-dimensional, non-destructive and rapid com-
pared to histopathology; hence MRI scientists have been able to
create detailed three-dimensional images of 60 mm resolution or
better. The data is digital which lends itself to sophisticated image
processing algorithms. Here we show a variational MRI atlas
constructed from nine excised brains of 8 week old 129S1/SvImJ
male mice. This new type of atlas is comprised of an unbiased
average brain — created from alignment of the individual brains —
and the mathematical descriptors of anatomical variation across
the individuals. We found that the majority of internal points in the
individuals never varied more than 117 mm from equivalent points
in the atlas. A three-dimensional annotation of the average image
was performed and used to estimate the mean and standard
deviation of volumes in a variety of structures across the individual
brains; these volumes never differed by more than 5%. Our results
indicate that variational atlases of inbred strains represent a well-
defined basis against which mutant outliers can be readily
compared.
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Introduction

The sequencing of the entire human and mouse genomes has

allowed scientists to examine for the first time the complete set

of genes that regulate the development of mammalian organ-

isms. The relatively close evolutionary relationship between

humans and mice has prompted the use of this species as

a model system for investigation of mammalian organ develop-

ment. To this end, both targeted and genome-wide mutagenesis

projects have been undertaken at a number of major research

centres throughout the world. Capitalizing upon this sizable

catalog of genetic modifications will require screening mutants

through functional or phenotypic assays (Nolan et al., 2000). In

particular, there is a widely recognized need for anatomical

phenotypic screening procedures using various types of imag-

ing technologies (Balaban and Hampshire, 2001) (see also

http://www.nbirn.net/TestBeds/Mouse/index.htm).

Magnetic resonance imaging (MRI) has shown a substantial

potential in this regard because of its ability to capture large

amounts of anatomical information in a nondestructive manner.

While the spatial resolution of this technique — ranging from

20 to 60 lm for fixed samples (Benveniste et al., 2000; Johnson

et al., 2002)— is not comparable to histology (~2--5 lm), detailed

anatomical comparisonswithinmurine systemscanbemade, such

as in the central nervous system (CNS). In addition, this method

allows the three-dimensional morphology of anatomical struc-

tures to be easily examined, thus providing significant advantages

over serial histological sectioning techniques in analyzing com-

plex structures (Dhenain et al., 2001; Johnson et al., 1993, 1997).

Several groupshavemadeprogress in thecreationofMRI atlasesof

individual mouse brains (e.g. http://www.loni.ucla.edu/MAP;

Van Essen, 2002). Like conventional histological atlases (http://

www.mbl.org/mbl_main/atlas.html,http://www.hms.harvard.edu/

research/brain/atlas.html), these MRI-based atlases consist of

high-resolution images of an individual specimen with an-

atomical labels. A crucial difference, however, is that both the

data and the anatomical labels are three-dimensional and digital.

A critical step beyond obtaining the MR images is to analyze

and compare the enormous amounts of data in an efficient and

reliable manner. Current phenotypic assays require an average

and standard deviation of the normal range of any measurement

to allow identification of outliers. Likewise, we need equivalent

analysis for three-dimensional images. One-dimensional metrics,

such as heart rate, body weight or red blood cell count, can be

averaged in a straightforward manner; however, the analogue

for three-dimensional images requires more sophistication.

We propose to take the concept of an MRI atlas further by

creating a variational atlas. The idea is to combine multiple

three-dimensional images together to provide a representation

of average anatomy and a range of anatomical variation within

a particular population. Specifically, in this paper we register

a number of genetically identical murine brains, which allows us

to estimate the limits of natural variation in terms of anatomical

structures, volumes, shapes and locations.

The fusing together of a set of individual images into a single

image is the first component of our variational atlas, the average

image. This average image extracts commonalities among in-

dividual brain anatomies and filters out idiosyncrasies. By

manually delineating structures in the average image, we pro-

duce an annotated atlas. The second component of the varia-

tional atlas consists of a set of deformation fields, which is

a measure of the anatomical variability across the set of

individual brain images. This is the ‘variational’ aspect of the

atlas. Here, we capture and quantify precisely the differences

that are removed in the process of creating the average image.

Materials and Methods

Specimen Preparation
Eight-week-old male inbred 129S1/SvImJ mice (Jackson Laboratory, Bar

Harbor, ME) were acclimated for a period of 3 days. Animals were then

anesthetized with an overdose of Avertin (2.5%) via intraperitoneal
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injection. Following lack of deep tendon responses, the thoracic cavity

was opened and animals perfused through the left ventricle with 10 cm3

of 0.1 M phosphate-buffered (pH 7.4) 0.9% NaCl (PBS), followed by 4%

formaldehyde in PBS. Solutions were infused at room temperature

(25�C). Following perfusion, the heads were removed and allowed to

postfix at room temperature for an additional 60 min, at which time the

cranium was opened and the brain removed in its entirety. Brains were

then postfixed for an additional 24 h in 4% paraformaldehyde in PBS at

room temperature.

Magnetic Resonance Imaging
A 7.0 T, 40 cm bore magnet (Magnex Scientific, Oxford, UK) connected

to a UnityINOVA console (Varian Instruments, Palo Alto, CA) with

modified electronics for parallel imaging was used to acquire anatomical

images of excised brains. Prior to imaging, the brains were removed

from the fixative and placed into glass tubes filled with a proton-free

susceptibility-matching fluid (Fluorinert FC-77, 3M Corp., St Paul, MN).

We used two custom-built, 12 mm, non-uniform solenoid coils (Idzaiak

and Haeberlen, 1982) to image two brains in parallel. The parameters

used in the brain scans were as follows: T2-weighted, three-dimensional

spin-echo sequence, with TR/TE = 1600/35 ms, single average, field-

of-view = 12 3 12 3 24 mm and matrix size = 200 3 200 3 400 giving an

image with (60 lm)3 isotropic voxels. The total imaging time was 18.5 h.

The TR and TE settings were chosen for optimized contrast between grey

matter and white matter in the mouse brain at 7 T as reported in

previous studies (Guilfoyle et al., 2003).

Algorithm for the Variational Atlas (Further Details
in Appendix)
We used image registration to model the anatomical differences among

the three-dimensional data sets. In image registration, two images are

compared by performing a series of deformations in order to make one

image identical to the other. The result of the process is stored in

a deformation field, a vector field which records the magnitude and

direction required to deform a point in the source image to come to the

appropriate point in the target. In other words, the anatomical differ-

ences between the two images are encoded in the deformation field.

The algorithm takes a set of MR images acquired from a number (in

this case nine) of excised brains and runs through six iterative steps. In

the first step the images are registered and normalized in terms of global

size, shape and MR intensity; we call these the ‘globally normalized

images’. At this point only extrinsic, anatomically insignificant differ-

ences are removed. The remaining steps involve detailed matching of

anatomical features starting from a coarse grid and ending at the

resolution of the imaging voxels.

The final output consists of an average image and the deformation

fields. The deformation fields encode local positional differences

between the average image and the globally normalized images. The

deformation fields represent a large body of data: number of images 3

number of voxels 3 three vector components, which is ~1 GB of data.

Therefore, to represent more simply and graphically the variability of

the atlas, we calculate the ‘mean positional distance’ (MPD) image

between the average and the individuals.

We ran our implementation in parallel (a single thread corresponding

to each dataset) on a 192-processor Origin 3000 supercomputer (Silicon

Graphics, Inc., Mountain View, CA). We used nine processors (600 MHz

each) to create the average image, which took ~15 h.

Annotation
Structures that are clearly visible in the average image have been

annotated by manual segmentation using the software package Display

(Montreal Neurological Institute, Montreal, Canada). Every voxel of the

average image has been assigned to a unique anatomical label, and the

delineations were verified in three orthogonal directions. We delineated

structures that were visible on MRI and nomenclature was adapted

from the literature (Franklin and Paxinos, 1997). The resulting

annotation is stored in the segmentation image, a three-dimensional

image with the same size and coordinate system as the average image.

Each voxel position of the segmentation image stores the anatomical

label belonging to the corresponding voxel coordinate of the average

image.

Results

The Average Image

In Figure 1, we show the average image beside an individual

brain (see Supplementary Material A for a full three-dimensional

comparison). Because the average image is calculated non-

linearly and the noise is not well defined, we calculated the

signal-to-noise ratio (SNR) to be the mean signal in a region of

interest (ROI) in a homogeneous part of the brain divided by the

standard deviation of the same ROI. On average, the individual

brains had SNRs of 20 and the average brain of 50. We see that

the contrast between grey and white matter is better than in the

individual images, e.g. as seen in white matter structures like the

corpus callosum, fimbria of the hippocampus and the anterior

commissure. The average image on the whole exhibits greater

definition than the individual images. In particular, the visibility

and delineation of many anatomical structures is, on average,

considerably improved (e.g. deep cerebellar structures, the

globus pallidus and the lateral parabranchial nucleus). If one

assumes that each of the individual specimens were identical,

we would expect to see this effect as a result of averaging of

repeated measurements. Thus, the improvement in the average

image over that of individual specimens indicates successful

alignment of all samples; clearly anatomical structures across

the specimens have been ‘stacked up’; otherwise averaging

would have produced a blurred image (see Appendix, Fig. A1).

Some fine features, however, show the reverse trend of a re-

duction in their level of definition within the average image. For

example, white matter tracks in the striatum and small blood

vessels. The extreme variability of these regions cannot be

resolved by our registration with topology-preserving trans-

formations. This qualitative comparison between the average

and individual images is not a proper assessment of the accuracy

Figure 1. Images from an individual brain (left) in comparison with the average atlas
(right) shown with the same contrast. A horizontal (top) and coronal (bottom) slice are
shown from the full three-dimensional datasets. The individual image exhibits artefacts
due to imaging (e.g. noise and residual fixative) and specimen handling.
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of our registration; quantitative validation is the subject of

further study.

Stereotaxic Coordinate System

Based on the average image, a three-dimensional stereotaxic

coordinate system was defined (Fig. 2). The midsagittal plane

that evenly divides left and right components of the brain along

the anatomic midline is selected as the coordinate plane x = 0.

Positive x-coordinates increase in the right lateral direction,

while negative x-coordinates decrease in the left lateral dir-

ection. The brain was tilted so that horizontal and vertical

directions are approximately the same as in the histological atlas

of Franklin and Paxinos (1997). The coordinate origin was

arbitarily selected within the midsagittal plane of the cerebrum

as shown in Figure 2.

Annotation

The annotated structures can be explored in several ways. For

example, slices from the average image can be taken at arbitrary

angles and viewed overlaid with corresponding slices of the

segmentation image (Fig. 3A). In particular, this type of visual-

ization enables slicing in coronal, sagittal or transverse direc-

tions for comparison with classical two-dimensional histological

atlases. More advanced visualization in three dimensions is

obtained from surface renderings of individual structures. Using

interactive visualization tools (e.g. Amira, TGS, San Diego, CA)

the renderings can be easily manipulated; for example, the

annotations can be rotated, individually coloured and switched

on or off (Fig. 3B, also see Supplementary Material B and http://

www.mouseimaging.ca/var_brain_atlas.html).

The segmentation image was automatically customized for

each individual brain by transforming along the appropriate

deformation field. In particular, individual annotations for both

raw images and globally normalized images were obtained.

Global Brain Size

In the first step of the atlas-creation algorithm, the individual

brains were normalized to the average global size using the

12-parameter affine model. In order to estimate the true total

brain sizes (before the normalization) we counted all brain

voxels based on individual annotations of raw images. In doing

so, we ensured a consistent definition across all input images of

the total brain region being measured. The average ± standard

deviation, minimum and maximum of the brain volume across

the nine samples were 415 ± 24, 365 and 440 mm3 respectively.

Volumetric Measurement of Structures

The segmentation image enables volumetric measurement of

the annotated structures. This is done by histogram counting,

where the number of voxels with the same label determines the

volume of the corresponding structure. For combined regions

consisting of several structures the corresponding label counts

are summed together. For example, the anterior comissure is

represented as a sum of two labels, the pars anterior and the

pars posterior. Table 1 shows volumes of selected structures

based on the segmentation image. We estimated the variability

of the calculated volumes based on the individualized annota-

tions of the globally normalized images. Table 1 lists the

standard deviation of said volumes evaluated from the nine

individualized annotations.

Anatomically Significant Variability

By construction, the deformation fields capture the anatomical

differences among individual brains. From the arithmetic mean

of the vectors, we have the mean positional distance (MPD)

image as a representation of the spatial variability across all

anatomical locations. ‘Intensities’ in the MPD image represent

distances in micrometres. The MPD image has the same size and

coordinate system as the average image and is shown in Figure

4. Colour coding of the distances of the MPD image enables

effective visualization of the variational component of the atlas.

Figure 2. Stereotaxic coordinate system. Top left: three-dimensional view of the
coordinate axes in relation to the average brain. Bottom left: coronal slice at y 5

0 overlaid with the coordinate grid. Right: horizontal slice at z 5 0 overlaid with the
coordinate grid. All coordinates are given in millimetres.

Figure 3. Three-dimensional annotation of the average image. (A) A two-dimensional
view of the atlas brain overlaid with the annotations. Such views facilitate comparisons
with conventional histological atlases. (B) A three-dimensional view of the anatomical
structures and their spatial relationships; shown are surface renderings of cerebellum
(blue), hippocampus (green), fimbria (pink) and anterior commissure (yellow).

Table 1
Volumetric measurements of selected structures

Structure Volume ± r (mm3)

Cerebral cortex 109 ± 2
Striatum 15 ± 0.4
Hippocampus 21 ± 0.5
Brain stem 50 ± 2
Diencephalon 40 ± 0.5
Corpus callosum 13 ± 0.3
Fimbria of the hippocampus 2.2 ± 0.1
Anterior commissure 1.1 ± 0.04
Cerebellum 52 ± 1

Volumes were obtained from the three-dimensional annotation of the average image and shown

in the right column. The corresponding annotations of the globally normalized individual brains

were automatically obtained by transforming the atlas annotation image along the individual

deformation fields. The reported standard deviations (r) were calculated from these

individualized annotations.
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For example, it is immediately clear that most inner structures

are coloured purple and have low variability; in contrast, the

olfactory bulbs and the caudal end of the brain stem are yellow,

red and white, indicating high variability.

We have investigated the regions of large variability as in-

dicated by the MPD image. Visual inspection of the individual

images revealed inconsistencies that are typical of in vitro

imaging: distortions along flexure points (e.g. midbrain and

cerebellar flexure), slight differences in specimen preparation

(e.g. the cutoff position at the caudal end of the brain stem),

mechanical damage (e.g. one or both paraflocculai are missing

from some specimens), and a small but highly variable amount

of aqueous solution along the outer brain surface. In fact, we

have determined that all regions with mean positional distances

> 240 lm were affected by such artefacts. The total volume of

the affected regions accounts for <10% of the brain volume.

We have calculated 117 lm as the mean spatial variability

across all locations. The majority of anatomical locations (91% of

the brain) have variability <180 lm (three voxels). In fact, the

deep interior structures (comprising 53% of the brain) typically

show variability <120 lm (two voxels). The most pronounced

exception to this rule is the central part of the corpus callosum,

which shows variability of ~200 lm. This is not surprising, given

that the 129Sv inbred mouse strains are known to exhibit high

callosal variability (Crawley, 2000).

Discussion

Implications for Anatomical Phenotyping

The anatomical variability within an inbred murine strain has

been formalized and precisely quantified in three-dimensional

space for the first time. The mathematical expression of normal

variability — the deformation fields — represents a basis for

detecting and quantifying subtle yet significant anatomical

differences. For example, our techniques can be used to find

differences between groups, such as different strains, hybrids or

mutants. In this case, a variational atlas can be created for each

group and comparisons between the atlases can be made. Image

registration will allow precise quantification and characteriza-

tion of anatomical differences.

The methodology introduced here also allows a rigorous

approach to automatically detecting potential mutants. The

deformation fields obtained after global normalization can be

used for: (i) automated annotation and corresponding volumet-

ric measurements and (ii) comparison with the normal average

brain. A structure can be considered abnormal if found at

stereotaxic locations with deformation magnitudes that are

significantly larger than the corresponding MPD magnitudes.

Not only will this type of analysis be useful for targeted

mutagenesis, but it also has applications in screening for

anatomical outliers in the context of random mutagenesis

projects. In fact, coupled with the procedures we have de-

veloped for image acquisition, our image processing tools are

ideally suited for high-throughput phenotypic screening. Fur-

ther developments in parallel image acquisition techniques

(Bock et al., 2003), combined with our fully automated algo-

rithms, will enable unsupervised, high-throughput and highly

sophisticated anatomical phenotyping.

MRI versus Histological Atlases

Despite having lower resolution than published histological

atlases (5 lm versus 60 lm), our three-dimensional MRI atlas

exhibits several important advantages with respect to the

processing and subsequent analysis of the CNS structure. First,

the MRI atlas captures a complete picture of spatial relation-

ships within the brain. This is in contrast to histological atlases

where the specimen is sliced at ~150 lm intervals. In addition,

histological atlases of the CNS are typically obtained from

paraffin- or parlodion-embedded specimens in which the true

spatial dimensions within a given section cannot be readily

determined because of shrinkage during specimen dehydration

and processing. Similarly, rehydration and staining following

sectioning are difficult to reproduce precisely from section to

section. All these factors complicate determination of true

three-dimensional distances between CNS structures and make

accurate three-dimensional reconstructions difficult, although

there have been efforts to digitally reconstruct histological

sections back into three-dimensional space (Taguchi and Chida,

2003). Overall, an MRI-based atlas is superior for measuring

volumes and analysis of long, distinct morphological features

such as axon tracts.

Another advantage of MRI atlases over histological atlases

relates to comparisons between sample specimens with a refer-

ence atlas. For example, if a brain specimen under investigation

is significantly larger or smaller than the histological image, then

the stereotaxic coordinates of a two-dimensional histological

atlas will be difficult to compare. Such a situation is likely even

in genetically identical lines of mice, as we have shown in

the Results. Matching of the slicing angle to that of a

two-dimensional atlas introduces further approximations. In

contrast, our variational atlas enables much more accurate

comparisons in three dimensions. After performing both linear

and non-linear registrations, the resulting deformation field

allows the sample brain to be fully annotated and measured in

terms of structural volumes and shapes. Moreover, the varia-

tional component of the atlas allows us to estimate whether or

not a sample brain is within the limits of natural variation.

Finally, three-dimensional MRI datasets can serve as a ‘spatial

backbone’ onto which higher-resolution histological sections

can be overlaid. In this sense, the MR data is used as a three-

dimensional organizer for histological sections. One group has

Figure 4. The mean positional difference image, MPD. Deformation magnitudes
(measured in micrometres and shown in spectral colour scale) are overlaid on top of
the average image (in grey colour scale). Purple and blue regions indicate low
variability, while red and white indicate high variability. Shown are three orthogonal
slices with stereotaxic coordinates given in millimetres.
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started to create a mouse brain atlas based on MRI, histology as

well as other imaging techniques (MacKenzie-Graham et al.,

2004).

Comparison with MR Atlases Based on a Single Brain

The variational atlas overcomes many of the problems associ-

ated with atlases based on a single individual. A single MR image

may have imaging artefacts, such as the magnetic field suscep-

tibility arising from small air bubbles, which only become worse

with increasing magnetic field strength (Benveniste and

Blackband, 2002). The excision procedure can also cause

variability among specimens. Most importantly, without a quan-

titative definition of ‘normal anatomy’ it is not possible to ensure

a choice of a valid single representative; any individual animal is

a potential anatomical outlier. The methodology presented here

provides means for creating an atlas that is representative of

many individuals, is virtually free of artefacts and has an improved

signal-to-noise ratio (Fig. 1).

Comparison with Other Atlases Based on Group Average

The atlas creation algorithm uses a novel approach for extract-

ing the average anatomical representation from a group of

images. It incorporates some of the techniques for image

registration and probabilistic atlases that were originally de-

veloped for the study of anatomical variations in human brains

(Collins and Evans, 1997; Grenander and Miller, 1998; Woods

et al., 1998; Guimond et al., 2000; Kochunov et al., 2001;

Thompson and Toga, 2002). Existing techniques for defining an

average brain anatomy from a group of images can be loosely

divided into two schools of thought. Methods from one group

produce highly resolved, but biased average images because of

dependencies on the choice of a particular subject as target for

all registrations (Guimond et al., 2000; Kochunov et al., 2001).

The methods from the other camp produce unbiased, but blurry

average images because of the use of global, low-level registra-

tion models applied to genetically heterogeneous human popu-

lations (e.g. the dataset, MNI305, comprised of 305 individual

human brains can be found at http://www.bic.mni.mcgill.ca/

cgi/icbm_view/).

The novelty of our approach lies in using an evolving intensity

average image as the source for nonlinear registrations of the

individual images. In this way we avoid problems associated

with other algorithms that attempt to fully localize anatomical

differences of the individual images with respect to a single

individual. Instead, we use a multi-resolution strategy to grad-

ually reach an unbiased, yet highly resolved, consensus among

individual images. By design, our atlas brain not only represents

the average geometry, but is also located at the geometric

centre of the individual brains. Consequently, the anatomical

variability in three spatial dimensions is easily understood and

visualized, reminiscent of one-dimensional measurements. For

example, the average image and the mean positional distance

image MPD can be viewed as estimates of the population mean

and standard error respectively.

Conclusions

In this work, we have combined magnetic resonance imaging

and image processing to measure the anatomical variability in

CNS structures of an inbred mouse strain. We have measured

this variability to be very low — no more than 5% volume

change in several structures — leading us to believe that we

have an excellent tool to detect mutant outliers.

Supplementary Material

Supplementary material can be found at:

http://www.cercor.oupjournals.org/.
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Appendix

Image Registration Methods
For affine registrations we used the methodology of Woods et al.

(1998a,b) and the corresponding software package AIR5.2.2

developed at the University of California, Los Angeles. We employed a

12-parameter affine transformation model with Levenberg--Marquardt

minimization of the ratio image uniformity cost fuction. Complete

details of AIR methodology and validation have been given previously

(Woods et al., 1998a,b).

For nonlinear registrations we used the multi-resolution, multi-scale

ANIMAL methodology developed at the Montreal Neurological Institute

(MNI) (Collins and Evans, 1997). Briefly, this methodology treats spatial

transformations as deformation vector fields encoded as grid transforms.

In the standard registration framework, where the source image

deforms to align with the target image, grid transforms store the

displacement vectors on regular three-dimensional grids of variable

resolutions. In a low-resolution grid transform the displacement vectors

are defined sparsely (e.g. for every 10th voxel coordinate); in this case

the displacements of the remaining source voxels are obtained through

interpolation. By contrast, a grid at the highest resolution records

a unique displacement vector for every source voxel. The registration

algorithm is designed to minimize the value of an objective function,

which is constructed as a weighted sum of the similarity measure (a

local correlation statistic) and a cost function, which constrains change

in magnitude of the local deformation vectors. Continuity of deforma-

tion fields is achieved through moving window averaging. The multi-

scale aspect of the methodology is implemented through the use of

variable scale feature extraction (blurred image intensity and image

gradient magnitude); the spatial scale of the extracted features is

determined by the size of the convolving three-dimensional isotropic

Gaussian kernel (full-width-half-maximum, FWHM = 2.35 3 standard

deviation). Complete details and validation of this technique have been

given previously (Collins and Evans, 1997).

Schedule of the Variational Atlas Algorithm
The schedule is graphically shown in Figure A1.

Step 0 (Affine Average)

In the initial step, the brains were first spatially normalized to share the

same location, orientation and global size, and then intensity normalized

to have equivalent brightness.

We arbitrarily selected one image, say In. The remaining images,

I1,. . .,In–1 were registered to In using a global affine transformation

model. The unbiased common affine space was defined by matrix

averaging and reconciliation (Woods et al., 1998a,b).

We next performed intensity normalization of the images J1,. . .,Jn. We

first corrected for image intensity non-uniformity, an MR artefact

associated with radiofrequency field inhomogeneities, with an auto-

mated algorithm (Sled et al., 1998). We then used another automated

algorithm (Kovacevic et al., 2002) to estimate mean grey matter

intensities in J1,. . .,Jn. The average value of the mean grey matter
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intensity across all images was calculated next. The images were

normalized to the average grey matter peak using linear intensity

rescaling. Figure A2 illustrates the effect of intensity normalization on

image histograms.

Images at this point were spatially and intensity normalized, in-

homogeneity corrected versions of the initial raw images and are

denoted A0
1 ; . . . ;A

0
n : The initial average image A0 is created as a voxel-by-

voxel intensity average of A0
1 ; . . . ;A

0
n : Intensity normalization is an

important step; without it, voxel-by-voxel intensity averaging would be

biased towards brighter images. This is undesirable because brightness

of MR images is more likely to depend on variations in the MR

experiment than on real biological differences.

Figure A3. The absolute difference in image intensities between the average image
and one of its components (Steps 0, 2 and 5). Left: the difference between Ak

0 and A0;
the outlines of anatomical features (e.g. corpus callosum and arbor vita) indicate local
misalignments between the two images. Middle: the difference between Ak

2 and A2;
the outlines are still present, though less pronounced. Right: the difference between Ak

5

and A5; no outlines remain within the brain interior, as a result of a group-wide
consensus being reached. The bright spots along the outer surface and in olfactory
bulbs are due to artefacts (see Results/Anatomically significant variability).

Figure A4. The centroid from the individual images. Every anatomical location v in the
average image is at the centroid of the corresponding locations in individual images.

Figure A1. Atlas creation algorithm. Step 0 normalizes individual images in terms of the global brain size and gross shape. At the end of each step, an updated average image is
produced. The evolution of the average image is marked by an increase in sharpness of CNS substructures.

Figure A2. Intensity normalization. Left: histograms of non-normalized images J1,. . .,Jn. Right: histograms of unhomogeneity corrected and intensity normalized images; the small
peak corresponding to the intensity level ~1500 represents the mean background intensity, as calculated from the small amount of background voxels included in the
measurements; the large peak coresponding to the intensity level of ~20 000 represents the mean grey matter intensity.
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Step 1 (First Generation Nonlinear Average)

The purpose of this step is to account for large-scale nonlinear

anatomical differences. We started with a two-step nonlinear registra-

tion of the average A
0 to all individual images A0

1 ; . . . ;A
0
n (steps 1.2 and

1.3 in Table A1). Using the corresponding inverse transforms, the

indivdual images were resampled to produce images A1
1 ; . . . ;A

1
n : This

new set of individual images was then intensity averaged to produce

a new average image A
1.

Steps 2--5 (Second--Fifth Generation of Nonlinear Average)

The remaining steps were similar to step 1: the most recent average

image was nonlinearly registered to its constituents and an updated set

of indivual images was produced. In order to avoid repeated resamplings

that tend to accumulate interpolation error, we instead resampled the

intial images using the concatenated transforms. In all resampling steps

we used a windowed sinc interpolation with window size of 11 voxels in

all three directions.

At the end of the last step, the concatenated individual deformation

fields g1,. . .,gn were defined so that gkðA0
kÞ = A5

k : More precisely,

gk = g5
k � � � g1

k ; where g i
k denotes the transform that was obtained in step

i such that g i
kðAi–1

k Þ = Ai
k : The last average image A

5 is an intensity

average of A5
1 ; . . . ;A

5
n : The registration throughout the nonlinear steps is

scheduled so that the full resolution is reached at the end of step 5.

Details of the registration parameters used in all non-linear steps (1--5)

are given in Table A1. Note how each non-linear step contains two

substeps to allow gradual progression in spatial matching. By the end of

step 5, the full spatial normalization among individual images is achieved

(Fig. A3).

Finally, we applied geometric centring to produce a ‘minimal de-

formation target’, as introduced by Kochunov et al. (2001). Briefly, we

calculate the average deformation field h by averaging grid transforms

g–1
1 ; . . . ; g

–1
n for each voxel in the

A
5
-space

The concatenated deformation fields Fk = gkh; were then used to

produce Ak = FkðA0
kÞ;k = 1; ::;n: The intensity average of Aks was

defined as the final atlas average image A. By construction, A is

geometrically centred with respect to the individual images A0
1 ; . . . ;A

0
n :

For every anatomical location v in A, its n deformation vectors point

towards homologous individual locations F1(v),. . .,Fn(v) in A0
1 ; . . . ;A

0
n in

such away that v is at the centroid of the individual locations (Fig. A4). As

discussed in themain text, the arithmeticmean of the vectormagnitudes

jF1ðvÞj; . . . ; jFnðvÞj is themean positional distance,mpd (v) (MPD in the

main text). The sphere centred at v, with radius equal to mpd (v)

represents the spatial variability’ of the location v.
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Table A1
Schedule of nonlinear registrations in steps 1--5

Grid resolution (lm) Gaussian FWHM (lm)/feature

Step 1.1 720 240/intensity blur
Step 1.2 600 240/gradient magnitude
Step 2.1 480 180/intensity blur
Step 2.2 360 180/gradient magnitude
Step 3.1 240 180/intensity blur
Step 3.2 180 180/gradient magnitude
Step 4.1 180 120/intensity blur
Step 4.2 120 120/gradient magnitude
Step 5.1 120 120/intensity blur
Step 5.2 60 120/gradient magnitude

The middle column represents grid resolutions in terms of the nodal distance. The right column

lists feature extracted images used in each step; the feature scales are measured by the size of

the convolving Gaussian kernels.
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