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A Three-Dimensional Multifrequency Large Signal
Model for Helix Traveling Wave Tubes

David Chernin, Thomas M. Antonsen, Jr., Baruch Levush, Senior Member, IEEE, and David R. Whaley, Member, IEEE

Abstract—A three-dimensional (3-D) multifrequency large
signal model of the beam-wave interaction in a helix TWT is
described. The beam is divided into a set of discrete rays, or
“beamlets”, instead of the disks or rings used in one-dimensional
(1-D) or two-dimensional (2-D) models. The RF fields supported
by the helix are represented by a tape helix model that uses a
modal expansion including the full (Bessel function) radial de-
pendence of the fields; both forward and backward synchronous
space harmonics are included in the model. RF space charge fields
are obtained from solutions of the Helmholtz equations for the
RF electric and RF magnetic fields, using the beam current and
charge densities as sources. The dc space charge electric field is
similarly obtained from a solution of Poisson’s equation.

This model has been implemented in a code called CHRISTINE
3D, a generalization of the one dimensional CHRISTINE code. The
full three dimensional treatment permits the accurate computation
of large signal gain and efficiency, taking into account the self-con-
sistent variation of beam radius along the interaction space. The
code also computes helix interception current and transverse beam
distributions at the entrance to the collector—important design
data that are unavailable from a 1-D model.

Results from the CHRISTINE 3D code are shown to compare
very favorably with measurements of output power, efficiency, and
interception current vs. drive power. Its predictions for spent beam
distributions also compare very well with measurements.

Run times for the code are problem dependent, but for a single
case of interest are typically 1 to 5 min on a 450 MHz PC, orders
of magnitude shorter than that required for a comparable 3D par-
ticle-in-cell simulation.

Index Terms—Helix, large signal, multifrequency, simulation,
space charge, three-dimensional, traveling wave tubes.

I. INTRODUCTION

L ARGE signal models of traveling wave tubes may gener-
ally be classified according to the number of spatial dimen-

sions used in the representation of the beam and the fields with
which the beam interacts. One-dimensional (1-D) models, for
example, represent the beam as a sequence of disks or rings that
are constrained to move only axially, along the interaction space,
in response to the (radially averaged) axial circuit and space
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charge electric fields. Such 1-D treatments of the beam-wave in-
teraction are generally adequate when there is little or no beam
expansion or contraction in the interaction space. When this is
not the case, two-dimensional (2-D) or three-dimensional (3-D)
models are required to make accurate predictions of TWT per-
formance, since the interaction strength between the beam and
the circuit wave is sensitive to the distance from the beam to
the helix, where the RF fields are strongest. Two-dimensional
models represent the beam as a series of rings that may expand
radially, as well as move axially. Two-dimensional models are
therefore able to simulate the self-consistent motion of the beam
in actual magnetic focusing fields. Since they include radial mo-
tion, simulation codes based on these models can be used to
predict helix interception current and the transverse distribution
of the spent beam—information that is simply unavailable from
a 1-D code. Finally, 3-D models like the one described in the
present paper further subdivide the beam into rays or beamlets,
each launched with a different initial azimuthal angle. This an-
gular resolution is required if the model is to be used to analyze
the synchronous interaction of the beam with a backward wave
spatial harmonic, as described in Section II.

Large signal analysis of TWTs generally dates from the work
of Pierce [1] and of Rowe [2], who developed the theory upon
which the 2-D simulation codes by Detweiler [3], Daytonet al.
[4], and MacGregor [5] were later built. A significant body of
work on large signal analysis, not widely known in the West,
has also been done in Russia [6]. The Detweiler code, long
an industry standard, is a single frequency model. MacGregor
generalized Detweiler’s approach to treat multifrequency input
signals; he also made some improvements in the space charge
model. Dionne produced a 1-D disk model code [7] as part of
his study of wide band TWTs and a novel sectored disk model
code [8], designed to analyze backward wave oscillation. Bird-
sall and collaborators have developed a time dependent, 1-D
particle-in-cell (PIC) code [9]. Two-dimensional PIC calcula-
tions of TWTs have also been reported [10], [11], but these are
very demanding of computer resources. Freund and collabora-
tors have developed two 3-D helix TWT codes, one a time de-
pendent code [12] and the other a steady state, frequency do-
main code [13], [20], [14]. Other, proprietary codes have been
produced by microwave tube manufacturers and used in the de-
velopment of their products.

Two of the present authors have developed a theory for a 1-D
large signal multifrequency helix TWT model and have imple-
mented that model in a code called CHRISTINE [15], [16]. That
code initially used a sheath helix model to represent the cir-
cuit fields, but a tape helix model [17] was recently added. The
present paper describes the generalization to three dimensions
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of the large signal theory used in CHRISTINE, and its imple-
mentation in a new code calledCHRISTINE 3D.The tape helix
model and the RF space charge model used in CHRISTINE 3D
are new and are in large measure responsible, we believe, for
the excellent accuracy achieved by this code when its predic-
tions are compared with experimental measurements.

Strictly speaking, the CHRISTINE 3D code is presently a
2-1/2-D code, that is, while all three spatial coordinates of each
particle are followed by the code, all RF and dc fields are as-
sumed to vary only intwo dimensions ( and ). The theory on
which the code is based, however, as presented in Section II,
is fully three dimensional, allowing fields to vary in, as well
as in and . This 3-D theory is necessary to treat the syn-
chronous interaction of the beam with a spatial harmonic of
a backward-going wave, as explained in Section II. Not until
these backward wave interactions are incorporated in CHRIS-
TINE 3D will the code be truly three dimensional. These addi-
tional code developments are underway. We felt, however, that
it would be worthwhile at this time to present the full 3-D theory
and the results from the present version of the code, which en-
courage us to proceed to the next step in its development.

The model presented here and implemented in the CHRIS-
TINE 3D code is a steady state model in which all RF quantities
are assumed to have a common period. This means in particular
that all signal frequencies are integer multiples of a common
frequency, which may or may not itself be one of the signal fre-
quencies. In principle this limitation is not very restrictive, since
even input signals carrying complex modulations in amplitude
and phase can be Fourier decomposed into a series of pure tones.
However, as a practical matter, a fully time dependent code is
needed when the Fourier spectrum of the input signal becomes
broad, as in the case of some digital modulation schemes.

The present paper is organized as follows. Section II, fol-
lowing this section, , presents our formulation of the large signal
theory of helix TWTs in three dimensions; this formulation is
mostly, but not completely, a straightforward generalization of
the treatment presented in [15]. Section III illustrates a number
of comparisons that have been made between measurements and
code predictions. These comparisons, which are quite favorable,
include output power and helix interception current vs. drive
power and the form of the spent beam distribution. A final sec-
tion summarizes our results and describes plans for additional
development of the model described here.

II. 3-D LARGE SIGNAL THEORY

The total electromagnetic field acting on an electron propa-
gating in the interaction space of a TWT is composed of three
parts. These are 1) the externally applied focusing field, 2) the
helix circuit field, and 3) the space charge field. All of these
fields act on the beam while the beam is interacting with the
helix circuit; only 1) and 3) act on the beam in a sever region.

The field used to focus the beam is generally a dc magnetic
field produced by coils or permanent magnets positioned
outside the vacuum envelope. One-dimensional treatments of
beam-wave interactions assume that the transverse focusing
strength of these fields is so large that transverse beam motion
may be neglected. One-dimensional codes, therefore, do not
need any quantitative information about the focusing fields. Two

dimensional codes and full 3-D codes, like CHRISTINE 3D,
however, must provide either an internal model of the fields or
be able to import some representation of the actual fields. Here
we will assume that these fields are available in some form to the
simulation and we will not say much more about them.

The circuit fields are produced by charges moving on the
surfaces of the metallic structure surrounding the beam. These
fields are solutions to Maxwell’s equations in vacuum, with the
appropriate boundary conditions on the surface of the structure.
We represent these fields in the generalized Floquet form as

(1a)

(1b)

where and are the electric and magnetic
fields, and and are dimensionless solutions to
Maxwells equations for frequency and propagation constant

. is the speed of light in vacuum. We take to be
real; circuit attenuation is accounted for separately, below.
To allow for slow axial variation (tapering) of the slow wave
structure, the propagation constant is taken to vary slowly
with axial distance; by “slow axial variation” it is meant
that . The functions and

are periodic with the local helix period. is the field
amplitude; it has units of vector potential (Gauss-cm). In the
presence of the beam it too will be taken to vary slowly with
. The sums in (1a) and (1b) are over a discrete set of real

frequencies , all of which are assumed to be integer multiples
of a lowest frequency, . All RF fields, therefore, are assumed
to be periodic with period .

For a specified frequency, which we take to be a positive
real number, is determined by the cold helix circuit disper-
sion relation. If is a root of the dispersion relation, then so
are where is the wavenumber cor-
responding to the helix periodand is any integer. Without
loss of generality, we take .

Traveling waves are usually characterized by their dispersion
relation (relation between frequency and wavelength) and by
their interaction impedance (electric field strength per unit
power). In one dimension, when the only structure field of
interest is the longitudinal electric field, it suffices to specify
only phase velocity and interaction impedance for each signal
frequency. In three dimensions, as we shall see, when all six
vector components of both the RF electric and magnetic fields
must be included, additional information in the form of the
magnetic field strength per unit power is required to compute the
full set of structure fields.

The power flowing along the helix circuit may be obtained by
substituting (1a) and (1b) into the expression for the Poynting
flux. The result is

(2)
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where a normalized wave amplitude has been defined as

(3)

and where the normalization constant is

ergs/s

watts (4)

where and are the electron charge and mass, respectively.
An effective area of the mode has been defined in (3) as

(5)

The integral in (5) is over the entire plane transverse to the
-axis. In the following we will drop the subscript.
If we consider the fields within an imaginary cylinder cen-

tered on the -axis, with a radius less than that of the helix, the
functional forms of and may be simply expressed in
cylindrical coordinates. In particular, if we assume helical sym-
metry for the fields, we may write the-components of the nor-
malized fields as

(6a)

(6b)

where is the wavenumber corresponding to the
helix period . The transverse field components then follow
from Maxwell’s equations:

(7a)

(7b)

(7c)

(7d)

where

(8)

and where the radial propagation factor is defined by

(9)

The axial components of the fields have simple representations
in any region containing the origin. These are

(10e)

(10b)

where and are constants and is the modified
Bessel function of order .

may be expressed in terms of the interaction impedance
of the mode defined at some reference radius, defined as

(11)

Fig. 1. Interaction of the beam with the zeroth space harmonic of the forward
wave and with the first space harmonic of the backward wave. The frequency
is normalized tof , the frequency at which the slow wave wavelength would
equal the helix pitch,p. The wave number is normalized tok � 2�=p.

still in CGS units. The factor of 2 in the numerator is due to the
definition of the fields as a sum of a quantity and its complex
conjugate in (1a) and (1b). It follows that

(12)

These impedances can either be computed using a tape helix
model or measured experimentally. Once they are known, the
axial normalized electric field is known for all ,
using (10a) and (12).

In order to obtain the transverse fields for use in the 3-D equa-
tions of motion, it is necessary to know the axial magnetic field
as well. To this end, it is convenient to define a quantity analo-
gous to for the magnetic field

(13)

where we have introduced the factor in order to give
the dimensions of admittance. The may also either be

calculated using a tape helix model or measured, though such
measurements have not ever been performed, to the authors’
knowledge. It follows that

(14)

which, with (13), (12), (11), (10a), (10b), (7a)–(7d), (6a), (6b),
and (1a), (1b), give all of the circuit fields everywhere within
the beam.

It remains only to find the equation governing the evolution of
the normalized mode amplitude as the wave interacts with
the beam. The development of this equation follows the standard
derivation of Poynting’s theorem, as shown in reference [15].
The general result [15, Eq. (7)] is

(15)
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where
attenuation per unit length;
Alfven current ( );
is the beam current density, and the angular brackets
denote averages over the temporal period of the ra-
diation and the spatial period of the structure.

We now write the current density as a sum over particles (in-
stead of a sum over disks, as in reference [15])

(16)

where
charge;
position of particle at time ;

velocity of particle at time .
Substituting (16) in (15) and performing the integrals over
and t gives, for the right hand side of (15)

(17)

where the sum is now over all particles that enter during an RF
period, is the current associated with “beamlet”

, and all particle positions and velocities are now functions of
; is the arrival time of particle at . In order to perform

the remaining average in, over a helix period , we expand the
electric field as in (6a), to obtain

(18)

If we assume that the transverse particle position and velocity
do not change much within a structure period, then the only term
in the sum over in (18) that will survive the averaging process
over is a term for which

(19)

for some value of , where is the average velocity of the
beam. This clearly means that the beam is synchronous with the

th spatial harmonic of the wave. Traveling wave tubes are de-
signed to satisfy (19) for since the interaction impedance

decreases rapidly with increasing values of. However,
synchronism can also occur with the first spatial harmonic of
the backward wave ( ; ), as shown in Fig. 1.

The interaction with the backward wave, if strong enough, can
lead to backward wave oscillation (BWO) near the frequency at
which thebeamlinecrosses thebackwardwavespatialharmonic.
We will carry along both cases, and , together in the
following, with the understanding that the total field is just the
sum of the forward and backward wave synchronous fields. Note
however, that thepresent releaseversionofCHRISTINE3Ddoes
not include backward wave fields; inclusion of backward wave

fields, and the ability to compute BWO thresholds, will be in-
cluded in a future release of the code.

We denote the index of the synchronous spatial harmonic as
( , or 1) and write

(20)

We define two slowly varying functions, , and

(21)

(22)

Note that the quantity is the same for all particles. It is
therefore computed and stored by CHRISTINE 3D at initializa-
tion time, and used where needed as the simulation proceeds.
The final result for the field equation is written as

(23)

Note the azimuthal dependence of the field amplitude for the
synchronous backward wave ( ). It is this dependence that
results in the requirement for a fully three dimensional code to
properly analyze the BWO stability of a helix TWT.

The equations of motion that are integrated together with the
field equation are most simply expressed, and numerically inte-
grated, in Cartesian coordinates

(24)

(25)

where
momentum;
velocity;
location;
charge of the th particle.

In (24), the time dependence of the fields is converted to-de-
pendence by replacing the timewith the arrival time
of particle at . Equations (23)–(25) become a complete de-
scription of the steady state large signal model once the space
charge fields are included in (24).

The space charge fields, produced by the charges in the beam,
are generally the most difficult to treat. This is because the full
set of Maxwells equations must be solved, using the beam cur-
rent and charge density as the source terms, subject to suitable
boundary conditions on the helix surface. Care must be taken
not to double count the circuit fields, whose rate of increase is
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Fig. 2. Beam phase space plots with PPM focusing and zero RF power applied to TWT input circuit.

also proportional to beam current [(23)], when computing the
space charge fields.

The space charge field model in CHRISTINE 3D is that of a
beam modulated at frequencyand wavenumber

(26)

contained within a smooth cylindrical pipe with a radius equal
to the helix radius. This model was adopted after results using a
more complete model of space charge fields produced by a beam
surrounded by a sheath helix, used in the original CHRISTINE
code [15], [16], were shown to be in close agreement with the
cylindrical pipe model. In the CHRSTINE 3D model, the axial
electric and magnetic fields are obtained from the Helmholtz
equations with the beam source terms

(27a)

(27b)

where
;

beam current density;
beam charge density and an depen-
dence has been assumed for all quantities.

CHRISTINE 3D computes the source term on a fixed radial
grid using a particle-in-cell type of charge and current distri-
bution algorithm, then solves (27a) and (27b) for and
using a tridiagonal solver, with boundary conditions
and at the radius of the helix. Once the axial fields
have been found, the transverse fields are computed using

(28a)

(28b)

which follow directly from Maxwell’s equations. In general,
the number of frequencies used in computing the space charge
fields is larger than the number of frequencies retained in the
expansion of the circuit fields. This is because as the bunching
becomes stronger, more harmonics are needed to represent the
space charge fields accurately.

The dc radial electric space charge field is obtained from a so-
lution of Poisson’s equation for the electrostatic potential. If this
solution varies in , due for example to a varying beam or helix
radius, then the resulting axial self electric field is also included.
No dc beam self-magnetic fields are included in CHRISTINE
3D; dc self-magnetic forces are of order compared to
self electric forces.

A test of the dc space charge model is illustrated in Fig. 2.
In this simulation, a 4 kV, 130 mA beam is injected into a PPM
field. No RF signal is applied. The top plot shows the axial mo-
menta of all particles as a function of distance along the inter-
action space. Since there is no signal applied, the momenta of
all particles remains constant. Note that there is no azimuthal
variation of any field in this case, so there is no need to launch
particles with different azimuthal angles. The CHRISTINE 3D
code acts similar to a 2-D (“ring”) code under these conditions.
The resulting Brillouin flow is illustrated in the lower part of the
figure. The absolute value of the axial field on axis is plotted
as a function of position in the middle section of Fig. 2 and
clearly shows the PPM structure. The small beam ripple seen
in the lower plot is a result of this magnetic field structure.

The effect of RF drive on the particle orbits can be seen in
Fig. 3. In this case an RF drive of 27 dBm was applied to the
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Fig. 3. Beam phase space plots with PPM focusing and 27 dBm RF power applied to TWT input circuit.

Fig. 4. RF power profiles of fundamental (solid line) and second and third
harmonic frequencies. The fundamental is driven at 0.5W (27.0 dBm). The
output power of the fundamental is 132.6 W (51.2 dBm); the output powers of
the second and third harmonics are 2.1 W (33.3 dBm), and 0.1 W (18.8 dBm),
respectively.

(C-band) TWT input circuit. Note the expansion of the beam
near the end of the interaction. It is this expansion that neces-
sitates the use of a 2-D or 3-D model for accurate prediction
of TWT performance. Plots of RF power growth of the fun-
damental, and second and third harmonic signals are shown in
Fig. 4. This result shows the multi-frequency capability of the
model. Note the presence of a sever near the input. In a sever,
the model applies only the space charge and applied magnetic
focusing fields, not the helix circuit fields.

III. A V ALIDATION STUDY OF THE CHRISTINE 3D CODE

A dynamic velocity taper (DVT) C-Band TWT was built by
Northrop Grumman Corporation [18] in 1998 to validate the pre-
dictive capabilities of the original 1-D CHRISTINE code. Using
that code’s built-in optimization algorithm to compute a circuit
pitch profile that maximized circuit efficiency (without regard
to issues of beam recollection or helix intercept current), a dra-

matic improvement in attainable efficiency was predicted. The
optimized circuit obtained by the code was built and tested in the
DVT TWT and it achieved precisely the 42% circuit efficiency
predicted by the code, proving that high circuit efficiency circuits
can be accurately designed with the CHRISTINE optimizer. Not
unexpectedly, this very high efficiency TWT exhibits large in-
tercept currents as the input drive approaches saturation where
the energy extraction and beam perturbation is the greatest. This
TWT therefore provides a good benchmark case for validation of
the beam expansion models of CHRISTINE 3D.

The results from CHRISTINE 3D shown below used the tape
helix model of reference [17], without vanes. The only “free”
parameter was the dielectric constant of a single smooth dielec-
tric layer used to represent the average effect of the support rods
placed between the outer surface of the helix and the outer wall.
This parameter was adjusted so that the computed dispersion
curve matched the measured curve as closely as possible.

Experimental and simulated results from CHRISTINE 3D of
power and intercept current variation with input drive are shown
in Fig. 5. The beam voltage, beam current, and RF frequency are
4.8 kV, 0.146 A, and 4.75 GHz, respectively. The computed data
shown in this section is the result of the first single parameter
scan with CHRISTINE 3D for this TWT. It is seen that the pre-
dictive capabilities of the code are quite good. The logarithmic
drive curve is accurately predicted by the code. No harmonic
data were measured for this TWT and so none are shown in the
plots. Small signal gain as well as saturated power and efficiency
are also seen to be accurately reproduced.

The most important prediction of the code in this study, how-
ever, is the variation of helix intercept current with input power.
This is a quantity that is not computed by a 1-D model. It is seen
from Fig. 5(c) that the onset of the intercept current, its varia-
tion with input power, and its magnitude at saturation are all
predicted with good accuracy by the CHRISTINE 3D model.
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(a) (b)

(c)

Fig. 5. Experimental and simulated drive curves of C-Band DVT TWT: (a) logarithmic drive curve, (b) linear drive curve, and (c) intercept current variation with
input drive power. Beam voltage= 4.8 kV, current= 146 mA, operating frequency= 4.75 GHz.

The phase space plots corresponding to the data point in Fig. 5
at 30 dBm are shown in Fig. 6. The rapid energy extraction near
the end of the circuit is seen in Fig. 6(a) and the corresponding
beam expansion in Fig. 6(b). Contours of magnetic field are also
illustrated in the figure. Note that all of the interception in this
case takes place near the output of the TWT. This is information
that is difficult to obtain experimentally, and gives guidance on
how and where the magnetic field can be modified in order to
prevent beam interception without compromising efficiency.

Another measure of the accuracy of the simulation is given
by the comparison between model prediction and measurement
of the energy distribution of the spent beam as it exits the inter-
action region. If we denote by the kinetic energy of a particle
in the beam, then the integral energy distribution may
be defined as

(29)

where represents the current carried by particle

(30)

is the total beam current, and is the energy distribution of
the electron beam.

Fig. 6. Phase space plots at saturation for C-band DVT TWT.

The integrated energy distribution of (29) can easily be mea-
sured by shorting all stages of the collector together and mea-
suring the total collected current as the bias on the collector
lenses is increased in small steps from 0 V to the full cathode
voltage. If the measured current is then divided by the total beam
current, the distribution of (29) is reproduced. One can plot the
results as a function of where is the cathode voltage,
for both measured and simulated cases. The measured and simu-
lated spent beam distribution of the DVT C-Band TWT is shown
in Fig. 7 for the saturated case of 42% efficiency. The minimum
electron energy is accurately predicted, as is the shape of the
entire distribution.
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Fig. 7. Experimental and simulated spent beam distribution of a C-band DVT
TWT.

IV. SUMMARY

A 3-D multifrequency large signal model for helix traveling
wave tubes has been formulated and implemented in a new
simulation code called CHRISTINE 3D. This new code con-
tains models for the initial beam distribution, for the magnetic
focusing fields, and for the dispersion and interaction impedance
of a tape helix; alternatively, it can import user provided data
for these quantities. CHRISTINE 3D retains many of the
capabilities of the original CHRISTINE code, including the
ability to scan ranges of input parameter values and to vary user
specified parameters until a target quantity (efficiency, gain
linearity, phase linearity, or bandwidth) is optimized. The code
has undergone initial validation testing against measurements of
drive curves, interception current, and spent beam distributions
with encouraging results. Plans for future development of the
CHRISTINE 3D code include the inclusion of reflections and
backward waves, according to the prescription in (19)–(22).

We note in closing that the analysis presented in this paper
may be generalized to arbitrary traveling wave structures that
lack helical (or any other) symmetry [19]. Such a formulation is
applicable, for example, to coupled cavity TWTs and extended
interaction klystrons.
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