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The silicon nanowire transistor(SNWT) is a promising device structure for future integrated
circuits, and simulations will be important for understanding its device physics and assessing its
ultimate performance limits. In this work, we present a three-dimensional(3D) quantum mechanical
simulation approach to treat various SNWTs within the effective-mass approximation. We begin by
assuming ballistic transport, which gives the upper performance limit of the devices. The use of a
mode space approach(either coupled or uncoupled) produces high computational efficiency that
makes our 3D quantum simulator practical for extensive device simulation and design. Scattering in
SNWTs is then treated by a simple model that uses so-called Büttiker probes, which was previously
used in metal-oxide-semiconductor field effect transistor simulations. Using this simple approach,
the effects of scattering on both internal device characteristics and terminal currents can be
examined, which enables our simulator to be used for the exploration of realistic performance limits
of SNWTs. ©2004 American Institute of Physics. [DOI: 10.1063/1.1769089]

I. INTRODUCTION

As the channel lengths of metal-oxide-semiconductor
field effect transistors(MOSFETs) scale into the nanometer
regime, short channel effects1 become more and more sig-
nificant. Consequently, effective gate control is required for a
nanoscale MOSFET to achieve good device performance.
For this reason, silicon nanowires, which allow multigate or
gate-all-around transistors, are being explored.2–7 In Ref. 2,
the authors reported a parallel wire channel transistor, whose
channel can be viewed as a wire with a triangular cross sec-
tion. In Refs. 3–6, wires with rectangular cross sections were
used to fabricate different types of trigate/gate-all-around
field effect transistors(FETs). At the same time, cylindrical
Si nanowires with diameters as small as 5 nm have also been
synthesized by the chemical vapor deposition technology.7

These recent experiments have shed light on the potential
applications of silicon nanowire transistors in future elec-
tronics.

To deeply understand device physics of silicon nanowire
transistors(SNWTs) and to assess their ultimate performance
limits, simulation work is necessary and important. In con-
trast to a planar MOSFET, which has a uniform charge and
potential profile in the transverse direction(normal to both
the gate and the source-to-drain direction), a SNWT has a
three-dimensional(3D) distribution of electron density and
electrostatic potential. As a result, a 3D simulator is required
for the simulation of SNWTs. In this paper, we propose a 3D
self-consistent quantum simulation of SNWTs based on the
effective-mass approximation(whose validity in the nano-
scale device simulation has been established in Ref. 8). The
calculation involves a self-consistent solution of a 3D Pois-

son equation and a 3D Schrödinger equation with open
boundary conditions. Using the finite element method
(FEM), we solve the 3D Poisson equation to obtain the elec-
trostatic potential. At the same time, we solve the 3D
Schrödinger by a (coupled/uncoupled) mode space
approach9–12 which provides both computational efficiency
and high accuracy as compared with direct real space calcu-
lations. Since the(coupled/uncoupled) mode space approach
treats quantum confinement and transport separately, the pro-
cedure of the calculation is as follows.

Step 1. Solve the 3D Poisson equation for the electro-
static potential.

Step 2. Solve a two-dimensional(2D) Schrödinger equa-
tion with a closed boundary condition at each slice(cross
section) of the nanowire transistor(see Fig. 1) to obtain the
electron subbands(along the nanowire) and eigenfunctions.

Step 3. Solve(coupled/uncoupled) one-dimensional(1D)
transport equations by the nonequilibrium Green’s function
(NEGF) approach13–15 for the electron charge density.

Step 4. Go back to step 1 to calculate the electrostatic
potential. If it converges, then calculate the electron current
by the NEGF approach(as in step 3) and output the results.
Otherwise continue steps 2 and 3.

Different transport models(in step 3) are implemented
into our simulator. In this paper, we will discuss both ballis-
tic NEGF model, which gives the upper performance limit of
SNWTs, and a dissipative NEGF model with a simple treat-
ment of scattering with the Büttiker probes,14,16,17which of-
fers an efficient way to capture scattering in the quantum
mechanical framework.

A rigorous treatment of scattering and a detailed calcu-
lation of band structures are very important to understand
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physics in Si nanowires in detail. However, the huge compu-
tational cost involved in such a rigorous model can prevent it
from being used for extensive device simulation and design.
As we will show later, the use of the effective-mass approxi-
mation and the simple treatment of scattering with the Büt-
tiker probes greatly reduces the computational complexity
while still capturing the essential device physics of SNWTs
(i.e., 3D electrostatics, quantum confinement, source-to-
tunneling and scattering, etc.), so the method we discuss in
this paper can be used as a practical 3D quantum approach
for device study and design of SNWTs.18 This paper is di-
vided into the following sections: Sec. II describes our meth-
odology for ballistic SNWTs and provides the basic equa-
tions, Sec. III discusses the simulation results for ballistic
SNWTs with arbitrary cross sections(e.g., triangular, rectan-
gular, and cylindrical), Sec. IV introduces the Büttiker
probes for the treatment of scattering and shows relevant
results, and Sec. V summarizes key findings.

II. THEORY FOR BALLISTIC SILICON NANOWIRE
TRANSISTORS

Figure 1 shows a schematic structure of the Si nanowire
transistors simulated in this work. This intrinsic device struc-
ture is connected to two infinite reservoirs, the source and
drain (not shown), so the source/drainsS/Dd extension re-
gions are terminated using open boundary conditions. As
shown in Fig. 1(b), a uniform grid with a grid spacing ofa is
used along the channelsxd direction. In they-z plane [the
cross section of the SNWT), a 2D finite element mesh with
triangular elements is generated by Easymesh-1.4,19 which
allows us to treat nanowires with arbitrary cross sections
[e.g., triangular, rectangular, and cylindrical, as shown in
Fig. 1(c)]. By doing this, a 3D finite element mesh with

prism elements is constructed. When solving the Poisson
equation, the 3D Laplacian is directly discretized by the
FEM approach. The obtained linear system is solved using a
preconditioned conjugate gradient method with incomplete
Cholesky factorization. More details about the numerical
techniques can be found in Ref. 9.

As mentioned earlier, we solve the 3D Schrödinger
equation by the mode space approach,9–11 which is based on
an expansion of the active device Hamiltonian in the sub-
band eigenfunction space. As a result, we need to solve a 2D
Schrödinger equation by the FEM at each slice of the SNWT
to obtain the subband eigenenergy levels and eigenfunctions
(modes). After that, the original 3D device Hamiltonian is
transformed into a 1D Hamiltonian in thex direction, which
can be used to calculate electron density and current within
the NEGF formalism. In this section, we will first give an
overview of the coupled mode space(CMS) approach for the
SNWT simulation (Sec. II A), which is mathematically
equivalent to a direct real space solution if adequate modes
are included(to be discussed later).9,10 Then we will intro-
duce the uncoupled mode space(UMS) approach(Sec. II B)
and a fast uncoupled mode space(FUMS) approach(Sec.
II C), which are a simplification of the CMS approach to
provide high computational efficiency. The simulation results
(in Sec. III) illustrate that the UMS and FUMS approaches
show excellent agreement with the CMS approach for the
SNWT simulation.

A. The coupled mode space approach

In this part of the work, we will briefly review the CMS
approach and list basic equations for our particular case of
interest.

FIG. 1. The simulated SNWT structures in this work.(a) A schematic graph of an intrinsic SNWT with arbitrary cross sections(for clarity, the SiO2 substrate
is not shown here). (b) The grid used in the simulation of SNWTs.(c) The cross sections of the simulated triangular wire(TW), rectangular wire(RW), and
cylindrical wire (CW) FETs.TSi is the silicon body thickness,WSi is the silicon body width, andWWire is the wire width. For the TW, the direction normal to
each gate isk111l, so the channel isk101l oriented. In contrast, for the channel of the RW, bothk101l and k100l orientations are possible. For the CW, we
assume the channel to bek100l oriented.
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In the 3D domain, the full stationary Schrödinger equa-
tion is given by

H3DCsx,y,zd = ECsx,y,zd, s1d

whereH3D is the 3D device Hamiltonian. Assuming an ellip-
soidal parabolic energy band with a diagonal effective-mass
tensor(for the case that the effective-mass tensor includes
nonzero off-diagonal elements, please refer to Ref. 12), H3D

is defined as

H3D = −
"2

2mx
psy,zd

]2

]x2 −
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heremx
p, my

p, andmz
p are the electron effective mass in thex,

y, andz directions, respectively, andUsx,y,zd is the electron
conduction band-edge profile in the active device. We note
that the effective mass varies in they andz directions due to
the transition between the Si body and the SiO2 layer.(In our
simulation, the penetration of electron wave function into the
SiO2 layer is considered, which is necessary for the
effective-mass approximation to be valid for Si nanowire
simulation.8) Now let us expand the 3D electron wave func-
tion in the subband eigenfunction space,

Csx,y,zd = o
n

wnsxdj n sy,z;xd, s3d

wherej n sy,z;x=x0d is thenth eigenfunction of the follow-
ing 2D Schrödinger equation at the slicesx=x0d of the
SNWT,
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+ Usx0,y,zdGj nsy,z;x0d = Esub
n sx0dj nsy,z;x0d, s4d

hereEsub
n sx0d is the nth subband energy level atx=x0. Ac-

cording to the property of eigenfunctions,j n sy,z;xd satisfies
the following equation for anyx:

R
y,z

j msy,z;xdj nsy,z;xddydz= dm,n, s5d

wheredm,n is the Kronecker delta function.
Inserting Eqs.(2) and (3) into Eq. (1) and using the

relation described by Eq.(4), we obtain

−
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Now we multiply by j m sy,z;xd on both sides and do an
integral within they-z plane. According to Eq.(5), we obtain
the following 1D coupled Schrödinger equation:
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where
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and

cmnsxd =R
y,z

1

mx
psy,zd

j msy,z;xd
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]x2j nsy,z;xddydz. s8cd

Equation(7) is the basic equation for the CMS approach. In
our simulation, since the electron wave function is mainly
located in the silicon, we can neglectamn if mÞn samm

@amnd (Ref. 10) and simplify Eq.(7) as

−
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2
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2 o
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− "2o
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]

]x
wnsxd + Esub

m sxdwmsxd = Ewmsxd. s9d

From the derivation above, it is clear that the CMS for-
malism[Eqs.(7) and(8)] is mathematically equivalent to the
real space calculation if all the modes(i.e., m, n
=1, . . . ,NYZ, whereNYZ is the number of nodes in they-z
plane) are included. In practice, due to strong quantum con-
finement in SNWTs usually only a few of the lowest sub-
bands(i.e., m, n=1, . . . ,M, M !NYZ) are occupied and need
to be included in the calculation(which means that if we
increase the mode numberM, the device characteristics such
as the electron density profile and terminal currents will not
change any more). Thus, with the firstM subbands consid-
ered (i.e., m, n=1, . . . ,M), Eq. (9) represents an equation
group that containsM equations, each representing a selected
mode. We can write down theseM equations in a matrix
format

H3
w1sxd
w2sxd
¯

¯

wMsxd
4 =3

h11 h12 h13 ¯ h1M

h21 h22 h23 ¯ h2M

¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯

hM1 hM2 hM3 ¯ hMM

43
w1sxd
w2sxd
¯

¯

wMsxd
4

=E3
w1sxd
w2sxd
¯

¯

wMsxd
4 , s10d

where
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hmn= dm,nF−
"2

2
amnsxd

]2

]x2 + Esub
m sxdG −

"2

2
cmnsxd

− "2bmnsxd
]

]x
sm,n = 1,2, . . . ,Md. s11d

By using the coupled mode space approach, the size of the
device HamiltonianH has been reduced toM ·NX3M ·NX

(NX is the number of nodes in thex direction, and the mode
numberM we need is normally less than 5 for the SNWT
structures we simulate), which is much smaller than that in
the real space representation,NYZ·NX3NYZ·NX (NYZ is
,1000 for the device structures simulated in this work).

After the device HamiltonianH is obtained, we can cal-
culate the electron density and current using the NEGF ap-
proach. The NEGF approach, a widely used method for the
simulation of nanoscale electronic devices, has been dis-
cussed in Refs. 13 and 14. Here we list the relevant equations
for our particular case.

The retarded Green’s function of the active device is
defined as14

GsEd = fES− H − SSsEd − S1sEd − S2sEdg−1, s12d

where the device HamiltonianH is defined by Eq.(10), SS is
the self-energy that accounts for the scattering inside the de-
vice (in the ballistic limit, it is equal to zero), S1 sS2d is the
self-energy caused by the coupling between the device and
the source(drain) reservoir. If we discretize the equations by
the 1D (in the x direction) finite difference method(FDM),
the matrixS in Eq. (12) is equal to anM ·NX3M ·NX identity
matrix. The self-energies,S1 andS2, are defined as14

S1fp,qg = − tm,1 exps jkm,1addp,sm−1dNx+1dq,sm−1dNx+1

s j = Î− 1d sFDMd, s13d

S2fp,qg = − tm,NX
exps jkm,Nx

addp,mNxdq,mNx

sm= 1,2, . . . ,M andp,q = 1,2, . . . ,MNXd sFDMd,

s14d

where tm,1=s"2/2a2dammsxdux=0 and tm,NX
=s"2/2a2dammsxdux=sNX−1da [ammsxd is defined by Eq.(8a)],
and km,1 skm,NX

d is determined by E=Esub
m s0d+2tm,1s1

−coskm,1ad (E=Esub
m fsNx−1dag+2tm,NX

s1−coskm,NX
ad).

If we discretize the equations by the 1D(in the x direc-
tion) FEM, the matrix S in Eq. (12) becomes anM ·NX

3M ·NX block-diagonal matrix,

S=3
S0 0 ¯ ¯ 0

0 S0 0 � A
A 0 � � A
A � � � 0

0 ¯ ¯ 0 S0

4 sFEMd, s15d

whereS0 is anNX3NX matrix15

S0 = 3
a/3 a/6 0 ¯ ¯ 0

a/6 2a/3 a/6 � � A
0 a/6 2a/3 � � A
A � � � � 0

A � � � 2a/3 a/6

0 ¯ ¯ 0 a/6 a/3

4 sFEMd. s16d

The self-energies,S1 andS2, are defined as10,15

S1fp,qg = − jkm,1atm,1dp,sm−1dNx+1dq,sm−1dNx+1 sFEMd,

s17d

S2fp,qg = − jkm,Nx
atm,Nx

dp,mNx
dq,mNx

sm= 1,2, . . . ,M andp,q = 1,2, . . . ,MNxd sFEMd.

s18d

By inserting Eqs.(13) and (14) or (15)–(18) into Eq.
(12), we can evaluate the retarded Green’s functionGsEd at a
given energyE. Then the spectral density functions due to
the source/drain contacts can be obtained as14

A1sEd = GsEdG1sEdG†sEd, A2sEd = GsEdG2sEdG†sEd,

s19d

where G1sEd; jfS1sEd−S1
†sEdg and G2sEd; jfS2sEd

−S2
†sEdg, which determine the electron exchange rates be-

tween the active device region and the source/drain reser-
voirs at energyE. In this coupled mode space, the diagonal
elements of the spectral function matrices represent the local
density of states(LDOS) in the device for each mode. We
define the LDOS for modem asD1

m (due to the source) and
D2

m (due to the drain). Here D1
m and D2

m are bothNX31
vectors obtained as

D1
mfpg =

1

pa
A1fsm− 1dNX + p,sm− 1dNX + pg

sp = 1,2, . . . ,NXd, s20d

D2
mfpg =

1

pa
A2fsm− 1dNX + p,sm− 1dNX + pg

sp = 1,2, . . . ,NXd. s21d

Then the 1D electron density(in m-1) for mode m can be
calculated by

n1D
m =E

−`

+`

fD1
mfsmS,Ed + D2

mfsmD,EdgdE, s22d

where f is the Fermi-Dirac statistics function, andmSsmDd is
the source(drain) Fermi level, which is determined by the
applied bias. The electron density obtained by Eq.(22) is a
1D distribution(along thex direction). To obtain a 3D elec-
tron density, we need to couple Eq.(22) with the quantum
confinement wave function for modem,
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n3D
m sx,y,zd = n1D

m sxduj msy,z;xdu2. s23d

The total 3D electron density needs to be evaluated by sum-
ming the contributions from all the subbands in each conduc-
tion band valley. Then this 3D electron density is fed back to
the Poisson solver for the self-consistent calculations. Once
self-consistency is achieved, the electron current is computed
by

ISD=
q

p"
E

−`

+`

TsEdffsmS,Ed − fsmD,EdgdE, s24d

where the transmission coefficientTsEd can be evaluated as14

TsEd = trfG1sEdGsEdG2sEdG†sEdg. s25d

To obtain the total electron current, we also need to add up
current components in all the conduction band valleys.

B. The uncoupled mode space approach

In the simulation of SNWTs, we assume that the shape
of the Si body is uniform along thex direction. As a result,
the confinement potential profile(in the y-z plane) varies
very slowly along the channel direction. For instance, the
conduction band edgeUsx,y,zd takes the same shape but
different values at differentx. For this reason, the eigenfunc-
tions j msy,z;xd are approximately the same along the chan-
nel although the eigenvaluesEsub

m sxd are different. So we as-
sume

j msy,z;xd = j msy,zd s26d

or

]

]x
j msy,z;xd = 0 sm= 1,2, . . . ,Md, s27d

which infers

ammsxd = amm=R
y,z

1

mx
*sy,zd

uj msy,zdu2dydz, s28ad

bmnsxd = 0 and cmnsxd = 0 sm,n = 1,2, . . . ,Md. s28bd

Inserting Eq.(28b) into Eq. (11), we obtainhmn=0 (mÞn
and m,n=1,2, . . . ,M), which means that the coupling be-
tween the modes is negligible(all the modes are uncoupled).
Thus the device HamiltonianH becomes a block-diagonal
matrix,

H =3
h11 0 ¯ ¯ 0

0 h22 0 � A
A 0 � � A
A � � � 0

0 ¯ ¯ 0 hMM

4 . s29d

Since all the input matrices at the right hand side of Eq.(12)
are either diagonal or block diagonal, the retarded Green’s
function GsEd is block diagonal,

GsEd =3
G1sEd 0 ¯ ¯ 0

0 G2sEd 0 � A
A 0 � � A
A � � � 0

0 ¯ ¯ 0 GMsEd
4 , s30d

where GmsEd sm=1,2, . . . ,Md is the Green’s function for
modem and is obtained as

GmsEd = fESm − hmm− SS
msEd − S1

msEd − S2
msEdg−1, s31d

hereSm, SS
m, S1

m, and S2
m are all NX3NX matrices and de-

fined as

Smfp,qg = Sfsm− 1dNX + p,sm− 1dNX + qg

sp,q = 1,2, . . . ,NXd, s32d

SS
mfp,qg = SSfsm− 1dNX + p,sm− 1dNX + qg

sp,q = 1,2, . . . ,NXd, s33d

S1
mfp,qg = S1fsm− 1dNX + p,sm− 1dNX + qg

sp,q = 1,2, . . . ,NXd, s34d

and

S2
mfp,qg = S2fsm− 1dNX + p,sm− 1dNX + qg

sp,q = 1,2, . . . ,NXd. s35d

Knowing the retarded Green’s function, the spectral den-
sity functions due to the source/drain contacts for each mode
m can be obtained as14

A1
msEd = GmsEdG1

msEdGm†sEd,

A2
msEd = GmsEdG2

msEdGm†sEd, s36d

where G1
msEd; jfS1

msEd−S1
m†sEdg and G2

msEd; jfS2
msEd

−S2
m†sEdg. The LDOS for modem, D1

m (due to the source)
andD2

m (due to the drain), can then be evaluated by

D1
mfpg =

1

pa
A1

mfp,pg,

D2
mfpg =

1

pa
A2

mfp,pg sp = 1,2, . . . ,NXd. s37d

After that, the electron charge density is computed by Eqs.
(22) and (23). For the calculation of electron current, the
total transmission coefficient can be written as a summation
of the transmission coefficientTmsEd for each modem,

TsEd = o
m=1

M

TmsEd, s38d

whereTmsEd is obtained as14

TmsEd = trfG1
msEdGmsEdG2

msEdGm†sEdg. s39d

Finally, Eq. (38) is inserted into Eq.(24) to compute the
electron current for the SNWT.
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As we will show in Sec. III, for SNWTs, this uncoupled
mode space approach shows excellent agreement with the
CMS approach while maintaining higher computational effi-
ciency. (The validity of the UMS approach for planar
MOSFET simulation has been established by Venugopalet
al.11 by doing a careful study of the UMS approach vs 2D
real space approach.)

C. A fast uncoupled mode space approach

As described earlier, for both CMS and UMS ap-
proaches, we need to solveNX 2D Schrödinger equations
[see Eq.(4)] in a self-consistent loop to obtain the electron
subbands and eigenfunctions. For the device structures simu-
lated in this work, this part of simulation usually takes more
than 90% of the computational complexity, which makes
parallel programming necessary. To increase the efficiency of
our simulator and to make it executable on a single proces-
sor, we introduce a FUMS approach,9,10 which only involves
one 2D Schrödinger equation problem in a self-consistent
loop and still provides excellent computational accuracy as
compared with the CMS and UMS approaches.(The trans-
port part of calculation in FUMS is the same as that in
UMS.)

Recall the assumption made in Sec. II B that the eigen-
functions j msy,z;xd are invariant along thex direction,
j msy,z;xd=j msy,zd [Eq. (26)]. Now we suppose that the av-
erage wave functionsj msy,zd are the eigenfuctions of the
following 2D Schrödinger equation:

F−
"2

2

]

]y
S 1

my
psy,zd

]

]y
D −

"2

2

]

]z
S 1

mz
psy,zd

]

]z
D

+ Ūsy,zdGj msy,zd = Esub
m j msy,zd. s40d

Here the average conduction band edgeŪsy,zd is obtained as

Ūsy,zd =
1

LX
E

0

LX

Usx,y,zddx, s41d

whereLX is the total length of the simulated SNWT(includ-
ing the S/D extensions). After computing the eigenvalues

Esub
m and eigenfunctionsj msy,zd of this Schrödinger equa-

tion, we use the first-order stationery perturbation theory to
obtain the subband profile as9,10

Esub
m sxd = Esub

m +R
y,z

Usx,y,zduj msy,zdu2dydz

−R
y,z

Ūsy,zduj msy,zdu2dydz. s42d

So far the subbandsEsub
m sxd and the corresponding eigen-

functions j msy,z;xd have been obtained approximately by
only solving one 2D Schrödinger equation. The simulation
results in Sec. III show that this FUMS approach has great
accuracy for the calculation of both internal characteristics
(e.g., the subband profiles) and terminal currents. The use of
the FUMS approach highly improves the efficiency of our
simulator and makes it a practical model for extensive device

simulation and design.18 (The simulation of a ballistic
SNWT with 10 nm gate length and 3 nm Si body thickness
normally takes,15 min per bias point on one 1.2 GHz
ATHLON processor).

III. RESULTS FOR BALLISTIC SILICON NANOWIRE
TRANSISTORS

In this section, we first verify the validity of the FUMS
approach by comparing its results with those obtained by the
UMS and CMS approaches. Then we adopt the FUMS as a
simulation tool to explore device physics(i.e., both internal
characteristics and terminal currents) of ballistic Si nanowire
transistors with different types of cross sections(e.g., trian-
gular, rectangular, and cylindrical).

A. Benchmarking of the FUMS approach

As mentioned in Sec. II, for both CMS and UMS ap-
proaches, we need to solve a 2D Schrödinger equation
[shown in Eq.(4)] at eachslice of the SNWT to obtain the
electron subbands and the corresponding eigenfunctions
(modes). Figure 2 shows the electron wave functions at a
slice of the SNWTs with a triangular, rectangular, or cylin-
drical cross section, respectively. After solving all theNX 2D
Schrödinger equations, the electron subband levels are ob-
tained (see Fig. 3, circles). For the FUMS approach, how-
ever, only one 2D Schrödinger equation needs to be solved,
and the subband profile can then be calculated by Eq.(42).
Figure 3 clearly illustrates that this approximation method
(solid lines) provides excellent agreement with the rigorous
calculation(circles), which shows that the FUMS approach
correctly computes the electron subbands in SNWTs.

Figure 4 compares the computedIDS vs VGS characteris-
tics for the simulated cylindrical SNWT by the FUMS
(dashed lines), UMS (circles), and CMS (crosses) ap-
proaches, respectively. It is clear that all the three approaches

FIG. 2. The 2D modes[the square of the modulus of the electron wave
functions in the(010) valleys] in a slice of (a) triangular wire(TW), (b)
rectangular wire(RW), and(c) cylindrical wire(CW) transistors. For clarity,
the SiO2 substrates for TW and RW FETs are not shown here.
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are in excellent agreement(,0.5% error), thus indicating
that the FUMS approach, which has much higher computa-
tional efficiency than CMS and UMS, is an attractive simu-
lation tool for modeling Si nanowire transistors. Although
the sample device structure we use in Figs. 3 and 4 is a
cylindrical SNWT, our conclusion is also applicable for
SNWTs with arbitrary cross sections(assuming the shape of
the Si body is uniform along thex direction). In the follow-
ing parts of this work, we will use the FUMS approach to
investigate the device physics in various SNWTs.

B. Device physics and characteristics

The NEGF transport model we use in this work provides
an opportunity to illustrate the local density of states(LDOS)
of the simulated SNWTs. Figure 5 shows the LDOS together
with the electron subbands for a ballistic cylindrical SNWT
with 10 nm gate length and 3 nm Si body thickness. Strong
oscillations in the LDOS plot are clearly observed, which is
due to the quantum mechanical reflection. To be specific, the
states injected from the drain are reflected off the drain-to-
source barrier at the high drain bias and these reflected states
strongly interfere with the injected ones. At the source end,
the states injected at energies around the source barrier are
also reflected and interfere. It should be noted that the occur-
rence of quantum inference in ballistic SNWTs relies on the
quantum coherence(complete preservation of electron phase
information) inside the devices. If scattering(dephasing
mechanism) is included, as we will see in Sec. IV, the quan-
tum interference and the oscillations in the LDOS are
smeared out. In addition, the presence of states below the
first electron subband is also visible in the LDOS plot, which
is caused by source-to-drain tunneling.20

Figure 6 plots the 1D electron density(in m−1) profile
along the channel of the simulated cylindrical SNWT. It is
clearly observed that the oscillations in the LDOS of the
device result in an oscillation in the 1D electron density,
even at the room temperature and more apparent at low tem-
peratures77 Kd. In general, such an oscillation in the elec-
tron density profile occurs in all kinds of transistors with 1D
channels(e.g., the carbon nanotube transistor21). It is inter-
esting to mention that there is no evident oscillation in the
electron density profile in a planar MOSFET(see Fig. 8 on p.
3736 in Ref. 11) although its LDOS also bears strong oscil-
lations(see Fig. 4 on p. 3735 in Ref. 11). The reason is that
in a planar MOSFET there is a transverse direction(normal
to both the Si/SiO2 interfaces and the channel direction), in
which the electron wave function is assumed to be a plane
wave, thus resulting in numerous transverse modes in the
device. These transverse modes wash out the oscillations in

FIG. 3. The electron subband profile in a cylindrical SNWT with 10 nm
gate length(VGS=0.4 andVDS=0.4 V). The numbers of nodes in thex di-
rectionNX is equal to 128. The silicon body thicknessTSi [as shown in Fig.
1(c)] is 3 nm, and the oxide thickness is 1 nm. The source/drainsS/Dd
doping concentration is 231020 cm−3 and the channel is undoped(the chan-
nel region is located fromX=8 to X=18 nm). The solid lines are for the
approximation method(solving a 2D Schrödinger equation only once) used
in the FUMS approach, while the circles are for the rigorous calculation
(solving 2D Schrödinger equationsNX times) adopted in the UMS and CMS
approaches.

FIG. 4. TheIDS vs VGS curves for a cylindrical SNWT in logarithm(left)
and linear(right) scalessVDS=0.4 Vd. The device structure is the same as
that in Fig. 3. The crosses are for the CMS approach, the circles are for the
UMS approach, and the dashed lines are for the FUMS approach.

FIG. 5. The computed LDOS[in 1/seV md] and electron subbands(dashed
lines) of a ballistic cylindrical SNWT with 10 nm gate length and 3 nm Si
body thickness(the channel region is located fromX=8 to X=18 nm and
the details of the device geometry are described in Fig. 3 caption) (VGS

=0.4 andVDS=0.4 V).
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the LDOS and cause a smooth electron density profile. So
the oscillation in the electron density profile is a special
property of SNWT as compared with planar MOSFETs.

Figure 7 illustrates the calculated transmission coeffi-
cient [from Eqs.(38) and (39)] for the simulated cylindrical
SNWT. When the total electron energy increases above the
source end of the first subband, the electrons start to be in-
jected into the channel, so the transmission coefficient begins
to increase from zero. As the electron energy continues to go
up, the second and third subbands(modes) become conduc-
tive successively, which results the steplike shape of the
transmission coefficient curve. We also observe that the
transmission coefficient is above zero even when the total
electron energy is below the top of barrier of the first sub-
band, which is the evidence of source-to-drain tunneling.

In Fig. 8, we compare theIDS vs VGS characteristics for
SNWTs with triangular, rectangular, and cylindrical cross

sections. Two interesting phenomena are evidently visible:
(1) the cylindrical wire(CW) and triangular wire(TW) tran-
sistors have higher threshold voltages,VTH (which is defined
asIDSsVGS=VTHd=10−8 A whenVDS=0.4 V), due to stronger
quantum confinement(the cross-section areas of the CW and
TW are smaller than that of the rectangular wire(RW) for
the same Si body thickness) and (2) the CW SNWT offers
the best subthreshold swing and the highest on-off current
ratio (under the same gate overdrive,VGS−VTH) due to its
good gate control. These results clearly show that our simu-
lator correctly treats the 3D electrostatics, quantum confine-
ment, and transport in SNWTs with arbitrary cross sections.

IV. TREATMENT OF SCATTERING WITH BÜTTIKER
PROBES

In this section,we apply a simple quantum treatment of
scattering based on the Büttiker probes14,16,17to our SNWT
simulation. The simulation results show that this simple
model captures the essential effects of scattering on both
internal device parameters(e.g., charge distribution and elec-
trostatic potential) and current-voltage characteristics.(A de-
tailed treatment of scattering within the NEGF formalism is
important to deeply understand physics in Si nanowires, and
it will be discussed in future work.)

A. Theory

The simple treatment of scattering with the Büttiker
probes has been adopted by Venugopal and co-workers17 for
the simulation of nanoscale MOSFETs. Due to the similarity
between the transport calculations of a MOSFET and a
SNWT, here we will follow the basic concepts and formal-
ism of the method described in Ref. 17 while making neces-
sary modifications and corrections for the case of SNWT
simulation.

FIG. 6. The 1D electron density profile along the channel of the simulated
cylindrical SNWT(the channel region is located fromX=8 toX=18 nm and
the details of the device geometry are described in Fig. 3 caption). The solid
line is for T=300 K while the dashed line is forT=77 K (VGS=0.4 and
VDS=0.4 V).

FIG. 7. The transmission coefficient and electron subbands in the simulated
cylindrical SNWT(the channel region is located fromX=8 toX=18 nm and
the details of the device geometry are described in Fig. 3 caption) (VGS

=0.4 andVDS=0.4 V).

FIG. 8. TheIDS vs VGS curves for the triangular wire(TW) FET with k101l
oriented channels, rectangular wire(RW) FET with k101l oriented channels
and cylindrical wire (CW) FET with k100l oriented channels.sVDS

=0.4 Vd. All the SNWTs have the same silicon body thicknesssTSi

=3 nmd, oxide thicknesssTox=1 nmd, gate lengthsL=10 nmd, and gate
work functionsWF=4.05 eVd. The Si body widthWSi of the RW is 4 nm. In
the calculation of the TW and RW FETs, whose channels arek101l oriented,
the effective masses of electrons in the(100) and(001) valleys are obtained
from Ref. 22 asmx

p=0.585me, my
p=0.19me, andmz

p=0.318me.
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In the ballistic regime, as we know, electrons move
through the device coherently, with their energies and phase
information conserved. When scattering is present, however,
electrons’ momenta and energies could be altered and their
phase information may be lost. Based on this observation,
virtual probes(Büttiker probes) are attached to the device
lattice (in the channel direction), which serve as reservoirs
that absorb electrons from the active device, modulate their
momenta and/or energies, and then reinject them back to the
device. The difference between the probes and theS/D con-
tacts is that the probes can only change the electron
momentum/energy and not the number of electrons within
the active device.17

Figure 9 shows the 1D device lattice(in the channel

direction) for a SNWT with the Büttiker probes attached.
Each probe is treated as a virtual 1D lattice(in the x8 direc-
tion) that is coupled to a node in the device lattice. The
coupling energyDm

i between this virtual lattice and the node
with which it is attached to is called the Büttiker probe
strength,17 which is determined by the ballisticity of the de-
vice. For instance, whenDm

i is zero, there is no coupling
between the device and the probes, so the electrons can
travel through the device ballistically. If this coupling energy
is large, it means that the electrons in the active device re-
gion can easily scatter into the probes, which implies that the
scatting in the device is strong. As we will show later, the
Büttiker probe strength can be analytically related to the
electron mean free path, which allows us to calibrate the
parameters in our simulation to mimic a low field mobility
that can be measured experimentally.17 It should also be
noted that since we treat each probe as a reservoir, a Fermi
level smi , i =2, . . . ,NX−1d needs to be assigned to the probe,
and the values of these probe Fermi levels have to be ad-
justed to achieve current continuity(i.e., the net current at
each probe is zero). The mathematical formalism used to
treat this physical structure is described in the following
paragraphs.

As we show in Sec. II, the retarded Green’s function for
modem is obtained as

GmsEd = fESm − hmm− SS
msEd − S1

msEd − S2
msEdg−1.

If we discretize the matrices by the FDM method,Sm is a
NX3NX identity matrix and the device Hamiltonianhmm is
expressed as

hmm= 3
2tm + Esub

m s0d − tm 0 ¯ ¯ 0

− tm 2tm + Esub
m sad − tm � � A

0 − tm � � � A
A � � � − tm 0

A � � − tm 2tm + Esub
m fsNX − 2dag − tm

0 ¯ ¯ 0 − tm 2tm + Esub
m fsNX − 1dag

4 sFDMd, s43d

where the coupling energy between adjacent lattice nodes(in the x direction) is tm=s"2/2a2damm and amm is defined in Eq.
(28a). In theballistic limit, the scattering self-energyoS

m=0 so the total self-energy matrix is

Sm = SS
m + S1

m + S2
m =3

− tmeikm,1a 0 ¯ ¯ 0

0 0 � � A
A � � � A
A � � 0 0

0 ¯ ¯ 0 − tmeikm,NX
a
4 sFDMd, s44d

wherekm,1 skm,NX
d is determined byE=Esub

m s0d+2tms1−coskm,1ad sE=Esub
m fsNX−1dag+2tms1−coskm,NX

add. After we attach
the Büttiker probes to the device lattice(Fig. 9), the device Hamiltonianhmm becomes

FIG. 9. A generic plot of the 1D device lattice(solid line with dots, along
the X direction) for a SNWT with the Büttiker probes attached. Each probe
is treated as a virtual 1D lattice(dashed line with dots, along theX8 direc-
tion) that is coupled to a node in the device lattice. The coupling energy
between this virtual lattice and the node with which it is attached to isDm

i ,
and that between two adjacent device lattice nodes istm. The probe Fermi
levels are labeled asmisi =2,3, . . . ,NX−1d.
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hmm= 3
2tm + Esub

m s0d − tm 0 ¯ ¯ 0

− tm 2tm + Dm
2 + Esub

m sad − tm � � A
0 − tm � � � A
A � � � − tm 0

A � � − tm 2tm + Dm
NX−1 + Esub

m fsNX − 2dag − tm

0 ¯ ¯ 0 − tm 2tm + Esub
m fsNX − 1dag

4 , s45d

and the total self-energy matrix turns to

Sm = SS
m + S1

m + S2
m =3

− tmeikm,1a 0 ¯ ¯ 0

0 − Dm
2 eikm,2a 0 � A

A � � � A
A � 0 − Dm

NX−1eikm,NX−1a 0

0 ¯ ¯ 0 − tmeikm,NX
a
4 , s46d

wherekm,i si =1,2, . . . ,NXd is determined byE=Esub
m fsi −1dag+2tmf1−coskm,iag, and Dm

i si =2,3, . . . ,NX−1d is the Büttiker
probe strength. For convenience, we prefer to keep the device Hamiltonianhmm in its original form[Eq. (43)], so we have to
move the terms containingDm

i in the diagonal elements ofhmm to the total self-energy matrixom. Thus,

Sm = SS
m + S1

m + S2
m =3

− tmeikm,1a 0 ¯ ¯ 0

0 − Dm
2 seikm,2a − 1d 0 � A

A � � � A
A � 0 − Dm

NX−1seikm,NX−1a - 1d 0

0 ¯ ¯ 0 − tmeikm,NX
a
4 , s47d

Inserting Eqs.(43) and (47) into Eq. (31), the retarded
Green’s functionGm can be evaluated.

Knowing Gm, the state spectral function due to injection
from theS/D and all probes for modem is obtained as17

Ai
msEd = GmsEdGi

msEdGm†sEd, s48d

wherei runs over all the reservoirs(including theS/D) and
Gi

m is anNX3NX matrix defined as

Gi
mfp,qg = j†Smfp,qg − Sm†fp,qg‡dp,idq,i

sp,q = 1,2, . . . ,NXd. s49d

The local density of states due to injection from reservoiri is
then obtained as

Di
mfpg =

1

pa
Ai

mfp,pg si = 1,2, . . . ,NX,p = 1,2 . . . ,NXd,

s50d

and the 1D electron density(in m−1) for mode m can be
calculated by

n1D
m = o

i
E

−`

+`

Di
mfsmi,EddE, s51d

where i is the reservoir index that runs over all the probes
and theS/D, andmi is the Fermi level for reservoiri (note
that m1=mS andmNx

=mD).
The transmission coefficient between any two reservoirs

i and r can be evaluated as

Ti↔r
m sEd = trfGi

msEdGmsEdGr
msEdGm†sEdg. s52d

The net current density(at energyE) at reservoiri including
contributions from all reservoirs(labeled byr), modes(la-
beled bym), and valleys is

hisEd =
q

p"
o
m

o
r

Ti↔r
m sEdffsmi,Ed − fsmr,Edg, s53d

and the net current at reservoiri is

I i =E
−`

+`

hisEddE. s54d

As mentioned in Ref. 17, while theS/D Fermi levels are
determined by the applied voltages, the Fermi levels of the
probes have to be adjusted to ensure current continuity,
which implies that the net current at each probe must be
zero,

I i =E
−`

+`

hisEddE= 0 si = 2,3, . . . ,NX − 1d. s55d

Inserting Eq.(53) into Eq. (55), we obtain

q

p"
o
m

o
r
E

−`

+`

Ti↔r
m sEdffsmi,Ed − fsmr,EdgdE= 0

si = 2,3, . . . ,NX − 1d. s56d

Solving this nonlinear equation group(56) by Newton’s
method,17 the Fermi levelssmi , i =2,3, . . . ,NX−1d of all the
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probes are evaluated. It should be mentioned that if we
implement the elastic Büttiker probes, which can only
change the electron momentum and not the energy, to cap-
ture elastic scattering mechanisms in SNWTs(e.g., surface
roughness scattering and ionized impurity scattering), the net
current for each probe has to be zero at any energy, so

hisEd =
q

p"
o
m

o
r

Ti↔r
m sEdffsmi,Ed − fsmr,Edg = 0

si = 2,3, . . . ,NX − 1d. s57d

It implies that the probe Fermi levels are both position and
energy dependent. In this case, the Fermi levels of probes at
each energy can be computed by solving the linear equation
group (57). Knowing the probe Fermi levels[by solving ei-
ther Eq.(56) or Eq. (57)], the electron density and terminal
current can be calculated from Eqs.(51) and (54).

Finally, we list the equations that relate the Büttiker
probe strengthDm

i to the classical low field electron mobility
m0. Following the procedures in Ref. 17, for a single-mode
1D conductor with a uniform potential, we can obtain

Dm
i

tm
=

2a

l
, s58d

wherel is the electron mean free path, which relates to the
low field electron mobility by the following equation for a
1D conductor(the l,m0 relation for a 2D conductor is de-
scribed in Ref. 23),

l = S2m0

yT

kBT

q
D fI−1/2shF

i dg2

I−3/2shF
i dI0shF

i d
, s59d

whereyT=Î2kBT/pmx
* is the unidirectional thermal velocity

of nondegenerate electrons. The functionInsxd is the Fermi-
Dirac integral andhF

i is defined ashF
i =fmi −Esub

m sxidg /kBT,
where xi is the position of theith reservoir(probe) of the
device. It should be noted that the mean free pathl defined
in Eq. (59) is position dependent and consequently the Büt-
tiker probe strengthDm

i is also position dependent. As men-
tioned earlier, single-mode occupancy is assumed in our
analysis. If more than one mode is occupied, the mean free
path should be treated as an average mean free path over all
the modes and valleys.(Please refer to Appendix B in Ref.
17 for details.)

B. Results

Figure 10 plots the LDOS together with the electron sub-
bands for a dissipative cylindrical SNWT with 10 nm gate
length and 3 nm Si body thickness. We assume that both
elastic(e.g., surface roughness scattering and ionized impu-
rity scattering) and inelastic(e.g., electron-phonon interac-
tions) scattering mechanisms are present in the device[i.e.,
Eq. (56) is used for current continuity], and the equivalent
mobility is 55 cm2/ sV sd at theS/D extension regions and
200 cm2/ sV sd in the channel. Compared with the ballistic
case(Fig. 5), strong oscillations in the LDOS, which is due
to quantum interference, are washed out. It is because scat-
tering inside the SNWT randomizes the phase of the elec-

trons and consequently destroys the quantum coherence in
the device.14,17 Moreover, the slope of the electron subbands
in the S/D extension regions manifests theS/D series resis-
tances at the on state, which is caused by the strong scatter-
ing [i.e., the S/D mobility is only 55 cm2/ sV sd] at the
heavily dopedS/D regions. In Fig. 11, we compare theIDS

vs VGS characteristics for this dissipative cylindrical SNWT
(solid lines) with its ballistic limit (dashed lines). It is evi-
dently shown that scattering lowers both off and on currents.
For the mobility values we use in the simulation, the on
current of the dissipative SNWT approaches,70% of the
ballistic limit.

The above results clearly indicate that the simple quan-
tum treatment of scattering with the Büttiker probes captures
the effects of scattering on both internal characteristics and

FIG. 10. The computed LDOS[in 1/seV md] and electron subbands(dashed
lines) of a dissipative cylindrical SNWT with 10 nm gate length and 3 nm
Si body thickness(the channel region is located fromX=8 to X=18 nm and
the details of the device geometry are described in Fig. 3 caption). (VGS

=0.4 andVDS=0.4 V). The S/D mobility is 55 cm2/ sV sd and the channel
mobility is 200 cm2/ sV sd.

FIG. 11. TheIDS vs VGS curves for a cylindrical SNWT with 10 nm gate
length and 3 nm Si body thickness(the details of the device geometry are
described in Fig. 3 caption) in logarithm (left) and linear (right) scales
sVDS=0.4 Vd. The dashed lines are for the ballistic limit while the solid lines
are for the case with scattering[i.e., theS/D mobility is 55 cm2/ sV sd and
the channel mobility is 200 cm2/ sV sd].
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terminal currents for SNWTs. The relation between the Büt-
tiker probe strength, the only input parameter in this model,
with the experimentally measurable low field mobility en-
ables this simple model to be used in engineering simulation
and design. It should also be noted, however, that this phe-
nomenological model is only a macroscopic description of
scattering, which is similar as the drift-diffusion model that
is used in the semiclassical context. To quantum mechani-
cally treat various scattering mechanisms in detail, a rigorous
quantum treatment of scattering within the NEGF
formalism14 is still needed.

V. SUMMARY

In this paper, we present a computationally efficient
three-dimensional quantum simulation of various silicon
nanowire transistors based on the effective-mass approxima-
tion. The coupled/uncoupled mode space approaches are
adopted to decompose the 3D device Hamiltonian, which
greatly reduces the simulation time while keeping excellent
computational accuracy. The use of a fast uncoupled mode
space further scales down the computational complexity and
makes our simulator executable on a single processor. This
enables our approach to be used as a practical 3D quantum
model for extensive device simulation and design.

Although we mainly focus on ballistic simulations in this
work, a simple treatment of scattering with the Büttiker
probes, previously applied to MOSFET simulations, is also
implemented in our SNWT simulator. This model is a one
input parameter model and the parameter we use can be re-
lated to the experimentally measurable low field mobility of
electrons. As a result, the implementation of this simple scat-
tering model endows our SNWT simulator with the ability to
explore the realistic performance limits of SNWTs.
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