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SUMMARY 
A new spherical mesh generator is described. It represents an efficient, deterministic 
packing of tetrahedra into a solid sphere, a spherical shell, or both. The mesh can be 
used for finite-element solutions to  a wide variety of global numerical modelling 
problems in the geosciences. The nodes within the mesh are distributed uniformly, and 
long, thin tetrahedra are avoided. The  method proposed here offers several advantages 
over 3-D Delaunay algorithms for finite-element mesh generation. For the related 
problem of trivariate scattered da ta  interpolation, which is not considered here, the 
3-D Delaunay algorithms are the method of choice. 
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INTRODUCTION 

Many global numerical modelling problems in the geosciences 
involve solving systems of differential equations over a spherical 
domain, or within a thick spherical shell. Examples include 
atmospheric (e.g. Wyman 1996) and oceanographic (e.g. Semtner 
& Chervin 1988) general circulation, buoyancy-driven flow for 
geoid prediction (e.g. Zhang & Christenson 1993), mantle 
convection (e.g. Bercovici 1995), seismic wave propagation (e.g. 
Cummins, Geller & Takeuchi 1994), core dynamo evolution (e.g. 
Glatzmaier & Roberts 1995), and electromagnetic induction (e.g. 
Everett & Schultz 1996). The governing sets of equations for the 
spatially dependent variables are generally solved by spectral, 
finite-difference (FD) or hybrid spectral-FD methods. Less 
frequently, they are solved by the finite-element (FE) method. 
The FE method offers many advantages over the prevailing 
methods, but suffers from the perception that problems are 
difficult to formulate and algorithms difficult to implement. 

In this contribution, a new 3-D spherical mesh generator is 
introduced. It is useful for problems where a tetrahedral 
decomposition of a thick spherical shell, or the entire solid 
sphere, is appropriate, such as in finite-element methods. The 
development of the new mesh generator was motivated by the 
success of a finite-element model of electromagnetic induction 
in the spherical earth (Everett & Schultz 1996). The purpose 
of this paper is to demonstrate that a simple, high-quality 
tetrahedralization of the sphere, or a thick spherical shell, is 
straightforward to attain. It is hoped that this demonstration 
will stimulate a more widespread investigation into the use of 
finite-element and related methods for other global modelling 
problems, such as those listed above. A large body of previous 
work has been concerned with 2-D spherical triangulations 
covering the surface of a sphere (e.g. Cullen 1974; Baumgardner 
& Frederickson 1985; Augenbaum & Peskin 1985; Constable, 
Parker & Stark 1993; Wang & Dahlen 1995) but little has 
been published on solid 3-D spherical tetrahedralizations. 

The mesh described here has two principal advantages over 
its predecessor in Everett & Schultz (1996): (1) the radial node 
density is very small at the centre of the sphere, increases 
exponentially to some arbitrary radius (which may be inside, 
outside, or on the surface of the sphere), and then remains 
constant to some arbitrary outer radius; (2) all tetrahedra are 
well-shaped, i.e. there are no long, thin ones. The mesh retains 
the desired property that the angular distribution of nodes in 
the polar and azimuthal coordinates is very uniform. In 
addition, the north and south poles do not require any special 
consideration, as they do for curvilinear grids oriented along 
lines of constant latitude and longitude. Furthermore, the mesh 
generation is not based on triangulating a randomly generated 
set of points in 3-D space. In short, the new mesh is an efficient, 
deterministic packing of tetrahedra into a sphere. 

SPHERICAL MESH GENERATION 

In recent years several strategies have developed for 3-D tetra- 
hedral meshing of arbitrarily shaped bodies: recursive spatial 
decompositions or octrees (Shephard & Georges 1991); 3-D 
Delaunay triangulations (Yuen, Tan & Hung 1991; Sambridge, 
Braun & McQueen 1995); advancing-front methods (Peraire 
et al. 1988); and convex polyhedral decomposition (Joe 1994). 
Our strategy for tetrahedralizing the solid sphere, or a thick 
spherical shell, is most similar to the convex decomposition 
technique. 

The mesh is a composite of two parts: an interior part, and 
an exterior part. The two parts are seamlessly welded together 
by a common polyhedral surface. The interior mesh is a 
tetrahedralization of the solid sphere. Its radial node density 
increases exponentially with radius. The exterior mesh is a 
tetrahedralization of a thick spherical shell. The radial node 
density is constant with radius. Depending on the application, 
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the exterior or the interior mesh can be used alone, or the full 
composite mesh can be used. 

The interior mesh 

The approach for constructing the interior mesh is recursively 
to subdivide an initial polyhedral decomposition of the sphere 
consisting of seven vertices (nodes) and eight tetrahedra. This 
decomposition is referred to as refinement level 0 (Fig. 1, top 
left) and consists of a node at the centre of the sphere, a node 
at each pole, and equatorial nodes on the O", 90°, 180°, and 
270" meridians. The nodes are triangulated by eight identical 
tetrahedra: four in the northern hemisphere and four in the 
southern hemisphere tetrahedra, as shown in the figure. 

Each of the tetrahedra in refinement level 0 is further refined 
into eight subtetrahedra (Fig. 2) according to the method of 
Liu & Joe (1996). In this method, each triangular facet of the 

tetrahedron is refined into four subtriangles by connecting new 
nodes placed at the midpoints of the six edges. This yields four 
new subtetrahedra at the corners of the original tetrahedron, 
plus an octohedron in the middle (Fig. 2, top right). The 
central octohedron is then decomposed into an additional four 
subtetrahedra by adding an interior edge. This can be done in 
three different ways (Fig. 2, bottom). The interior edge chosen 
is the one that maximizes the sum of the quality factors (see 
below) of the four new subtetrahedra that are created. 

The integrity of a tetrahedron is measured here by its quality 
factor, Q. Poorly shaped tetrahedra are to be avoided wherever 
possible, since they can adversely affect the performance of a 
numerical method. Liu & Joe (1996) define the quality factor 
of a tetrahedron as 
Q = 12(3V)3'2 1 I,$, 

i i j  

where I/ is the volume of the tetrahedron and Li j  is the length 

refinement level: 0 
nodes: 7, tetrahedra: 8 

refinement level: 1 
nodes: 25, tetrahedra: 64 

volume: 0.318 volume: 0.703 

refinement level: 2 refinement level: 3 
nodes: 129, tetrahedra: 512 nodes: 833, tetrahedra: 4096 

volume: 0.911 volume: 0.977 
Figure 1. Successive refinements of the initial polyhedral approximation of the solid sphere. The number of nodes and tetrahedra are indicated 
for each refinement, as well as the volume occupied as a fraction of the volume of the sphere. Not all the nodes are shown in the diagrams; for 
example in refinement level 0 there is a hidden node at  the centre of the sphere. The varying line weight from solid to faintly dashed is intended 
as depth cueing. 
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4 subtetrahedra + octohedron 

original tetrahedron 

3 ways to subdivide octahedron into 4 subtetrahedra 

Figure 2. Subdivision of a tetrahedron into eight subtetrahedra. 

of the edge joining vertex i and vertex j .  The quality factor Q 
varies between 0 and 1. The lower limit corresponds to poorly 
shaped tetrahedra, while the upper limit corresponds to well- 
shaped, or regular tetrahedra. Quality factors are shown in 
Fig. 3 for a sequence of tetrahedra generated by continuously 
varying the position of a vertex along a straight line. 

Successive refinements of the initial polyhedral approxi- 
mation to the sphere are shown in the remainder of Fig. 1. For 
example, the refinement at some level i is generated by a 
subdivision of each tetrahedron belonging to refinement level 
i - 1 into eight subtetrahedra, as described above. There is one 
additional complication that must be taken into account. 
During the refinement process, as shown in Fig. 2, new nodes 
are added to the midpoints of edges of triangular facets. 
However, certain tetrahedra contain facets whose three vertices 
are coincident with the surface of the sphere. The radii of the 
newly added midpoint nodes for these facets are less than the 
radius of the sphere, since the nodes are added midway along 
the chord between vertices. To ensure that successive refine- 
ments of the tetrahedral mesh conform as closely as possible 
to the curved geometry of the sphere, the positions of the 

newly added nodes must be projected outwards from the 
interior onto the surface of the sphere along a line emanating 
from the origin. This procedure, along with the analogous 
procedure in two dimensions for triangulating a disc, is 
illustrated in Fig. 4. 

The distributions of several mesh quality diagnostics for 
the interior mesh at refinement level 4 (6071 nodes, 32768 
tetrahedra) are shown in Fig. 5. This refinement level occupies 
a fraction 0.994 of the volume of the unit sphere. The quality 
factors range from 0.6 to 1.0, with the distribution peaking at 
Q > 0.9, indicating a very high-quality mesh. The radial distri- 
bution of nodes follows an approximate exponential distri- 
bution, from near zero at the origin to a maximum at the 
outer radius. This form of radial distribution is appropriate 
for two reasons: (1) the volume occupied by a spherical shell 
of a given radial thickness z falls off as the cubed power of the 
shell's average radius; and (2) for many solid-sphere appli- 
cations, high accuracy is demanded near the surface where 
observations are made. The polar distribution of nodes is 
maximum at the equator (cos 6 = 0) and falls off symmetrically 
with increasing latitude to near zero at the poles (cos 19 = k 1). 
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Figure 3. Quality factor as a function of tetrahedron shape. The vertex coordinates are as marked. The parameter t is varied between 0.0 and 
10.0. Changing the parameter t changes the shape, and hence the quality factor, of the tetrahedron. Several representative examples are shown. 

The azimuthal distribution is uniform, except at the meridians, 
4 = OD, go", 180", 270", where a higher-than-average node 
density is noted. This is a reflection of the placement of the 
initial set of nodes in refinement level 0 (see Fig. 1). 

The exterior mesh 

A tetrahedralization of the solid sphere is appropriate for finite- 
element solutions to problems in seismic wave propagation or 
core dynamo evolution where the Earth's inner core is part of 
the solution domain. However, in problems such as ocean and 
atmospheric general circulation and mantle convection, tetra- 
hedralizing a spherical shell is more efficient, since the inner 
regions of the Earth need not be part of the solution domain. 
Furthermore, for some problems, such as global electro- 
magnetic induction where the solutions in the air and the 

Earth must both be calculated but have different characteristic 
spatial wavelengths, a composite mesh is required consisting 
of tetrahedralizations of both an exterior spherical shell and 
interior solid sphere. 

The construction of the exterior (spherical shell) mesh begins 
by considering the triangulation on the outer surface of the 
interior mesh. A portion of this triangulation is shown in 
Fig. 6. A new triangulation is created by projecting the nodes 
and edges radially outwards along lines emanating from the 
origin of the sphere. New edges are created to connect the two 
triangulations, as shown in the figure. An arbitrary number of 
these triangulations can be so connected, nested together at 
different characteristic radii. All that remains to complete the 
construction of the exterior mesh is to tetrahedralize the basic 
solid-geometric unit, termed a 'barrel triangular prism', shown 
at the bottom in Fig. 6. 
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Figure 4. (a) Procedure for projecting newly added nodes to the surface of the sphere. The dark circles are vertices of the original triangulation, 
and they lie on the surface of the sphere. The open circles are newly added nodes, which lie on chords between the dark circles and hence are 
beneath the surface of the sphere. The shaded circles are the newly added nodes projected onto the surface of the sphere along a line emanating 
from the origin. The dotted lines show the refined triangulation. (b) The analogous procedure in two dimensions for triangulating the disc. A 
coarse initial triangulation is indicated in the top, right quadrant of the disc. The first refinement is shown in the bottom, right quadrant. A second 
refinement is shown in the bottom, left quadrant. During each refinement, the newly added nodes (open circles in the first refinement; shaded 
circles in the second refinement) on the surface of the disc were projected there from their initial positions on chords connecting pre-existing 
surface nodes. 

INTERIOR MESH refinement level:4 
nodes: 6017, tetrahedra: 32768 

volume: 0.994 
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Figure 5. Frequency histograms showing interior-mesh quality factors and spatial distributions of nodes. 
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Figure 6. Construction of the exterior mesh. See text for details. 

original triangular prism 

5 

2 1 

The barrel triangular prism is readily decomposed into 
three subtetrahedra. A particular decomposition is shown in 
Fig. 7. The distributions of several mesh quality diagnostics for 
the exterior mesh at refinement level 3 (1548 nodes, 9216 
tetrahedra) are shown in Fig. 8. The quality factors range from 
0.65 to 0.9, with the distribution peaking at Q slightly less than 
0.8, again indicating a very high-quality mesh. The radial 
distribution of nodes is a series of identical delta functions. The 
positions of the delta functions correspond to the characteristic 
radii of the nested spherical triangulations. In the example 
shown, six triangulations were nested with geometrically increas- 
ing characteristic radii, the largest of which was equal to four 
times the radius of the interior mesh. The geometric spacing 
factor between adjacent triangulations is 1.3. The polar and 
azimuthal distributions of nodes in the exterior mesh (not 
shown) are identical to those of the interior mesh. 

DISCUSSION 

The spherical mesh generator described in this paper can be 
used to solve problems in the geosciences which involve solving 
partial differential equations in a spherical, or spherical-shell, 
domain. The lack of a good mesh generator may be one 
contributing factor to the slow development of finite-element 
methods in 3-D global numerical modelling. It is hoped that 
this paper will contribute to a re-examination of FE methods 
for this purpose, with the eventual goal of improving accuracy, 
efficiency and providing alternative solutions to validate the 
existing spectral/FD techniques. 

The mesh generator described in this paper is intended to 
serve as a front-end to a 3-D partial differential equation 
solver in spherical geometry. It is not intended to function as 
the framework for trivariate interpolation of scattered data 
within a sphere. This important problem has been addressed 
by numerous authors, including Sambridge et 01. (1995), who 
considered 2-D and 3-D Delaunay triangulations of a priori 
defined sets of points. The Delaunay algorithms are well-suited 
for scattered data interpolation, but in my experience they are 

subdivision into 3 subtetrahedra 

Figure 7. Subdivision of a barrel triangular prism into three subtetrahedra. 
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Figure 8. Frequency histograms showing exterior-mesh quality factors and radial distribution of nodes. 

less well-suited for finite-element mesh generation. The reasons 
are twofold: (1) The Delaunay approach provides an optimal 
triangulation of arbitrarily placed points, but the triangulation 
is only as good as the point-set from which it is derived. How 
does one generate an optimal 3-D point-set from which to 
triangulate? For example, what if the a priori points span only 
a portion of the entire solid sphere? This would be the case 
in modelling just a single subduction zone, for example. How 
is the remainder of the sphere to be filled with points? In 
short, the Delaunay approach to mesh generation requires 
that a good, front-end point-set generator is available. ( 2 )  The 
Delaunay triangulation unavoidably produces long, thin tetra- 
hedra if the a priori point-set is irregularly distributed. The 
occurrence of long, thin tetrahedra in a finite-element mesh 
degrades the conditioning of the finite-element matrix and 
slows or prevents the convergence of iterative solutions. The 
approach I recommend is to solve the partial differential 
equations on a high-quality, regular mesh (giving a stable 
matrix inversion) and then interpolate the resulting solution 
onto irregularly spaced points where the solution is required. 
A high-quality local mesh-refinement algorithm (e.g. Liu & 
Joe 1996, see below) should be used if a more detailed mesh 
in certain regions is deemed necessary. 

The mesh developed here does not suffer from the ‘pole 
problem’ which plagues FD grids, whose cells oriented along 
constant longitudes converge at the pole. Furthermore, the 
tetrahedralization of the sphere, or spherical shell, lends itself 
readily to parametrizing Earth structure in terms of locally 
defined basis functions, such as trivariate spherical splines 
(Weiss & Everett 1996; see also Wang & Dahlen 1995 for 
bivariate spherical splines defined on the surface) or natural 
neighbour interpolants (Sambridge et al. 1995). Some of the 
spectral techniques for global modelling parametrize the Earth 
in terms of basis functions with global support, such as 
spherical harmonics. Global bases are not well-suited for 
accurate representations of regional variations superimposed 

on a relatively uniform background model (e.g. Weiss & 
Everett 1996). 

Finally, local refinement of the basis-function support is 
often a difficult option when using spectral or FD techniques. 
The tetrahedralization described here is straightforward to 
refine locally (Liu & Joe 1996) and work is presently underway. 
For example, if Earth structure underneath, say, Japan is 
particularly interesting, one can refine just those tetrahedra 
that intersect the sub-Japanese region of interest, and leave 
the rest alone. The paper by Liu & Joe (1996) gives a recipe 
for performing a high-Q local mesh refinement. Their algorithm 
is elegant and does not leave extra nodes at the edges of 
refined tetrahedra. 
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