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Abstract: We propose a threshold model extending the generalized Pareto distribu-

tion for exceedances over a threshold. The threshold is solely determined within the

model and is shown to be super-consistent under the maximum product of spacings

estimation method. We apply the model to some insurance data and demonstrate

the merit of having a full parametric model for the entire data set.
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1. Introduction

Pickands (1975) demonstrated that the conditional survival distribution of

exceedances (or peaks, or excesses) X − u over a sufficiently high threshold u,

given X ≥ u, is a generalized Pareto distribution (GPD)

1 − Gu (x; γ, σ) =





{
1 + γ(x−u)

σ

}−1/γ
, x ∈ (u,∞) if γ > 0,

exp
{
− (x−u)

σ

}
, x ∈ (u,∞) if γ = 0,

{
1 + γ(x−u)

σ

}−1/γ
, x ∈ (u, u − σ

γ ) if γ < 0.

(1.1)

The parameter γ, termed the extreme value index (EVI), is a key quantity in the

literature of extreme value analysis. Its sign is the dominant factor in describing

the tail of the underlying distribution F (x).

In order to work out the relevant estimators γ̂ and σ̂, an input of u is needed,

and this choice is very much an open matter. In the literature, not much atten-

tion has been given to this aspect. It is possible to choose an optimal u by the

quantification of a bias versus variance trade-off. As in the case of the Hill es-

timator (Hill (1975)), choosing an optimal threshold is similar to choosing the

number of upper order statistics; a compromise between bias and variance has

to be reached. Davison and Smith (1990) proposed the use of a mean excess

plot based on the linearity of the mean excess function for the GPD. See also
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Embrechts, Klüppelberg, and Mikosch (1997), Beirlant et al. (2004), Castillo et
al. (2005), and de Haan and Ferreira (2006) for extensive discussions about ex-
treme value analysis. In this paper, we propose a threshold method that allows
for different probability models in different portions of the sample space. The
threshold (or the change point) of the model becomes one of the unknown pa-
rameters. There have been remarkable successes of the threshold method in the
application of time series analysis, and in other fields. See for example, Tong
(1978) and Tong and Lim (1980).

Given a value of u, the estimation of the GPD parameters can be performed
in a variety of ways. A popular method is maximum likelihood. Maximum like-
lihood estimators are consistent if γ > −1/2, but the log-likelihood function is
unbounded. Maximizing the log-likelihood function with respect to the param-
eters involves the term − (1 + 1/γ) log [1 + γ (x − u)/σ]. As x ↓ u − σ/γ, the
log-likelihood function approaches positive infinity when γ < −1. An alterna-
tive to maximum likelihood is the maximum product of spacings (MPS) method
introduced by Cheng and Amin (1983). The objective function of the MPS
method is bounded from above by − (k + 1) log (k + 1), where k is the number
of exceedances above u. Cheng and Stephens (1989) proved that, under regu-
larity conditions, the MPS estimators have an asymptotic normal distribution
and differ from the maximum likelihood estimators by op

(
n−1/2

)
. Comparisons

between the two methods on the inference of GPD parameters can be found in
Fitzgerald (1996) and Wong and Li (2006).

The paper is organized as follows. Section 2 describes the threshold model
and presents its asymptotic properties. It is shown that the threshold estimate is
n−consistent and that the GPD parameter estimates are

√
k−consistent. Section

3 gives a summary of the methods of Guillou and Hall (2001) and Beirlant,
Joossens, and Segers (2004). Simulation studies are reported in Section 4. Finally
two examples are presented in Section 5. Section 6 gives a concluding remark.

2. The Threshold Model

The events X ≤ u and X > u on the real line partition the sample space
according to the threshold u. The distribution function P (X ≤ x) can be written
as

P (X ≤ x ∩ X ≤ u) + P (X > u)P (X ≤ x |X > u) .

As u → ∞, the term involving a conditional probability can be approximated
by (1.1). We model the left-hand side of the sample space defined by u by a
truncated distribution function L with parameter θ ∈ Rp. This leads to the
threshold model

F (x; θ, γ, σ) =

{
L (x; θ), x ≤ u,

L (u; θ) + (1 − L (u; θ))Gu (x; γ, σ), x > u.
(2.1)
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The traditional approach concentrates on the k upper order statistics for any

fixed k. Suppose that n (1 − F (un)) → τ holds for 0 < τ < ∞. Here un typically

becomes higher with n. If the GPD is valid for the k excesses over the threshold

u0, it should be equally valid for all thresholds u > u0 subject to an appropriate

change of σ. The major drawbacks of this approach are that much information is

ignored as the sample size increases, and the whereabouts of the true threshold

is always ambiguous. In contrast, (2.1) assumes a fixed large threshold such that

k can tend to ∞ at a rate slower than n as n → ∞. We can see that the GPD

is also valid in this case. For a pair of sequences an and bn with an > 0 and a

continuous distribution function Λ (x), Pickands (1975) showed that if

lim
n→∞

[1 − F (anx + bn)]

1 − F (bn)
=

log Λ (x)

log Λ (0)
(2.2)

holds, the right-hand side is the GPD. Note that Λ (x) is an extremal distribution

function. Smith (1987) argued that the limiting results in the present context

are usually conditional on both k and u, and that they can be interpreted as

unconditional results when either k or u is treated as fixed and the other random,

depending on n. As in Smith (1987), we adopt the view that u is fixed in such a

way that as n → ∞, n (1 − F (u)) → ∞ and k−1n (1 − F (u)) →p 1.

Our approach has several advantages. First, the full data set is used so that

there is no loss of information. The model provides a global fit and also an

appropriate tail fit. Second, the determination of the threshold is automatically

data-driven. In particular, the estimate of u differs from the true parameter by an

amount which is of order n−1. Lastly, the model can provide better insight into

the structure of the data. The value of a model is greatly determined by its ability

to predict the future. Extrapolation beyond the data based on n observations is

more persuasive than on k excesses in the traditional approach. The threshold

value also has an interesting interpretation. In the insurance context, a high-

excess loss layer with an attachment point u is of interest; a payout on the loss

X−u is related to an actuarial pricing problem. Thus, estimation of the threshold

u is of both practical and methodological importance.

Denote by (θ0, γ0, σ0, u0) and (θ̃, γ̃, σ̃, ũ) the true parameter and the MPS es-

timator of (θ, γ, σ, u), respectively. Given an estimate of the threshold ũ, (θ̃, γ̃, σ̃)

is found by maximizing the objective function

M (θ, γ, σ) =
∑n+1

i=1
log

(
F

(
x(i)

)
− F

(
x(i−1)

))
, (2.3)

where F
(
x(0)

)
= 0, F

(
x(n+1)

)
= 1, and x(1) ≤ · · · ≤ x(n) are the ordered

realizations of the sample. If x(j) = x(j−1), j = 2, . . . , n, we replace the quantity

F
(
x(i)

)
− F

(
x(i−1)

)
by the density function f

(
x(i)

)
, as in Cheng and Amin
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(1983). The estimate of the threshold ũ is obtained by choosing x(i) successively,

as in Tong and Lim (1980), as possible candidates and picking the one for which

the process (2.3) yields the maximum value. Pickands (1975) chose k from 1 to

[n/4] where the empirical upper tail is closest to the GPD. We adopt a similar

approach. Note that when u = x(n), the entire sample is fitted with L.

We show the super-consistency of ũ and the large sample distribution of

other model parameter estimates. This result implies that statistical inference

on the other parameters of model (2.1) can be conducted as if u0 is known.

Theorem 2.1. Under certain very general regularity conditions, ũ is super con-

sistent, with ũ − u0 = Op

(
n−1

)
.

The proof of Theorem 2.1 and the regularity conditions are given in the Appendix.

Theorem 2.2. If γ > −1/2, the MPS estimator (γ̃, σ̃) is asymptotically normal

with [√
k (γ̃ − γ0) ,

√
k (σ̃ − σ0)

]
D→N (0,V) ,

V = (1 + γ)

(
1+γ −σ

−σ 2σ2

)
.

Proof of Theorem 2.2. The maximum product of spacings estimator has an

asymptotic normal distribution with variance given by k−1V where V is the

inverse of the Fisher information matrix; see Theorem 1 in Cheng and Amin

(1983). The log-likelihood function of the threshold model is

h (θ, γ, σ)=

n−k∑

i=1

log l
(
x(i); θ

)
+

n∑

i=n−k+1

log {1 − L (u; θ)}+
n∑

i=n−k+1

log gu

(
x(i); γ, σ

)
.

Since the first two terms on the right-hand side are independent of (γ, σ), the

variance-covariance matrix is the same as that of the GPD. The closed form of

V can be obtained from, for example, Beirlant et al. (2004).

3. Competing Methods

To study the performance of the threshold model, we consider two competing

methods.

Guillou and Hall (2001) suggested an easily computed diagnostic for choosing

the threshold when the Hill estimator is used to estimate the tail exponent. The

procedure can be considered as an asymptotic test for the hypothesis of zero bias.

The value of k is the least integer such that the mean of the bias significantly

differs from zero. The authors found by numerical simulation that the optimal
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choice of the critical value ccrit for the test occurs at a value between 1.25 and

1.5. Unless otherwise specified, we follow the same procedure as in Section 3 of

Guillou and Hall (2001) and use ccrit = 1.25.

Beirlant, Joossens, and Segers (2004) proposed an extension of the GPD with

a single parameter by a second-order refinement of the extreme value theory. The

model is

F (x) = 1 −
[
γ

σ
x −

(γ

σ
u − 1

)(x

u

)ρ+1
]−1/γ

,

with γ ≥ σu−1 max
(
0, 1 + ρ−1

)
. All the parameters are in parallel with our

threshold model except that ρ < 0 is an additional parameter. Note that the

special case ρ = −1 gives the GPD. The model fits the SOA Group Medical

Insurance data of 1991 well, even for the lowest possible threshold. Hence, we

consider it as a potential candidate for the entire data set.

4. Numerical Simulation

To examine the finite sample properties of our model, we undertook a sim-

ulation experiment. We used independent and identically distributed samples of

sizes n = 250, 500 and replicated them 1,000 times independently. Samples were

drawn from (2.1) with L being one of the following:

(a) a Weibull (a, b, c) distribution, F (x) = 1 − exp {− [(x − b)/a]c};
(b) an exponential distribution with parameter λ, F (x) = 1 − exp (−λx);

(c) a gamma (a, b, c) distribution, F (x) =
∫ x
b (t − b)c−1 exp [−(t − b)/a]/(acΓ (c))

dt;

(d) a Normal distribution with mean µ and variance β;

(e) a Student’s t−distribution with degrees of freedom v;

(f) a Burr (a, b, c) distribution(type XII), F (x) = 1 − (b/(b + xc))a;

(g) a Burr (a, b, c) distribution(type III), F (x) = (b/(b + x−c))
a
.

In each case, the distribution function is truncated at u = inf {x : F (x) ≥ p} for

p sufficiently large. For brevity, we present our results only in cases where p is 0.9

and the GPD parameters γ and σ are 0.4 and 5.0, respectively. We experimented

with different values of n, γ, and p. Overall they were not significantly different.

Our results are summarized in Table 4.1. There, the mechanism generating

the data was model (2.1), with L being one of the distributions above. The

second and third columns give average values of ũ and γ̃, respectively, given

that L is known. The next column gives the average values of ũGH by the

adaptive threshold selection method (Guillou and Hall (2001)). The fourth and

fifth columns, respectively, give averages of the Hill estimator γ̃GH,Hill and the
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Table 4.1. Average values of the estimates for the seven models. ũ and
γ̃ are the MPS estimates of our models; ũGH is the threshold estimate by
Guillou and Hall’s method; γ̃GH,Hill is the Hill estimator; γ̃GH,GPD is the
EVI estimator of the GPD given ũGH ; γ̃BJS is the estimator by Beirlant,
Joossens, and Segers’s method. Standard errors are shown in brackets.

n ũ γ̃ ũGH γ̃GH,Hill γ̃GH,GPD γ̃BJS

(a) Weibull (1.0, 0.0, 5.0) distribution with u0 = 1.18

250 1.18 0.53 7.69 0.76 0.83 0.44
(0.01) (0.37) (6.23) (0.33) (8.92) (0.08)

500 1.18 0.48 11.59 0.64 0.31 0.43
(<0.01) (0.24) (8.60) (0.26) (2.40) (0.06)

(b) Exponential distribution (λ = 1.0) with u0 = 2.30

250 2.20 0.55 7.81 0.68 0.87 0.50
(0.23) (0.46) (6.79) (0.26) (8.18) (0.09)

500 2.27 0.47 12.00 0.60 0.31 0.50
(0.11) (0.25) (8.99) (0.24) (2.32) (0.07)

(c) Gamma (1.0, 0.0, 5.0) distribution with u0 = 7.99

250 7.64 0.54 11.40 0.45 0.76 0.11
(0.63) (0.46) (7.18) (0.16) (6.47) (0.08)

500 7.83 0.47 14.98 0.45 0.36 0.10
(0.43) (0.26) (10.01) (0.16) (2.14) (0.06)

(d) Normal distribution (µ, β) = (10.0, 1.0) with u0 = 11.28

250 11.25 0.53 15.12 0.40 0.74 0.14
(0.09) (0.43) (6.68) (0.15) (7.45) (0.05)

500 11.27 0.48 18.31 0.40 0.37 0.13
(0.04) (0.24) (9.73) (0.14) (2.21) (0.04)

(e) Student’s t−distribution v = 5.0 with u0 = 1.48

250 1.42 0.54 15.28 0.40 0.69 0.07
(0.15) (0.44) (6.69) (0.14) (6.77) (0.07)

500 1.46 0.48 18.47 0.40 0.35 0.05
(0.07) (0.25) (9.74) (0.14) (2.16) (0.08)

(f) Burr (1.0, 1.0, 5.0) distribution(type XII) with u0 = 1.55

250 1.54 0.53 7.77 0.74 0.86 0.45
(0.04) (0.39) (6.39) (0.31) (8.71) (0.08)

500 1.55 0.48 11.74 0.63 0.30 0.43
(0.01) (0.24) (8.72) (0.26) (2.38) (0.06)

(g) Burr (1.0, 1.0, 5.0) distribution(type III) with u0 = 1.55

250 1.53 0.63 7.77 0.74 0.86 0.45
(0.07) (0.56) (6.39) (0.31) (8.71) (0.08)

500 1.54 0.51 11.74 0.63 0.30 0.43
(0.04) (0.30) (8.72) (0.26) (2.38) (0.06)

EVI estimator γ̃GH,GPD of the GPD given ũGH . The last column gives average

values of γ̃BJS (Beirlant, Joossens, and Segers (2004)). It is clear from the
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information that ũ was very accurate. The ratio of the root mean squared error

of ũ in the case of n = 250 to that of n = 500 took values between 1.45 and

2.76. These values have an average of 2.14 which is very close to the ratio of

the sample size. This reflects the fact that the order of convergence is O(n)

instead of the usual O(
√

n). Though Guillou and Hall’s method overestimated

the threshold, good performance was obtained in some instances. In eight cases,

γ̃GH,Hill gave unfavourable results. This may be due to the fact that a strict

Pareto distribution was assumed. In addition, the variation of γ̃GH,GPD was

rather unappealing. Even for the case n = 500, its standard error was nine

times of that of γ̃. This is likely due to the overestimation of the threshold and

the large standard error of ũGH . On the other hand, Beirlant, Joossens, and

Segers’s method on some occasions yielded an average value of γ̃BJS that was

much different from γ0 = 0.4. Our approach compared favourably, producing

average values of γ̃ which were the closest to 0.4 among all other estimators in

more than half of all cases under investigation.

To conduct a fair comparison, we also considered samples in favour of the

two competing methods. We drew samples from one of the following null distri-

butions:

(a) a Pareto distribution with parameter α given by F (x) = 1 − x−α, for which

γ = α−1;

(b) a GPD.

In the former case, we gave explicit results for α = 5.0. Our method gave

average values of γ̃ from 0.20 to 0.30. We encountered some difficulties in applying

the threshold selection procedure by Guillou and Hall’s method. Altogether 303

replications out of 1,000 failed to select a threshold. A change to ccrit = 1.0

gave 85 failures. A related note is that the samples may have a thin tail when

the Hill estimator is not designed for the EVI close to zero. After removing the

303 failure cases, the average value of γ̃GH,Hill was 0.19. The other competing

method using γ̃BJS tended to underestimate the EVI, giving an average value of

0.16. In the GPD samples with γ = 0.4, our method yielded average values of γ̃

between 0.39 and 0.53. Guillou and Hall’s method overestimated γ by yielding

an average value of 0.49. In six of the seven models, our method outperformed

γ̃GH,Hill. Beirlant, Joossens, and Segers’s method performed well with an average

value of 0.39, and this is because the special case ρ = −1 gives the GPD.

5. Data Examples

5.1. Secura Belgian Re data

The first data set under consideration is the Secura Belgian Re data. These

are automobile claims in millions from 1988 to 2001 at several European insurance
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Table 4.2. Average values of the estimates for the Pareto distribution and
the GPD. γ̃ is the MPS estimate of our models, with L being one of the
seven distributions (a) to (g). γ̃GH,Hill is the Hill estimator and γ̃GH,GPD is
the EVI estimator of the GPD by Guillou and Hall’s method. γ̃BJS is the
estimator by Beirlant, Joossens, and Segers’s method. Standard errors are
shown in brackets.

Pareto (α = 5.0) distribution GPD (γ, σ) = (0.4, 1.0)

(a) γ̃ 0.22 (0.30) 0.39 (0.23)
(b) γ̃ 0.25 (0.12) 0.39 (0.15)
(c) γ̃ 0.21 (0.25) 0.39 (0.19)
(d) γ̃ 0.23 (0.11) 0.43 (0.14)
(e) γ̃ 0.24 (0.08) 0.44 (0.13)
(f) γ̃ 0.30 (0.32) 0.53 (0.36)
(g) γ̃ 0.20 (0.12) 0.47 (0.17)
γ̃GH,Hill 0.19 (0.08) 0.49 (0.18)
γ̃GH,GPD 0.28 (1.55) 0.34 (1.99)
γ̃BJS 0.16 (0.10) 0.39 (0.07)

Table 5.1. The MPS estimates of the threshold models, for different L, for
the Secura Belgian Re data. The cases (a) to (g) refer to the corresponding
distribution functions in Section 4.

Case k γ̃ s.e.(γ̃) σ̃ s.e.(σ̃) ũ p-value
(a) 46 0.097 0.155 1.208 0.253 3.029 0.015
(b) 91 0.429 0.145 0.606 0.104 2.627 0.010
(c) 91 0.429 0.150 0.606 0.107 2.627 0.015
(d) 81 0.337 0.168 0.725 0.149 2.671 0.000
(e) 37 0.162 0.274 1.125 0.405 3.322 0.000
(f) 91 0.429 0.139 0.606 0.100 2.627 0.002
(g) 91 0.429 0.156 0.606 0.112 2.627 0.002

companies. There are 371 observations of at least 1.2 million euros. A study of

the data set can be found in Beirlant et al. (2004).

We fitted model (2.1) to the data using various distribution functions for

L. In the following, by cases (a) to (g) we mean the corresponding distribution

functions in Section 4. The results are summarized in Table 5.1. We proposed

two approaches in choosing a suitable L. The first method was to use Moran’s

statistic, which is a by-product of using the MPS method. The statistic M in (2.3)

can be used for testing the goodness of fit of a random sample to a distribution

function. Asymptotically, M suitably normalized has an approximate chi-squared

distribution (Cheng and Stephens (1989)). Hence, the model with the largest p-

value for the goodness-of-fit test is most favourable. The second approach is

by means of a Quantile-Quantile plot (QQ-plot). For any class of distributions,

the theoretical quantiles are linearly related to the corresponding quantiles of a
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Figure 5.1. QQ plots for the Secura Belgian Re data.

random sample from that class. Hence, a straight line pattern is expected in a

scatter plot if the model provides a good statistical fit. Figure 5.1 shows the

QQ plots of the models. Based on the above two criteria, model (2.1) with L a

Weibull distribution seems to provide the best fit to the data.

To compare our model with the other two approaches, we judged the overall

goodness of fit by the average scaled absolute error (Castillo et al. (2005)),

ASAE =
1

k

n∑

i=n−k+1

∣∣x(i) − x̂(i)

∣∣
(
x(n) − x(n−k+1)

) ,

where x̂(i) are the expected quantiles. In applying Guillou and Hall’s method,

ccrit = 1.25 yielded k = 4. This was too small to be accepted. A change to

ccrit = 1.5 gave ASAE = 1.87 based on 126 exceedances. Beirlant, Joossens, and

Segers’s method gave ASAE = 20.77. Significant improvement was obtained by

our model which gave ASAE = 1.83 based on the entire data set, and ASAE =

1.50 based on 46 excesses over the estimated threshold. The goodness of fit of

our model is also apparent from the QQ plots in Figure 5.1.

Our model can provide better insight into the structure of the data. We

demonstrate this with the Secura Belgian Re data. The presence of the threshold

indicates a heavy tailed claim size distribution and a loss in excess of the threshold

X > u can be severe. The model suggests that u = 3.029 is an appropriate

reference point in pricing an automobile insurance contract. On the other hand,
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Table 5.2. Estimates of Π (R), in thousands, at different retention levels R, in millions.

R 3.00 4.00 5.00 7.50 10.00

Π̂ (R) 183.37 89.15 45.65 10.30 2.85

in a reinsurance contract, the net premium Π (R) is calculated on the basis of a

retention level R,

Π (R) = E
(
(X − R)+

)
=

∫ x∗

R
(1 − F (y)) dy, (5.1)

where x∗ is the upper end-point (Beirlant et al. (2004)). To apply (5.1) and the

proposed model with L a Weibull distribution, we have for γ < 1,

Π (R) =





exp
{
−

[
(u−b)

a

]c}[
1 + γ(R−u)

σ

]−1/γ+1
σ

(1−γ) , R > u,

a[g(u−b
a ) − g(R−b

a )] + exp
{
−

[
(u−b)

a

]c}
σ

(1−γ) , R ≤ u,

(5.2)

where g (y) =
∑∞

k=0 (−1)k ykc+1
/
[k! (kc + 1)].

An estimate of Π (R) can be obtained by substituting the MPS estimates into

(5.2) at different retention levels R. Table 5.2 gives some numerical examples of

Π̂ (R). Based on our estimates, the mean drops significantly with an increasing

retention level R.

5.2. Danish fire claim data

This data set contains insurance losses over one million Danish kroner, from

1980 to 1990. Sample size is 2,157. Our model is based on a Weibull distribution

for L. Judging from the overall fit, as measured by the ASAE criterion, our

method and Beirlant, Joossens, and Segers’s method yielded values of 1.77 and

1.92, respectively, based on the entire data set. Guillou and Hall’s method has

the smallest ASAE value of 1.16 based on 92 exceedances. However, its QQ plot,

as shown in the right panel of Figure 5.2, shows a large departure for each of the

three largest claims. The value of a model is determined by its ability to predict

future observations. In particular, a model in extreme value analysis should

describe the tail adequately. In this sense, our model seems more appealing.

6. Conclusion

There is a long history in the application of the peaks-over-threshold method

in diverse fields. The selection of a threshold is an important and challenging

problem. We find that there are difficulties in applying some of the existing
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Figure 5.2. QQ plots for the Danish fire claim data.

methods. Guillou and Hall’s approach requires a specification of some arbitrary

parameters. In its application to the Secura Belgian Re data, the method yielded

an inappropriate number of upper order statistics. Simulation experiments also

revealed that the result may not be reliable when the extreme value index is

close to zero. On the other hand, Beirlant, Joossens, and Segers’s method does

not always guarantee a good fit in application. In light of this, our approach

seems appealing; in addition to providing an estimate of the threshold based

on the entire sample, it provides a global fit to the data with an appropriate

tail fit. The estimate of the threshold is shown to be super-consistent, and this

leads to a much better estimation of the tail parameter. From extensive simu-

lation experiments and two case studies, our method seems to be more reliable

and flexible in modeling extreme value data. The sampling distribution of the

threshold estimate is clearly an important open problem that deserves further

investigation.

Acknowledgement

Partial support by the Area of Excellence Scheme under the University

Grants Committee of the Hong Kong Special Administration Region, China

(Project AoE/P-04/2004 and GRF grant HKU7036/06P) is gratefully acknowl-

edged. We thank the referees and the Editors for comments that led to improve-

ment of the paper.

Appendix. Proof of Theorem 2.1

We first describe the asymptotic framework for model (2.1), then regularity

conditions are outlined. The proof of Theorem 2.1 is completed after two lemmas

are presented and proved.

As in Smith (1987), we assume that k−1n (1 − F (u)) →p 1 such that the

GPD holds. Under very general conditions, the MPS estimators including ũ are

consistent (Shao (2001)). In the following, let l and gu be the density functions

of L and the GPD, respectively. Let φ = (γ, σ) and denote the true parameter
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and the MPS estimator by (θ0, φ0, u0) and
(
θ̃, φ̃, ũ

)
, respectively. Let

DL

(
x(i), θ, φ, u

)
= L

(
x(i); θ

)
− L

(
x(i−1); θ

)
and

DU

(
x(i), θ, φ, u

)
= (1 − L (u; θ))

(
Gu

(
x(i); φ

)
− Gu

(
x(i−1); φ

))
.

Condition 1. For all x and for all (θ, φ), the partial derivatives ∂M/∂θ, ∂M/∂φ,

∂2M
/
dφ2 and ∂2M

/
∂θ2 exist.

Condition 2. The first partial derivatives |∂M(x, θ, φ, u)/∂θ| and |∂M(x, θ, φ,

u)/∂φ| are bounded by integrable functions.

Condition 3. For points in the interval (u0, u] or [u, u0), the spacings can be

approximated by F
(
x(i)

)
− F

(
x(i−1)

)
= [f (u0) + o(1)]

(
x(i) − x(i−1)

)
, where f

is the density function of F . As u → u0, we have the limits

lim
x(i)≤u,u→u0

DL

(
x(i), θ, φ, u

)
= [a (θ, φ, u0) + o (1)] (xi − xi−1) ,

lim
x(i)>u,u→u0

DU

(
x(i), θ, φ, u

)
= [b (θ, φ, u0) + o (1)] (xi − xi−1) ,

where a (θ, φ, u0) = l (u0; θ) and b (θ, φ, u0) = (1 − L (u0; θ)) σ−1.

Condition 4. For points in the interval (u,∞) but not in (u0, u) or (u0,∞) but

not in (u, u0), we have

(i) DU

(
x(i), θ, φ, u

)
= (1 − L (u; θ)) gu

(
ξ(i); φ

) (
x(i) − x(i−1)

)
for some ξ(i) in(

x(i), x(i−1)

)
;

(ii) the first order derivative of log DU

(
x(i), θ, φ, u

)
with respect to u,

∂

∂u
log DU

(
x(i), θ, φ, u

)
=

−l (u; θ) gu

(
ξ(i); φ

)
+(1−L (u; θ)) ∂gu

(
ξ(i); φ

)/
∂u

(1 − L (u; θ)) gu

(
ξ(i); φ

) ,

is bounded;

(iii) the first order derivative in (ii), evaluated at the true parameters, has an

expected value with respect to the true distribution given by

=

∫ x∗

u0

−l (u0; θ0) gu0 (x;φ0)dx +

∫ x∗

u0

(1 − L (u0; θ0))
∂

∂u
gu0 (x; φ0)dx

= −l (u0; θ0)

∫ x∗

u0

gu0 (x;φ0)dx −
∫ x∗

u0

(1 − L (u0; θ0)) dgu0 (x; φ0)

= −l (u0; θ0) + (1 − L (u0; θ0))σ−1
0

= −a (θ0, φ0, u0) + b (θ0, φ0, u0),

where x∗ > u0 is the right end-point of the GPD.
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Lemma 1. Let Fn (x) be the empirical distribution function and suppose Con-

ditions 3 to 4 hold. Then, maxu(1/n)M(θ0, φ0, u)−(1/n)M(θ0, φ0, u0) and maxu

{Fn(u)−Fn(u0)−c(θ0, φ0, u0)(u−u0)} are asymptotically equivalent, where

c (θ0, φ0, u0) =
a (θ0, φ0, u0) − b (θ0, φ0, u0)

log a (θ0, φ0, u0) − log b (θ0, φ0, u0)
.

Proof. The MPS method maximizes the function M (θ0, φ0, u) with respect to

u. Note that

M (θ0, φ0, u)

=
n+1∑

i=1

I
(
x(i)≤u

)
log DL

(
x(i), θ0, φ0, u

)
+

n+1∑

i=1

I
(
x(i) >u

)
log DU

(
x(i), θ0, φ0, u

)
.

Consider the difference

M (θ0, φ0, u) − M (θ0, φ0, u0)

=

n+1∑

i=1

I
(
u0 < x(i) ≤ u

) (
log DL

(
x(i), θ0, φ0, u

)
− log DU

(
x(i), θ0, φ0, u0

))

+

n+1∑

i=1

I
(
x(i) > u, u > u0

) (
log DU

(
x(i), θ0, φ0, u

)
− log DU

(
x(i), θ0, φ0, u0

))

−
n+1∑

i=1

I
(
u < x(i) < u0

) (
log DL

(
x(i), θ0, φ0, u0

)
− log DU

(
x(i), θ0, φ0, u

))

+

n+1∑

i=1

I
(
x(i) > u0, u < u0

) (
log DU

(
x(i), θ0, φ0, u

)
− log DU

(
x(i), θ0, φ0, u0

))
.

For points in the interval (u0, u] or (u, u0), apply Condition 3 to the first and

third lines above to get

log DL

(
x(i), θ0, φ0, u

)
− log DU

(
x(i), θ0, φ0, u

)

= log a (θ0, φ0, u0) − log b (θ0, φ0, u0) + o (1) .

For points in the interval (u,∞) but not in (u0, u) or (u0,∞) but not in (u, u0),

consider the Taylor series expansion of log DU around u = u0 and apply Condi-

tions 4(i) and (ii) to the second and fourth lines above to get

log DU

(
x(i), θ0, φ0, u

)
− log DU

(
x(i), θ0, φ0, u0

)

= (u − u0)
∂

∂u
log DU

(
x(i), θ0, φ0, u0

)
+ op (1) .
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By the Strong Law of Large Numbers and Condition 4(iii),

1

n

n+1∑

i=1

I
(
x(i) > u, u > u0

)
(u − u0)

∂

∂u
log DU

(
x(i), θ0, φ0, u0

)

+
1

n

n+1∑

i=1

I
(
x(i) > u0, u < u0

)
(u − u0)

∂

∂u
log DU

(
x(i), θ0, φ0, u0

)

= − (u − u0) [a (θ0, φ0, u0) − b (θ0, φ0, u0)] + op(1).

Consider the difference per observation and replace the indicator function by the

empirical distribution. Then,

1

n
M (θ0, φ0, u) − 1

n
M (θ0, φ0, u0)

= [Fn (u) − Fn (u0)] [log a (θ0, φ0, u0) − log b (θ0, φ0, u0) + o (1)]

− (u − u0) [a (θ0, φ0, u0) − b (θ0, φ0, u0)] + op (1) .

Hence, the problem is translated into maximizing [Fn (u) − Fn (u0)]−c (θ0, φ0, u0)

× (u − u0) with respect to u, where c (θ0, φ0, u0) is defined in the statement of

the Lemma.

Lemma 2 below is a modified version of Lemma 2 in Chernoff and Rubin

(1956). We choose u such that F (u)−F (u0) is arbitrarily close to Fn (u)−Fn (u0)

with large probability, provided u and u0 are large. As in Chernoff and Rubin

(1956) it suffices to consider the uniform distribution in a small range.

Lemma 2. For the uniform distribution, for each ε1 > 0 and η1 > 0, there are

0 < K1 < K2 such that

P

(
max

K1/n≤y≤K2/n

∣∣∣∣
Fn (y)

y
− 1

∣∣∣∣ < η1

)
> 1 − ε1.

Proof. Let Y1, . . . , Yn be i.i.d. random variables from the uniform distribution

on [0, 1]. It is easy to check that the indicator function I (Y1 ≤ y) has mean y

and variance y (1 − y) for 0 < y < 1. Hence,

Fn (y)

y
=

1

yn

n∑

i=1

I
(
Y(i) ≤ y

)

has mean one and variance (1 − y)/(ny). By Chebyshev’s inequality,

P

(∣∣∣∣
Fn (y)

y
− 1

∣∣∣∣ > η2

)
<

1 − y

η2
2ny

<
1

η2
2ny

,
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for η2 > 0 and for a > 1, we have

P

(
max

i=0,1,...,r

∣∣∣∣∣
Fn

(
aiK1

/
n
)

(
aiK1

/
n
) − 1

∣∣∣∣∣ > η2

)
<

1

η2
2n

r∑

i=0

(
n

aiK1

)
=

ar+1 − 1

η2
2K1ar (a − 1)

.

If ∣∣∣∣
Fn (y)

y
− 1

∣∣∣∣ < η2 and

∣∣∣∣
Fn (ay)

ay
− 1

∣∣∣∣ < η2,

then for y ≤ z ≤ ay,

−1

a
η2 +

1

a
− 1 <

Fn (y)

ay
− 1 <

Fn (z)

z
− 1 <

Fn (ay)

y
− 1 < aη2 + a − 1.

We may select η2 such that aη2 + a− 1 < η1 and −η2/a + 1/a− 1 > −η1. Then,

select K1 and K2 such that η2
2K1a

r (a − 1)
/(

ar+1 − 1
)

> 1/ε1 and K2 ≥ arK1.

Proof of Theorem 2.1. Let ψ = (θ, φ). Consider the Taylor series expansion

of M around ψ̃ = ψ0:

1

n
M

(
ψ̃, ũ

)
=

1

n
M (ψ0, ũ) +

(
ψ̃ − ψ0

) 1

n

∂

∂ψ
M

(
ψ, ũ

)
+ op (1) ,

where ψ is between ψ̃ and ψ0. By the consistency of ψ̃ and Condition 2 that

n−1∂M
(
ψ, ũ

)/
∂ψ = Op (1), we can focus on the first term on the right-hand

side. By Lemma 1 and Chernoff and Rubin (1956, Lemma 4), we can treat ũ as

the maximizer of the following

1

n
M

(
θ̃, φ̃, ũ

)
=

1

n
M (θ0, φ0, u0)+Fn (ũ)−Fn (u0)−c (θ0, φ0, u0) (ũ − u0)+op (1) .

Now the first term on the right-hand side is a constant. The rate of convergence

of ũ can be determined by H (u) = Fn (u) − Fn (u0) − c (θ0, φ0, u0) (u − u0).

Since H (u0) = 0, it will suffice to show that, for u outside a neighborhood of u0,

H (u) < 0. By Condition 3, we have

F (u) − F (u0) =

{
[a (θ0, φ0, u0) + o (1)] (u − u0) , u < u0,

[b (θ0, φ0, u0) + o (1)] (u − u0) , u > u0.

We have shown in Lemma 2 that, with large probability, F (u) − F (u0) is ar-

bitrarily close to Fn (u) − Fn (u0) for n(u − u0) large enough. Using the fact

that w < (v − w)/(log v − log w) < v for any positive constants v > w, we have

a (θ0, φ0, u0) − c (θ0, φ0, u0) > 0 and b (θ0, φ0, u0) − c (θ0, φ0, u0) < 0. Hence, for

each ε there is a K such that

P

(
max

K/n<|u−u0|
H (u) < 0

)
> 1 − ε.
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