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Summary. An analytic approximation to the Green’s function for the dis- 
placements due to a strike slip point source in an elastic layer over a visco- 
elastic half-space is developed. This approximate Green’s function is useful 
because it can be analytically integrated over the fault surface. Comparison 
with a numerical integration of the exact solution integral indicates that the 
approximation is quite good. The approximate Green’s function is integrated 
analytically to obtain the displacements due to a finite rectangular strike slip 
fault in an elastic layer over a viscoelastic half-space. Ground displacements 
and angle changes from a model survey net are computed to illustrate the 
viscoelastic relaxation which follows a fracture in the elastic region. 

1 Introduction 

Recently there has been a growing interest in the use of static or quasistatic displacements, 
strains and tilts for the investigation of earthquake-related phenomena. In particular, 
aseismic horizontal surface displacements due to the San Andreas fault have been studied 
extensively (Savage & Burford 1973; Thatcher 1974, 1975a,b) by the use of geodetic tri- 
angulation techniques. The importance of the San Andreas lies in its well-documented 
history (Meade 1973) of aseismic surface motions. With this data we can learn much about 
the processes involved in pre- and post-seismic displacements and in tectonic plate motion. 

Observations of surface movements due to the San Andreas can be interpreted by means 
of mathematical models obtained by idealizing the fault as a vertical fracture in an elastic 
medium. The models describing near-field displacements are obtained by integration of a 
Green’s function for a strike slip source. For convenience, the source is usually assumed to 
be located in an elastic half-space whose elastic properties may vary with depth. Although 
the Green’s functions for line sources in layered media have been computed analytically 
(Rybicki 1971; Chinnery & Jovannovich 1972), the Green’s functions for point sources in 
layered media must at present be integrated numerically (Ben Menahem & Singh 1968; 
Jovannovich, Husseini & Chinnery 1974a, b). In addition, only the displacements due to an 
infinitely long fault have been computed analytically (Rybicki 1971). The line source 
Green’s function is really only useful in describing a fault whose dislocation function 
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576 J. B. Rundle and D. D. Jackson 

changes slowly along its strike. The point source Green’s function can be used to describe a 
finite-dimensional fault with an arbitrary dislocation function. 

In this paper we construct a model for a rectangular vertical strike slip fault which can be 
used to explain the postseismic surface displacements occurring after a large earthquake. We 
propose to represent the fault as a fracture in an elastic layer over a viscoelastic half-space, a 
model conceptually similar to that proposed by Nur & Mavko (1974) for infinitely long 
thrust faults. Unlike the Nur-Mavko model however, ours describes a vertical, finite-dimen- 
sional strike slip fault. In both models, the displacements from a fracture in an elastic layer 
overlying an elastic half-space are first computed, and the correspondence principle (Biot 
1954; Lee 1955; Fung 1965) is then used to introduce Newtonian viscoelastic properties 
into the half-space. 

We base our model on an approximate representation of the Green’s function for hori- 
zontal displacements due to a strike slip point source in an elastic layer over an elastic half- 
space. Although the exact expression for the Green’s function has been found (Ben-Menahem 
& Singh 1968), it is in the form of an integral over a Fourier wave number k .  In our model, 
three additional integrations of this Green’s function are needed: two over the fault surface 
and an inverse Laplace transform from use of the correspondence principle. These four 
integrals can be done numerically, but since near-field displacements are desired over a wide 
range of times, small mesh sizes are needed in the integrations. The approximate Green’s 
function described below is accurate, easy to use and has the advantage that all the succeed- 
ing integrations can be done analytically. Thus the inverse problem (Rundle & Jackson 
1977a, b) can be done simply using analytically computed partial derivatives. 

2 An approximate image technique 

The following is concerned with the computation of the Green’s function for a hor izond 
double-couple point source. The double couple will be located at y and produces displace- 
ments in the i direction at the observation point x. We compute this Green’s function by 
considering first the displacements in the k direction at y due to a point force in the i 
direction at x. We emphasize the distinction between source point and observation point 
by writing the coordinates as (observation point, source point). It can be shown that the 
stress 7jk (y, x) at y due to the force at x is itself proportional to a displacement field 
g j k  (x, y) at point x (see, e.g. Steketee 1958). That is, the j k  stresses at y due to a force 
in the i direction at x are proportional to the displacements in the i direction at x due to the 
j k  nucleus of strain (Love 1944) at point y. To compute the displacements due to a distribu- 
tion of nuclei of strain over a fault surface, it is necessary to integrate the Green’s function 
&k (x, y) over a fault surface defined by limits on the x variable. The displacements at y in 
direction i due to a dislocation A U j ( x )  over Z(x) with unit normal vk  are the result. The 
interchange of indices and coordinates is somewhat confusing, and this basic outline of the 
procedure should be kept in mind. A more complete discussion can be found in Steketee 
(1958). 

Ishii & Takagi (1967) solved a two-dimensional problem for the displacements from a line 
force located at the coordinates x3, x2 = 0, in an infinite elastic medium whose rigidity 
changes abruptly at y 3 =  0 (Fig. 1) .  Rybicki (1971) showed that the equations of elasticity 
for this case reduce to Poisson’s equation. He was thus able to use the method of images 
(Fig. 2 )  to find the displacements from a line source in and below a horizontal layer over a 
half-space. For an infinite medium whose y ,  - y z  plane divides the space into two parts, one 
of rigidity p, and another of rigidity pZ, we can write the Green’s function for the displace- 
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X Source point at X3 
Figure 1. Coordinate system used in finding the displacements due to a line dipole of force in they ,  
direction. 

Image Boundary 

True Boundary 

Image Boundary - - - - - - - - - - - - - E y3 

x Source Point at X3 
Image Source Points 

Figure 2. Coordinate system used to find the displacements due to a line dipole of force in they, direc- 
tion for a medium consisting of an elastic layer overlying an elastic half-space. 

ments due to a line force at (x2,  x3) of unit magnitude in the y1 direction at a point 02, y3) 

fory,> 0,x3> 0 

fory3> 0,x3< 0 and y 3 4  0 ,x3> 0 

f o r ~ ~ 3 ~  O , X ~ <  0 

where p1 is the rigidity for y ,  < 0 and p2 is the rigidity for y 3  > 0. The displacements at x 
due to an arbitrary stress distribution o(y) over the surface Z(y) are found by multiplication 
of ( 1 )  by a(y) and integration over C(y) as in Rybicki (1971). The superscript of K :  indi- 
cates the coordinates along which the displacement appears, and the subscript indicates the 
direction along which the force acts. The bold variable denotes a vector. 
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It has been shown (Rybicki 1971) that the displacements V,: at (x,,x~) due to an 
elementary single-couple line dislocation UodS at Cyz,y3) across a vertical plane can be 
obtained from K :  (y, x) by the operation 

J. B. Rundle and D. D. Jackson 

where U,, is the magnitude of the dislocation and dS is the area over which it occurs. As 
mentioned previously, the displacements V& (x, y) at x in direction k due to a strike slip 
source at y are proportional to the horizontal (12) shear stresses at y due to a unit force at 
x in direction k. 

We would like to find the displacements due to a line dislocation in a layered half-space. 
Using the coordinate system of Fig. 2, one can superpose image line forces to satisfy the 
requirements of a traction-free surface at y 3  = 0 and continuity of the solution and its conse- 
quent stresses at y 3  = H .  The displacements from a line force in a layered half-space whose 
layer thickness is H (Rybicki 1971) is 

f o r y , z H ,  x 3 >  H 
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where p1 is the layer rigidity and p, is the half-space rigidity. The operator UodSp(a/ayz) 
can again be used to obtain the displacements at (xz,x3) due to a line strike slip source at 
0 1 2 . ~ 3 ) .  Chinnery & Jovannovich (1972) have extended (3) to a many-layered half-space. 

Equation (3) satisfies the conditions which uniquely define the Green's function for the 
linear differential oprator, the Navier equation of elastostatic equilibrium, and the boundary 
conditions of the problem (Courant & Hilbert 1953, p. 353): 

(i) For fixed x, and x3, Gi (y, x) has a singularity in the stress a t y 2 = ~ , , y 3 = x 3 .  Thus in 
two dimensions Ci (y, x) is proportional to the logarithm of the distance between observa- 
tion and source points. 

(ii) The displacements C: (y, x) and tractions on any horizontal plane are everywhere 
continuous except at y z  = x,, y 3  = x3. 

(iii) C :  (y, x) satisfies the boundary conditions. These three requirements imply that for 
the Green's function considered here, the reciprocal theorem holds: G: ( y ,  x)=C: (x, y). 

Since we are interested in calculating displacements due to a finite-dimensional strike slip 
fault in an elastic layer over a viscoelastic half-space we must find the Green's function for a 
strike slip point source. Let us consider the situation in which a double-couple source at y 3  is 
in the layer and attempt to write down an approximate Green's function. The approxima- 
tion must satisfy conditions (i)-(iii) as well as possible. For example, one can show that 
condition (ii) can be satisfied using any function whose y 3  and x3 arguments appear only in 
the form Cy3 - x3)', b3 + x3)', b3 k 2mH f x3),, with the function occurring in the same 
term-by-term arrangement as the logarithms in equation (3). This suggests that we can apply 
the form of (3) to our three-dimensional problem. 

We already know the exact analytic solution for the displacements &(x,y) from a 
double-couple force in an infinite medium (Steketee 1958) 

The double-couple source is located at (0, 0 ,y3 )  and the observation point is at x. UodS 
i s  the elementary displacement dislocation corresponding to the double-couple force, 
a = h + p/A + 2/.1, and R = [x: + x: + (x3 - y3)2]1'2. Again the superscript indicates the dis- 
placement direction, and the subscripts correspond to the fact that the uf2 are derived by 
finding the horizontal shear stresses at y due to a point force at x along coordinate k. Using 
the fact that equation (3) represents horizontal displacements due to horizontal forces, we 
can try the following as an approximate Green's function 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/49/3/575/682168 by guest on 21 August 2022



580 J. B. Rundle and D. D. Jackson 

~ ( I - C U ) X Z  6~tx ixZ ~ ( ~ - c Y ) x z  ~ C U X ~ X ~  
t- t t- 

R 3  R5 s3 S 5  

where 

A + Pl  

A + 2Pl 
s2 = x ; + x ; t ( x 3 t y 3 ) 2 ;  a =  - 

R:+ = x i  + x’, t (x3 t 2mH t y3)’ 

R : - = x ; + x ; + ( X 3 t 2 m H - y 3 ) 2  

RZ_- = x; t x; + (xg -2mH-y3)’ 

R!+ = xt t x i  t (x3 - 2 mH t y3)’ 

where again pl is the layer rigidity and p2 is the half-space rigidity. 
This trial Green’s function has a singularity at the proper point; its contribution to dis- 

placement is continuous at x3 = H ;  and its contribution to shearing stress, p (aW;&xl), and 
normal stress, h(aW;Jax3) is continuous at x3 = H if Al = Az, whch we shall henceforth 
assume. However, it is evident that there still exists a normal stress at x3 = 0, and thus the 
surface is not stress-free. We can remedy this defect by adding to each source and its image 
a term corresponding to the displacements that result from superposing a normal stress to 
cancel the normal stress mentioned above 

for x3 = 0, source at (0, 0, y 3 ) , y 3 <  H (6a) 

for x3 = 0, source at (0, 0, y 3 ) ,  y 3  z H 

where 

c Y 3  + 2 m H Y .  A + =  - 4  Cy3 t 2mH) t 2p+ t 2 
P+ 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/49/3/575/682168 by guest on 21 August 2022



Model of a strike slip fault 

p+ = x ;  + x’, + c y 3  + 2mH)’ 

B+= 16 ( 2 m H + y 3 ) + 6 ~ + - 4 8  - 12 
(2mH + y3)’ + 38 cy3 + 2 m H r  ( y 3  + 2mH)6  

P+ P,’ P3 

58 1 

(2mH-y3)’ 
A_= -4  (2mh  - y 3 )  t 6p- + 2 9 

p- = x: + x ;  + (2mH - y3 )’ 

(2mH-y3)’ + 3 8  (2mH-Y3I4 (2mH-y3)  
5 

- 12 3 
B-= 1 6 ( 2 m H - y 3 ) + 6 p - - 4 8  

P- P- P- 

r ’ = x : + x ? .  

Note that each term of the form (U0dS/87r) (xJr4) [ A ,  + (xVr’)B+] is the Green’s func- 
tion for a strike slip point source at depth 2 m H + y 3  in a homogeneous half-space for 
observation points at the free surface x 3  = 0 (Steketee 1958). Thus for observation points 
x 3  > 0, d,(x,  y) can be written out by substituting for each Green’s function for x 3 =  0 the 
corresponding Green’s function for arbitrary x3 as found by Steketee (1958). 

The surface x 3  = 0 is now stress-free, but d,(x, y) and its associated contribution to the 
stresses are no longer continuous at x 3  = H. We are missing a set of terms which ‘fixes up’ 
g”(x, y) and makes it smoothly continuous across the boundary between layer and half- 
space. Since we are limited to the observation of surface motion however, it is necessary 
only to insure that this approximate solution is nearly equal to the real solution for obser- 
vation points at x 3  = 0. 

We shall postpone further discussion of the accuracy of the approximate Green’s function 
to a later Section. Instead we complete the development of the model by integrating (6a) 
over a rectangular fault surface and introducing viscoelastic properties into the half-space. 

3 The fiiite fault 

The solution for horizontal displacements due to a finite fault can be found by integrating 
(6a) over the area of the fault according to the well-known Volterra relation (Steketee 1958) 

~ ~ C y ) = J J f a u l t  surface Aui(x)gPE(X’~)nedS(x) (7) 

y3 

Figure 3. Coordinate system for the integration of the Green’s function for a strike slip point source. The 
relative displacement across the rectangular fault surface shown is indicated by the two parallel half- 
arrows. After Chinnery, M., Bull. seism. SOC. Am., 53, p. 9 ,  1963, copyrighted by the Seismological 
Society of America. 
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5 82 

where n, is the outward normal to the fault surface and Aui is the displacement jump. Both 
bold and index notation are used to  denote vectors, and the summation convention is 
assumed. An upper carat denotes a unit vector. 

Note that the observation point is now located at y, and the integral is performed over 
the variable x. Performing (7) over a rectangular strike slip fault of semilength L with top at 
depth d ,  bottom at depth D and with Aui = U o i i  = constant is particularly easy. The result 
can be taken from the literature (Chinnery 1961, 1963) using the coordinate system of Fig. 
3. For y 3  = 0, x 3  G H ,  the case of interest here, 

J. B. Rundle and D. D. Jackson 

- 
1 + 

f o r x 3 <  H, y 3 = 0  
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where 

P = X 3 f Y 3  

p + = x 3 + y 3  +2mH 

p- = x3 - y 3  + 2mH 

c = x l  - y ,  

S: = tZ  t y i  t q2 s; = tZ t y ;  t p z  

s:+ = tZ t y :  t 41 si+ = tZ t yi: t p,' 

4 Introduction of time dependence 

Having found the displacements due to a finite-dimensional fault in an elastic layer of 
rigidity p1 over an elastic half-space of rigidity pz, we modify the solution to add Newtonian 
viscous properties to the half-space. It is not our purpose here to enter the debate upon the 
rheological properties of the Earth's consitutive material. We remark, however, that a New- 
tonian flow law may be justified for the shallow viscoelastic regions in the Earth (McKenzie 
1968) although there is evidence for nonlinear rheology as well (Post & Griggs 1973; Stocker 
& Ashby 1973). In addition, it has been shown that under some conditions a Newtonian 
rheology produces flow structures very similar to a rheology in which the strain rate depends 
upon the cube of the deviatoric stress (Parmentier, Turcotte & Torrance 1976). Thus we 
conclude that the use of a Newtonian flow rheology for our half-space is justified provided 
it is recognized that the viscosity may be an 'average' in the sense suggested by Parmentier 
et al. (1976). 

It may also be that mineral rheology plays little role in the stress relaxation process. Since 
the zone of brittle fracture ends at a relatively shallow depth on the San Andreas (Brace & 
Byerlee 1970), an alternative source of the viscous properties of the lower viscoelastic zone 
may be transient flow of water in porous rock (e.g. Nur & Schultz 1973). Darcy's law, which 
governs hydrogeologic flow, implies that the stress relaxation process is essentially linear. 
Thus to a good approximation, the half-space can be assumed to be a linear viscoelastic solid. 

To add viscous properties to the half-space, we use the correspondence principle (Biot 
1954; Lee 1955; Fung 1965) as outlined in the introduction. This principle states that if 
the elastic solution to a problem is known and the inertial forces are negligible, the quasi- 
static solution for a linear viscoelastic medium is obtained by replacing all time-dependent 
quantities by their Laplace transforms and then taking the inverse transform of the resulting 
expression. In the case of (6a) or (8), we replace p2 by pZ(s)  and UoH(t)  by Uds, where 
H ( t )  is the Heaviside step function, t is time and s is the conjugate Laplace variable. 
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We choose the properties of the half-space to be those of a Maxwell viscoelastic solid 
whose elastic constants are the same as those of the layer. This choice of Maxwell properties 
is motivated by the observation that for times short compared to a year the Earth behaves 
elastically, while for longer times permanent nonelastic deformations are observed, for 
example in areas of crustal rebound (McConnell 1965; Crittenden 1963; Peltier 1974) and in 
tectonically active fault zones during recent geologic history. 

The Maxwell solid is the simplest kind of medium to exhibit this dual behaviour. A 
Maxwell element is shown in Fig. 4; if a constant displacement is suddenly applied to the 

J. B. Rundle and D. D. Jackson 

SPrlng viscosity r )  cons tan t 

Figure 4. A Maxwell element. 

free end, the spring will immediately stretch. In the course of time, the spring will gradually 
unstretch as the piston in the dashpot moves. The constitutive equation for a Maxwell solid 
is 

where oij is the stress tensor, eij is the strain tensor, G i j  is the Kronecker delta, p0is a con- 
stant rigidity and q is the viscosity. The constants h and y are related to compressional 
stresses which are assumed not to relax. 

Upon performing the Laplace transform on (lo), we can set 

POS - POS -- 
c(z(s) = s + 2 / 4 7 )  s + 2/7 

7 is a characteristic time constant for the system. Since the rigidity of the Maxwell medium 
has been chosen equal to that of the layer, only the effective viscosity q remains unknown. 

After insertion of ( 1  1 )  in (8) and (9) we must find the inverse Laplace transform L-' [ I  of 
quantities such as 

From Abramowitz & Stegun (1970) we find 

Upon insertion of (13) into (8) and (9) we get expressions of the form 
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Model of a strike slip fmlt 585 
where the A, ( y )  and B,  ( y )  can be found from (8) and (9) and the 4 ( y )  are the uniform 
elastic half-space solutions. 

Upon examination of (14) it is clear that the first response of the system is entirely 
elastic. As time proceeds, successive terms under the summation on m become progressively 
more important. In the limit t -+ 00, the exponential dies away and we get 

0 50 100 
PERPENDICULAR DISTANCE (kml 

Figure 5 

0 50 100 
PERPENDICULAR 

Figure 6 
Fault - 

- 
5 - 

60 

II 

w 
J 

a 

a PERPENDICULAR DISTANCE (km) 
Figure 7 

2 0  50 100 

DISTANCE (kml 

Figures 5-7. Surface displacements parallel to a rectangular fault in an elastic layer over a viscoelastic 
half-space calculated using the approximate Green’s function. The displacements were calculated along 
the horizontal profile shown at  the top of each figure where the double arrows lie along the fault trace. 
The layer thickness is 20 km and the fault fractured the entire thickness of the layer. The relative 
displacement along the fault is 4 m. 
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FAULT 
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PERPENDICULAR DISTANCE (KM) PERPENDICULAR DISTANCE (KM)  

Figure 8 Figure 9 
Figures 8-9. Surface displacements perpendicular to a rectangular fault in an elastic layer over a visco- 
elastic halfspace. AU parameters are the same as for Figs 5-7. 

Numerical tests indicate that only the first five terms need be retained under the sum in (14) 
for convergence accuracy within 1 per cent for t 4 27. Since A,? (y) and B,, (y) have the 
same sign as Fi (y), F2 (y) respectively, we arrive at the conclusion that with the viscoelastic 
model (14) the quasistatic stress relaxation tends to increase the displacements found 
immediately after the fracture. 

For a long fault which breaks entirely through the elastic layer, the post-fracture visco- 
elastic displacements can be an appreciable fraction of the initial movement (Figs 5-9). 
Within lOkm of the fault shown, there is a relatively small amount of post-fracture move- 
ment compared to the rupture-induced displacements. Between approximately 10 and 50 km, 
the post-fracture displacements increase slowly with distance at any given time. At distances 
of more than 30 km from the fault, most of the total movement is accounted for by visco- 
elastic effects rather than by the initial elastic response. The result is a surface strain profde 
which increases near the rupture surface but spreads out from the fault as time progresses. 
Observations of strains localized near the San Andreas fault following 1906 led Thatcher 

K M  
-180 - 

9 --I0 
t 9- 

10 
3 I I I I I 

-200 -160 -120 -80 -40 KM 
I I I I I l-y-jj+q;;= -20 

Figure 10. Location of some illustrative model survey triangles relative to a rectangular fault in an elastic 
layer over a viscoelastic half-space (see Table 1). The fault is indicated by the double arrows, and the 
insert is a blow-up of the cross-hatched region. All angle changes were computed using the approximate 
Green's function. 
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Model of  a strike slip fault 587 
Table 1. Comparison of the coseismic elastic and postseismic viscoelastic angle changes for two different 
ruptures, each in an elastic layer overlying a viscoelastic half-space (see Fig. 10). For case I, the layer 
thickness is 20 km, the fault length is 400 km: the displacement dislocation across the fault face is 4 m 
and the fault has fractured the entire thickness of the layer. For case 11, the layer thickness is 5 km, the 
fault length is 400 km, the displacement dislocation across the fault face is 4 m and the fracture extends 
from the surface to 3 km depth. 

Case I Case I1 

Angle Coseismic Postseismic Coseismic Postseismic 
viscoelastic viscoelastic 
change change 
( t  = 27) (t = 27) 

No. (S) (S) (S) (S) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

-6.16 
-13.45 

9.59 
3.56 
3.87 

-7.43 
-0.03 

0.11 
-0.07 
- 12.32 

16.09 
- 3.77 

- 1.83 
-0.98 

2.60 
- 2.03 
- 1.71 

3.75 
-0.04 
-0.13 

0.18 
4.60 

1.24 
- 5.85 

-3.47 
-9.84 

6.40 
5.58 
4.50 

- 10.09 
-0.01 

0.67 
- 0.66 
-0.47 
57.86 

- 10.86 

-1.10 
-1.12 

1.44 
-1.97 
-1.37 

3.35 
-0.02 
-0.19 

0.22 
10.55 

- 13.25 
2.70 

(1975a) to postulate an aseismic sliding model, but as shown here such a strain distribution 
can also be explained by anelastic adjustment. 

As another illustration, angle changes for the model triangulation networks in Fig. 10 
have been computed from equations (8), (9) and (14) and the results are shown in Table 1. 
The most important factor determining transient motion due to viscoelastic adjustment 
within each time interval At = T = q / p o  is the relationship of the elastic layer thickness H to 
the fault-plane height D - d .  If H =  D - d ,  the amount of post-rupture movement will be 
large; if H D - d ,  the motion will be small. A typical value of D - d for the San Francisco 
earthquake of 1906 is 10 km (Thatcher 1975a), while H could be as small as 20 km (Brace 
& Byerlee 1970). We should therefore expect that viscoelastic relaxation plays a significant 
role in postseismic surface displacements. 

5 Accuracy of the Green’s function 

To determine the accuracy of A?, we can compare the surface displacements computed from 
the approximate Green’s function, equation (6), with those obtained from a numerical 
integration of the exact solution (Ben-Menahem & Singh 1968). Note the error in equation 
(1 1-57) of Ben-Menahem & Singh (1968), which is corrected in Jovannovich et al. (1974a). 
The integration was performed using the IBM-supplied Scientific Subroutine Package. 

In presenting the results of the surface displacement calculations we adopt the Jovanno- 
vich et al. (1974b) convention of Uo= 1 km and dS = 1 km2. The worst agreement between 
equation (6) and the exact solution is expected when the source point is near the layerlhalf- 
space boundary, because the displacements and stresses implicit in the approximate Green’s 
function are not continuous there. Tables 2 and 3 and Figs 11 and 12 are examples of com- 
parisons between exact and approximate Green’s functions. 

For Fig. 11 and Table 2, use was made of Thatcher’s (1975a) result that the fracture of 
the 1906 San Francisco earthquake extended to a depth of 10 km. The elastic layer was 
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Table 2. See Fig. 11. In column 2 are the horizontal surface displacements calculated 
from the approximate Green’s function. Column 3 is the displacements computed 
with the approximate Green’s function minus the displacements computed by a 
numerical integration 6f the exact Green’s function. 

J. B. Rundle and D. D. Jackson 

Source Approximate Displacement Error 
depth displacements difference 
(km) (cm) (cm) (per cent) 

10 
9 
8 
7 
6 
5 
4 
3 
2 
1 

Totals 

87.15 
91.47 

100.52 
114.20 
132.20 
153.52 
176.28 
197.35 
212.66 
217.80 

1483.15 
- 

12.36 
11.99 
9.13 
5.60 
0.60 

-3.49 
-7.37 

-11.01 
- 15.01 
- 19.09 

- 16.29 

14.18 
13.11 
9.08 
4.90 
0.45 

-2.27 
-4.18 
-5.58 
- 7.06 
-8.77 

-1.1 

Table 3. See Fig. 12. Columns 2-4 are the same as in Table 2. 

Layer Approximate Displacement Error 
thickness displacement difference 
Orm) (cm) (cm) (per cent) 

10 87.15 
15 52.04 
20 48.00 
25 47.14 
30 46.85 

12.47 
-0.75 
-2.37 
- 1.72 
-1.18 

14.31 
- 1.44 
-4.94 
- 3.65 
-2.52 

therefore constrained to be at least 10 km thick. Since the fault plane extends from the sur- 
face to 10 km depth, it is natural to check the approximate Green’s function for H =  10 km, 
since as stated above, the approximation is expected to be worst for this case. 

In Fig. 11 and Table 2, the source depth is varied from 10 to 1 km in 1-km increments. 
The point of observation was located at a radial distance of 10 km from the epicentre of the 

SOURCE DEPTH (KM) 

Figure 11. Plot of the differences in the predicted horizontal surface displacements due to using the 
approximate Green’s function in place of a numerical integration of the exact Green’s function for a 
point source in an elastic layer over an elastic half-space. H i s  fixed at 10 km and the rigidity of the layer 
is one-tenth the rigidity of the half-space. The point of observation is at a radial epicentral distance of 
10 km. See Table 2. 
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source. The error is defined as [(approximate surface displacement - exact surface displace- 
ment)/(approximate surface displacement)] x 100 per cent. It is evident that the greatest 
errors in the approximate Green’s function occur when the source is near the layer/half- 
space boundary. Above and below a source depth of about 5 km the difference between 
exact and approximate Green’s functions has the opposite sign. Upon integrating the Green’s 
function over the entire 10 km depth, the errors tend to compensate in this case. 

To estimate the error in the displacements from a finite, rectangular fault obtained using 
equation (6), we can sum the entries in column 2 of Table 2 and divide them by the sum of 
the entries in column 3. The result of this calculation indicates that the discrepancy in the 
displacements caused by using (8), (9) and (14) in place of the exact solution is small. 

Fig. 12 and Table 3 illustrate the effect of a changing elastic layer thickness H upon the 
surface displacements due to a source fixed at 10 km depth. The point of observation was 

LAYER THICKNESS (KM) 
Figure 12. Plot of the differences in the predicted horizontal surface displacements due to using the 
approximate Green’s function in place of a numerical integration of the exact Green’s function for a 
point source in an elastic layer over an elastic half-space. The rigidity of the layer is one-tenth the rigidity 
of the half-space and the point of observation is at a radial epicentral distance of 10 km. The source depth 
is fixed at 10 km. See Table 3. 

again located at an epicentral distance of 10 km, while H was varied from 10 to 30 km in 
5-km increments. As shown, the error in the surface displacements decreases sharply as the 
interface is removed to a greater depth. For thicknesses H greater than 15 km, the error is 
never greater than 5 per cent in magnitude. 

Note that equation (6) is essentially a perturbation expansion in the quantity 
(PI -Pz)/(PI +PZ)  = 5 about the homogeneous half-space Green’s function for y 3  G H ,  x 3  G H ,  
and is a similar expansion multiplied by the constant 2p2/(/4 + pZ) for x 3  G H , y 3  3 H.  From 
the observation that successive terms represent more deeply buried ‘sources’ of the same 
strength, thus giving rise to smaller contributions to the surface displacements, we can write 
the series in the form 

where Fl (x, y) is the Green’s function for a source in a homogeneous half-space, and A ,  and 
B,  are defined as in (6) .  Note that A ,  (x, y) and B,  (x, y) are positive definite since they 
are derived from terms under the summation in (6)  which all have the same sign as Fl (x, y). 
A ,  (x, y) and B,  (x, y) are also bounded, and because I 5 I < 1 for all physical earth models, 
both series in (16) converge (e.g. Whittaker & Watson 1927, p. 11). 

We can show that the representation (6) has the correct limiting properties. For the case 
20 
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p1 = p2, gf2 and g& reduce to the Green’s function for the homogeneous half-space. Also, we 
know that integration of the solution for a point source along a line gives rise to the solution 
for a line source, so integration of the infinite series of point sources represented by (6) 
along a line parallel to the x1 axis yields Rybicki’s (1971) Green’s function. Finally, as we let 
H go to infinity in (6a), thk terms uhder the summation vanish, whereas if H approaches zero 
in (6b) we have 

J. B. Rundle and D. D. Jackson 

The fact that the solution to this problem can be approximately represented as a rapidly 
converging series in the parameter C; suggests a method for the evaluation of exact integral 
solutions for problems of this type. At present, the integration of the exact Green’s function 
has been done numerically by approximating the denominator as a finite series of exponen- 
tials (Ben-Menahem & Gillon 1970). Upon examination of the exact Green’s function 
integral, equation (1 1-56) of Ben-Menahem & Sin& (1968), we see that if we write 

we can expand the integrand in powers of C;. The convergence properties of the series can be 
investigated and if (6)  is an indication, term-by-term integration can probably be carried out. 
The advantage of this procedure is that it may well put the integral in a form which is more 
amenable to analytic solution. We know in advance that the first term must be the Green’s 
function for the homogeneous half-space and thus its algebraic representation is known 
(Steketee 1958). In addition, the modelling of an elastic layer over a viscoelastic half-space 
via the correspondence principle is particularly easy due to the isolation of the elastic con- 
stants in the factor C;. One can extend this procedure to half-spaces of many layers by using 
multiple sums of several parameters ti = p i / p 0  where /.to is the rigidity of a particular 
reference layer. 

Conclusions 

We constructed an accurate analytic approximation to the Green’s function for a vertical 
strike-slip fault in an elastic layer over an elastic half-space. To model the San Andreas fault, 
we integrated the Green’s function over a rectangular surface and introduced linear visco- 
elasticity into the half-space by means of the correspondence principle. Examples of visco- 
elastic relaxation in the form of post-fracture surface displacements and angle changes from 
a model triangulation net were computed. 
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