
 Open access  Journal Article  DOI:10.1063/1.1769089

A three-dimensional quantum simulation of silicon nanowire transistors with the
effective-mass approximation — Source link 

Jing Wang, Eric Polizzi, Mark Lundstrom

Institutions: Purdue University, University of Massachusetts Amherst

Published on: 02 Aug 2004 - Journal of Applied Physics (American Institute of Physics)

Topics: Quantum simulator, Field-effect transistor, Transistor, Nanowire and Ballistic conduction

Related papers:

 Nanoscale device modeling: the Green’s function method

 
A three-dimensional simulation of quantum transport in silicon nanowire transistor in the presence of electron-phonon
interactions

 Simulating quantum transport in nanoscale transistors: Real versus mode-space approaches

 Single and multiband modeling of quantum electron transport through layered semiconductor devices

 High Performance Silicon Nanowire Field Effect Transistors

Share this paper:    

View more about this paper here: https://typeset.io/papers/a-three-dimensional-quantum-simulation-of-silicon-nanowire-
4ovhsdezo3

https://typeset.io/
https://www.doi.org/10.1063/1.1769089
https://typeset.io/papers/a-three-dimensional-quantum-simulation-of-silicon-nanowire-4ovhsdezo3
https://typeset.io/authors/jing-wang-1kjj327rs7
https://typeset.io/authors/eric-polizzi-el5rrr0v8i
https://typeset.io/authors/mark-lundstrom-4gjda9a62y
https://typeset.io/institutions/purdue-university-2ddhwsmq
https://typeset.io/institutions/university-of-massachusetts-amherst-2oo68hmp
https://typeset.io/journals/journal-of-applied-physics-a6hf15ru
https://typeset.io/topics/quantum-simulator-3ni55usw
https://typeset.io/topics/field-effect-transistor-3i479z0a
https://typeset.io/topics/transistor-pgsyq85i
https://typeset.io/topics/nanowire-292iqcmt
https://typeset.io/topics/ballistic-conduction-6d8detn7
https://typeset.io/papers/nanoscale-device-modeling-the-green-s-function-method-xxg9kvx6s2
https://typeset.io/papers/a-three-dimensional-simulation-of-quantum-transport-in-2994zpi69h
https://typeset.io/papers/simulating-quantum-transport-in-nanoscale-transistors-real-affzy31rop
https://typeset.io/papers/single-and-multiband-modeling-of-quantum-electron-transport-jcw1oo3xkm
https://typeset.io/papers/high-performance-silicon-nanowire-field-effect-transistors-pkqmb3kyhe
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-three-dimensional-quantum-simulation-of-silicon-nanowire-4ovhsdezo3
https://twitter.com/intent/tweet?text=A%20three-dimensional%20quantum%20simulation%20of%20silicon%20nanowire%20transistors%20with%20the%20effective-mass%20approximation&url=https://typeset.io/papers/a-three-dimensional-quantum-simulation-of-silicon-nanowire-4ovhsdezo3
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-three-dimensional-quantum-simulation-of-silicon-nanowire-4ovhsdezo3
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-three-dimensional-quantum-simulation-of-silicon-nanowire-4ovhsdezo3
https://typeset.io/papers/a-three-dimensional-quantum-simulation-of-silicon-nanowire-4ovhsdezo3


Purdue University

Purdue e-Pubs

Department of Electrical and Computer
Engineering Faculty Publications

Department of Electrical and Computer
Engineering

2004

A Three-Dimensional Quantum Simulation of
Silicon Nanowire Transistors with the Effective
Mass Approximation
Jing Wang
Purdue University

Eric Polizzi
Purdue University

Mark S. Lundstrom
Purdue University, lundstro@purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/ecepubs

Part of the Electrical and Computer Engineering Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

Wang, Jing; Polizzi, Eric; and Lundstrom, Mark S., "A Three-Dimensional Quantum Simulation of Silicon Nanowire Transistors with
the Effective Mass Approximation" (2004). Department of Electrical and Computer Engineering Faculty Publications. Paper 122.
https://docs.lib.purdue.edu/ecepubs/122

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecepubs%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecepubs?utm_source=docs.lib.purdue.edu%2Fecepubs%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecepubs?utm_source=docs.lib.purdue.edu%2Fecepubs%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecepubs%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecepubs%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecepubs?utm_source=docs.lib.purdue.edu%2Fecepubs%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=docs.lib.purdue.edu%2Fecepubs%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages


A three-dimensional quantum simulation of silicon nanowire transistors
with the effective-mass approximation

Jing Wang
School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907

Eric Polizzi
Department of Computer Sciences, Purdue University, West Lafayette, Indiana 47907

Mark Lundstrom
School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907

(Received 26 March 2004; accepted 12 May 2004)

The silicon nanowire transistor (SNWT) is a promising device structure for future integrated

circuits, and simulations will be important for understanding its device physics and assessing its

ultimate performance limits. In this work, we present a three-dimensional (3D) quantum mechanical

simulation approach to treat various SNWTs within the effective-mass approximation. We begin by

assuming ballistic transport, which gives the upper performance limit of the devices. The use of a

mode space approach (either coupled or uncoupled) produces high computational efficiency that

makes our 3D quantum simulator practical for extensive device simulation and design. Scattering in

SNWTs is then treated by a simple model that uses so-called Büttiker probes, which was previously

used in metal-oxide-semiconductor field effect transistor simulations. Using this simple approach,

the effects of scattering on both internal device characteristics and terminal currents can be

examined, which enables our simulator to be used for the exploration of realistic performance limits

of SNWTs. © 2004 American Institute of Physics. [DOI: 10.1063/1.1769089]

I. INTRODUCTION

As the channel lengths of metal-oxide-semiconductor

field effect transistors (MOSFETs) scale into the nanometer

regime, short channel effects
1

become more and more sig-

nificant. Consequently, effective gate control is required for a

nanoscale MOSFET to achieve good device performance.

For this reason, silicon nanowires, which allow multigate or

gate-all-around transistors, are being explored.
2–7

In Ref. 2,

the authors reported a parallel wire channel transistor, whose

channel can be viewed as a wire with a triangular cross sec-

tion. In Refs. 3–6, wires with rectangular cross sections were

used to fabricate different types of trigate/gate-all-around

field effect transistors (FETs). At the same time, cylindrical

Si nanowires with diameters as small as 5 nm have also been

synthesized by the chemical vapor deposition technology.
7

These recent experiments have shed light on the potential

applications of silicon nanowire transistors in future elec-

tronics.

To deeply understand device physics of silicon nanowire

transistors (SNWTs) and to assess their ultimate performance

limits, simulation work is necessary and important. In con-

trast to a planar MOSFET, which has a uniform charge and

potential profile in the transverse direction (normal to both

the gate and the source-to-drain direction), a SNWT has a

three-dimensional (3D) distribution of electron density and

electrostatic potential. As a result, a 3D simulator is required

for the simulation of SNWTs. In this paper, we propose a 3D

self-consistent quantum simulation of SNWTs based on the

effective-mass approximation (whose validity in the nano-

scale device simulation has been established in Ref. 8). The

calculation involves a self-consistent solution of a 3D Pois-

son equation and a 3D Schrödinger equation with open

boundary conditions. Using the finite element method

(FEM), we solve the 3D Poisson equation to obtain the elec-

trostatic potential. At the same time, we solve the 3D

Schrödinger by a (coupled/uncoupled) mode space

approach
9–12

which provides both computational efficiency

and high accuracy as compared with direct real space calcu-

lations. Since the (coupled/uncoupled) mode space approach

treats quantum confinement and transport separately, the pro-

cedure of the calculation is as follows.

Step 1. Solve the 3D Poisson equation for the electro-

static potential.

Step 2. Solve a two-dimensional (2D) Schrödinger equa-

tion with a closed boundary condition at each slice (cross

section) of the nanowire transistor (see Fig. 1) to obtain the

electron subbands (along the nanowire) and eigenfunctions.

Step 3. Solve (coupled/uncoupled) one-dimensional (1D)

transport equations by the nonequilibrium Green’s function

(NEGF) approach
13–15

for the electron charge density.

Step 4. Go back to step 1 to calculate the electrostatic

potential. If it converges, then calculate the electron current

by the NEGF approach (as in step 3) and output the results.

Otherwise continue steps 2 and 3.

Different transport models (in step 3) are implemented

into our simulator. In this paper, we will discuss both ballis-

tic NEGF model, which gives the upper performance limit of

SNWTs, and a dissipative NEGF model with a simple treat-

ment of scattering with the Büttiker probes,
14,16,17

which of-

fers an efficient way to capture scattering in the quantum

mechanical framework.

A rigorous treatment of scattering and a detailed calcu-

lation of band structures are very important to understand
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physics in Si nanowires in detail. However, the huge compu-

tational cost involved in such a rigorous model can prevent it

from being used for extensive device simulation and design.

As we will show later, the use of the effective-mass approxi-

mation and the simple treatment of scattering with the Büt-

tiker probes greatly reduces the computational complexity

while still capturing the essential device physics of SNWTs

(i.e., 3D electrostatics, quantum confinement, source-to-

tunneling and scattering, etc.), so the method we discuss in

this paper can be used as a practical 3D quantum approach

for device study and design of SNWTs.
18

This paper is di-

vided into the following sections: Sec. II describes our meth-

odology for ballistic SNWTs and provides the basic equa-

tions, Sec. III discusses the simulation results for ballistic

SNWTs with arbitrary cross sections (e.g., triangular, rectan-

gular, and cylindrical), Sec. IV introduces the Büttiker

probes for the treatment of scattering and shows relevant

results, and Sec. V summarizes key findings.

II. THEORY FOR BALLISTIC SILICON NANOWIRE
TRANSISTORS

Figure 1 shows a schematic structure of the Si nanowire

transistors simulated in this work. This intrinsic device struc-

ture is connected to two infinite reservoirs, the source and

drain (not shown), so the source/drain sS /Dd extension re-

gions are terminated using open boundary conditions. As

shown in Fig. 1(b), a uniform grid with a grid spacing of a is

used along the channel sxd direction. In the y-z plane [the

cross section of the SNWT), a 2D finite element mesh with

triangular elements is generated by Easymesh-1.4,
19

which

allows us to treat nanowires with arbitrary cross sections

[e.g., triangular, rectangular, and cylindrical, as shown in

Fig. 1(c)]. By doing this, a 3D finite element mesh with

prism elements is constructed. When solving the Poisson

equation, the 3D Laplacian is directly discretized by the

FEM approach. The obtained linear system is solved using a

preconditioned conjugate gradient method with incomplete

Cholesky factorization. More details about the numerical

techniques can be found in Ref. 9.

As mentioned earlier, we solve the 3D Schrödinger

equation by the mode space approach,
9–11

which is based on

an expansion of the active device Hamiltonian in the sub-

band eigenfunction space. As a result, we need to solve a 2D

Schrödinger equation by the FEM at each slice of the SNWT

to obtain the subband eigenenergy levels and eigenfunctions

(modes). After that, the original 3D device Hamiltonian is

transformed into a 1D Hamiltonian in the x direction, which

can be used to calculate electron density and current within

the NEGF formalism. In this section, we will first give an

overview of the coupled mode space (CMS) approach for the

SNWT simulation (Sec. II A), which is mathematically

equivalent to a direct real space solution if adequate modes

are included (to be discussed later).
9,10

Then we will intro-

duce the uncoupled mode space (UMS) approach (Sec. II B)

and a fast uncoupled mode space (FUMS) approach (Sec.

II C), which are a simplification of the CMS approach to

provide high computational efficiency. The simulation results

(in Sec. III) illustrate that the UMS and FUMS approaches

show excellent agreement with the CMS approach for the

SNWT simulation.

A. The coupled mode space approach

In this part of the work, we will briefly review the CMS

approach and list basic equations for our particular case of

interest.

FIG. 1. The simulated SNWT structures in this work. (a) A schematic graph of an intrinsic SNWT with arbitrary cross sections (for clarity, the SiO2 substrate

is not shown here). (b) The grid used in the simulation of SNWTs. (c) The cross sections of the simulated triangular wire (TW), rectangular wire (RW), and

cylindrical wire (CW) FETs. TSi is the silicon body thickness, WSi is the silicon body width, and WWire is the wire width. For the TW, the direction normal to

each gate is k111l, so the channel is k101l oriented. In contrast, for the channel of the RW, both k101l and k100l orientations are possible. For the CW, we

assume the channel to be k100l oriented.
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In the 3D domain, the full stationary Schrödinger equa-

tion is given by

H3DCsx,y,zd = ECsx,y,zd , s1d

where H3D is the 3D device Hamiltonian. Assuming an ellip-

soidal parabolic energy band with a diagonal effective-mass

tensor (for the case that the effective-mass tensor includes

nonzero off-diagonal elements, please refer to Ref. 12), H3D

is defined as

H3D = −
"2

2mx
psy,zd

]
2

]x2
−

"2

2

]

]y
S 1

my
psy,zd

]

]y
D

−
"2

2

]

]z
S 1

my
psy,zd

]

]z
D + Usx,y,zd , s2d

here mx
p, my

p, and mz
p are the electron effective mass in the x,

y, and z directions, respectively, and Usx ,y ,zd is the electron

conduction band-edge profile in the active device. We note

that the effective mass varies in the y and z directions due to

the transition between the Si body and the SiO2 layer. (In our

simulation, the penetration of electron wave function into the

SiO2 layer is considered, which is necessary for the

effective-mass approximation to be valid for Si nanowire

simulation.
8
) Now let us expand the 3D electron wave func-

tion in the subband eigenfunction space,

Csx,y,zd = o
n

wnsxdj n sy,z;xd , s3d

where j n sy ,z ;x=x0d is the nth eigenfunction of the follow-

ing 2D Schrödinger equation at the slice sx=x0d of the

SNWT,

F−
"2

2

]

]y
S 1

my
psy,zd

]

]y
D −

"2

2

]

]z
S 1

my
psy,zd

]

]z
D

+ Usx0,y,zdGj nsy,z;x0d = Esub
n sx0dj nsy,z;x0d , s4d

here Esub
n sx0d is the nth subband energy level at x=x0. Ac-

cording to the property of eigenfunctions, j n sy ,z ;xd satisfies

the following equation for any x:

R
y,z

j msy,z;xdj nsy,z;xddydz = dm,n, s5d

where dm,n is the Kronecker delta function.

Inserting Eqs. (2) and (3) into Eq. (1) and using the

relation described by Eq. (4), we obtain

−
"2

2mx
psy,zd

]
2

]x2So
n

wnsxdj nsy,z;xdD
+ o

n

wnsxdEsub
n sxdj n sy,z;xd = Eo

n

wnsxdj n sy,z;xd . s6d

Now we multiply by j m sy ,z ;xd on both sides and do an

integral within the y-z plane. According to Eq. (5), we obtain

the following 1D coupled Schrödinger equation:

−
"2

2 So
n

amnsxdD ]
2

]x2
wmsxd −

"2

2
o

n

cmnsxdwnsxd

− "2o
n

bmnsxd
]

]x
wnsxd + Esub

m sxdwmsxd = Ewmsxd , s7d

where

amnsxd = R
y,z

1

mx
psy,zd

j msy,z;xdj nsy,z;xddydz , s8ad

bmnsxd = R
y,z

1

mx
psy,zd

j msy,z;xd
]

]x
j nsy,z;xddydz , s8bd

and

cmnsxd = R
y,z

1

mx
psy,zd

j msy,z;xd
]

2

]x2
j nsy,z;xddydz . s8cd

Equation (7) is the basic equation for the CMS approach. In

our simulation, since the electron wave function is mainly

located in the silicon, we can neglect amn if mÞn samm

@amnd (Ref. 10) and simplify Eq. (7) as

−
"2

2
amnsxd

]
2

]x2
wmsxd −

"2

2
o

n

cmnsxdwnsxd

− "2o
n

bmnsxd
]

]x
wnsxd + Esub

m sxdwmsxd = Ewmsxd . s9d

From the derivation above, it is clear that the CMS for-

malism [Eqs. (7) and (8)] is mathematically equivalent to the

real space calculation if all the modes (i.e., m , n

=1, . . . ,NYZ, where NYZ is the number of nodes in the y-z

plane) are included. In practice, due to strong quantum con-

finement in SNWTs usually only a few of the lowest sub-

bands (i.e., m , n=1, . . . ,M, M !NYZ) are occupied and need

to be included in the calculation (which means that if we

increase the mode number M, the device characteristics such

as the electron density profile and terminal currents will not

change any more). Thus, with the first M subbands consid-

ered (i.e., m , n=1, . . . ,M), Eq. (9) represents an equation

group that contains M equations, each representing a selected

mode. We can write down these M equations in a matrix

format

H3
w1sxd

w2sxd

¯

¯

wMsxd
4 = 3

h11 h12 h13 ¯ h1M

h21 h22 h23 ¯ h2M

¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯

hM1 hM2 hM3 ¯ hMM

43
w1sxd

w2sxd

¯

¯

wMsxd
4

=E3
w1sxd

w2sxd

¯

¯

wMsxd
4 , s10d

where
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hmn = dm,nF−
"2

2
amnsxd

]
2

]x2
+ Esub

m sxdG −
"2

2
cmnsxd

− "2bmnsxd
]

]x
sm,n = 1,2, . . . ,Md . s11d

By using the coupled mode space approach, the size of the

device Hamiltonian H has been reduced to M ·NX3M ·NX

(NX is the number of nodes in the x direction, and the mode

number M we need is normally less than 5 for the SNWT

structures we simulate), which is much smaller than that in

the real space representation, NYZ ·NX3NYZ ·NX (NYZ is

,1000 for the device structures simulated in this work).

After the device Hamiltonian H is obtained, we can cal-

culate the electron density and current using the NEGF ap-

proach. The NEGF approach, a widely used method for the

simulation of nanoscale electronic devices, has been dis-

cussed in Refs. 13 and 14. Here we list the relevant equations

for our particular case.

The retarded Green’s function of the active device is

defined as
14

GsEd = fES − H − SSsEd − S1sEd − S2sEdg−1, s12d

where the device Hamiltonian H is defined by Eq. (10), SS is

the self-energy that accounts for the scattering inside the de-

vice (in the ballistic limit, it is equal to zero), S1 sS2d is the

self-energy caused by the coupling between the device and

the source (drain) reservoir. If we discretize the equations by

the 1D (in the x direction) finite difference method (FDM),

the matrix S in Eq. (12) is equal to an M ·NX3M ·NX identity

matrix. The self-energies, S1 and S2, are defined as
14

S1fp,qg = − tm,1 expsjkm,1addp,sm−1dNx+1dq,sm−1dNx+1

sj = Î− 1d sFDMd , s13d

S2fp,qg = − tm,NX
expsjkm,Nx

addp,mNxdq,mNx

sm = 1,2, . . . ,M and p,q = 1,2, . . . ,MNXd sFDMd ,

s14d

where tm,1= s"2 /2a2dammsxdux=0 and tm,NX

= s"2 /2a2dammsxdux=sNX−1da [ammsxd is defined by Eq. (8a)],

and km,1 skm,NX
d is determined by E=Esub

m s0d+2tm,1s1
−cos km,1ad (E=Esub

m fsNx−1dag+2tm,NX
s1−cos km,NX

ad).
If we discretize the equations by the 1D (in the x direc-

tion) FEM, the matrix S in Eq. (12) becomes an M ·NX

3M ·NX block-diagonal matrix,

S = 3
S0 0 ¯ ¯ 0

0 S0 0 � A

A 0 � � A

A � � � 0

0 ¯ ¯ 0 S0

4 sFEMd , s15d

where S0 is an NX3NX matrix
15

S0 = 3
a/3 a/6 0 ¯ ¯ 0

a/6 2a/3 a/6 � � A

0 a/6 2a/3 � � A

A � � � � 0

A � � � 2a/3 a/6

0 ¯ ¯ 0 a/6 a/3

4 sFEMd . s16d

The self-energies, S1 and S2, are defined as
10,15

S1fp,qg = − jkm,1atm,1dp,sm−1dNx+1dq,sm−1dNx+1 sFEMd ,

s17d

S2fp,qg = − jkm,Nx
atm,Nx

dp,mNx
dq,mNx

sm = 1,2, . . . ,M and p,q = 1,2, . . . ,MNxd sFEMd .

s18d

By inserting Eqs. (13) and (14) or (15)–(18) into Eq.

(12), we can evaluate the retarded Green’s function GsEd at a

given energy E. Then the spectral density functions due to

the source/drain contacts can be obtained as
14

A1sEd = GsEdG1sEdG†sEd, A2sEd = GsEdG2sEdG†sEd ,

s19d

where G1sEd; jfS1sEd−S1
†sEdg and G2sEd; jfS2sEd

−S2
†sEdg, which determine the electron exchange rates be-

tween the active device region and the source/drain reser-

voirs at energy E. In this coupled mode space, the diagonal

elements of the spectral function matrices represent the local

density of states (LDOS) in the device for each mode. We

define the LDOS for mode m as D1
m (due to the source) and

D2
m (due to the drain). Here D1

m and D2
m are both NX31

vectors obtained as

D1
mfpg =

1

pa
A1fsm − 1dNX + p,sm − 1dNX + pg

sp = 1,2, . . . ,NXd , s20d

D2
mfpg =

1

pa
A2fsm − 1dNX + p,sm − 1dNX + pg

sp = 1,2, . . . ,NXd . s21d

Then the 1D electron density (in m-1) for mode m can be

calculated by

n1D
m = E

−`

+`

fD1
mfsmS,Ed + D2

mfsmD,EdgdE , s22d

where f is the Fermi-Dirac statistics function, and mSsmDd is

the source (drain) Fermi level, which is determined by the

applied bias. The electron density obtained by Eq. (22) is a

1D distribution (along the x direction). To obtain a 3D elec-

tron density, we need to couple Eq. (22) with the quantum

confinement wave function for mode m,
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n3D
m sx,y,zd = n1D

m sxduj msy,z;xdu2. s23d

The total 3D electron density needs to be evaluated by sum-

ming the contributions from all the subbands in each conduc-

tion band valley. Then this 3D electron density is fed back to

the Poisson solver for the self-consistent calculations. Once

self-consistency is achieved, the electron current is computed

by

ISD =
q

p"
E

−`

+`

TsEdffsmS,Ed − fsmD,EdgdE , s24d

where the transmission coefficient TsEd can be evaluated as
14

TsEd = trfG1sEdGsEdG2sEdG†sEdg . s25d

To obtain the total electron current, we also need to add up

current components in all the conduction band valleys.

B. The uncoupled mode space approach

In the simulation of SNWTs, we assume that the shape

of the Si body is uniform along the x direction. As a result,

the confinement potential profile (in the y-z plane) varies

very slowly along the channel direction. For instance, the

conduction band edge Usx ,y ,zd takes the same shape but

different values at different x. For this reason, the eigenfunc-

tions j msy ,z ;xd are approximately the same along the chan-

nel although the eigenvalues Esub
m sxd are different. So we as-

sume

j msy,z;xd = j msy,zd s26d

or

]

]x
j msy,z;xd = 0 sm = 1,2, . . . ,Md , s27d

which infers

ammsxd = amm = R
y,z

1

mx
*sy,zd

uj msy,zdu2dydz , s28ad

bmnsxd = 0 and cmnsxd = 0 sm,n = 1,2, . . . ,Md . s28bd

Inserting Eq. (28b) into Eq. (11), we obtain hmn=0 (mÞn

and m ,n=1,2 , . . . ,M), which means that the coupling be-

tween the modes is negligible (all the modes are uncoupled).

Thus the device Hamiltonian H becomes a block-diagonal

matrix,

H = 3
h11 0 ¯ ¯ 0

0 h22 0 � A

A 0 � � A

A � � � 0

0 ¯ ¯ 0 hMM

4 . s29d

Since all the input matrices at the right hand side of Eq. (12)

are either diagonal or block diagonal, the retarded Green’s

function GsEd is block diagonal,

GsEd = 3
G1sEd 0 ¯ ¯ 0

0 G2sEd 0 � A

A 0 � � A

A � � � 0

0 ¯ ¯ 0 GMsEd
4 , s30d

where GmsEd sm=1,2 , . . . ,Md is the Green’s function for

mode m and is obtained as

GmsEd = fESm − hmm − SS
msEd − S1

msEd − S2
msEdg−1, s31d

here Sm, SS
m, S1

m, and S2
m are all NX3NX matrices and de-

fined as

Smfp,qg = Sfsm − 1dNX + p,sm − 1dNX + qg

sp,q = 1,2, . . . ,NXd , s32d

SS
mfp,qg = SSfsm − 1dNX + p,sm − 1dNX + qg

sp,q = 1,2, . . . ,NXd , s33d

S1
mfp,qg = S1fsm − 1dNX + p,sm − 1dNX + qg

sp,q = 1,2, . . . ,NXd , s34d

and

S2
mfp,qg = S2fsm − 1dNX + p,sm − 1dNX + qg

sp,q = 1,2, . . . ,NXd . s35d

Knowing the retarded Green’s function, the spectral den-

sity functions due to the source/drain contacts for each mode

m can be obtained as
14

A1
msEd = GmsEdG1

msEdGm†sEd ,

A2
msEd = GmsEdG2

msEdGm†sEd , s36d

where G1
msEd; jfS1

msEd−S1
m†sEdg and G2

msEd; jfS2
msEd

−S2
m†sEdg. The LDOS for mode m, D1

m (due to the source)

and D2
m (due to the drain), can then be evaluated by

D1
mfpg =

1

pa
A1

mfp,pg ,

D2
mfpg =

1

pa
A2

mfp,pg sp = 1,2, . . . ,NXd . s37d

After that, the electron charge density is computed by Eqs.

(22) and (23). For the calculation of electron current, the

total transmission coefficient can be written as a summation

of the transmission coefficient T msEd for each mode m,

TsEd = o
m=1

M

TmsEd , s38d

where TmsEd is obtained as
14

TmsEd = trfG1
msEdGmsEdG2

msEdGm†sEdg . s39d

Finally, Eq. (38) is inserted into Eq. (24) to compute the

electron current for the SNWT.
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As we will show in Sec. III, for SNWTs, this uncoupled

mode space approach shows excellent agreement with the

CMS approach while maintaining higher computational effi-

ciency. (The validity of the UMS approach for planar

MOSFET simulation has been established by Venugopal et

al.
11

by doing a careful study of the UMS approach vs 2D

real space approach.)

C. A fast uncoupled mode space approach

As described earlier, for both CMS and UMS ap-

proaches, we need to solve NX 2D Schrödinger equations

[see Eq. (4)] in a self-consistent loop to obtain the electron

subbands and eigenfunctions. For the device structures simu-

lated in this work, this part of simulation usually takes more

than 90% of the computational complexity, which makes

parallel programming necessary. To increase the efficiency of

our simulator and to make it executable on a single proces-

sor, we introduce a FUMS approach,
9,10

which only involves

one 2D Schrödinger equation problem in a self-consistent

loop and still provides excellent computational accuracy as

compared with the CMS and UMS approaches. (The trans-

port part of calculation in FUMS is the same as that in

UMS.)

Recall the assumption made in Sec. II B that the eigen-

functions j msy ,z ;xd are invariant along the x direction,

j msy ,z ;xd=j msy ,zd [Eq. (26)]. Now we suppose that the av-

erage wave functions j msy ,zd are the eigenfuctions of the

following 2D Schrödinger equation:

F−
"2

2

]

]y
S 1

my
psy,zd

]

]y
D −

"2

2

]

]z
S 1

mz
psy,zd

]

]z
D

+ Ūsy,zdGj msy,zd = Esub
m j msy,zd . s40d

Here the average conduction band edge Ūsy ,zd is obtained as

Ūsy,zd =
1

LX

E
0

LX

Usx,y,zddx , s41d

where LX is the total length of the simulated SNWT (includ-

ing the S /D extensions). After computing the eigenvalues

Esub
m and eigenfunctions j msy ,zd of this Schrödinger equa-

tion, we use the first-order stationery perturbation theory to

obtain the subband profile as
9,10

Esub
m sxd = Esub

m + R
y,z

Usx,y,zduj msy,zdu2dydz

− R
y,z

Ūsy,zduj msy,zdu2dydz . s42d

So far the subbands Esub
m sxd and the corresponding eigen-

functions j msy ,z ;xd have been obtained approximately by

only solving one 2D Schrödinger equation. The simulation

results in Sec. III show that this FUMS approach has great

accuracy for the calculation of both internal characteristics

(e.g., the subband profiles) and terminal currents. The use of

the FUMS approach highly improves the efficiency of our

simulator and makes it a practical model for extensive device

simulation and design.
18

(The simulation of a ballistic

SNWT with 10 nm gate length and 3 nm Si body thickness

normally takes ,15 min per bias point on one 1.2 GHz

ATHLON processor).

III. RESULTS FOR BALLISTIC SILICON NANOWIRE
TRANSISTORS

In this section, we first verify the validity of the FUMS

approach by comparing its results with those obtained by the

UMS and CMS approaches. Then we adopt the FUMS as a

simulation tool to explore device physics (i.e., both internal

characteristics and terminal currents) of ballistic Si nanowire

transistors with different types of cross sections (e.g., trian-

gular, rectangular, and cylindrical).

A. Benchmarking of the FUMS approach

As mentioned in Sec. II, for both CMS and UMS ap-

proaches, we need to solve a 2D Schrödinger equation

[shown in Eq. (4)] at each slice of the SNWT to obtain the

electron subbands and the corresponding eigenfunctions

(modes). Figure 2 shows the electron wave functions at a

slice of the SNWTs with a triangular, rectangular, or cylin-

drical cross section, respectively. After solving all the NX 2D

Schrödinger equations, the electron subband levels are ob-

tained (see Fig. 3, circles). For the FUMS approach, how-

ever, only one 2D Schrödinger equation needs to be solved,

and the subband profile can then be calculated by Eq. (42).

Figure 3 clearly illustrates that this approximation method

(solid lines) provides excellent agreement with the rigorous

calculation (circles), which shows that the FUMS approach

correctly computes the electron subbands in SNWTs.

Figure 4 compares the computed IDS vs VGS characteris-

tics for the simulated cylindrical SNWT by the FUMS

(dashed lines), UMS (circles), and CMS (crosses) ap-

proaches, respectively. It is clear that all the three approaches

FIG. 2. The 2D modes [the square of the modulus of the electron wave

functions in the (010) valleys] in a slice of (a) triangular wire (TW), (b)

rectangular wire (RW), and (c) cylindrical wire (CW) transistors. For clarity,

the SiO2 substrates for TW and RW FETs are not shown here.
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are in excellent agreement (,0.5% error), thus indicating

that the FUMS approach, which has much higher computa-

tional efficiency than CMS and UMS, is an attractive simu-

lation tool for modeling Si nanowire transistors. Although

the sample device structure we use in Figs. 3 and 4 is a

cylindrical SNWT, our conclusion is also applicable for

SNWTs with arbitrary cross sections (assuming the shape of

the Si body is uniform along the x direction). In the follow-

ing parts of this work, we will use the FUMS approach to

investigate the device physics in various SNWTs.

B. Device physics and characteristics

The NEGF transport model we use in this work provides

an opportunity to illustrate the local density of states (LDOS)

of the simulated SNWTs. Figure 5 shows the LDOS together

with the electron subbands for a ballistic cylindrical SNWT

with 10 nm gate length and 3 nm Si body thickness. Strong

oscillations in the LDOS plot are clearly observed, which is

due to the quantum mechanical reflection. To be specific, the

states injected from the drain are reflected off the drain-to-

source barrier at the high drain bias and these reflected states

strongly interfere with the injected ones. At the source end,

the states injected at energies around the source barrier are

also reflected and interfere. It should be noted that the occur-

rence of quantum inference in ballistic SNWTs relies on the

quantum coherence (complete preservation of electron phase

information) inside the devices. If scattering (dephasing

mechanism) is included, as we will see in Sec. IV, the quan-

tum interference and the oscillations in the LDOS are

smeared out. In addition, the presence of states below the

first electron subband is also visible in the LDOS plot, which

is caused by source-to-drain tunneling.
20

Figure 6 plots the 1D electron density (in m−1) profile

along the channel of the simulated cylindrical SNWT. It is

clearly observed that the oscillations in the LDOS of the

device result in an oscillation in the 1D electron density,

even at the room temperature and more apparent at low tem-

perature s77 Kd. In general, such an oscillation in the elec-

tron density profile occurs in all kinds of transistors with 1D

channels (e.g., the carbon nanotube transistor
21

). It is inter-

esting to mention that there is no evident oscillation in the

electron density profile in a planar MOSFET (see Fig. 8 on p.

3736 in Ref. 11) although its LDOS also bears strong oscil-

lations (see Fig. 4 on p. 3735 in Ref. 11). The reason is that

in a planar MOSFET there is a transverse direction (normal

to both the Si/SiO2 interfaces and the channel direction), in

which the electron wave function is assumed to be a plane

wave, thus resulting in numerous transverse modes in the

device. These transverse modes wash out the oscillations in

FIG. 3. The electron subband profile in a cylindrical SNWT with 10 nm

gate length (VGS=0.4 and VDS=0.4 V). The numbers of nodes in the x di-

rection NX is equal to 128. The silicon body thickness TSi [as shown in Fig.

1(c)] is 3 nm, and the oxide thickness is 1 nm. The source/drain sS /Dd
doping concentration is 231020 cm−3 and the channel is undoped (the chan-

nel region is located from X=8 to X=18 nm). The solid lines are for the

approximation method (solving a 2D Schrödinger equation only once) used

in the FUMS approach, while the circles are for the rigorous calculation

(solving 2D Schrödinger equations NX times) adopted in the UMS and CMS

approaches.

FIG. 4. The IDS vs VGS curves for a cylindrical SNWT in logarithm (left)

and linear (right) scales sVDS=0.4 Vd. The device structure is the same as

that in Fig. 3. The crosses are for the CMS approach, the circles are for the

UMS approach, and the dashed lines are for the FUMS approach.

FIG. 5. The computed LDOS [in 1 / seV md] and electron subbands (dashed

lines) of a ballistic cylindrical SNWT with 10 nm gate length and 3 nm Si

body thickness (the channel region is located from X=8 to X=18 nm and

the details of the device geometry are described in Fig. 3 caption) (VGS

=0.4 and VDS=0.4 V).
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the LDOS and cause a smooth electron density profile. So

the oscillation in the electron density profile is a special

property of SNWT as compared with planar MOSFETs.

Figure 7 illustrates the calculated transmission coeffi-

cient [from Eqs. (38) and (39)] for the simulated cylindrical

SNWT. When the total electron energy increases above the

source end of the first subband, the electrons start to be in-

jected into the channel, so the transmission coefficient begins

to increase from zero. As the electron energy continues to go

up, the second and third subbands (modes) become conduc-

tive successively, which results the steplike shape of the

transmission coefficient curve. We also observe that the

transmission coefficient is above zero even when the total

electron energy is below the top of barrier of the first sub-

band, which is the evidence of source-to-drain tunneling.

In Fig. 8, we compare the IDS vs VGS characteristics for

SNWTs with triangular, rectangular, and cylindrical cross

sections. Two interesting phenomena are evidently visible:

(1) the cylindrical wire (CW) and triangular wire (TW) tran-

sistors have higher threshold voltages, VTH (which is defined

as IDSsVGS=VTHd=10−8 A when VDS=0.4 V), due to stronger

quantum confinement (the cross-section areas of the CW and

TW are smaller than that of the rectangular wire (RW) for

the same Si body thickness) and (2) the CW SNWT offers

the best subthreshold swing and the highest on-off current

ratio (under the same gate overdrive, VGS−VTH) due to its

good gate control. These results clearly show that our simu-

lator correctly treats the 3D electrostatics, quantum confine-

ment, and transport in SNWTs with arbitrary cross sections.

IV. TREATMENT OF SCATTERING WITH BÜTTIKER
PROBES

In this section,we apply a simple quantum treatment of

scattering based on the Büttiker probes
14,16,17

to our SNWT

simulation. The simulation results show that this simple

model captures the essential effects of scattering on both

internal device parameters (e.g., charge distribution and elec-

trostatic potential) and current-voltage characteristics. (A de-

tailed treatment of scattering within the NEGF formalism is

important to deeply understand physics in Si nanowires, and

it will be discussed in future work.)

A. Theory

The simple treatment of scattering with the Büttiker

probes has been adopted by Venugopal and co-workers
17

for

the simulation of nanoscale MOSFETs. Due to the similarity

between the transport calculations of a MOSFET and a

SNWT, here we will follow the basic concepts and formal-

ism of the method described in Ref. 17 while making neces-

sary modifications and corrections for the case of SNWT

simulation.

FIG. 6. The 1D electron density profile along the channel of the simulated

cylindrical SNWT (the channel region is located from X=8 to X=18 nm and

the details of the device geometry are described in Fig. 3 caption). The solid

line is for T=300 K while the dashed line is for T=77 K (VGS=0.4 and

VDS=0.4 V).

FIG. 7. The transmission coefficient and electron subbands in the simulated

cylindrical SNWT (the channel region is located from X=8 to X=18 nm and

the details of the device geometry are described in Fig. 3 caption) (VGS

=0.4 and VDS=0.4 V).

FIG. 8. The IDS vs VGS curves for the triangular wire (TW) FET with k101l
oriented channels, rectangular wire (RW) FET with k101l oriented channels

and cylindrical wire (CW) FET with k100l oriented channels. sVDS

=0.4 Vd. All the SNWTs have the same silicon body thickness sTSi

=3 nmd, oxide thickness sTox=1 nmd, gate length sL=10 nmd, and gate

work function sWF=4.05 eVd. The Si body width WSi of the RW is 4 nm. In

the calculation of the TW and RW FETs, whose channels are k101l oriented,

the effective masses of electrons in the (100) and (001) valleys are obtained

from Ref. 22 as mx
p=0.585me, my

p=0.19me, and mz
p=0.318me.
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In the ballistic regime, as we know, electrons move

through the device coherently, with their energies and phase

information conserved. When scattering is present, however,

electrons’ momenta and energies could be altered and their

phase information may be lost. Based on this observation,

virtual probes (Büttiker probes) are attached to the device

lattice (in the channel direction), which serve as reservoirs

that absorb electrons from the active device, modulate their

momenta and/or energies, and then reinject them back to the

device. The difference between the probes and the S /D con-

tacts is that the probes can only change the electron

momentum/energy and not the number of electrons within

the active device.
17

Figure 9 shows the 1D device lattice (in the channel

direction) for a SNWT with the Büttiker probes attached.

Each probe is treated as a virtual 1D lattice (in the x8 direc-

tion) that is coupled to a node in the device lattice. The

coupling energy Dm
i between this virtual lattice and the node

with which it is attached to is called the Büttiker probe

strength,
17

which is determined by the ballisticity of the de-

vice. For instance, when Dm
i is zero, there is no coupling

between the device and the probes, so the electrons can

travel through the device ballistically. If this coupling energy

is large, it means that the electrons in the active device re-

gion can easily scatter into the probes, which implies that the

scatting in the device is strong. As we will show later, the

Büttiker probe strength can be analytically related to the

electron mean free path, which allows us to calibrate the

parameters in our simulation to mimic a low field mobility

that can be measured experimentally.
17

It should also be

noted that since we treat each probe as a reservoir, a Fermi

level smi , i=2, . . . ,NX−1d needs to be assigned to the probe,

and the values of these probe Fermi levels have to be ad-

justed to achieve current continuity (i.e., the net current at

each probe is zero). The mathematical formalism used to

treat this physical structure is described in the following

paragraphs.

As we show in Sec. II, the retarded Green’s function for

mode m is obtained as

GmsEd = fESm − hmm − SS
msEd − S1

msEd − S2
msEdg−1.

If we discretize the matrices by the FDM method, Sm is a

NX3NX identity matrix and the device Hamiltonian hmm is

expressed as

hmm = 3
2tm + Esub

m s0d − tm 0 ¯ ¯ 0

− tm 2tm + Esub
m sad − tm � � A

0 − tm � � � A

A � � � − tm 0

A � � − tm 2tm + Esub
m fsNX − 2dag − tm

0 ¯ ¯ 0 − tm 2tm + Esub
m fsNX − 1dag

4 sFDMd , s43d

where the coupling energy between adjacent lattice nodes (in the x direction) is tm= s"2 /2a2damm and amm is defined in Eq.

(28a). In the ballistic limit, the scattering self-energy oS
m=0 so the total self-energy matrix is

Sm = SS
m + S1

m + S2
m = 3

− tmeikm,1a 0 ¯ ¯ 0

0 0 � � A

A � � � A

A � � 0 0

0 ¯ ¯ 0 − tmeikm,NX
a

4 sFDMd , s44d

where km,1 skm,NX
d is determined by E=Esub

m s0d+2tms1−cos km,1ad sE=Esub
m fsNX−1dag+2tms1−cos km,NX

add. After we attach

the Büttiker probes to the device lattice (Fig. 9), the device Hamiltonian hmm becomes

FIG. 9. A generic plot of the 1D device lattice (solid line with dots, along

the X direction) for a SNWT with the Büttiker probes attached. Each probe

is treated as a virtual 1D lattice (dashed line with dots, along the X8 direc-

tion) that is coupled to a node in the device lattice. The coupling energy

between this virtual lattice and the node with which it is attached to is Dm
i ,

and that between two adjacent device lattice nodes is tm. The probe Fermi

levels are labeled as misi=2,3 , . . . ,NX−1d.
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hmm = 3
2tm + Esub

m s0d − tm 0 ¯ ¯ 0

− tm 2tm + Dm
2 + Esub

m sad − tm � � A

0 − tm � � � A

A � � � − tm 0

A � � − tm 2tm + Dm
NX−1

+ Esub
m fsNX − 2dag − tm

0 ¯ ¯ 0 − tm 2tm + Esub
m fsNX − 1dag

4 , s45d

and the total self-energy matrix turns to

Sm = SS
m + S1

m + S2
m = 3

− tmeikm,1a 0 ¯ ¯ 0

0 − Dm
2

eikm,2a 0 � A

A � � � A

A � 0 − Dm
NX−1

eikm,NX−1a 0

0 ¯ ¯ 0 − tmeikm,NX
a

4 , s46d

where km,i si=1,2 , . . . ,NXd is determined by E=Esub
m fsi−1dag+2tmf1−cos km,iag, and Dm

i si=2,3 , . . . ,NX−1d is the Büttiker

probe strength. For convenience, we prefer to keep the device Hamiltonian hmm in its original form [Eq. (43)], so we have to

move the terms containing Dm
i in the diagonal elements of hmm to the total self-energy matrix om. Thus,

Sm = SS
m + S1

m + S2
m = 3

− tmeikm,1a 0 ¯ ¯ 0

0 − Dm
2 seikm,2a − 1d 0 � A

A � � � A

A � 0 − Dm
NX−1seikm,NX−1a - 1d 0

0 ¯ ¯ 0 − tmeikm,NX
a

4 , s47d

Inserting Eqs. (43) and (47) into Eq. (31), the retarded

Green’s function Gm can be evaluated.

Knowing Gm, the state spectral function due to injection

from the S /D and all probes for mode m is obtained as
17

Ai
msEd = GmsEdGi

msEdGm†sEd , s48d

where i runs over all the reservoirs (including the S /D) and

Gi
m is an NX3NX matrix defined as

Gi
mfp,qg = j†Smfp,qg − Sm†fp,qg‡dp,idq,i

sp,q = 1,2, . . . ,NXd . s49d

The local density of states due to injection from reservoir i is

then obtained as

Di
mfpg =

1

pa
Ai

mfp,pg si = 1,2, . . . ,NX,p = 1,2 . . . ,NXd ,

s50d

and the 1D electron density (in m−1) for mode m can be

calculated by

n1D
m = o

i

E
−`

+`

Di
mfsmi,EddE , s51d

where i is the reservoir index that runs over all the probes

and the S /D, and mi is the Fermi level for reservoir i (note

that m1=mS and mNx
=mD).

The transmission coefficient between any two reservoirs

i and r can be evaluated as

Ti↔r
m sEd = trfGi

msEdGmsEdGr
msEdGm†sEdg . s52d

The net current density (at energy E) at reservoir i including

contributions from all reservoirs (labeled by r), modes (la-

beled by m), and valleys is

hisEd =
q

p"
o
m

o
r

Ti↔r
m sEdffsmi,Ed − fsmr,Edg , s53d

and the net current at reservoir i is

Ii = E
−`

+`

hisEddE . s54d

As mentioned in Ref. 17, while the S /D Fermi levels are

determined by the applied voltages, the Fermi levels of the

probes have to be adjusted to ensure current continuity,

which implies that the net current at each probe must be

zero,

Ii = E
−`

+`

hisEddE = 0 si = 2,3, . . . ,NX − 1d . s55d

Inserting Eq. (53) into Eq. (55), we obtain

q

p"
o
m

o
r

E
−`

+`

Ti↔r
m sEdffsmi,Ed − fsmr,EdgdE = 0

si = 2,3, . . . ,NX − 1d . s56d

Solving this nonlinear equation group (56) by Newton’s

method,
17

the Fermi levels smi , i=2,3 , . . . ,NX−1d of all the
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probes are evaluated. It should be mentioned that if we

implement the elastic Büttiker probes, which can only

change the electron momentum and not the energy, to cap-

ture elastic scattering mechanisms in SNWTs (e.g., surface

roughness scattering and ionized impurity scattering), the net

current for each probe has to be zero at any energy, so

hisEd =
q

p"
o
m

o
r

Ti↔r
m sEdffsmi,Ed − fsmr,Edg = 0

si = 2,3, . . . ,NX − 1d . s57d

It implies that the probe Fermi levels are both position and

energy dependent. In this case, the Fermi levels of probes at

each energy can be computed by solving the linear equation

group (57). Knowing the probe Fermi levels [by solving ei-

ther Eq. (56) or Eq. (57)], the electron density and terminal

current can be calculated from Eqs. (51) and (54).

Finally, we list the equations that relate the Büttiker

probe strength Dm
i to the classical low field electron mobility

m0. Following the procedures in Ref. 17, for a single-mode

1D conductor with a uniform potential, we can obtain

Dm
i

tm

=
2a

l
, s58d

where l is the electron mean free path, which relates to the

low field electron mobility by the following equation for a

1D conductor (the l,m0 relation for a 2D conductor is de-

scribed in Ref. 23),

l = S2m0

yT

kBT

q
D fI−1/2shF

i dg2

I−3/2shF
i dI0shF

i d
, s59d

where yT=Î2kBT /pmx
* is the unidirectional thermal velocity

of nondegenerate electrons. The function Insxd is the Fermi-

Dirac integral and hF
i is defined as hF

i = fmi−Esub
m sxidg /kBT,

where xi is the position of the ith reservoir (probe) of the

device. It should be noted that the mean free path l defined

in Eq. (59) is position dependent and consequently the Büt-

tiker probe strength Dm
i is also position dependent. As men-

tioned earlier, single-mode occupancy is assumed in our

analysis. If more than one mode is occupied, the mean free

path should be treated as an average mean free path over all

the modes and valleys. (Please refer to Appendix B in Ref.

17 for details.)

B. Results

Figure 10 plots the LDOS together with the electron sub-

bands for a dissipative cylindrical SNWT with 10 nm gate

length and 3 nm Si body thickness. We assume that both

elastic (e.g., surface roughness scattering and ionized impu-

rity scattering) and inelastic (e.g., electron-phonon interac-

tions) scattering mechanisms are present in the device [i.e.,

Eq. (56) is used for current continuity], and the equivalent

mobility is 55 cm2 / sV sd at the S /D extension regions and

200 cm2 / sV sd in the channel. Compared with the ballistic

case (Fig. 5), strong oscillations in the LDOS, which is due

to quantum interference, are washed out. It is because scat-

tering inside the SNWT randomizes the phase of the elec-

trons and consequently destroys the quantum coherence in

the device.
14,17

Moreover, the slope of the electron subbands

in the S /D extension regions manifests the S /D series resis-

tances at the on state, which is caused by the strong scatter-

ing [i.e., the S /D mobility is only 55 cm2 / sV sd] at the

heavily doped S /D regions. In Fig. 11, we compare the IDS

vs VGS characteristics for this dissipative cylindrical SNWT

(solid lines) with its ballistic limit (dashed lines). It is evi-

dently shown that scattering lowers both off and on currents.

For the mobility values we use in the simulation, the on

current of the dissipative SNWT approaches ,70% of the

ballistic limit.

The above results clearly indicate that the simple quan-

tum treatment of scattering with the Büttiker probes captures

the effects of scattering on both internal characteristics and

FIG. 10. The computed LDOS [in 1 / seV md] and electron subbands (dashed

lines) of a dissipative cylindrical SNWT with 10 nm gate length and 3 nm

Si body thickness (the channel region is located from X=8 to X=18 nm and

the details of the device geometry are described in Fig. 3 caption). (VGS

=0.4 and VDS=0.4 V). The S /D mobility is 55 cm2 / sV sd and the channel

mobility is 200 cm2 / sV sd.

FIG. 11. The IDS vs VGS curves for a cylindrical SNWT with 10 nm gate

length and 3 nm Si body thickness (the details of the device geometry are

described in Fig. 3 caption) in logarithm (left) and linear (right) scales

sVDS=0.4 Vd. The dashed lines are for the ballistic limit while the solid lines

are for the case with scattering [i.e., the S /D mobility is 55 cm2 / sV sd and

the channel mobility is 200 cm2 / sV sd].
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terminal currents for SNWTs. The relation between the Büt-

tiker probe strength, the only input parameter in this model,

with the experimentally measurable low field mobility en-

ables this simple model to be used in engineering simulation

and design. It should also be noted, however, that this phe-

nomenological model is only a macroscopic description of

scattering, which is similar as the drift-diffusion model that

is used in the semiclassical context. To quantum mechani-

cally treat various scattering mechanisms in detail, a rigorous

quantum treatment of scattering within the NEGF

formalism
14

is still needed.

V. SUMMARY

In this paper, we present a computationally efficient

three-dimensional quantum simulation of various silicon

nanowire transistors based on the effective-mass approxima-

tion. The coupled/uncoupled mode space approaches are

adopted to decompose the 3D device Hamiltonian, which

greatly reduces the simulation time while keeping excellent

computational accuracy. The use of a fast uncoupled mode

space further scales down the computational complexity and

makes our simulator executable on a single processor. This

enables our approach to be used as a practical 3D quantum

model for extensive device simulation and design.

Although we mainly focus on ballistic simulations in this

work, a simple treatment of scattering with the Büttiker

probes, previously applied to MOSFET simulations, is also

implemented in our SNWT simulator. This model is a one

input parameter model and the parameter we use can be re-

lated to the experimentally measurable low field mobility of

electrons. As a result, the implementation of this simple scat-

tering model endows our SNWT simulator with the ability to

explore the realistic performance limits of SNWTs.
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