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ABSTRACT 

The three-level isolated AC-DC power factor corrected (PFC) converter provides safe and 

more efficient power conversion. In comparison with two-level, three-level PFC converter has the 

advantages of low total harmonic distortion, low device voltage rating, low di/dt, better output 

performance, high power factor, and low switching losses at higher switching frequencies. The 

high frequency transformer (HFT) grants galvanic isolation, steps up or down secondary voltage, 

and limits damage in case of a fault current.  

The existing three-level converter based on solid-state transformer (SST) topologies convert 

ac power from the electrical grid to a dc load while maintaining at least the minimum requirements 

set by the international standards (i.e., high power factor and low total harmonic distortion). The 

SST topologies with the capability of controlling intermediate dc-bus and output voltage 

simultaneously require two full bridges at the primary and secondary side of the HFT.  As the 

power level increases, the number of cascaded bridges increases accordingly, and the price 

associated with these semiconductor devices becomes highly expensive. As result, the demand of 

converting high power level led to emphasis on high performance and cost-effective power 

conversion topology.   

  The aim of this dissertation is to develop a new low-cost and high-performance three-level 

isolated AC-DC (PFC) converter topology. The proposed topology replaces the conventional 

three-level inverter in the secondary side of the HFT by only two switches and four diodes while 

still maintaining the basic functionality of a three-level converter (i.e., regulating the output 

voltage, controlling the dc-bus voltage to be within desired limits). The advantages of this new 

topology are: (1) low conduction losses; (2) low-cost; (3) no need to consider the issue of the 



 
 

power backflow; (4) zero-voltage switching (ZVS) and zero-current switching (ZCS) at turn ON 

are inherently guaranteed without any extra control effort.  

Two isolated three-level AC-DC power converter topologies are developed and investigated 

through the dissertation. First topology is based on the neutral point clamping (NPC) converter, 

and the second topology composed of the T-type converter. Two scale-down prototypes rated at 

900-W and 1kW, 200 V are built to test the overall performance of the proposed topologies.  The 

first and second topologies exhibit 94.5 % and 95.8 % efficiency scaled at a nominal power, 

respectively. The secondary bridge (novel circuit) in both topologies, which consists of two 

switches and four diodes, has 99.34 % practical efficiency.      
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Chapter 1  

INTRODUCTION AND BACKGROUND 

1.1 Solid-State Transformer Converter Background  

The solid state transformer (SST) technology has gained much attention in the field of power 

distribution systems [1.1] since its early-developed concept in the 1970s [1.2]. In the last decades, 

the number of renewable energy resources connected to the electrical networks has increased [1.3]. 

The SST converters play significant role of interfacing these renewable resources with numerous 

industrial applications [1.4]. The need to offer high-power quality to customers encourage utilities 

to employ the SST topologies in their power networks. A review of SST technologies and their 

applications in power distribution system is presented in [1.5]. The SST converter has three main 

functionalities: 1) galvanic isolation between the main source and the load; 2) ability to step up or 

down the voltage to meet specific application requirements; and 3) controlling the power flow and 

fault current limitation [1.1].  

Nowadays, the advancement in reliable wide bandgap semiconductor devices technology 

increases the demand for more efficient SST converter topologies to replace the large volume and 

bulky conventional transformer [1.6]. The latest developments in semiconductor technology (i.e., 

10 kV SiC MOSFET) promotes SST converters to be used in high-voltage applications; i.e., 7 

kV/400 V DC data center [1.7]. However, the devices ratings are still the limitation for employing 

such converters in high-voltage levels. Hence, multi-level converters, for example, three-level 

converters (i.e., neutral point clamped (NPC)), are preferred over the two-level ones especially for 

high-power applications. 

As the rated power of an application increases, the price associated with the SST topology 

increases as well. That is because, active switches do not support a high-voltage or current and 
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there is a need to connect the switches in parallel or in series to sustain the application current and 

voltage ratings. In high-power applications where modular multilevel AC-DC converters are 

required, the issue of unbalancing power in each module presents instability problem [1.8]. 

The basic structure of a single-phase isolated ac-dc converter is composed of ac-dc rectifier 

and SST dc-dc converter that includes a high frequency transformer (HFT) and power electronic 

converters as shown in Fig. 1.1. The operating frequency of the HFT is one of the parameters that 

defines the size of the magnetic cores [1.9]. For that reason, the primary and secondary converters 

operate at higher frequency resulting in much compact sizes when compared to the conventional 

60/50 Hz transformer.  

The remainder of this chapter is organized as follows: Section 1.2 provides an overview of the 

existing single-phase isolated AC-DC power factor corrected (PFC) converters including two- and 

three-level topologies; Section 1.3 presents the research focus and objectives; Section 1.4 gives a 

brief description of the proposed two topologies; Section 1.5 shows  the conventional and the 

proposed design steps of HFT; and Section 1.6 describes how this dissertation is organized.  

1.2 Existing Isolated Single-Phase AC-DC (PFC) Topologies 

The isolated AC-DC PFC converters operate at high power factors (PF) to comply with 

international standards, such as IEC 1000-3-2 [1.10]. 

Solid State Transforer (SST) dc-dc Converter

ac/dcac dc dcac/dcdc/ac HFT Load

 

Figure 1.1: Solid-State Transformer (SST) configuration. 
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 One method to guarantee a high PF is to connect passive filter components (inductor and 

capacitors) at the input terminals to shape the input current to a sine waveform and in phase with 

the input voltage [1.11]. However, the overall system becomes bulky and difficult to handle due 

to the size of the passive elements. Another method is to insert a boost inductor between the input 

and the front end rectifier to boost the intermediate dc-bus voltage to a high level (i.e., [Vdc > 

2Vin(pk)]) [1.12].  

Isolated single-phase AC-DC PFC topologies can be characterized into two categories: mainly, 

two- and three-level isolated AC-DC PFC converters. Developed two-level topologies are 

constructed from buck, boost and buck-boost converters. These types of converters are suitable for 

low-power applications (i.e., few Watts to several kW) [1.13].  The three-level topologies based 

on the neutral-point-clamped (NPC) converter [1.14] and the three-level T-type converter (3LT2C) 

are used for higher power applications.  

1.2.A Two-Level Topologies 

The two-level topologies are classified into three major circuit structures (i.e., buck, boost, and 

buck-boost). These types of converters are suitable for low-power applications such as medical 

equipment, small rating ASDs in fans, and telecommunication applications. Fig. 1.2 shows the 

classification of the two-level converter family [1.15] that depends on the circuit topology. Some 

of these converters are used for low-power applications; and other can be used for higher power 

applications. For instance, isolated buck forward AC-DC converter shown in Fig. 1.3 is appropriate 

for low-power application i.e., 1-kW, 48-V isolated battery charger. At the front end, the AC-DC 

stage rectifies the AC source to an uncontrolled dc-bus voltage.  
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Figure 1.2: Classification of two-level isolated AC-DC PFC converter family. 
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Figure 1.3: Isolated buck forward AC-DC converter. 

The intermediate dc-capacitance Cin supplies the output through an isolated forward dc-dc 

converter. During the ON state, primary current makes the secondary current to flow through D2 

and energy is transferred directly to the output load. Unlike the flyback converter which stores the 

energy in the primary windings during the ON state and then transfers the power to the load during 

the OFF time [1.16]. The parameters needed to control the output voltage of the isolated buck 
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forward converter are the switch duty cycle, transformer turn ratio, and input voltage. Usually, the 

output voltage of the isolated buck forward, push-pull, half-bridge, and full-bridge AC-DC 

converters is controlled by adjusting the duty cycle of the primary switch [1.15].  Previous 

researchers provided many different control strategies to operate this type of converters  

[1.17][1.19].       

The main advantages of utilizing the two-level converters are as follows:  

1. Cost-effective (few devices).  

2. Less control effort. 

3. Small size.   

The drawbacks of two-level converters are:  

1. Higher switching losses at higher switching frequencies (poor efficiency) [1.20]. 

2. Adverse acoustic noise [1.20].   

3. Unable to regulate dc-bus while controlling the output voltage.  

1.2.B Three-Level Topologies 

The isolated three-level AC-DC power converters are extensively used in many high-power 

applications; for example, uninterrupted power supplies (UPS), battery charging systems, 

induction heater, hybrid (AC-DC) microgrids or offshore wind farms, etc. [1.21]-[1.24]. It converts 

the alternating current (AC) from the utility grid or renewable source (i.e., wind turbine) to a direct 

current (DC) to supply a dc-load through a HFT. Fig. 1.4 shows an illustration of the overall 

network structure of these types of converters.  
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Figure 1.4: Network representation of isolated three-level AC-DC power converter. 

These converters must operate while complying with international standard requirements 

[1.25], [1.26] to improve the power quality at the grid (i.e., the AC source) and deliver reliable 

energy to the costumers. The AC-DC rectification consists of a full or half diode bridge rectifier 

and/or controlled rectifier to convert the ac input to a dc voltage. The three-level DC-AC inverter 

(i.e., NPC, T-type, and H-bridge) lies between the intermediate dc-bus capacitor and the primary 

terminals of the HFT and inverts the dc-current to ac-current at high frequency. The last stage (i.e., 

three-level AC-DC converter) rectifies the secondary AC-current of the transformer to a DC-

current to supply the output capacitors.  

For high-power applications in the range of megawatt levels, the inverter at the primary side 

of the HFT must be cascaded in a series configuration (multilevel converter) to reduce the voltage 

stress on the semiconductor devices. At the secondary side for low output voltage applications, the 

converters are connected in parallel to share current between switches.  A comprehensive study on 

multilevel inverters, a survey of topologies, control strategy, and applications are presented in 

many previous publications [1.27], [1.28], and [1.29]. The NPC converter is the most wildly used 

multilevel converter since its invention in 1981 [1.30]. 

The existing three-level isolated AC-DC converter topologies capable of controlling dc-bus 

and output voltages consist of at least eight active switches to deliver power at high input PF. The 

most well-known topology is the H-bridge circuit in each stage, as presented in [1.31]. The main 



7 
 
 

advantages of this topology are bidirectional power-flow capability and full control of the dc-bus 

and output voltages. However, even this topology has three voltage-levels at the primary terminals 

(+Vdc, 0, -Vdc) and at the secondary terminals (+Vo, 0, -Vo), the switches sustain the full dc-bus and 

output voltage which is a major drawback when compared to NPC converter that sustain only half 

of the dc-bus and output voltages. Another disadvantage is the price associated with the multiple 

number of switches within this topology especially at high-power levels, which requires cascading 

multiple converters in parallel or in series. More details regarding this topology will be provided 

in Chapter 2, section 2.3.1.  

Another topology is a unidirectional three-level isolated single-stage PFC converter presented 

in [1.11]. The advantages of this topology are: 1) low-cost because there are only four active 

switches; 2) the switches sustain half of the dc-bus voltage; 3) high PF. The main disadvantage is 

that there is no way to control the dc-bus and output voltages, simultaneously. The pros and cons 

of this topology will be presented in more detail in Chapter 2, section 2.3.2. 

To reduce the number of the devices further, the full diode rectifier is replaced by a half-bridge 

diode rectifier, as presented in [1.32] and shown in Fig. 1.5.  
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Figure 1.5: Isolated three-level AC-DC power converter with minimum power devices [1.32]. 
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Essentially, this is another version of the NPC converter with a different connection of the dc-

bus capacitors. Furthermore, this topology is not capable of regulating the dc-bus voltage and 

controlling the output voltage at the same time. 

To overcome the issue of controlling the dc-bus and output voltages simultaneously, a new 

solid-state transformer (SST) three-level isolated AC-DC converter was proposed in [1.33] and 

shown in Fig. 1.6. The benefits of adopting this topology are few power conversions stages, lower 

voltage stresses on the primary switches and lower currents through the secondary switches. 

However, the secondary side switches sustain a full output voltage, which is a major drawback of 

this topology.  

Furthermore, the soft-switching region is depending on the mode of operation; that is, the 

primary duty cycle Dp and the secondary duty cycle Ds may overlap, or partially overlaps, and or 

fully overlap. For example, at partial overlap, the phase shift D  between the primary and 

secondary voltages should be less than [(Dp + Ds)/2], Ds should be larger than or equal to  [2(1-

Dp/2)- D ], and Ds should be larger or equal to [1-Dp]. 
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Figure 1.6: Boost-based three-level SST topology [1.33]. 
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 These restrictions add more complicity to the control technique and limit the control 

functionality when the load suddenly increases or decreases. Another disadvantage is the issue of 

power back-flow between the primary and secondary bridges adding more restrictions and more 

control effort.  Power back-flow happens when current and voltage have different polarities at the 

same time [1.34]. The source of all the mentioned issues is the secondary-side bridge that needs to 

be replaced with a new cost-effective and reliable circuit. 

1.3 Research Focus and Objectives 

This research work focus on developing two novel unidirectional isolated three-level AC-DC 

PFC topologies. The first topology is based on NPC inverter and the second topology is based on 

T-type inverter. With only six active switches, both topologies must achieve the following 

objectives: 

1) Shaping the input current to be a sine waveform and in phase with the input voltage to 

obtain a high PF. 

2) Regulating the dc-bus voltage while controlling the output voltage. 

3) Operating the converter under soft-switching within a wide range of operation. 

4) Achieving all the above objectives with a minimum number of active switches.     

This dissertation will focus on defining the steady-state analysis, obtaining the design 

equations for all the passive components (inductors, capacitors, and HFT), realizing the soft-

switching, and recognizing the full characteristic of the propose converters. As a part of this 

research work, a control strategy of the proposed topology should be introduced. In addition, this 

dissertation should cover the trade-offs when designing a high-frequency transformer for a specific 

power converter. The main objective of designing a HFT is to obtain a high efficient HFT and 

optimize the selection of its magnetic material. 
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1.4 Proposed Isolated Single-Phase AC-DC PFC Topologies 

From the above, it can be concluded that there is a need for a power converter topology that 

has the following capabilities: 

1) Regulating the dc-bus and output voltages at the same time. 

2) Controlling the power flowing from the source to the dc-load.  

3) Correcting the input PF.   

In addition, the operation of the system is nonlinear due to the presence of the semiconductor 

devices, and converters inject harmonics back into the grid. For that reason, the total harmonics 

distortion (THD) should be less than a specific value set by international standards. Furthermore, 

the proposed topologies should achieve the above listed requirements with only six active switches, 

which is a great contribution work adding to the state of art. 

The research motivation is to fill the gap between existing topologies that have a complete 

functionality of a three-level AC-DC converter, which may be expensive, and those ones that may 

be cost-effective but not satisfying the above listed capabilities. The above topics are addressed by 

the following new topologies.  

1.4.A Proposed Topology Based on NPC Inverter  

The first proposed three-level unidirectional isolated AC-DC PFC converter topology is based 

on the NPC inverter as shown in Fig. 1.7. The secondary switches (S5, S6) and series diodes (D5, 

D6) sustain half of the output voltage, which makes a difference in terms of the cost and the 

freedom of having a high output voltage without adding series devices. The main function of (S5, 

S6) is to control the phase shift between the primary and secondary voltages.  
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Figure 1.7: Proposed three-level isolated AC-DC PFC topology based on NPC inverter. 

The diode (D5, D6) is connected in series with the switch (S5, S6) to block the secondary current 

when one of the anti-parallel diodes of (S5, S6) is forward bias. The diode (D7, D8) prevents shorting 

the output capacitors (C4, C5).  

During the (positive or negative) half cycle of the secondary voltage, only one diode (D7 or D8) 

conducts, which reduces the conduction losses and improves the overall efficiency. The flying 

capacitor Cf connected between the nodes of (D5, S5) and (S6, D6) acts as a charging and discharging 

bank of the parasitic capacitances (CS5, CS6) to allow soft-switching action at turning ON. More 

details about the soft-switching technique of the secondary switches will be given in Chapter 3. 

This topology is suitable for high-power high-voltage applications because all the primary and 

secondary switches sustain half of the dc-bus and output voltages.  
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1.4.B Proposed Topology Based on T-type Inverter  

The second topology is a modification of the first topology where the NPC circuit is replaced 

with a T-type inverter as shown in Fig. 1.8.   

The main advantages of T-type topology when compared to the NPC topology are listed below:  

• Cost-effective. 

• Low conduction losses at higher primary and phase shift duty cycles, only one switch 

(S1 or S4) conducts the primary and boost currents.  

• Possibility of generating PWM singles based on the proposed modulation scheme to 

conduct primary and boost currents through S2 and S3 instead of body diodes.  

• Compact size. 

However, there are disadvantages associated with T-type topology when compared to NPC 

topology.  

• S1 and S4 block the full dc-bus voltage Vdc where in the NPC converter same switches 

block half of Vdc.  
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Figure 1.8: Proposed three-level isolated AC-DC PFC topology based on T-type inverter. 
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• During the circulation of the primary current through the HFT winding, S2 and S3 

conduct the primary and boost inductor currents. However, the NPC switches S2, S3 

conduct the primary current only.   

• Suitable for high-power and low-voltage applications. 

The T-type based topology shows a higher efficiency when compared to the NPC based 

topology. In both topologies, most of the converter losses are associated with the magnetic 

components which makes the design of a HFT is an essential part to complete this dissertation. 

The next section will present the conventional and the proposed steps for designing HFT. 

1.5 High Frequency Transformer Design  

The basic structure of an ideal transformer consists of a core and two independent windings 

(primary, secondary) which transfer energy between two isolated circuits by means of 

electromagnetic induction process as shown in Fig. 1.9 [1.35], [1.36]. Once an alternative current 

flow through a coil (primary), it produces a magnetic flux, which in return induces an 

electromotive force across the other coil (secondary).  
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Figure 1.9: Ideal electrical transformer and induction law representation. 
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For an ideal electrical transformer, Faraday’s induction law states that, since the same magnetic 

flux ϕ flows through primary and secondary windings, it induces voltages proportional to the 

number of turns.  

1.5.A Conventional Design 

The main concept and designing steps of HFT have been detailed in many previous 

publications; e.g., [1.37], [1.38].  These steps are:  

1. Specifications of the application: output power, desired efficiency, primary and secondary 

voltages, primary and secondary currents, required leakage inductance, duty cycle, 

operating frequency of the converter, expecting temperature rise, and isolation level.  

2. Material selection: Steinmetz coefficients, flux saturation density, and isolation material 

properties including, safety margin and dielectric strength. 

3. Optimized flux density calculation: the optimized flux depends on:  

- The typical values of the dimensionless coefficient ka =40, kc=5.6, and kw=10 [1.39]. 

- The type of cooling, i.e., the heat transfer hc=10W/m2 for natural convection.  

- The window utilization factor which depends on winding tightness. 

- The stacking factor that relates the effective cross section area to the physical core area. 

- The waveform factor i.e., kv=4.44 for a sinusoidal and kv=4 for a square waveform 

[1.40].  

4. Physical core dimensions which can be calculated as in [1.37]. 

5. Wire selection based on the current density.  

6. Required isolation distance.  

7. Leakage inductance calculation. If the calculated leakage is not met, then designer should 

either go back to step 5 and changes the selected wire or modifies the isolation distance.  
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8. Volume calculation.  

9. Total loss calculation.  

10. Efficiency and temperature rise calculations.  

As the operating frequency increases, the loss density increases as well, making the 

selection of soft-magnetic material a critical step when designing HFT. At medium frequency 

operation, the nanocrystalline and amorphous materials show high efficiency due to reduced 

eddy current losses [1.41].    

1.5.B Proposed Design     

The new power electronic converter topologies and different applications’ requirements have 

an impact upon the design steps of the HFT. For instant, the dual active bridge (DAB) requires 

specific leakage inductance and very large magnetizing inductance where a topology based on the 

flyback converter working principle requires very low leakage inductance and specific value of 

magnetizing inductance. The new proposed design counts for these two specifications and include 

them in the first step of designing the HFT. More explanation regarding how to take into 

consideration these two parameters will be provided in section 5.3A.  

In addition, the proposed design includes finite-element analysis (FEA) using ANSYSTM in 

the design steps to measure and visualize the distribution of magnetic flux inside the core. If the 

core is saturated, then the designer should stop and go back to choose different core size or change 

the way the windings are arranged around the core. Furthermore, the proposed design will present 

a new method which estimates the losses of different magmatic materials as a function of the 

output power. 
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1.6 Organization of This Dissertation 

This dissertation is organized as follows:  

• Chapter 2 introduces the first proposed topology including circuit configuration, 

steady-state analysis (waveforms and operational principle), a comparison between 

existing topologies and the proposed topology, a simulation case study on a 87.5-kW, 

as well as a 250-W experimental prototype. All the results of this chapter were obtained 

under open-loop conditions (that is, there is no closed loop applied). In this chapter, the 

drain-source capacitances Cds of secondary switches charge up to half of the output 

voltage and do not discharge during the OFF time, which drives the secondary switches 

to operate under hard-switching. Therefore, Chapter 3 proposes a new technique to 

overcomes the hard-switching issue.   

• Chapter 3 continues with the investigation into the proposed topology. The new study 

includes modifying the secondary-side circuit by adding a flying capacitor to achieve 

soft-switching, steady-state analysis, soft-switching analysis (primary and secondary 

switching), and proposed converter design procedure (boost inductor, dc-bus capacitor 

selection, HFT design, and output capacitor selection). As a proof of concept, the 

theoretical analysis was evaluated through a 25-kW case study simulation as well as a 

900-W experimental prototype. Furthermore, three closed-loop PI controllers were 

applied to the proposed topology to investigate how the converter response to a load 

change.  

• Chapter 4 is a modification of the previously proposed topology where the primary side 

NPC bridge is replaced with a T-type three-level inverter. In contrast to NPC based 

topology (Chapter 3), T-type based topology (Chapter 4) has less devices (cost-
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effective) and low conduction losses (high efficiency). Chapter 4 includes steady-state 

analysis (circuit configuration, steady-state waveforms with a new pulse-width 

modulation scheme, and operational principles), soft-switching analysis for primary 

and secondary switches, and experimental results. Mainly, chapter 4 focus on the full-

characterizations of ac-dc converter based on T-type topology. 

• Chapter 5 addresses for completeness the design procedures of a HFT including 

magnetic material selection, in particular, nanocrystalline, amorphous, and ferrite. In 

addition, it includes temperature rise consideration, design methodology (e.g., 

magnetizing and leakage inductances, design steps), simulation of a 120-kVA case 

study obtained using finite-element analysis (FEA), and demonstrating the feasibility 

of the ideas by building a scale-down 1-kW prototype. 

• Chapter 6 provides the conclusions and contributions of this doctoral work. In addition, 

possible future works that can be done on this topology to improve the overall 

efficiency.   
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Chapter 2  

NEW ISOLATED AC-DC POWER CONVERTER TOPOLOGY WITH REDUCED NUMBER 

OF SWITCHES FOR HIGH-INPUT VOLTAGE AND HIGH-OUTPUT CURRENT 

APPLICATIONS 

O. Aldosari, L. A. Garcia Rodriguez, D. C. Rojas and J. C. Balda, "A New Isolated AC-DC Power 

Converter Topology with Reduced Number of Switches for High-Input Voltage and High-Output 

Current Applications," 2019 10th International Conference on Power Electronics and ECCE Asia 

(ICPE 2019 - ECCE Asia), Busan, Korea (South), 2019, pp. 1-8. 

Abstract 

 The main objective of this research work is to develop a new low-cost isolated three-level ac-

dc power converter topology that is suitable for applications having high input ac voltages and 

high output currents; for example, hybrid (ac-dc) microgrids or offshore wind farms. Existing 

three-level converter topologies convert ac power to dc power while maintaining requirements set 

by international standards for power conversion. These types of converters have significant 

conduction losses due to high currents in the low-voltage side and high costs, particularly when 

using several devices in series or in parallel to achieve high-voltage and high-power levels. The 

proposed topology replaces the conventional three-level converters in the low-voltage side by only 

two controlled devices and four diodes while still maintaining the basic functionality of a three-

level converter. Simulation results for a 87.5-kW case study and experimental results on a 250-W 

scale-down prototype demonstrate the feasibility of the proposed ideas. 

2.1 Introduction  

Isolated ac-dc unidirectional power converters are commonly used to convert distribution-level 

ac currents and voltages to supply dc loads such as electric vehicle battery charger systems [2.1], 
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hybrid ac-dc wind farms [2.2], telecommunication systems [2.3], dc-powered datacenters, and 

uninterrupted power supply (UPS). Unidirectional and bidirectional power converters are widely 

used in hybrid microgrid, where the input sources of these converters are usually interfaced with 

ac/dc loads through high frequency transformer [2.4]. Input power factor correction (PFC), low 

total harmonic distortion (THD) and output voltage regulations are usually the minimum 

requirements for isolated ac-dc power converters [2.3]. The international standard IEC 61000-3-

2:2018 [2.5] requires that the harmonic contents of the input current should be reduced to specified 

levels; these are normally achieved by implementing the so-called PFC techniques [2.5],[2.6]. 

Preferred features are also symmetrical voltage distribution across semiconductors devices on 

the high-voltage side, and current sharing between devices on the low-voltage side to minimize 

power conduction losses and reduce current and voltage ratings [2.7]. However, preserving high 

efficiency and high power density along with the previous requirements continues to be a top 

challenge among the scientific community [2.7]. 

Converter applications with high-voltage ac inputs and low-voltage dc outputs (load side), such 

as chargers for electrical vehicles [2.8], requires multiple converters connected in series at the 

high-voltage side and in parallel at the low-voltage side. The controlled switches in the high- and 

low-voltage sides are used to maintain the primary dc-bus voltage within a certain tolerance, 

regulate the output voltage and control the delivered output power [2.9]. 

However, the cost and conduction losses are significant for high-power applications where 

multiple H-bridges are connected in parallel in the low-voltage side. Furthermore, the power 

backflow is another issue for some isolated dc-dc converters requiring an additional control effort 

to eliminate having different polarities of currents and voltages at the same time [2.10]. 
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The new topology presented can overcome the above issues while still preserving the 

fundamental working principles of three-level isolated ac-dc converters (i.e., regulating the output 

voltage, and controlling the dc-bus voltage to be within the desired levels determined by the load 

specification). The proposed topology can be employed to convert energy generated by a wind 

turbine (WT) to a high-voltage dc-bus distribution line, especially when a permanent magnet 

synchronous generator (PMSG) is used as shown in Fig. 2.1 [2.11]. 

The paper is organized as follows: the proposed topology including circuit configuration, 

steady-state waveforms, and operational principles are described in Section II. A qualitative 

comparison between a bidirectional isolated ac-dc converter and a unidirectional one against the 

proposed topology is presented in Section III. Simulation results on a 87.5-kW case study for 

interfacing a wind turbine generator with a dc-load and experimental results on a 250-W scaled-

down prototype are given in Section IV. The conclusions about the findings of this research are 

given in Section V. 

2.2 Proposed Topology  

2.2.A Circuit Configuration 

The proposed topology shown in Fig. 2.2 is composed of a neutral-point clamped (NPC) 

converter connected to the primary side of a high-frequency transformer (HFT) [2.8] and the 

proposed new three-level secondary circuit. The rated voltage of the two switches of the new 

circuit is half of the output voltage. The front end of the proposed topology is connected to a half-

bridge diode rectifier. The analysis of the proposed topology throughout the paper will only focus 

on the new secondary circuit since the primary-side circuit was already described in [2.9]. 
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Figure 2.1: Type 4 wind turbine configuration, wind turbine blades, gearbox, PMSG, ac-dc power 
converter, and DC-bus.  
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Figure 2.2: Proposed isolated ac-dc power converter topology. 

 

2.2.B Steady-State Waveforms 

The theoretical waveforms were first established to present the steady-state modulation scheme 

of the proposed topology as shown in Fig. 2.3. Due to the symmetry between top and bottom parts 

of the proposed secondary side, only the main waveforms at the top (VS5, VD7,  

Isolated ac-dc power converter 

(proposed topology )

WT

Gearbox PMSG

= = =

DC-Bus



25 
 
 

IS5 and ID7) are depicted. The intervals with the corresponding conducting devices are shown at the 

bottom of Fig. 2.3. 

When the secondary current flows out of the positive terminal of the HFT, it either flows 

through S5 and D5S, or flows through D7 to charge C4, and then returns to the negative terminal of 

the HFT. For the positive half cycle of the secondary current, diode D7 is allowing the current to 

charge the capacitor C4 as well as preventing C4 from shorting its terminals when S5 is turned ON.  

Switch S5 (S6) is placed across the HFT terminals to circulate the current when the output 

voltage is above the desired value. When switch S5 (S6) is OFF, the voltage across it will increase 

until becoming larger than the output capacitor voltage C4 (C5), which will forward bias the diode 

D7 (D8). In case of using a semiconductor device that has an antiparallel body diode (e.g., a SiC 

MOSFET), another diode D5S (D6S) must be connected in series with the switch S5 (S6) to block 

any negative (positive) current from returning to the HFT positive (negative) terminal. During the 

negative cycle of the secondary current, switch S5 can be turned ON at zero current and zero voltage. 

Also, during the positive cycle of the secondary current, switch S6 can also be turned ON at zero 

current and zero voltage as shown in Fig. 2.3. The primary duty cycle Dp is used to control the 

primary dc-bus voltage. The secondary duty cycle Ds and the phase shift between primary and 

secondary voltages Dϕ are used to control the output voltage and delivered power. The HFT turns 

ratio is noted as n, and ϕ is the fundamental phase shift that depends on the primary and secondary 

voltages and duty cycles. 

 

 



26 
 
 

VS5

VD7

S6

Vp

Vs

ID7

IS5

Ip

t

t

t

t

t

Io I1

I2
I3

I4

I5

I6 I7

I8

t

t

Vc1

Vc2

Vc4

Vc5

nI2
nI3

nI4

Vc4

nI2

to t1 t3 t4 t5 t6 t7 t8t2

S1
S2
D8

S1
S2

S5
D5

S1
S2
D7

S3
S4
D7

S2

D7

S3
S4
D8

S3
S4

S6
D6

S3
D4
D8

D3

Tsw

-Vo/2

S5

S1

S2

Vc4/2

S3

-Vo

t

t

t

DsTsw/2

Tsw/2

 DϕTsw/2

 ϕTsw/2

S4

S5,S6

S2,S3

S1,S4

DpTsw/2

 
Figure 2.3: Steady-state waveforms of the proposed topology. 

2.2.C Operational Principles 

[to – t1] Interval: the primary current ip is initially negative and conducting through the 

antiparallel diodes of switches S1 and S2, as well as capacitor C1. The secondary current is flows 
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through capacitor C5 and diode D8 as shown in Fig. 2.4(a). The primary voltage vp is equal to the 

voltage of capacitor C1 whereas the secondary voltage vs is equal to the voltage of capacitor [C5 = 

-Vo/2]. The primary current has a positive slope and continues increasing at a rate of [(VC1 + 

nVo/2)/Lk]. At the instant when switches S1 and S2 are ON, the boost inductor starts charging at a 

rate of [v(t)/Lb].The time duration of this stage is [(D  + Ds - 1)Tsw/2], and the primary current ip of 

the HFT is given by:  

At the end of this interval, the primary current ip is zero. Thus, the initial condition Io of the 

primary current ip can be calculated as follows: 

[t1 – t2] Interval: the primary current ip flows in the same direction as the leakage inductor 

current iLk. The secondary current is flows through switch S5, the series diode DS5, and the 

secondary winding of the HFT. Fig. 2.4(b) shows the current conduction path during this interval. 

The primary voltage vp is equal to the voltage of capacitor C1 while the secondary voltage vs is 

equal to zero. Primary and secondary currents, ip and is, increase at a rate of [VC1/Lk]. The time 

duration of this stage is equal to [(1 - Ds)Tsw/2], and the primary current ip is calculated as follows: 

Due to the circuit configuration, [I1 = 0] and [ip(t2) = I2] can be calculated as follows: 

 1 0 0

1
( ) ( )

2
o

p C

k

nV
i t V t t I

L

 = + − + 
 

. (2. 1) 

 ( )0 1

1
1

2 2
o

C s

sw k

nV
I V D D

f L


 = − + + − 
 

. (2. 2) 

 
1

1 1( ) ( )C
p

k

V
i t t t I

L
= − + . (2. 3) 

 ( )1
2 1

2
C

s

sw k

V
I D

f L
= − . (2. 4) 



28 
 
 

[t2 – t3] Interval: The primary current ip continues to increase through C1, S1 and C2 at a rate of 

[(VC1 –nVo/2)/Lk]. Before the beginning of this interval, switch S5 turns OFF, and the secondary 

current is continuously increases flowing through D7 and C4. While the primary voltage vp is equal 

to the voltage of capacitor C1, the secondary voltage vs is equal to the voltage of capacitor C4. Fig. 

2.4(c) presents the equivalent circuit of this interval. Primary current ip increases at a rate of [(VC1 

- nVo/2)/Lk] for the interval time duration of [(Dp - D )Tsw/2]. Primary current ip is given by:  

The peak current happens during [t2 – t3] Interval and it can be calculated as: 

[t3 – t4] Interval: Switch S1 is turned OFF while switch S2 is kept ON, then the primary current 

ip starts flowing through D3 and S2, and decreasing at a rate of [-nVo/(2Lk)], while the secondary 

current is continues flowing through D7 and C4. The primary voltage vp is equal to zero and the 

secondary voltage vs is equal to the voltage of capacitor C4, which is equal to [Vo/2] as shown in 

Fig. 2.4(d). The time duration of this interval is [(1 - Dp)Tsw/2] and the primary current ip is 

determined by: 

The current at the end of [t3 – t4] Interval is calculated from (7) as follows: 

 [t4 – t5] Interval: Switch S2 turns OFF, while the secondary current is keeps flowing through D7 

and C4, and the primary current ip conducts through C2, D4 and D3; and decreasing at a rate of [-
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(VC2 + nVo/2)/Lk]. During this interval, the primary voltage vp is negative and equal to the voltage 

of capacitor C2 whereas the secondary voltage vs is still positive as in the previous interval as 

depicted in Fig. 2.4(e). The interval time duration is the same as that of [to – t1] Interval and the 

primary current is calculated by: 

At the end of the interval, the primary current ip is equal to zero which makes I5 = 0. 

[t5 - t6] Interval: The primary current ip changes direction from positive to negative and flows 

through S3, S4 and C2 as presented in Fig. 2.4(f). Switch S6 turns ON before the primary current ip 

becomes negative to achieve soft-switching at turn ON. The secondary current is now flows through 

S6 and D6S which generates a zero-voltage level across the secondary winding of the HTF. The 

primary voltage vp is equal to the voltage of capacitor C2, and the voltage of the secondary side vs 

is equal to zero. The interval time duration is the same as that of [t1 – t2] Interval. The primary 

current can be described by: 

In this stage, the initial condition of the primary current ip is [I5 = I1 = 0], where I6 = -I2. 

[t6 - t7] Interval: The primary current ip flows through S3, S4 and C2 and continues to decrease 

at a rate of [(nVo/2 – VC2)/Lk]. At the beginning of this interval, switch S6 turns OFF, and the 

secondary current is flows through C5 and D8. At the end of this interval, ip is at its maximum 

negative peak value as indicated in Fig. 2.4(g). The primary voltage vp is equal to the voltage of 

capacitor C2 while the voltage of the secondary vs is equal to the voltage of capacitor C5. The time 
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duration of this interval is the same as that of [t2 – t3] Interval and the primary current ip can be 

calculated as: 

The initial current is [I6 = -I2] and [I7 = -I3]. 

[t7 - t8] Interval: Switch S4 turns OFF, and the primary current ip flows through S3 and D2F with 

a positive slope of [nVo/(2Llk)]. The secondary current is continues to flow through C5 and D8 as 

shown in Fig. 2.4(h). The primary voltage vp is equal to zero, and the secondary voltage vs is equal 

to the voltage of capacitor C5, (- Vo/2). The time duration of this interval is the same as that of [t3 

– t4] Interval and the primary current ip is given by: 

The initial current is [I7 = -I3] and [I8 = Io]. 

The fundamental phase shift  between primary and secondary voltages can be obtained from 

the steady-state analysis as follows: 

where Vdc is the primary-side dc-link voltage. The total phase shift Dφ between primary and 

secondary voltages can be expressed in terms of the primary duty cycle Dp, and the secondary duty 

cycle Ds as follows: 
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Figure 2.4: Steady-state equivalent operating circuits of the proposed topology, (a) [t0-t1] Interval, 
(b) [t1-t2] Interval, (c) [t2-t3] Interval, (d) [t3-t4] Interval, (e) [t4-t5] Interval, (f) [t5-t6] Interval, (g) 
[t6-t7] Interval, and (h) [t7-t8] Interval. 
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2.3 Existing AC-DC Converters vs Proposed Topology Comparison 

In this section, the proposed topology will be qualitatively compared with two different ones: 

(1) a bidirectional isolated ac-dc converter, and (2) a unidirectional isolated ac-dc converter. 

2.3.A Topology #1 

The single-phase, single-stage, bidirectional and isolated dual active bridge (DAB) ac-dc 

converter is the conventional ac-dc power conversion as presented in [2.12] and shown in Fig. 2.5.  

The topology front end is composed of a full bridge rectifier to allow power flow in both 

directions. All the semiconductor switches sustain the full dc-bus voltages in the high- and low-

voltage sides. The aim of a bidirectional converter is to interface ac grids with a network having 

energy storage systems, solar energy farms, and other ac or dc sources. It can also work as a 

unidirectional power flow to supply from the utility source dc loads such as battery storage, dc-

powered datacenters, electrical battery chargers, etc.  

2.3.B Topology #2 

The unidirectional three-level isolated single-stage PFC converter depicted in Fig. 2.6 is another 

topology with reduced number of controlled switches proposed in [2.12], [2.13].  
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Figure 2.5: Topology #1 bidirectional ac-dc power converter. 
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This topology has an ac-dc conversion stage at the front end and a three-level isolated dc-dc 

converter. Compared to topology #1, it does not have the capability of controlling the voltage of 

each capacitor in the primary side of the HFT while at the same time controlling the output voltage.  

The voltage of the capacitors C1 and C2 depend on the load conditions. Therefore, in case of 

light-load conditions, the capacitor voltages increase with respect to the rated power level. The 

later means that transistors at the transformer primary side must be overrated.  

This topology finds its application when the output load is constant and does not change due 

to any outside disturbance. The only advantages of topology #2 over topology #1 are the low total 

cost since it is only composed of four controlled switches and the rated voltage of the switches is 

half of the dc-bus voltage. 

2.3.C Proposed Topology 

The proposed topology has the basic functionality of topology #1 controlling the dc-bus and 

output voltages simultaneously, yet it has only six controlled switches (low-cost) and can operate 

under soft-switching conditions (high-efficiency).  

 

 

Figure 2.6: Topology #2 unidirectional ac-dc power converter. 
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For high power applications, the proposed topology can be connected in series at the high-

voltage side to reduce the required breakdown voltage of the semiconductor switches.  Also, it can 

be connected in parallel at the low-voltage side to use switches with lower current ratings as shown 

in Fig. 2.7.  

However, the proposed topology does not support bidirectional power flow and has high 

secondary current, which requires large output capacitors. This topology can be employed in 

hybrid microgrids, hybrid wind farms [2.2], dc-powered datacenters, and electric vehicle chargers 

[2.14], [2.15]. At the load side of topology #1, the power is delivered to the load through two 

semiconductor switches, whereas in the proposed topology, it is delivered through only one diode, 

which reduces conduction losses.  

 

 

Figure 2.7:  Proposed topology connected in series (high side) and in parallel (low side) for high 
power applications. 
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In such an application when power is required to flow in one direction, power backflow could 

be an issue for topology #1 unless designer employs a control algorithm to avoid having at the 

same time different polarities of voltage and current at the transformer terminals [2.10]. However, 

it is impossible to encounter this problem when the proposed topology and topology #2 are adapted 

due to the connection of the diodes on both sides of the HFT.  

At the load side, the proposed topology does not require a dead time between the complementary 

switches due to the connection of the diodes D7 and D8. Table 2-I presents a general comparison 

between these three topologies. 

2.4   Simulation and Experimental Results 

2.4.A Simulation Results for a Case-Study 

A microgrid provides more advantages to the utilities and users in term of power quality and 

power management [2.16]. A typical microgrid includes renewable energy resources (e.g., wind 

turbines, photovoltaic arrays, etc.), distributed grid lines (ac grid, dc grid), power conversions 

(power converters, transformers) and loads (ac-load, dc-load) [16].  

 

Table 2-I: Qualitative Topology Comparison 

Parameters Topology #1 Topology #2 Proposed Topology 

Bidirectional power flow 
capability 

Yes No No 

Total cost High Low Fair 

Switch blocking voltage Full Half Half 

Number of switches 12 4 6 

Number of diodes 0 6 6 

Controlling dc-bus and 
output voltage 

Yes No Yes 

Capacitors size Small Large Medium 
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A type-4 wind turbine connected to the dc main bus of a hybrid microgrid using the proposed 

topology is considered here; please, refer to Fig. 2.1 [2.11].  

The specifications of this case study are shown in Table 2-II. The RMS input current displayed 

in Fig. 2.8 is in phase with the input voltage. The boost inductor current and voltage, the 

transformer primary current and dc bus voltage are plotted in Fig. 2.9. The transformer primary 

and secondary voltages, and primary current are shown in Fig. 2.10. These waveforms are identical 

to the theoretical steady-state waveforms in Fig. 2.3. The output voltage Vo, output current Io, and 

the output capacitors voltages Vc4 and Vc5, are shown in Fig. 2.11. The two capacitors have the 

same voltage because they have the same duty cycle. 

As the input ac voltage of the converter increases, the number of modules connected in series 

(high-voltage side) and in parallel (low-voltage side) increases in order to achieve a specific device 

voltage level and or current level as shown in Fig. 2.7. For instance, the required number of the 

87.5-kW modules for a 3.0-MW, 2.4-kV three-phase ac source is 12 per phase with the assumption 

of utilizing 1.7 kV SiC MOSFETs at the high voltage [1.28]. 

 

Table 2-II: Simulation Parameters 

Specifications 

Parameters Values 

Output power Po (kW) 87.5 

Switching frequency fsw (kHz) 20 

Input voltage vin (Vrms) 600 

High side dc-bus voltage Vdc > 2Vinpk (kV) 1.7 

Low side capacitors voltages Vc4 = Vc5 (V) 200 

Output voltage Vo (V) 400 

Output current Io (A) 219 
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Figure 2.8:  Input voltage and current from the wind turbine. 

 
Figure 2.9:  Simulations waveforms of the dc-bus voltage Vdc, boost inductor (voltage vLb, 
current iLb) primary current ip. 

 
Figure 2.10:  Simulated waveforms of the transformer primary-side voltage vp, secondary-side 
voltage vs, and primary current ip. 



38 
 
 

 

Figure 2.11:  Output voltage Vo, output current Io, capacitors voltages Vc4, and Vc5. 

2.4.B Scaled-Down Prototype 

A 250-W scaled-down prototype is implemented to validate the proposed topology 

performance. The main specifications of the prototype are shown in Table 2-III.  

The input voltage of the system is a 110-Vrms, 60 Hz sinusoidal ac source that is rectified to a 

dc voltage using a half-bridge diode rectifier. The boost inductor of the proposed topology is sized 

to operate under the discontinuous condition mode (DCM) as shown in Fig. 2.12 (brown). As a 

result, the inductor peak current follows the input sinusoidal voltage. 

 

Table 2-III: Experimental Parameters   

Specifications 

Parameters Values 

Output power Po (W) 250 

Switching frequency (kHz) 20 

Input voltage vin (Vrms) 110 

High side dc-bus voltage Vdc > 2Vinpk (V) 320 

Low side capacitors voltages Vc4 = Vc5 (V) 24 

Output voltage Vo (V) 48 

Resistive load Ro (Ω) 9 
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Figure 2.12:  Topology high-side dc-bus voltage (red), boost inductor current (brown), and boost 
inductor voltage (blue). 

The input current is the same as the boost inductor current, which is in phase with the input 

voltage. Consequently, the power factor at the input of the system is close to unity under the 

condition of having a dc-bus voltage of at least twice the peak of the input voltage; the condition 

that keeps the converter under DCM operation. The boost inductor voltage (blue) and current are 

shown in Fig. 2.12 as well as the dc-bus voltage (red). The oscillations that appears in the inductor 

voltage occurs when the boost inductor current is zero due to an oscillation between the diode 

parasitic capacitance and the boost inductor.  

The transformer primary-side voltage (blue) and current (green), and the transformer secondary-

side voltage (brown) are displayed in Fig. 2.13. For that particular condition, both primary and 

secondary voltages have three levels.  
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Figure 2.13:  Primary voltage (blue), secondary voltage (brown), and primary current (green). 

The zero-voltage level in the primary side controls the input power drawn from the source. 

When either S5 and D5S, or S6 and D6s conduct, a zero voltage appears at the secondary side which 

controls the output voltage. Transistor S5 turns ON at zero voltage and zero current because its 

antiparallel diode D5 is forward biased before the transition due to the transformer secondary 

voltage at that time is equal to [–VC5]. Similarly, S6 turns ON at zero current and zero voltage 

conditions when the secondary voltage equals to VC4. 

Fig. 2.14 presents the output voltage Vo, and output current Io. When one of the capacitors 

discharges through the load, the other one is charged from the source, which in return, it smooths 

the output voltage. The voltage of the capacitors C4 and C5 is half of the output voltage.  

2.5 Conclustions 

A new topology for isolated unidirectional ac-dc power converter was presented and analyzed. 

The steady-state analysis illustrated achieving a three-level voltage waveform using only two 

controlled switches at the low-voltage side.  
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Figure 2.14:  Output voltage (purple), and output current (pink). 

It was also shown that this new (low-voltage) secondary circuit together with the NPC 

converter (high-voltage side) was able to control the primary dc-bus voltage and output voltage. 

The simulation and experimental results for this new topology agreed reasonably well with the 

theoretical equations and steady-state waveforms. Furthermore, a general comparison between two 

different isolated ac-dc converters and the proposed topology was carried out. The findings showed 

that the new topology has multiple advantages in terms of low losses, cost effectiveness, 

preventing power backflow, and allowing ZCS and ZVS at turn ON without any additional control 

effort. 
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Chapter 3  

A THREE-LEVEL ISOLATED AC-DC PFC POWER CONVERTER TOPOLOGY WITH 

REDUCED NUMBER OF SWITCHES 

O. Aldosari, L. A. G. Rodriguez, G. G. Oggier and J. C. Balda, “A Three-Level Isolated AC-DC 

PFC Power Converter Topology with Reduced Number of Switches,” in IEEE Journal of 

Emerging and Selected Topics in Power Electronics. doi: 10.1109/JESTPE.2019.2962704 

Abstract 

The main objective of this research work is to develop a new low-cost isolated three-level ac-

dc power converter topology with a reduced number of switches. Existing three-level converter 

topologies change ac power to dc power while maintaining requirements set by international 

standards for power conversion. These types of converters have significant conduction losses due 

to high currents in the low-voltage side and high costs, particularly when using several active 

devices in series or in parallel to achieve high-voltage and high-power levels. The proposed 

topology replaces the conventional three-level converters in the secondary side by only two 

controlled devices and four diodes while still maintaining the basic functionality of a three-level 

converter. Furthermore, simulation results for a 25 kW case study and experimental results on a 

900 W scale-down prototype demonstrate the feasibility of the proposed ideas. 

3.1 Introduction  

Distribution–level ac currents and voltages are usually adapted to supply dc loads such as 

electric-vehicle battery charger systems [3.1], [3.2], hybrid ac-dc wind farms [3.3], 

telecommunication systems [3.4], dc-powered datacenters, and uninterrupted power supplies 

(UPS), through isolated ac-dc unidirectional power converters. A bidirectional converter finds its 

applications when power required to flow in both directions, i.e., controlling power flow between 
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electrical vehicles (EV) charger and the grid [3.5]. Recent developments of the 10 kV SiC-

MOSFET enables a reliable two-stage solid-state transformer (SST) topology to convert from a 

medium ac voltage to a low dc voltage to power dc loads (e.g., data centers) [3.6]. Many isolated 

ac-dc SST converters topologies use 10 kV SiC-MOSFET (e.g., LLC Series Resonant Converter) 

and show high efficiency for converting from a 7 kV ac-line to a 400 V dc-bus [3.7]. Unidirectional 

and bidirectional power converters are widely used in hybrid microgrids to support and provide 

reliable power management strategies [3.8]. As the power level increases, the number of cascaded 

cells increases to form a multilevel voltage suitable for the device rating [3.9]. Input power factor 

correction (PFC), low total harmonic distortion (THD) and output voltage regulations are usually 

the minimum requirements for isolated ac-dc power converters [2.3][3.3], [3.4]. The international 

standard IEC 61000-3-2:2018 [3.10] requires that the harmonic content of the input current is 

limited to specified levels; these are normally achieved by implementing the so-called PFC 

techniques [3.11]. 

Preferred features for this type of converters are also symmetrical voltage distribution across the 

semiconductors devices on the high-voltage side, and current sharing between devices on the low-

voltage side to minimize power conduction losses and reduce current and voltage ratings [3.12]. 

However, preserving high efficiency and high-power density along with the previous requirements 

continues to be a top challenge among the scientific community [3.12]. 

One of the most used solid-state isolated AC-DC converters is the single-phase, single-stage, 

bidirectional dual active bridge (DAB) converter as presented in [3.13]. The benefit of using a 

synchronous rectifier (SR) at the front end is to shape the ac-current close to a sinusoidal waveform 

and to be in phase with the input voltage, which in return improves the power factor (PF) and 

reduces the THD level. Furthermore, the primary and secondary bridges generate three-level 
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voltages, i.e., +v, 0, –v which provide full control of the dc-bus voltage, output power, and output 

voltage. The drawbacks of utilizing this converter especially when power is flowing in one 

direction are the usage of twelve active switches with full dc-bus voltage rating (high-cost), as well 

as dealing with the issue of power back-flow (extra control effort) [3.14]. 

Another alternative cost-effective topology is a three-level unidirectional isolated single-stage 

PFC converter with fewer switches presented in [3.15]. At the primary side, a boost inductor and 

a full-wave diode bridge rectifier are connected to a three-level neutral point clamping (NPC) 

converter, and the secondary side is connected to a half-bridge diode rectifier and output inductor. 

The main advantages of adopting this topology are: (1) minimum number of devices, (2) high PF 

when the dc bus voltage is much higher than the peak input voltage, (3) active switches sustain 

half of the dc-bus voltage. However, it is not possible to regulate the dc-bus and output voltages 

simultaneously; a significant disadvantage of having active switches only on the primary side. 

Then, at light-load conditions, the dc-bus voltage increases cumulatively to the point where 

switches sustain high voltage stresses. 

The proposal given in [3.16] is a boost-based topology, and it controls both dc-bus and output 

voltage levels. The secondary side is composed of two H-bridges connected to two transformer 

secondary windings to reduce the current stress on the secondary side switches. For high output 

voltage applications, this topology is not desirable since it requires eight switches that sustain the 

full output voltage. Besides, secondary side switches lose soft-switching at low-power operation. 

This article presents a new topology shown in Fig. 3.1 that allow overcomes the issues 

mentioned above while preserving the fundamental working principles of three-level isolated ac-

dc converters, like regulation of the output voltage and controlling the dc-bus voltage within 

desired levels determined by the load specifications. By controlling the dc-bus voltage at an 
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adequate level, the current through the boost inductor is discontinuous, which enables a high PF. 

The main contribution of the proposed topology is the new secondary side circuit, which consists 

of only two active switches and four diodes. In comparison with [3.16], the secondary side bridge 

operates at ZVS and ZCS at turn ON at all modes of operation and power levels, while in the other 

case, soft-switching is guaranteed only at a specific region determined by the power level. Besides, 

the switches on the primary and secondary sides sustain only half of the dc-bus voltage and half 

output voltage, respectively. In contrast, in [3.16], the voltage rating of the eight active devices of 

the secondary side corresponds to the full output voltage level. Furthermore, during a half 

switching period, power is delivered from the secondary terminals to the load through only one 

device. In contrast, in a conventional H-bridge, the current circulates through two active devices. 

The article is organized as follows: the proposed topology including the circuit configuration, 

steady-state waveforms, and operating principles are described in Section II. Soft-switching 

analysis regarding to the proposed topology is explained in Section III. The design procedure of 

the converter is presented in Section IV.  
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Figure 3.1: Proposed isolated ac-dc power converter topology. 
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Simulation results on a 25-kW case study for interfacing a small wind turbine generator with a 

dc load and experimental results on a 900 W scaled-down prototype are given in Section V. The 

conclusions about the findings of this research are provided in Section VI. 

3.2 Proposed Isolated AC-DC Topology 

The proposed ac-dc topology consists of a boost-based front-end diode-rectifier, which allows 

the need of an active rectifier to be eliminated, at the expense of losing the directional power 

conversion capability [3.16]. Then, NPC connects to the dc-link capacitors, and the high-frequency 

transformer. The NPC has a dual function; first, it behaves as the active switch of the boost based 

front-end rectifier. On the other hand, the NPC is the primary-side bridge of a DAB-type topology 

form by the NPC, the high-frequency transformer, and the new secondary side active bridge with 

the minimum number of active switches. The following section details the new secondary-side 

bridge topology. 

3.2.A Circuit Configuration 

With reference to Fig. 3.1, the rated voltage of the two switches of the new secondary side 

circuit is half of the output voltage level. The flying capacitor Cf is placed across the two switches 

(S5, S6) to facilitate the charging and discharging action of the parasitic capacitances. The soft 

transitions between modes will be explained with great detail in the soft-switching section. At the 

front end, the boost inductor is connected to a half-bridge diode rectifier. The analysis of the 

proposed topology throughout the paper will focus on the new secondary side circuit since the 

primary-side circuit was already described in a previous publication [1.20][3.16]. 

3.2.B Steady-State Waveforms 

The theoretical waveforms shown in Fig. 3.2 illustrates the steady-state modulation scheme of 

the proposed topology. Due to the symmetry between the top and bottom parts of the proposed 
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secondary side, only the main waveforms for the top side (VS5, VD7, IS5 and ID7) are depicted. The 

voltage of the primary and secondary capacitors (C1, C2, C4, C5) are indicated in the primary and 

the secondary voltages (Vp, Vs) waveforms, as shown in Fig. 3.2. 

When the secondary current flows out of the positive terminal of the high-frequency 

transformer (HFT), it either flows through S5 and D5, or flows through D7 to charge C4, and then 

returns to the HFT negative terminal. For the positive half cycle of the secondary current, diode 

D7 is allowing the current to charge C4 as well as preventing C4 from shorting its terminals when 

S5 turns ON. 

Switch S5 (S6) is placed across the HFT terminals to circulate the current when the output 

voltage is above the desired level. When switch S5 (S6) is OFF, the voltage across it increases until 

becoming larger than the output capacitor voltage C4 (C5), which will forward bias the diode D7 

(D8). In case of using a semiconductor device with bidirectional current capability (e.g., a Si or 

SiC MOSFETs), a diode D5 (D6) must be connected in series with the switch S5 (S6) to block any 

negative (positive) current from returning to the HFT positive (negative) terminal. During the 

negative cycle of the secondary current, switch S5 can be turned ON at ZVS and ZCS. In addition, 

switch S6 can also be turned ON at ZVS and ZCS during the positive cycle of the secondary current 

as shown in Fig. 3.2. The primary duty cycle Dp is used to control the primary dc-bus voltage. The 

secondary duty cycle Ds and the phase shift between primary and secondary voltages Dϕ are used 

to control the output voltage and delivered power. The HFT turns ratio is noted as n, and ϕ is the 

fundamental phase shift that depends on the primary and secondary voltages and duty cycles. 
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Figure 3.2: Steady-state waveforms of the proposed topology. 
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3.2.C Operational Principles 

Fig. 3.3 shows the equivalent circuit for each interval. The green arrows represent the input 

current iin, which is the same as the boost inductor current iLb, and the pink arrows represent the 

primary and secondary currents of the HFT.  

3.2.C. i  [to – t1] Interval: the primary current ip is initially negative and conducting through the 

antiparallel diodes of switches S1 and S2, as well as the capacitor C1. The secondary current is flows 

through capacitor C5 and diode D8 as shown in Fig. 3.3. The primary voltage vp is equal to the 

voltage of capacitor C1 whereas the secondary voltage vs is equal to the voltage of capacitor [C5 = 

–Vo/2]. The primary current has a positive slope and continues increasing at a rate of [(VC1 + 

nVo/2)/Lk]. At the instant when switches S1 and S2 are ON, the boost inductor starts charging at a 

rate of [v(t)/Lb]. The time duration of this stage is [(Dφ + Ds – 1)Tsw/2], and the HFT primary 

current ip is given by: 
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Figure 3.3: [t0-t1] Interval, steady-state equivalent operating circuits of the proposed topology. 

 



53 
 
 

At the end of this interval, the primary current ip is zero. Thus, the initial condition Io of the 

primary current ip can be calculated as follows: 

3.2.C. ii  [t1 – t2] Interval: the primary current ip becomes positive and flows through S1 and S2. 

The secondary current is flows through the series diode D5, and switch S5. Fig. 3.4 shows the 

current conduction path during this interval. The primary voltage vp is equal to the voltage of 

capacitor C1 while the secondary voltage vs is equal to zero. The primary current ip increases at a 

rate of [VC1/Lk]. The time duration of this stage is equal to [(1 – Ds)Tsw/2], and the primary current 

ip is calculated as follows: 

Due to the circuit configuration, [I1 = 0], and [ip(t2) = I2] that can be calculated as follows: 
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Figure 3.4: [t1-t2] Interval, steady-state equivalent operating circuit of the proposed topology. 
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3.2.C. iii  [t2 – t3] Interval: switch S5 turns OFF and the secondary current is flows through D7 

and C4. While the primary voltage vp is equal to the voltage of capacitor C1, the secondary voltage 

vs is equal to the voltage of capacitor C4. Fig. 3.5 presents the equivalent circuit of this interval 

which has a time length of [(Dp – Dφ)Tsw/2]. The primary current ip continues to flow through C1, 

S1, and S2 at a rate given by [(VC1 – nVo/2)/Lk]. The slope of ip depends on the voltage across the 

leakage inductance. In the particular case of Fig. 3.2, VC1 is larger than [nVo/2], so the slope of ip 

is positive and can be calculated as: 

At the end of this interval, primary current reaches its peak and it calculated as: 
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Figure 3.5: [t2-t3] Interval, steady-state equivalent operating circuits of the proposed topology. 
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3.2.C. iv [t3 – t4] Interval: Switch S1 is turned OFF while switch S2 is kept ON, then the primary 

current ip starts to flow through D3 and S2, and decrease at a rate of [–nVo/(2Lk)], while the 

secondary current is continues flowing through D7 and C4. The primary voltage vp is equal to zero 

and the secondary voltage vs is equal to the voltage of capacitor C4, which is equal to [Vo/2] as 

shown in Fig. 3.6. The time duration of this interval is [(1 – Dp)Tsw/2], and the primary current ip 

is determined by: 

The current at the end of this interval is calculated from (3.7) as follows: 

3.2.C. v [t4 – t5] Interval: After S2 turns OFF, the primary current conducts through C2 and the 

antiparallel diodes of S4 and S3, while the secondary current is continues flowing through D7. Since 

the voltage across the Lk is negative, ip decreases at a rate of [– (VC2 + nVo/2)/Lk]. During 
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Figure 3.6: [t3-t4] Interval, steady-state equivalent operating circuits of the proposed topology. 
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this interval, the primary voltage vp is negative and equal to the voltage of capacitor C2 whereas 

the secondary voltage vs is still positive as in the previous interval as depicted in Fig. 3.7. The 

interval time duration is the same as that of [to – t1] Interval and the primary current is calculated 

by: 

At the end of this interval, the primary current ip is equal to zero which makes [I5 = 0]. 

3.2.C. vi  [t5 – t6] Interval: The primary current ip changes polarity and flows through S3, S4, 

and C2 as presented in Fig. 3.8. Switch S6 turns ON before the primary current ip becomes negative 

to achieve soft-switching at turn ON. The secondary current is now flows through S6 and D6 which 

generates a zero-voltage level across the HFT secondary winding. The primary voltage vp is equal 

to the negative voltage of capacitor C2, and the voltage of the secondary side vs is equal to zero. 

The interval time duration is the same as that of [t1 – t2] Interval. The primary current can be 

described by: 
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Figure 3.7: [t4-t5] Interval, steady-state equivalent operating circuits of the proposed topology. 
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Figure 3.8: [t5-t6] Interval, steady-state equivalent operating circuits of the proposed topology. 

In this stage, the initial condition of the primary current ip is I5 = I1 = 0. By evaluating (3.10) 

at [t = t6], the peak of the primary current at the end of the interval is I6 which in steady-state equals 

[–I2]. 

3.2.C. vii [t6 – t7] Interval: At the beginning of this interval, switch S6 turns OFF, and the 

secondary current is flows through C5 and D8. The primary current ip flows through S3, S4 and C2 

and continues to decrease at a rate of [(nVo/2 – VC2)/Lk]. For the particular case shown in Fig. 3.9, 

at the end of this interval, ip is at its maximum negative peak value. The primary voltage vp is equal 

to the negative voltage of capacitor C2 while the voltage of the secondary side vs is equal to the 

negative voltage of capacitor C5. The time duration of this interval is the same as that of [t2 – t3] 

Interval, and the primary current ip can be calculated as: 
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Figure 3.9: [t6-t7] Interval, steady-state equivalent operating circuits of the proposed topology. 

3.2.C. viii [t7 – t8] Interval: Switch S4 turns OFF, and the primary current ip flows through S3 

and D4 with a positive slope of [nVo/(2Llk)]. The secondary current is continues to flow through C5 

and D8 as shown in Fig. 3.10. The primary voltage vp is equal to zero, and the secondary voltage 

vs is equal to the negative voltage of capacitor C5, [–Vo/2]. The time duration of this interval is the 

same as that of [t3 – t4] Interval and the primary current ip is given by: 
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Figure 3.10: [t7-t8] Interval, steady-state equivalent operating circuits of the proposed topology. 
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The initial current is [I7 = –I3]. 

The fundamental phase shift φ between primary and secondary voltages can be obtained from 

the steady-state analysis as follows: 

where Vdc is the primary-side dc-link voltage. The total phase shift Dφ between primary and 

secondary voltages can be expressed in terms of the primary duty cycle Dp, and the secondary duty 

cycle Ds as follows: 

3.3 Soft-Switching Analysis 

The analysis for realizing soft switching at turn ON in this section concentrates only on switch 

S1 (primary side) and switches S5 and S6 (secondary side). Due to the symmetry of the primary and 

secondary currents, ip and is, the rest of the switches have the same operating principles and 

analytical processes. All devices in both transformer sides turn OFF at ZVS. 

3.3.A Primary-Side Switches 

The capacitance of the dc-bus capacitors (C1, C2) is equal and relatively large in contrast to the 

flying capacitor C3. Furthermore, the capacitance of C3 is much larger than the parasitic 

capacitance of the switches (CS1, CS2, CS3, and CS4). For the sake of simplicity, the voltages of (C1, 

C2, and C3) are assumed constant, and the voltage drops across each semiconductor device are 

neglected. 
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Initially, S3 and S4 are ON, and S1 and S2 are OFF as indicated in Fig. 3.9. The primary current 

flows through the primary coil, S3, S4, and C2 as shown in Fig. 3.9 (pink arrows). CS1 is connected 

in series to the parallel combination of C3 and CS2. As a result, the voltage of the dc-bus capacitors 

must be distributed equally between CS1 [VCS1 = VC1 = VC2] and the parallel combination of C3 and 

CS2 [VCS2||VC3 = VC1 = VC2]. 

As soon as S4 turns OFF while S3 still ON, if [I7 < 0 ] the parasitic capacitance CS4 charges up 

to VC1 and CS1 discharges up to zero while the voltage across C3 and CS2 remains constant. During 

[t6-t7] Interval which represented in Fig. 3.9, S1 can be turned ON at ZVS. The next stage is to turn 

S3 OFF at ZVS, which forces CS3 to charge up to VC1, and discharge CS2 up to zero. The primary 

current is now flowing through the anti-parallel diodes of S1 and S2, C1, and the leakage inductance 

Lk, which defines the condition of turning S1 and S2 at ZVS (Fig. 3.3). The condition that guarantees 

Io is negative by the beginning of [t0-t1] Interval is given by: 

The flying capacitor C3 increases the range of soft switching for S1 and S4 whereas the energy 

stored in Lk enables discharging and charging actions for CS2 and CS3, respectively. 

3.3.B Secondary-Side Switches 

Fig. 3.11(a) shows the equivalent secondary-side circuit of the transition between [t1-t2] 

Interval and [t2-t3] Interval that was presented in Fig. 3.3. The flying capacitor Cf is connected to 

the nodes between D5 and S5, and D6 and S6. The significance of Cf is it allows drain-source 

capacitance of the S5 and S6 to be discharged to achieve ZVS at turn ON. Once S5 turns OFF, the 

secondary current charges CS5 up to VC4 and discharge CS6 up to zero as indicated in Fig. 3.11(a). 

Since the capacitance value of Cf is large compared to the parasitic capacitances of the switches 

and diodes, its voltage is almost constant at all operating modes. At the instant when S5 is turned  

  1sD D +  . (3. 15) 
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Figure 3.11: Equivalent secondary side circuit showing charging and discharging CS5 and CS6. 
(a) At turning S5 OFF, (b) at turning S6 ON. 

OFF, [is = nI2] is assumed to be constant. By assuming that [CS5 = CS6 = CS], the following 

expression is obtained:  

By integrating (3.16) in both sides, the maximum time that takes to charge CS5 up to VC4, and 

discharge CS6 up to zero can be found as: 

where Ds is the secondary-side duty cycle, which is limited by [0 < Ds < 1]. The inequality that 

defines Ds boundaries is due to the fact that [Ds = 0] means S5 is ON during the entire positive half 

cycle, and Ds = 1 means S5 is OFF during the complete positive half cycle. As soon as D7 becomes 

forward biased, the output capacitor C4 is charged by the secondary current as shown in Fig. 
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3.11(b) (green arrows). Now, S6 can be turned ON at ZVS and ZCS, as long as [is > 0] and 

conducting through D7. 

The analysis of charging CS6 and discharging CS5 is similar to the previous approach. Once S6 

turns OFF, CS6 is charged up to VC4 and CS5 is discharged up to zero, which represents the transition 

between Fig. 3.8 and Fig. 3.9. The drain-source voltage of S5 starts to decrease at a rate of [-

Cs5dVS5/dt] until it reaches zero, and the drain-source voltage of S6 starts at the same time to 

increase at a rate of [Cs6dVS6/dt] until it reaches VC4. At that moment, D8 starts to conduct and S5 

can be turned ON at ZVS and ZCS as long as [is < 0], and flowing through D8. 

Fig. 3.12 shows the MatlabTM simulations of the gate-source signals Vgs, drain-source voltages 

Vds, and drain currents id of S5 and S6. The zero voltage and zero current switching transitions, and 

the times where the parasitic capacitances CS5 and CS6 are discharging are marked in the figure as 

ZVS, ZCS, and discharge respectively. 

3.4 Converter Design Procedure 

The design guidelines of the proposed topology are presented by considering the following 

converter specifications: sinusoidal ac input voltage [v (t) = 110 VRMS] operating at 60 Hz, output 

power [Po = 900-W], output voltage [Vo = 200-V] and switching frequency [fsw = 20-kHz]. 

The dc voltage Vdc of the primary side is selected to be larger than twice of the peak input voltage 

Vpk to insure a high PF. 

Then, 450-V is selected as the dc-bus voltage in the primary side. Therefore, capacitors C1 and C2 

should be rated higher than 200-V. 

3.4.A Boost Inductor Design 

The boost inductor of the proposed topology is sized to operate under DCM that is insured by 

  2 2 312dc pkV v V  . (3. 18) 
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satisfying the following inequality: 

where ∆iLb is the inductor peak ripple current and can be calculated as: 

 

Figure 3.12: Simulation waveforms of the soft-switched proposed topology (secondary side). 
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and 

By combining (3.19), (3.20), and (3.21), the critical value of the boost inductor to operate at DCM 

is determined as follows: 

For 900-W and [Dp = 1], then Lb should be equal or less than 160 𝜇H. The lower limit for Lb should 

be selected to avoid exceeding the rating current of the NPC devices. The boost inductor current 

is obtained as: 

3.4.B DC-Bus Capacitor Selection 

The dc-bus capacitors C1 and C2 are designed based on the allowed peak-to-peak voltage ripple 

[∆VC1 = ∆VC2 < 0.05*250]. Because the peak current of the boost inductor iL(pk) flows through the 

dc-bus capacitors, C1 and C2 are calculated as: 

where fF is the fundamental frequency of the ac source. The two capacitors calculated using (3.24) 

are [C1 = C2 > 4300µF]. 

3.4.C High-Frequency Transformer Design 

The design of a high/medium-frequency transformer has been presented in many publications 

including, design steps [3.17], design trade-offs [3.18], and practical solutions of HFT [3.19]. The 
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most important parameters to consider are the required leakage inductance, turns ratio [n = vp / vs], 

and magnetizing inductance Lm. The value of Lm depends on the geometry of the cores and the 

number of turns. In this topology, Lm is assumed to be considerably large, so it can be eliminated 

from the analysis. The proposed topology can operate as a buck or boost converter based on the 

selection of n. If the secondary voltage vs referred to the primary side is larger than primary voltage 

vp, then the converter operates in boost mode; otherwise it operates in buck mode. For the given 

[vp = 200 V] and [vs = 100 V], n should be less than 2 to operate in buck mode. In this paper, the 

buck mode is of interest. Following the procedure design given in [3.18] and the specifications of 

the proposed topology, the optimal flux Bopt for the S8020E-026 ferrite material is 0.0536 T, and 

the required number of primary turns Np is calculated as: 

where [kv = 4] is the waveform factor, and [Ac = 7.78 cm2] is the core cross sectional area. Using 

(3.25), [Np = 50], so the number of secondary turns should be [Ns ≥ Npvs/vp]. Therefore, n should 

be selected as: 

where nc is the turns ratio limit for which the converter is not able anymore to regulate the output 

voltage vo to the required level. The selection of n is a function of the rating of the semiconductor 

devices. However, selecting n close to 1 is the best choice in terms of transformer efficiency [3.18]. 

The output power delivered from the ac-source to the load during the positive half-switching 

cycle is given by: 
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By solving the integral term of (3.27), the following expression is obtained: 

where  

and  

The maximum output power Po(max) is obtained when the phase shift between the primary and 

secondary voltages Dφ equals 0.5 and the primary side duty Dp equals one. The needed value of Ds 

for maximum power can be obtained from (3.14) as [Ds = 0.83]. Then, the required leakage 

inductance Lk can be calculated from (3.28) as 146 µH. 

3.4.D Output Capacitor Selection 

When S5 turns OFF, D7 is forward biased and the secondary current is is equal to: 

C4 charges as long as is is larger than the output current Io, and C4 discharges when is is smaller 

than Io. During the time duration of this interval [∆t = (1 – Ds)Tsw/2], is has three different slopes 

described by (3.5), (3.7), and (3.9). Rearranging (3.31) and integrating both sides, C4 can be 

calculated as: 

where  
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and  

for [∆VC4 < 0.05*100] , [Dp = 1], [D  = 0.5], and [Ds = 0.84] the minimum value of the output 

capacitors can be found using (3.32) as [C4 = C5 > 20 µF]. 

3.5 Simulation and Experimental Results 

3.5.A Simulation Results for Case Study 

A microgrid provides advantages to utilities and users in terms of power quality and power 

management [3.20]. A typical microgrid includes renewable energy resources (e.g., wind turbines, 

photovoltaic arrays, etc.), distributed grid lines (ac grid, dc grid), power conversion units (power 

converters, transformers) and loads (ac load, dc load) [3.21]. Recent research proposed a new 

topology that connects wind and photovoltaic (PV) systems to ac-grid [3.22]. The proposed 

topology is analyzed to connect a type-4 wind turbine to a dc main bus of a hybrid microgrid as 

shown in Fig. 3.13 and the specifications of this case study are shown in Table 3-I. 

 

Figure 3.13: Type-4 wind turbine configuration, wind turbine blades, gearbox, PMSG, ac-dc 
power converter, and DC-bus. 
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Table 3-I: Simulation Specifications 

Parameters Values 

Output power Po (kW) 25 

Switching frequency fsw (kHz) 20 

Input voltage v(t) (VRMS) 690 

High-side dc-bus voltage Vdc > 2Vinpk (kV) 2 

Low-side capacitors voltages Vc4 = Vc5 (kV) 1 

Output voltage Vo (kV) 2 

Output current Io (A) 12.5 

Steady-state simulations are shown in Figs. 3.14 thought Fig. 3.16. The input current displayed 

in Fig. 3.14 is in phase with the input voltage. The boost inductor voltage and current, and the dc-

bus voltage are plotted in Fig. 3.15. The oscillations that appears in the inductor voltage occurs 

when the boost inductor current is zero due to a resonance between D1, S1, and S2 parasitic 

capacitances and the boost inductor. The transformer primary and secondary voltages, and primary 

current are shown in Fig. 3.16.  

 

Figure 3.14: Simulation waveforms of the input voltage and current. 
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Figure 3.15:  Simulation waveforms of the dc-bus voltage Vdc, boost inductor (voltage vLb, current 
iLb). 

 

Figure 3.16:  Simulation waveforms of the transformer primary-side voltage vp, secondary-side 
voltage vs, and primary current ip. 

Fig. 3.17 shows the output power Po, dc bus voltage Vdc, and secondary duty cycle Ds, as a 

function of primary duty cycle Dp with Dϕ as a parameter, using the converter specifications given 

in Table 3-I. 
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Figure 3.17:  Output power Po, dc bus voltage vC1 and secondary duty cycle Ds as a function of 
the primary duty cycle Dp with Dϕ as a parameter. 

The output voltage is constant and equal to 2000 V. These results correspond to the evaluation 

of the steady-state expressions given in Section II. According to these results, this paper proposes 

the use of Dp to control Po, and Dϕ to control Vdc. Also, Fig. 3.17 shows that  

Ds is a function of the converter operating point, which makes the dynamic of the system highly 

nonlinear. However, since the objective of this paper is to propose a new low-cost isolated three-

level ac-dc topology, the authors do not consider it necessary to include this information in this 

paper because of the space that would be required to do so. Fig. 3.18 shows the block diagram of 

the prototype implemented in this work using three control loops: 

1) An outer voltage loop to regulate the output voltage, adjusting Dp. 

2) A transformer current controller to avoid saturation and to balance the voltage across the 

capacitors, adjusting the positive or negative half-cycle of Dp (Daux). 

3) A dc-bus voltage controller to regulate its value as a function of load specifications, adjusting 

Dϕ. 
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Figure 3.18:  Block diagram of the implemented hardware and close-loop control setup. 

All these controllers were implemented using proportional-integral (PI) algorithms. The 

criteria adopted to adjust the controllers is that the loop of the output voltage is the fastest, followed 

by the control of the transformer current, and the dc bus controller is the slowest. 

Figs. 3.19 through 3.20 show the simulated dynamic response of the converter for sudden 

resistive load change, from 6.5 to 11.5 A, reaching the target operating point in 5 msec. Fig. 3.19 

shows input current (boost current) and the grid voltage. The response of the system under the 

sudden load change remains stable and with a high power factor. 

 Fig. 3.20 shows the evolution of the input and output capacitor voltages. Independently of the 

load condition, the voltage across these capacitors is balanced, which can be explained by the fact 

that the transformer current control ensures a zero-average current. Finally, Fig. 3.21 displays the 

output voltage, the voltage error signal fed to the controller input, and the PI controller action when 

the load changes. 
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Figure 3.19:  Boost inductor current iLb and input voltage vin response to a load change. 

 

 

Figure 3.20:  Primary capacitor (VC1, VC2) and output capacitor (VC4, VC5) voltages when load 
change. 
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Figure 3.21:  Representation of output voltage (Vo), PI control signal (PI), control error (Error) 
at a load change. 

3.5.B Scaled-Down Prototype 

A 900-W scaled-down prototype is implemented to validate the proposed topology 

performance. The main specifications of the prototype are shown in Table 3-II, and the devices 

selected for this experiment are presented in Table 3-III. The proposed topology setup is shown in 

Fig. 3.22.  

The boost inductor of the proposed topology is sized to operate under DCM and follow the 

sine wave as shown in Fig. 3.23. As a result, the proposed topology draws power at unity power 

factor under the condition of having a dc-bus voltage of at least twice the peak of the input voltage; 

the condition that keeps the converter under DCM operation. 
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Table 3-II: Experimental Parameters 

Parameters Values 

Output power Po (W) 900 
Switching frequency (kHz) 20 

Input voltage vin (Vrms) 110 
High-side dc-bus voltage Vdc > 2Vinpk (V) 450 

Low-side capacitors voltages Vc4 = Vc5 (V) 100 
Output voltage Vo (V) 200 

Rated power resistive load Ro (Ω) 73 

 

Table 3-III: Experimental Prototype Devices Selection 

Device Part #/Rated Values 

Front-end diodes RURG5060_F085/600V, 50A 
NPC switches AOK60N30L/300V, 40A 
NPC diodes GP2D020A060B/600V, 31A 

Secodary-circuit switches IPP075N15N3 G/150V, 100A 
Secodary-circuit diodes GP2D020A060B/600V, 31A 

 

 

 

Figure 3.22:  Proposed scaled-down prototype topology including AC-DC converter, DSP card, 
sensors, leakage inductance, and high frequency transformer (PCB dimensions 380mm x 170mm) 
“Photo by author”. 
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Figure 3.23:  Experimental waveform of input voltage vin, and boost inductor current iLb. 

The transformer primary-side voltage vp and current ip, the transformer secondary-side voltage 

vs, and the boost inductor current iLb are displayed in Fig. 3.24. For that particular condition, both 

primary and secondary voltages have three levels. The primary side duty cycle, which limits the 

input power drawn from the ac source, is used to control the output voltage. 

 

Figure 3.24:  Experimental waveforms of the primary voltage (vp), secondary voltage (vs), boost 
inductor current (iLb) and primary current (ip). 
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When S5 and D5, or S6 and D6, conduct, the voltage across the secondary windings is zero, 

which defines the duty cycle at the secondary side Ds. Ds is a function of the primary side duty 

cycle (Dp), the phase shift between vp and vs (Dϕ), and the dynamic voltage level of the converter. 

 
Fig. 3.25 presents the output capacitors voltages (VC4, VC5) and output current Io. When one of 

the capacitors discharges through the load, the other one is charged from the dc bus capacitors 

through the transformer, which in return, smooths the output voltage. As shown in Fig. 3.25, the 

voltage across each capacitor is balanced and equal to a half of the output voltage. 

 
Fig. 3.26 shows the gate-source and drains-source voltage waveforms of S5 as well as the 

secondary side current is. It can be seen that S5 turns ON at ZVS [VdsS5 = 0 V] and ZCS [IS5 = 0 A] 

during [t0-t1] Interval while the secondary current [is < 0] and conducts through D8. Also, S5 turns 

OFF at ZVS as shown in the zoomed box at the top corner of Fig. 3.25.  

 

Figure 3.25:  Experimental waveforms of the output capacitors voltages (VC4, VC5), and output 
current (Io). 
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Figure 3.26:  Experimental waveforms representing the soft switching transitions of S5 (ZCS, ZVS) 
at turning ON and (ZVS) at turning OFF. 

Similarly, S6 turns ON at ZVS and ZCS while the secondary current is > 0 and conducting 

through D7 as explained in Section III (B).  

Fig. 3.27 shows the closed-loop response of the converter at the time when a sudden increase 

in the load occurs. The controller satisfactorily reacts to compensate for the output voltage drop 

due to the extreme load increase. Also, the controller successfully keeps a stable and even voltage 

across each dc-link and output capacitors, providing safe operation. 

Fig. 3.28 shows the overall efficiency of the proposed topology, where it is remarkable that 

only 12 % of the total converter losses are due to the proposed secondary side bridge. The latter is 

due to the soft-switching operation for the entire power range that this converter has, and the fewer 

devices required to conduct the output current. Table 3-IV presents a comparison among the 

proposed new topology with other existing ones. The main advantage of using the proposed 

topology is the capability of controlling the dc bus and output voltage with a minimum number of 

switches. Furthermore, the total price of the proposed converter is minimum owing to the reduced 
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number of components. Also, operation under soft-switching mode is possible in the full power 

operating range. The disadvantage is that this topology is only suitable for unidirectional power 

applications. 

 

Figure 3.27: Converter transient closed-loop response: Output voltage Vo, dc bus capacitor 
voltages VC1 and VC2, and output capacitor voltages VC4 and VC5 when a sudden load increase 
occurs. 

 
Figure 3.28: Efficiency representation of the proposed ac-dc converter over a wide range of output 
power. 
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Table 3-IV: Qualitative Topology Comparison. 

Parameters 
Topology 

#1 [13] 
Topology 

#2[15] 
Topology 

#3[16] 
Proposed 

Topology 

Bidirectional power 
flow capability 

Yes No No No 

Total cost High Low High Fair 

Switch blocking 
voltage 

Full Half Full Half 

Number of switches 12 4 12 6 

Number of diodes 0 6 4 6 

Controlling dc-bus 
and output voltage 

Yes No Yes Yes 

Capacitors size Small Large Medium Medium 

 

The remarkable features of the proposed topology over other existing ones are as follows: 

1. Been able to control dc-bus and output voltage using only six switches, other similar 

topologies require more than six switches[3.16],[3.23]. 

2. Secondary active devices switch at ZVS and ZCS over the full range of power where it is 

impossible to achieve the same advantage with other existing topologies [3.16]. 

3. In comparison with the topology presented in [3.16], which claims a maximum efficiency 

of 93%, the proposed topology exhibits a higher efficiency of 94.5%. 

3.6 Conclusions 

A new topology for an isolated three-level unidirectional ac-dc power converter was presented 

and analyzed. The proposed secondary side circuit generates a three level voltage waveform across 

the secondary side transformer terminals using only two active switches and four diodes. The 

proposed topology is capable of controlling the input power, dc-bus voltage and output voltage 

with minimum number of active devices. 

Furthermore, the new topology has multiple advantages in terms of cost-effectiveness, 

preventing power back-flow, and allowing ZCS and ZVS at turn ON without any additional control 



80 
 
 

effort. The simulation and experimental results for this new topology agreed very well with the 

theoretical equations, steady-state analysis, and closed-loop control performance. 
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Chapter 4  

A BOOST-BASED T-TYPE PFC UNIDIRECTIONAL SOLID-STATE TRANSFORMER FOR 

MEDIUM-LEVEL POWER APPLICATIONS  

O. Aldosari, L. A. G. Rodriguez, G. G. Oggier and J. C. Balda, “A Three-Level Isolated AC-DC 

PFC Power Converter Topology with Reduced Number of Switches,” in IEEE Trans. on Industrial 

Electronics, Submitted in (04-25-2020). 

Abstract 

 A new three-level isolated ac-dc power factor correction (PFC) topology with a minimum 

number of semiconductor devices is the main focus of this paper. The proposed topology provides 

high input power factor (PF), soft-switching, and full control of the primary and secondary side 

bridges to regulate the intermediate dc-bus and output voltages. Comparing to existing PFC 

topologies, the proposed configuration has lower voltage rating requirements, which lead to 

lowering the total cost, minimizing power losses and increasing the converter rated power while 

using similar rated devices than in other topologies. A theoretical analysis describes the full 

characterization of the proposed converter.  Experimental results on a 1-kW prototype show high 

PF and efficiency in the whole operating range of the converter. 

Index Terms—AC-DC converters, conduction losses, power factor correction, soft-switching, 

solid-state transformer. 

4.1 Introduction 

Public concerns about the environmental impact of fossil-based energy sources have increased 

the demand for renewables such as photovoltaic (PV) modules and wind turbines, as well as the 

use of electric vehicles and more efficient lighting systems, such as LED technology [4.1]. Power 
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electronic interfaces are necessary to adapt the characteristics of the non-conventional energy 

sources to the type of the electric power grid [4.2]. 

DC loads such as data centers, telecommunication systems and electric vehicle charging 

stations require ac-dc converters with high-efficiency and high-power density [4.3]-[4.4]. Solid-

state transformer (SST) topologies with unidirectional power flow have been proposed for dc loads 

to eliminate the use of low-frequency transformers [4.3]. The unidirectional SST retains most of 

the features of the conventional bidirectional SST such as a power-factor correction (PFC), total 

harmonic distortion control, fault current limiting, isolated dc-bus voltage availability, etc. [4.3], 

[4.5]-[4.6]. 

SSTs for ac-dc applications usually consist of two stages: a controlled ac-dc front-end stage, 

and a dual active bridge converter (DAB) as a second stage [4.7]-[4.9]. The front-end rectifier is 

realized by a single- or three-phase half-bridge, full-bridge or multi-level converter that controls 

the shape of the input current and the level of the high-voltage dc bus [4.4], [4.10]-[4.12]. The 

DAB consists of a primary-side bridge, a high-frequency transformer and a secondary-side bridge 

[4.13]. Depending on the application, the bridges of the DAB are implemented using half-bridge 

converters, full-bridge converters, or multilevel converters [4.8]-[4.9], [4.14]-[4.16]. For high 

power applications, the system is connected to the distribution system (from 2.4 to 34 kVac three-

phase feeders), and multiple SSTs are connected in series at the high-voltage side, and in parallel 

at the low-voltage side establishing a modular multilevel configuration [4.5], [4.8], [4.17]. This 

solution requires a large number of semiconductor devices, which, in addition to representing a 

high cost, increases its probability of failure. 

In order to reduce the required number of semiconductor devices, boost-based topologies were 

proposed which combine the SST rectifier stage with the primary-side bridge of the DAB [4.18]-
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[4.21]. In [4.18]-[4.19], the DAB secondary-side active bridge was replaced by diodes at the 

expense of losing control of the high-voltage side dc bus. A three-level boost based unidirectional 

SST topology was proposed in [4.20] where two full bridges were implemented as the secondary 

side bridge of the DAB which provides full control of the high-voltage dc bus, and high current 

output capability. The three-level configuration allows the voltage rating of the semiconductor 

devices to be reduced, making the topologies suitable for high-voltage applications. Another three-

level boost-based configuration with a new secondary side was presented in [4.21] where only two 

transistors are required to produce a positive, negative, or zero voltage across the secondary side 

of the transformer, which allows the full control of the high-voltage dc-bus. 

For medium power applications [< 20-kW] where the ac voltage is at the residential level [120 

– 240 Vac] as in the case of vehicle charging applications [4.4], the three-level topologies of [4.20], 

[4.21] present higher conduction losses since there is always two devices conducting at the same 

time. Then, the topology of Fig. 4.1 is proposed to increase the efficiency of those applications 

where the input current is high. 
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Figure 4.1: Circuit configuration of the proposed boost-based three-level isolated AC-DC PFC 
topology. 
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The proposed topology consists of a boost inductor Lb, two front-end diodes D1 and D2, which 

in conjunction with the T-Type bridge form by S1-S4 provide the PFC function. The T-Type bridge 

and the secondary-side topology configuration generate three voltage levels across the primary and 

secondary sides of the transformer, allowing for the full control of the dc-bus and output voltages 

as in the case of [4.20]-[4.21] utilizing a minimum number of semiconductor devices in 

comparison with traditional unidirectional SST topologies [4.3], [4.5]. 

This paper is organized as follows: The steady-state analysis of the converter for all operating 

modes is given in Section II; the soft-switching analysis for all devices is addressed in Section III; 

the calculations of the conduction losses for the entire power range is illustrated in Section IV. The 

experimental results for a 1-kW, 110-Vac prototype are evaluated in Section V. Lastly, the 

concluding remarks are provided in Section VI. 

4.2 Steady-State Analysis 

4.2.A Steady-State Waveforms 

Fig. 4.2 shows the steady-state waveforms for one complete switching cycle Tsw, where the 

definition of the variables are listed in Table 4-I. The T-type bridge generates a three-level voltage 

across the primary side of the high-frequency transformer (HFT). At the primary side, a positive 

voltage is generated when S1 is ON, a negative voltage when S4 is ON, and a zero voltage when S2 

and S3 are ON. As can be seen in Fig. 4.2, the dashed lines of S2 and S3 overlap during [(1- Dp)Tsw/2] 

to generate a zero voltage across the primary terminals of the HFT. 
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Figure 4.2: Steady-state waveforms of the proposed topology. 
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Table 4-I: Symbols and Unit Abbreviations  

Symbols Stand for (unit Abbreviation) 

S1, S2, S3, S4, S5, S6 Gate signals for switches (V) 
vp, vs Primary and secondary voltages (V) 
VS1, VS2, VS5,  Drain-source voltage of S1, S2, and S5 (V) 
VD3 Anode-Cathode D3 voltage (V) 
ip Primary current (A) 
is1, is2, is5 Current through S1, S2, and S5 
iD3 Current through D3 
Dp, Ds, Dφ Primary, secondary, phase-shift duty cycles 
Dx Boost inductor current duty cycle (from t4 to iLb=0) 
iLb Boost inductor current (A) 
VC1, VC2, VC3, VC4 Voltage of Capacitors C1, C2, C3, C4 (V) 
n  Transformer turn ratio. 

 

4.2.B Steady-State Operational Principles 

Considering positive input ac voltage vin(t), eight intervals occur over a complete switching 

cycle as displayed in Fig. 4.3. Similar analysis can be done when vin(t) is negative. 

1) [t0-t1] interval: switch S1 is turned ON at zero voltage because initially the primary current 

ip is negative and flows through the anti-parallel diode of S1. The boost inductor current iLb 

conducts through D1 and S1 as shown in Fig. 4.3. The primary voltage vp is equal to the voltage of 

C1 whereas the secondary voltage vs is equal to the negative voltage of C5. The boost inductor is 

charging at a rate of [v(t)/Lb], and leakage inductance Lk is charging at rate of [(VC1+nVC5)/Lk]. 

Both ip and iLb have positive slope for the time duration of [(Dφ + Ds – 1)Tsw/2], and ip can be 

calculated as: 
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Figure 4.3: Proposed topology equivalent circuit for (t0-t1) interval. 

At [t = t1] (end of this interval), ip is zero, which means [I1 = 0] and I0 equals to: 

2) [t1-t2] interval: primary current ip reverses its flow while S5 is ON, then D5 gets forward biased, 

and is circulates through D5 and S5 shorting the HFT secondary side. ip conducts though S1 at a rate 

of [VC1/Lk]. The currents (iLb, ip, is) conduction paths are illustrated in Fig. 4.4. Current iLb increases 

at the same rate as in previous stage. The primary current during this interval [(1 - Ds)Tsw/2] can 

be calculated as: 
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Figure 4.4: Proposed topology equivalent circuit for (t1-t2) interval. 
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I1 is equal to zero (see Fig. 4.2), and I2 is obtained from (4.3) as:  

3) [t2-t3] interval: switch S5 turned OFF, primary is flows through D3 and C4, which makes the 

secondary voltage equals to the voltage across C4. Current ip still conducts through S1 as in the 

previous stage, but at a rate of [(VC1 – nVo/2)/Lk]. The equivalent circuit of this mode is depicted 

in Fig. 4.5. The interval time length is equal to [(Dp – Dφ)Tsw/2] and primary current is 

At the end of this interval, ip is at its peak value which can be obtain from (4.5) as: 

4) [t3-t4] interval: switch S1 turned OFF; primary current ip freewheels through S2 and S3 whereas 

secondary current is still conducting though D3. The boost inductor discharges though C1 at a rate 

of [(v(t)-VC1)/Lb] as shown in Fig. 4.6. With the primary terminals shorted, no energy is transferred 

to the output through HFT. Current ip decreases at a rate of [–nVo/(2Lk)] as follows: 
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Figure 4.5: Proposed topology equivalent circuit for (t2-t3) interval. 
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Figure 4.6: Proposed topology equivalent circuit for (t3-t4) interval. 

At [t = t4], I4 is calculated by:  

5) [t4-t5] interval: switch S2 turned OFF; and primary current ip continues to flow through C2 and 

the anti-parallel diode of S4. Secondary current is remains conducting through D3 as in the previous 

stage. Boost current iLb flows through C1, C2, and anti-parallel diode of S4 at a rate of [(v(t) – 

(VC1+VC2))/Lb] as shown in Fig. 4.7. Primary voltage vp is equal to [–VC2] and vs is equal to [nVo/2]. 

Current ip is given by: 
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Figure 4.7: Proposed topology equivalent circuit for (t4-t5) interval. 
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At the end of this state, [ip = I5 = 0].   

6) [t5-t6] interval: switch S4 turns ON. Primary current ip changes from positive to negative 

direction and conducts through S4 and C2 at a rate of[ –VC2/Lk]. Secondary current is conducts 

through the secondary coil of the HFT and S6. The boost current iLb decreases at the same rate as 

in [t4-t5] interval. The equivalent circuit of this mode is displayed in Fig. 4.8. The primary current 

ip is given by: 

At the end of the interval ip = I6  = -I2. 

7) [t6-t7] interval: switch S6 turned OFF, and secondary current is starts to conduct through C5 

and D4. Primary current ip continues to flow through S4 and C2 at a rate of [(nVo/2 – VC2)/Lk]. In 

this mode, Lb discharges its energy completely and its current iLb reaches zero. The equivalent 

circuit is displayed in Fig. 4.9. Primary current ip is expressed as: 
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Figure 4.8: Proposed topology equivalent circuit for (t5-t6) interval. 
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Figure 4.9: Proposed topology equivalent circuit for (t6-t7) interval. 

At the end of this mode, ip is at its negative peak which is equal to [I7 = -I3]. 

8) [t7-t8] interval: switch S4 turned OFF and S3 turns ON, shorting the primary winding of the 

HFT. Primary current ip circulates through S3 and S2 at a rate of [–nVo/2]. Secondary current is 

keeps conducting through C5 and D4. Secondary voltage vs equals to [–VC5=Vo/2] as shown in Fig. 

4.10. Primary current ip is calculated as: 
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Figure 4.10: Proposed topology equivalent circuit for (t7-t8) interval. 
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At the end of this mode, [ip = I1 = 0].  

4.2.C Output Power and DC-Bus Calculations 

With reference to Fig. 4.2, when vp is positive, ip has three different positive slopes described 

by (4.1), (4.3), and (4.5). This is always true if [D  ≤ Dp]. The output power is calculated by 

integrating the product of the primary voltage vp and primary current ip over half of the switching 

period. 

Computing (4.13), the resulting output power is determined as:  

However, if [D  > Dp], and vp is positive, ip has only two different positive slopes described by 

(4.1) and (4.2) as presented in Fig. 4.11. The corresponding output power is calculated as: 

Due to the steady-state condition, the average voltage of the boost inductor over one switching 

period is zero; that is,  

where Dx is the duty cycle of the second negative slope of the boost inductor current iLb as indicated 

in Fig. 4.2 and it can be calculated by assuming that the input power Pin is equal to the output 

power Po. 
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Figure 4.11: Steady-state waveforms representation for [D  > Dp].  

where TF is the fundamental period and Vm is the magnitude of the input voltage. The boost 

inductor current iLb has three different slopes (iLb1, iLb2, iLb3) as shown in Fig. 4.2 and described in 

(4.18), (4.19), and (4.20). 
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By inserting (4.18), (4.19), and (4.20) in (4.17), Dx is calculated as follows: 

Now, Vdc can be determined as in (4.22) by placing (4.21) in (4.16). The dc-bus voltage is 

given by the following expression:   
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As shown in Fig. 4.2 there are three duty cycles (Dp, Ds, and Dϕ). However, Dp and Dϕ are the 

only controllable duty cycles. Under steady-state conditions, Fig. 4.12 presents Po, VC1, Ds, and Vo 

as a function of Dp where Dϕ is a parameter. With reference to Fig. 4.12, Dϕ has a minimal effect 

on Po and Vo. As a result, Dp is used to control Vo.  

Since VC1 depends on Dϕ, Vdc is controlled by modulating Dϕ. The secondary duty cycle Ds 

presented in Fig. 4.12 is highly nonlinear because it depends on the converter operating point (Vdc 

and Vo) and the converter duty cycles (Dϕ and Dp). The expression that describe the secondary duty 

cycle Ds is given by:  
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Figure 4.12: Theoretical waveforms representing the output power Po, the input capacitor voltage 
VC1, the secondary duty cycle Ds, and the output voltage Vo as a function of the primary duty cycles 
Dp and Dϕ is a parameter. 
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4.3 Soft-Switching Analysis  

Due to the symmetry of the transformer current waveforms, the soft-switching analysis in this 

section focuses only on S1, S2, and S5. An identical evaluation can be performed for the 

complementary switches S4, S3, and S6. 

4.3.A Primary Switches 

At the time when S3 turns OFF (transition between [t7-t8] and [t0-t1] intervals), ip flows through 

the anti-parallel diode of S1. As a result, the voltage across S1 drops from VC1 to zero, and then S1 

can be turned ON at zero voltage switching (ZVS). The switching action should occur while ip is 

negative to guarantee S1 turning ON at ZVS. Therefore, the soft-switching restriction on the primary 

duty cycle Dp can be obtained by solving (4.2), yielding the following: 

As the phase shift Dϕ increases, the soft-switching region increases accordingly. Fig. 4.13 

shows ip when [t = t0 (Io)] as function of the primary duty cycle Dp where the phase shift Dϕ is a 

parameter. As it can be seen from Fig. 4.13, for [Dϕ > 0.5], I0 is negative for all values of Dp. 

However, for [Dϕ = 0.5 and Dp < 0.7], I0 is positive and S1 operates under hard switching. 

Ultimately, the converter operates under soft switching if Dp satisfies (4.24). 

Prior to turning S2 ON, primary current ip is negative and conducting through S4 as presented 

in Fig. 4.9. When S4 turns OFF, primary current ip continues to flow through S3 and the anti-parallel 

diode of S2, which represents the transition between [t6-t7], and [t7-t8] intervals. With a sufficient 

time delay applied to the S2 gate signal VgS2, iS2 discharges the stored energy in the parasitic 

capacitance CS2, and S2 turns ON at ZVS. 
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Figure 4.13: Theoretical waveforms representing I0 (ip when t = to) as a function of the primary 
duty cycle Dp while Dϕ is a parameter. 

4.3.B Secondary Switches 

Secondary switches turn ON at zero current switching (ZCS) because switching action happens 

while secondary current is is conducting though one of the diodes (D3, D4). In addition, ZVS is 

achieved when a flying capacitor Cf is connected across the two switches (S5, S6) to vacillate the 

charging and discharging of the parasitic capacitance (CS5, CS6).  

4.4 Converter Losses  

4.4.A Conduction Losses 

Each active device exhibits conduction losses based on the root mean square (RMS) current 

flowing through its internal resistance Rds(ON). The general equation which describes the RMS 

current through each switch is given by:  

where tSi and tSf are the initial and final times of the conduction interval at which the drain current 

id flows through the switch.  
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Another source of conduction loss is the diode, which depends on the average current flowing 

through it and its forward voltage drop Vf. The average current of a diode is calculated as: 

where tDi and tDf are the initial and final times at which the forward current IF conducts through the 

diode. S2 and S3 are ON when there is a current flowing through the central leg of the primary circuit 

to avoid conducting current via the anti-parallel diodes. The modulation scheme presented in Fig. 

4.2 shows gate signals for S2 and S3. 

With reference to Fig. 4.2 [vin(t) > 0], Table 4-II provides the parameters for computing (4.25) 

and (4.26). Once the RMS and average currents of the switches and diodes are determined, the 

conduction power losses can be estimated by:  

The datasheets of the switches and the diodes provide the actual values of Rds(ON) and Vf.  

Figs. 4.14 and 4.15 show the theoretical waveforms of the RMS and average currents as a 

function of the primary duty cycle Dp for different values of phase shift Dφ. 

Table 4-II: Switches and Diodes Conducting Forward Current 

Sn id tSi tSf Dn IF tDi tDf 

S1 ip+iLb t1 t3 D1 iLb to t4 + (Dx Tsw/2) 
S2 ip+iLb t3 t4 D3 nip t2 t5 
S4 ip t4 t7 DS1 ip to t1 
S5 nip t1 t2 D5 nip t1 t2 
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Figure 4.14: Theoretical waveforms representing RMS (S5,6) and average (D1,2,3,4) currents as a 
function of primary duty cycle Dp and Dϕ is a parameter. 

 

Figure 4.15: Theoretical waveforms representing RMS (S1,4,2,3) and average (D,3,4) currents as a 
function of primary duty cycle Dp and Dϕ is a parameter. 
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4.4.B Switching Losses 

Switching losses depend on whether the converter operates under soft- or hard-switching. In 

case of soft-switching, prior to turning switches ON, the drain-source voltage Vds = 0 and only 

the switch turn-OFF losses are considered. The estimation of the turn-OFF losses can be determined 

based on the size of the output capacitance of the switches, the utilized semiconductor device, and 

the magnitude of the current at which the transistor turns OFF [4.22],[4.23]. Previous research 

details the analytical analysis of how to calculate switching-losses [4.15]. It is worth noting that 

the primary switches (S1-S4) turn OFF while the primary and boost inductor currents are conducting 

through them. Section II. B provides the primary current at the instant when the transistors turn 

OFF. The magnitude of the boost inductor depends on the converter operating point: 

where Vpk is the peak of the input voltage. At turn OFF, the magnitude of the current flowing 

through S1, S2, and S5 are [I3+iLb], [I4+iLb], and [nI2] respectively. 

Fig. 4.16 shows the overall efficiency of the proposed converter as a function of the phase shift 

Dφ where the primary duty cycle Dp is a parameter. For low-power conditions where low Dp are 

required, there is a region where the converter is operating under hard switching. While for an 

example [Dp > 0.5], switches operate at soft switching for all the values of Dφ. However, there is 

trade-offs between obtaining high efficiency and high-power factor at the same time. That is 

because, low phase shift Dφ results in high efficiency, but at the same time results in low power 

factors. Further analysis regarding the optimized selection of Dp and Dφ is provided in the 

experimental section.  
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Figure 4.16: Efficiency as a function of the phase shift Dϕ where primary duty cycle Dp is a 
parameter (blue line: soft-switching, black line: hard-switching). 

4.5 Experimental Results 

A 1-kW, 110-VRMS, 20-kHz scale-down prototype was built and tested to demonstrate its 

feasibility and verify the proof-of-concept. In Fig. 4.17, S1 turns ON at ZVS since [ip < 0] and 

conducts through the anti-parallel diode DS1. Prior to turning S1 ON, the drain-source voltage VS1 

equals to VC1, that because S2 and S3 are circulating ip and S1 sustains only half of the dc-bus voltage 

(0.5Vdc). However, once S1 turned OFF and ip conducts through S4 which makes S1 withstands the 

full dc-bus voltage Vdc as shown in Fig. 4.17. 

S2 conducts positive current (primary current ip) and negative currents [ip+iLb]. It turns ON at 

ZVS while ip is negative and conducting through anti-parallel diode (DS2) as shown in Fig. 4.18. 

The drain-source voltage VS2 is half of the dc-bus voltage (0.5Vdc) as noted in Fig. 4.18. 

Fig. 4.19 shows the ZCS and ZVS at turning S5 ON. The switch turns ON while is is negative 

and conducting through the diode D4. The active switches in the secondary side of the proposed 

topology sustain half of the output voltage 0.5Vo as shown in Fig. 4.19. 
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Figure 4.17: Experimental waveforms showing ZVS at turn ON switch S1, gate-source signal (blue), 
drain-source voltage (red), current through the switch (green), and primary current (pink). 
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Figure 4.18: Experimental waveforms showing ZVS at turn ON for switch S2, gate-source signal 
(blue), drain-source voltage (red), current through the switch (green), and primary current (pink). 
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Figure 4.19: Experimental waveforms showing ZVS at turn ON for switch S5, gate-source signal 
(blue), drain-source voltage (red), current through the switch (green), and primary current (pink). 

The proposed isolated three level ac-dc power converter has two different mode operations. 

First, the primary current ip has three different slopes which can be obtain for [Dϕ < Dp], as shown 

in Fig. 4.20(a). Second, the primary current has two different slopes as indicated in Fig. 4.20 (b), 

which is always true for [Dϕ ≥ D].  

Fig. 4.21 shows the efficiency of the primary side circuit, magnetic components, secondary 

side circuit, and overall efficiency as a function of the output power. The efficiency was measured 

for different phase shifts [Dϕ = 0.4, 0.6, 0.8] in order to obtain the optimal selection of Dϕ that 

result in a high efficiency operation. As it can be seen, the primary circuit tends to have high 

efficiency for high phase shift (i.e., [Dϕ = 0.8]). However, the magnetic components and secondary 

circuit show high efficiency for low phase shift (i.e., [Dϕ = 0.4]). Therefore, operating the converter 

around 50% phase shift results in a high efficiency. 
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Figure 4.20: Experimental results showing primary voltage vp, secondary voltage vs, primary 
current ip, and boost inductor current iLb for (a) [Dϕ ≤ Dp] and (b) [Dϕ > Dp].  
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Figure 4.21: Experimental efficiency measured between input voltage and transformer primary 
terminals (ƞpri %), transformer primary and secondary terminals (ƞmag %), transformer secondary 
and output terminals (ƞsec %), input and output terminal (ƞtot %). Solid-line [Dϕ = 0.4], dashed-line 
[Dϕ = 0.6], and solid-dot-line [Dϕ = 0.8]. 
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The main objective of the proposed topology is obtaining a high power factor at the input. One 

way to estimate the PF based on the experimental waveforms is calculating the true average input 

power and divided it by the apparent power. 

where Sin is the apparent power calculated based on the input RMS current and voltage shown in 

Fig. 4.22 [Sin = Vin(RMS)Iin(RMS)], Pin is the true average power calculated from the average current 

and voltage presented in Fig. 4.23 [Pin = Vin(AV)Iin(AV)].  

Fig. 4.24 presents the power factor PF as function of the primary duty cycle Dp for different 

phase shifts Dϕ. With reference to Fig. 4.16, the optimal selection for the duty cycles are [Dp > 

0.75] and [Dϕ < 0.6]. With those restrictions on duty cycles, the proposed converter operates at 

very high power factor > 0.99, and high efficiency > 95%. 

 

Figure 4.22: Input current iin(t) and voltage vin(t) for half of the fundamental frequency. 

 in

in

P
PF

S
= , (4. 30) 
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Figure 4.23: Experimental results of the average input current I(AV), voltage V(AV), and power P(AV) 
over half of the fundamental frequency. 

 

Figure 4.24: Experimental measurements presenting power factor (PF) as function of primary duty 
cycle (Dp) for different phase shift (Dϕ). 

4.6 Conclusion  

The main goal of the proposed new topology was to draw ac-power at a high-power factor 

while controlling the dc-bus and output voltages. The study showed very high PF at high primary 

and phase shift duty cycles. For wide range of power, the proposed topology operated under soft 

switching. In particular, the secondary side switches operated under ZVS and ZCS without adding 

more restrictions on the primary duty cycle. Optimal selection of the primary and phase shift duty 

cycles resulted in high PF and high efficiency. At the secondary side, SiC MOSFETs (S5, S6) can 
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be replaced by IGBTs to eliminate the extra two diodes (D5, D6) which may lead to a potential 

future research.  
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Chapter 5  

DESIGN TRADE-OFFS FOR MEDIUM- AND HIGH-FREQUENCY TRANSFORMERS FOR 

ISOLATED POWER CONVERTERS IN DISTRIBUTION SYSTEM APPLICATIONS  

O. Aldosari, L. A. Garcia Rodriguez, J. C. Balda and S. K. Mazumder, “Design Trade-Offs for 

Medium- and High-Frequency Transformers for Isolated Power Converters in Distribution System 

Applications,” 2018 9th IEEE International Symposium on Power Electronics for Distributed 

Generation Systems (PEDG), Charlotte, NC, 2018, pp. 1-7. 

Abstract 

Medium- and high-frequency transformers (MFTs/HFTs) are a fundamental component in 

many isolated power-converter topologies proposed for electric distribution applications (e.g., 

solid-state power substations). Previous work presented detailed transformer design 

methodologies and addressed core loss limitations for different core materials and operating 

frequencies. However, MFT/HFT designs become significantly challenging for high power levels 

that are typical of distribution systems (e.g., greater than 100-kVA). Furthermore, few references 

include specific requirements in the design methodology like desired leakage and/or magnetizing 

inductances (which are normally specified for high-power applications).  

A design methodology for MFTs/HFTs is presented in this paper that accounts for tradeoffs 

like having a given leakage inductance for maximum power transfer (e.g., in the case of dual-

active bridges (DABs)) or a given magnetizing inductance (to either attain a certain power transfer 

or to limit the power semiconductor currents). The design methodology is verified via finite-

element analysis (FEA) using ANSYSTM and an experimental prototype. 
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5.1 Introduction  

Nowadays, several applications of power electronics in electric power distribution systems are 

envisioned due to advances in high-voltage power semiconductor technologies, in particular, those 

enabled by wide bandgap power devices [5.1]. High-voltage silicon-carbide (SiC) MOSFETs are 

commercialized up to 1.7-kV with 3.3-kV and 6.5-kV devices to be commercialized soon. These 

devices have lower switching losses than silicon IGBTs so they can be operated at much higher 

switching frequencies leading to reductions of passive component sizes. These applications of 

power electronics often require stepping down or up a particular voltage level using a transformer. 

Examples are (a) solid-state transformers based on DABs requiring a certain value of the 

transformer leakage inductance for maximum power transfer [5.2], and (b) flyback converter 

topologies , or (c) input-output continuous converter topologies [5.3] where the transformer that 

store energy requires a given magnetizing inductance and ideally no leakage inductance to avoid 

adverse effects [5.4].  

New cores based on amorphous and nanocrystalline materials enable size reductions of 

inductors and transformers in the medium-frequency range due to their higher flux densities when 

compared to ferrite cores. However, high-power applications require stacking several cores of 

these materials (due to the size limitations of commercial cores) or, if possible, use large expensive 

custom cores to satisfy area-product requirements. As a result, the design becomes more complex 

due to several tradeoffs among the transformer specifications. With the goal of simplifying the 

design, a methodology for high-power MFTs/HFTs considering system specifications (e.g., 

desired leakage and/or magnetizing inductances) and constraints (e.g., temperature rise, operating 

frequency, or volume) is presented and verified via ANSYSTM finite-element analysis (FEA) and 

experimental results.  
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The paper is organized as follows: Section II reviews different core materials currently 

available for high-power applications and illustrate a simple technique to estimate temperature rise 

as a function of rated power, Section III describes the proposed design methodology, Section IV 

considers a case study and evaluates FEA results, Section V presents a scaled-down prototype as 

a verification of the proposed tradeoff strategies and Section VI provides the research conclusions. 

5.2 Materials Suitable for High-Power MFTs/HFTs  

Selecting the proper core material is a critical decision leading to a successful MFTs/HFTs 

design. In the last decades, intensive research has been done on a variety of different magnetic 

materials (e.g., nanocrystalline, amorphous and ferrite) in terms of cost, power loss, and size [5.5]. 

However, it is very challenging and time consuming to choose the right material to meet specific 

application’s requirements, especially at high-power levels. For this reason, the following 

subsections will provide an overview and comparison between these magnetics materials (A), and 

describe a simple technique for selecting the core material over a wide range of power ratings 

subject to a specified temperature rise (B). 

5.2.A Core Material Review 

Well-known materials for designing MFTs/HFTs are nanocrystalline, amorphous and ferrite 

[5.5]. Table 5-I shows a general comparison between these materials [5.6]. At high-power levels, 

nanocrystalline and amorphous are the two main materials for designing MFTs (e.g., f = 20 kHz) 

due to their low core losses (low eddy current losses), high saturation flux and high permeability 

[5.6],[5.7]. The low prices and flux densities (0.3-0.5 T) of the soft ferrite material make them only 

a suitable choice for low-power HFTs applications [5.8]. 
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Table 5-I: Core Material Comparison [5.6] 

Material Pros Cons 

Nanocrystalline 
High Bsat (1.2 T) 
Low losses @ high power 
High permeability  

High cost  

Amorphous 
High Bsat (1.55 T)  
High permeability  
Reasonable cost 

Medium losses and large 
sizes @ high power levels  

Ferrite  
Low losses and Low cost @ 
low-power levels 
 

Low Bsat (0.5 T) 
Production difficulty and 
large sizes @ high power 
levels 

 

5.2.B Temperature Rise Considerations  

It is initially desired for simplicity to design MFTs/HFTs for high-power levels without a 

detailed design of the thermal management system (e.g., forced convection, liquid cooling). 

However, the temperature rises with different slopes for different magnetic materials as the rated 

power increases. To have good estimations about temperature changes as function of the rated 

power, the following assumptions are made: 

Turns ratio [N = 1] (minimum area product, worst-case scenario).  

Desired temperature rise [ΔT = 50 °C]. 

Operation frequency[ f = 20 kHz]. 

Power losses (in cores and windings) are a percentage of the maximum output power which is 

based on evaluating multiple design results for different power levels and the considered core 

material. The assumed values were 0.28 % for nanocrystalline and 0.54 % for amorphous. 

The optimal flux density Bopt is given by [5.9] as: 
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The minimum area product Ap is then calculated as follows [5.9]:  

where the values of the constants are shown in Table 5-II [5.9]. 

The temperature rise ΔT (°C) as function of the area product Ap with assumed total power 

losses Plosses is estimated by [5.10] as: 

where [Ks = 39.2] is a constant used to calculate the surface area for C cores [5.10]. The material 

specifications and properties obtained from manufacturer datasheets are shown in Table 5-III.  

 

Table 5-II: Constant Values of Optimal Flux and Area Product 

Variable  Value Variable Value 

coefficient of heat transfer ℎ𝑐(10𝑤/𝑚2) 
10 

Dimensionless 

quantity 𝑘𝑎 
40 

Initial wire resistivity 𝜌𝑤 (𝛺 ∗ 𝑚) 
1.78*10-8 

Dimensionless 

quantity 𝑘𝑤 
10 

Window utilization 

factor 𝑘𝑢 
0.4 

Dimensionless 

quantity 𝑘𝑐 
5.6 

Waveform factor square 

wave 𝐾𝑣 
4 

Core stacking 

factor 𝑘𝑠𝑓 
0.95 

𝐾𝑡 = √ℎ𝑐𝑘𝑎/𝜌𝑤𝑘𝑤 48*10-3 

Expected 

temperature ∆𝑇(°C) 

50 
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Table 5-III: Material Coefficients [5.10] 

Parameters Nanocrystalline Amorphous 

KC 2.3 w/m3 1.3617 w/m3 𝛼 1.32 1.51 𝛽 2.12 1.74 

Bsat 1.2 T 1.56 T 

A MATLAB® code was generated to evaluate the above equations and approximate the 

temperature rise at different power levels. Fig. 5.1 shows that the nanocrystalline material has a 

lower ΔT compared to the amorphous material, making it a better choice for designing a 120-kVA 

and 20-kHz MFT [5.11].  

In general, the core and winding losses increase due to the increase of the area product as the 

rated power increases. Furthermore, the amorphous material results in a low Bopt so the area 

product is large requiring a large number of turns due to its large cross sectional area. In addition, 

the core losses will be large due to the resulting product of [(Ploss/m3)*volume].  

 
Figure 5.1: Estimated temperature rise ΔT as a function of rated power using nanocrystalline 
(blue) and amorphous (red) core materials. 
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As a result, the numerator in (5.3) is relatively larger than the denominator, which makes the 

temperature rise higher than that for the nanocrystalline material. The main drawback of the latter 

is its relatively high price. Efficiency and cost are important tradeoffs between these two materials. 

King Magnetics® provides C cores which are made from nanocrystalline ribbon materials that 

have a high saturation flux density Bsat, low magnetostriction, low noise and relative magnetic 

permeability μr higher than 30,000 H/m [5.12]. The largest commercial core is 85x106x171 mm, 

weights 6,600 grams and has an area products of 4193.3 cm4. This core can be used to design a 

64-kW (max) MFTs assuming ΔT = 50 °C. For a design with a higher rated power, designer should 

consider stacking cores in parallel to increase the area product if the window area is enough to fit 

the need number of turns. 

5.3 Design Methodology  for High-Power MFTs/HFTs 

5.3.A Magnetizing and Leakage Inductance Requirements  

Obtaining the specified magnetizing inductance *

mL  and leakage inductance *

kL  when designing 

MFTs/HFTs is very challenging at high-power levels. The main goal is to keep *

mL at the value 

constrained by: 

while maintaining the flux density close to its optimal value. The new variable Cf introduced in 

(5.4) has a range between 0 and 1 (i.e., [0 < Cf ≤ 1]), where its value depends on the type of isolated 

power converter. Lower values of Cf  result in a significantly larger *

mL value, which is necessary to 

avoid a high magnetizing current as in the case of DAB converters where Cf is at least 0.25 (which 

means that the magnetizing current Im should be less than 25 % of the primary current Ip [5.2]). 
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However, a certain leakage inductance *

kL is required for DAB-based MFTs/HFTs to maximize the 

transferred power [5.2]; i.e.: 

where ϕ is the phase-shift between primary and secondary transformer voltage waveforms, Vp is the 

primary voltage, d is the duty cycle of the voltage waveforms, and Po is the output power. The Lm 

and Lk inductances depend on the core physical dimensions and winding arrangements around the 

core [5.9], [5.10]; specifically: 

where SF is the number of cores needed to achieve the required area product Ap; μo and μr are the 

air and material permeabilities; lc is the mean length of the magnetic path; C is the window length 

of the core; MLT is the mean length of the turns; N is the number of turns [5.9]; lg is the air-gap 

length; NL is the portion of the dimension C covered by the windings; diso is the distance between 

primary and secondary windings and da is the diameter of the Litz wire as shown in Fig. 5.2. 

However, the core and winding geometries in the case of DAB-based converters should be a 

tradeoff in favor of achieving the required magnetizing inductance since the leakage inductance can 

be increased by adding an external inductor. The number of turns is determined in [5.10] as: 

where kv is the waveform factor.  
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Figure 5.2: Main physical parameters of a MFT/HFT. 

In the case of topologies like flyback converters, Cf is 1.0, which implies that the magnetizing 

current Im is equal to the primary current Ip. As a result, the magnetizing inductance Lm in this case 

is much smaller than for the DAB case. From (5.6), Lm can be reduced to the desired value by 

introducing an air-gap of length lg according to: 

Equation (5.9) considers the case of a shell-type transformer implemented by using two C-cores 

[5.13]. However, the value of the leakage inductance should be minimal to avoid undesired voltage 

spikes across the converter’s power devices. 

5.3.B MFTs/HFT Design Steps 

The general objective of the transformer design is to maximize efficiency while minimizing 

transformer weight or volume subject to the specified temperature rise and inductances. Thus, the 

MFTs/HFTs design largely follows the procedure illustrated in Fig. 5.3.  

The suggested main steps for designing MFTs/HFTs are the following:  

  2 o c
g rms

o r

l
l NI

B


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Step 1: Design parameters are specified based on the application’s requirements that take into 

account the desired magnetizing inductance *

mL  using (5.4) by selecting the proper value of 

Cf . 

Step 2: The saturation flux density Bsat, and the Steinmetz coefficients 𝑘, 𝛼 and 𝛽 are obtained 

from the manufacturer datasheet of the selected core material. 

Step 3: The optimal flux density Bopt is calculated using (5.1) that considers that minimum loss 

point (i.e., copper and core losses are equal).  

Step 4: The minimum area product *

pA  is calculated using (5.2) and selecting a core whose area 

product Ap > *

pA . 

Step 5: Winding arrangements and dimensions are made based on the application specifications 

as explained in the above subsection (A).  

Step 6: Air-gap length lg is calculated using (5.9) to meet the desired *

mL  that was obtained in 

(5.4).  

Step 7: Magnetizing inductance evaluation based on the structure of the cores and winding coil 

dimensions around the central core. The actual Lm can be calculated using (5.6), and then 

compared to the desired *

mL  (5.4).  

Step 8: Leakage inductance evaluation based on the structure of the cores and the distance 

between primary and secondary coils, the actual Lk can be calculated using (5.7), and then 

compared to the desired *

kL . The windings should be as close as possible to each other to 

minimize the leakage inductance in case of flyback converters. For that reason, the secondary 

windings are wound around the primary windings with the minimum distance constrained by 

the required isolation distance.  
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Step 9: Finite-Element Analysis (FEA) is performed for design verification of the previous steps. 

The flux density distribution B through the cores is visualized using ANSYSTM simulations 

as it can be seen in the following section. If the cores experience high magnetic fields B, the 

core dimensions and the air-gap length should be modified (increased) based on (5.9) to 

reduce the flux fields towards its optimal level.  

Step 10: Volume calculation is very important, particularly, for applications characterized by 

space limitations. If the volume specification is not fulfilled, a new optimization design 

iteration can be considered by selecting a different operating flux density in terms of the 

optimal volume in Step 3. However, there is a tradeoff between efficiency and power density. 

Step 11: Core and winding losses are the two main transformer losses. There are many 

approaches to calculate power core losses (i.e., separation of losses, Preisach model and Jiles-

Atherton model based on the hysteresis model). The core loss calculation here is based on the 

Improved Generalised Steinmetz Equation (IGSE) due to the square waveform excitation 

[5.14]. 

Step 12: The resulting temperature rise ΔT is calculated using (5.3) to ensure that the specified 

limit (in Step 1) is not exceeded. In addition, the required isolation level is evaluated by 

calculating the distance between conductors diso per the procedure given in [5.15]: 

where Viso  is the isolation voltage level and it should comply with ANSI/IEEE C57.12.01, 

kiso is the safety margin specified by the designer based on the application criteria and Eins is 

the dielectric strength for the material isolating the primary voltage from the secondary 

voltage. If the requirements are not fulfilled, a new iteration is initiated considering two 

options: changing the core dimensions in Step 4, or winding arrangement in Step 5. 

  iso
iso

iso ins

V
d

k E
= , (5. 10) 
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Figure 5.3: MFTs/HFTs design flow chart. 
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5.4 High-Power Case Study Design Results 

Table 5-IV presents the specifications and requirements of the case study for designing a MFT 

where energy storage is required (120-kVA, 20-kHz, 1020-Vrms, [Np/Ns = 1]). Based on the given 

specifications and requirements, the optimal flux density Bopt was calculated as 0.147 T, being a good 

compromise between efficiency and volume.  

Fig. 5.2 illustrated the main physical dimensions of the selected shell-type transformer to 

achieve the required magnetizing inductance and a low leakage inductance. In case of a topology 

like the flyback converter, the isolation distance diso determines the minimum distance between 

windings in order to meet the leakage inductance requirement. The flux density distribution inside 

the cores is shown in Fig. 5.4 where the flux densities 𝐵 are within the material allowable limits. 

The sharp edges of the core are the regions where the higher magnetic fields are located, while most 

of the core structure experience density fields between (0.161 T green) and (0.096 T blue) which is 

a perfect range for the calculated optimal flux. The temperature rise of the designed MFT was 

calculated as low as 48 °C due to nanocrystalline material which has low losses at the operation 

frequency of 20-kHz. As the power level increases, challenges arise in terms of obtaining the 

required *

mL and *

kL inductances. Ssubstantial power losses in the cores and windings may require 

complex cooling systems [5.16]. which compromise the transformer size and weight. Also, the 

required voltage isolation level increases with increased power levels. 

Table 5-IV: Specifications and Results For MFT/HFT 

Specified Parameters Required Calculated 

Magnetizing 
Inductance Lm  

≤ 68 𝜇H 30 𝜇H 

Leakage Inductance 𝐿𝑘 (𝜇𝐻) 
Small as 
possible 

1.11 

Efficiency η (%) ≥ 99 99.7 
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Figure 5.4: ANSYSTM flux density values inside the cores. 

5.5 HFT Scale-Down Prototype and Results 

A scale-down prototype of a HFT based on a flyback converter topology was built for 

verification of the proposed design methodology. The main specification parameters of the 1020-

W high-frequency transformer are given in Table 5-V.  

Leakage inductance has to be as small as possible to avoid unwanted voltage spikes across the 

terminal of the transformer and converter’s switches. Meanwhile, the magnetizing inductance 

values satisfies (5.4) to guarantee power transfer from primary to secondary side at rated voltage 

and current. However, having a slightly larger magnetizing [Lm >Lm
* ] is accepted as a tradeoffs to 

keep leakage inductance as small as possible. 

Table 5-V: Specified Parameters of The HFT Prototype 

Parameters Values 

Rated Power 1020 W 

Primary DC Voltage   120 VDC 

Primary RMS Current  8.5 ARMS 

Turns Ratio 1:1 

Switching Frequency  100 kHz 
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The main physical parameters of the cores been used for this prototype (Fig. 5.2) are shown in 

Table 5-VI. The calculated value for the magnetizing inductance with an air-gab of lg = 0.87 mm 

was obtained from (5.6) as [Lm = 38.1 µH] which is very close to the measured prototype value 

[Lexp = 40.5 µH] measured by the 4192A LF impedance analyzer which means an error of less than 

6.5 %. The calculated value for the leakage inductance was calculated from (5.7) as [Lk = 1.19 µH] 

where the experimental value is [Lkexp = 1.04 µH]. The error between these two values was 

calculated as 14.4 % assuming that there is no space between turns which makes NL at its minimum 

value. The built high frequency transformer prototype is shown in Fig. 5.5. 

Table 5-VI: Physical Parameters for The HFT Prototype 

A 10 mm F 53 mm Mean path length 12.8 cm 
B 11 mm df 1.25 mm Eff. cross area 1.56 cm2 
C 33 mm da 2.07 mm Weight 146 g 
D 20 mm diso 0.0762 mm Number of turns 8 
E 31 mm dair 11.251mm Area product 7.26 cm4 

 

 

Figure 5.5: Prototype of 1020 kW, 120 Vrms and 100 kHz high frequincy transformer “Photo by 
author”. 
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The primary-to-secondary stray capacitance between the windings must be very small to avoid 

undesired interactions between primary and secondary windings. For that reason, a copper shield 

was inserted between the two windings to reduce the total capacitance. Measurements were 

performed over a wide range of frequencies to make sure the transformer parameters are constant. 

Fig. 5.6 shows the magnetizing inductance Lm, Fig. 5.7 shows the leakage inductance Lk, and Fig. 

5.8 shows the stray primary-to-secondary windings capacitance Cps as a function of frequency. 

From 50-kHz to 150-kHz, the passive components (Lm, Lk and Cps) have low changes as (10 %, 0.9 

% and 0.4 %) respectively. 

After verifying that the values of the magnetic components are close to the designed values 

calculated from the design equations, a flyback converter capable of switching at 100-kHz with an 

input voltage of 120-VDC and a peak current of 15-A was constructed as shown in Fig. 5.9. Table 

5-V provides the main specifications of the built HFT and Table 5-VI its main dimensions. 

 

Figure 5.6: Magnetizing inductance Lm as function of the frequency. 
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Figure 5.7: Leakage inductance Lk as function of the frequency. 

 

Figure 5.8: Primary-to-secondary stray capacitance Cps as function of the frequency. 
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Figure 5.9: Flyback converter experimental setup “Photo by author”. 

Fig. 5.10 shows the transformer primary and secondary currents at rated conditions of delivering 

450-W to a 35-Ω resistive load. The small current spikes that appear in the leading edge of the 

primary current are caused by the transformer’s parasitic capacitance [5.10]. 

The selected operating condition for the flyback converter was the boundary conduction mode 

(BCM) due to its improved performance in comparison with the continuous and discontinuous 

modes of operation  [5.17]. Because of the BCM operation with a duty cycle of 50 %, the voltage 

conversion ratio is 1, so the output voltage is the same as the input voltage as shown in Fig. 5.11. 

The drain to source voltage of the SiC MOSFET is also shown in Fig. 5.11 where it is seen that the 

voltage spikes across the transistor are due to the presence of the leakage inductance Lk.  
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Figure 5.10: Primary Ip and secondary Is flyback transformer currents when the input voltage Vin 
is 120 V. 

 
Figure 5.11: SiC MOSFET drain-to-source voltage Vds and flyback converter output votlage Vo 
when the input voltage Vin is 120 V. 
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Those voltage spikes can be reduced to a desire lower level at the expense of reducing the 

efficiency of the converter [5.18]. For this particular case, the voltage spikes were limited to 450-V 

using a snubber based on passive components since the rated voltage of the implemented devices 

was 1200-V. 

5.6 Conclusions  

Designing MFTs/HFTs for high power levels is challenging due to system specifications and 

constraints (e.g., magnetizing and leakage inductances, voltage insulation level, temperature rise, 

efficiency) which drive the design in opposite directions so the designer must make several 

tradeoffs. A new simple technique to compare different core materials in terms of temperature rise 

was presented followed by a designed methodology that considers inductance specifications by 

specifying the value of the new variable Cf. The feasibility of the proposed ideas were verified 

through ANSYSTM simulations and a scaled-down prototype. The experimental results agreed fairly 

well with the theoretical calculations and simulations. 
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Chapter 6  

RESEARCH CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK  

6.1 Research Conclusions  

Two novel three-level isolated AC-DC PFC converters were presented throughout the 

dissertation. In particular, Chapter 2 introduced the first topology accomplishing the following:  

• Same advantages as the previous three-level topologies [6.1], [6.2] but with less number of 

active devices. The secondary switches sustained half of the output voltage, whereas those 

ones in a similar converter (i.e., DAB) must sustain the full output voltage.     

Chapter 3 was an extension of Chapter 2 modified the proposed topology to operate under soft-

switching. A new circuit configuration was introduced by adding a flying capacitor in the 

secondary side to achieve soft switching over the entire power range. Moreover, a close-loop 

algorithm was implemented to show the converter response to a step load change. The analysis 

under steady-state including soft switching conditions and efficiency evaluation were performed 

and demonstrated through a 25-kW simulation case study and a 900-W experimental prototype.  

Chapter 3 had the following contributions: 

• Adding a flying capacitor resulted in the secondary switches turning ON at ZVS and ZCS 

over the full range of power without any restrictions on duty cycles.   

• The two active switches in the secondary side continued to sustain half of the output voltage, 

which in return increased the flexibility of operating the proposed topology at a high output 

voltage.  

• The total price of the secondary bridge should be less than those of other existing three-

level converters (i.e., NPC, DAB). The total cost of the proposed converter should decrease 

substantially especially when IGBT switches are used. That is because an IGBT does not 
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have body diode and there is no need to connect diodes (D5, D6) in series with the switches 

(S5, S6). For example, assuming that the components shown in Table 6-I are available to be 

used in the three different converters (i.e., H-bridge, proposed converter, and NPC 

converter), the total cost of each converter can be estimated as:   

[CH_Bridge = 4($158.4)IGBTs + 1($32.78)Output_capacitor + 2($165.5)Gate-driver =$997.38]. 

[CProposed = 2($124.82)IGBTs + 2($10.22)Output_capacitor + 1($165.5)Gate-driver + 2(65.87)Diode + 

1(3.13)Flying_capacitor =$570.45]. 

[CNPC=4($124.82)IGBTs + 2($10.22)Output_capacitor + 2($165.5)gate-driver + 2($62.88)Diode + 

1($3.13)Flying_capacitor =$979.61]. 

Fig. 6.1 shows that the H-bridge could be estimated 75% more expensive and NPC is 71% 

more expensive than the proposed converter.   

Table 6-I: Components Used for Cost Comparison 

Converter 
Type 

Components Part Number 
Rated 
Voltage  

Quantity 
Needed 

H-Bridge 

IGBT FF400R12KE3 Vo 4 
Output Capacitor B32374A4506J080 Vo 1 
Gate driver L5066601 - 2 (two channel) 
Diode None - - 
Flying capacitor None - - 

Proposed 

IGBT FF400R06KE3 Vo/2 2 
Output Capacitor C4ATHBW5200A3NJ Vo/2 2 
Gate driver L5066601 - 1 (two channel) 
Diode MEO450-12DA Vo 2 
Flying capacitor FKP1O131507D00KSSD Vo/2 1 

NPC 

IGBT FF400R06KE3 Vo/2 4 
Output Capacitor C4ATHBW5200A3NJ Vo/2 2 
Gate driver L5066601 - 2 (two channel) 
Diode MEO500-06DA Vo/2 2 
Flying capacitor FKP1O131507D00KSSD Vo/2 1 
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$997.38

$570.45

$979.61

H-Bridge Proposed NPC

75% 
71% 

 

Figure 6.1: Total cost comparison for the H-Bridge, Proposed, and NPC converters. 

• In comparison with the topology presented in [6.1], which claimed 93% efficiency, the first 

proposed topology showed higher efficiency of 94.5%. Most of the total power losses, 55%, 

dissipated across the magnetics elements. The primary and secondary bridges dissipated 

33% and 12 % of the total losses, respectively.  

• The proposed topology operated with a closed-loop control algorithm to obtain high power 

factor and regulate the dc-bus and output voltages within desired limits. The system 

response was evaluated at a sudden load change applied to the output terminals. The results 

showed that the proposed topology and control technique operated as expected following 

the reference signals.  

Chapter 4 explained in detail the full characteristics of the second proposed topology where 

the primary (NPC) inverter was replaced by a T-type converter to further decrease the number of 

devices. The following goals were attained:  

• Conduction losses were reduced by eliminating the two freewheeling diodes present in the 

NPC inverter. In the NPC inverter, the diodes conduction losses are significant, especially 
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when the output load increases. When this happens, the control generates a minimal 

primary duty cycle to avoid a high dc-bus voltage, and the primary current conducts 

through the freewheeling diodes for most of the switching cycle. Furthermore, the T-type 

inverter conducts the primary and boost inductor currents through only one switch during 

[DpTs/2]. However, the NPC inverter conducts the same currents for the same period 

through two switches.       

• A new modulation scheme was established for the second topology to reduce the switching 

conduction losses and achieve high efficiency. It showed that the common-source switches 

(S2, S3) turned ON at the same time to circulate the primary current instead of conducting 

through the body diodes, which in turn minimized the conduction losses of these two 

switches. Consequently, the proposed topology based on T-type inverter shows an 

efficiency of 95.8% higher than that one for the NPC topology.  

It was indicated that the magnetic losses are the largest loss component. Hence, the design of 

medium-frequency transformer is very important topic. For completeness, chapter 5 gave detailed 

steps for designing a high frequency transformer and addressed the design trade-offs that need to 

be considered. In particular:  

• The magnetic design equations were rearranged to estimate the temperature rise as function 

of the output power for a specific material. Also, a new equation was determined which 

can lead to the required magnetizing inductance for different power converter topologies.  

• FEA simulation was included in the design steps to provide essential information regarding 

the flux-density strength and distribution, temperature rise, and saturation state.    
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6.2 Recommendations for Future Work   

There are several new topics worth exploring since the proposed topologies are new; in 

particular:  

1) Connecting two coils in the secondary side to split the secondary current in half, with the 

goal of increasing the efficiency of the secondary bridge.  

2) Connecting the primary bridges in parallel and cascading secondary bridges in series while 

using a fixed duty cycles to control both the input dc-bus voltage and output voltage (refer 

to Fig. 1.7).  

3) Appling a nonlinear control to the proposed topology instead of using the classical PI 

control with the goal of improving the load step response. 

4) Optimizing the magnetics design in order to improve the overall efficiency.  

5) Selecting a better device (e.g., SiC MOSFETs) that should improve overall efficiency.  

6) For high-power applications, the start-up time and discharge of the flying capacitor need 

to be considered and investigated.  
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