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Abstract

Prediction performance of a risk scoring system needs to be carefully assessed before its adoption 

in clinical practice. Clinical preventive care often uses risk scores to screen asymptomatic 

population. The primary clinical interest is to predict the risk of having an event by a pre-specified 

future time t0. Accuracy measures such as positive predictive values have been recommended for 

evaluating the predictive performance. However, for commonly used continuous or ordinal risk 

score systems, these measures require a subjective cut-off threshold value that dichotomizes the 

risk scores. The need for a cut-off value created barriers for practitioners and researchers. In this 

paper, we propose a threshold-free summary index of positive predictive values that 

accommodates time-dependent event status and competing risks. We develop a nonparametric 

estimator and provide an inference procedure for comparing this summary measure between two 

risk scores for censored time to event data. We conduct a simulation study to examine the finite-

sample performance of the proposed estimation and inference procedures. Lastly, we illustrate the 

use of this measure on a real data example, comparing two risk score systems for predicting heart 

failure in childhood cancer survivors.
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1. Introduction

Clinical medicine is facing a paradigm shift from current diagnosis and treatment practices 

to prevention through earlier intervention based on risk prediction [1]. Diagnosis and 

treatment approaches help individual patients seek relief from their symptoms. However, 

evidence is mounting that health interventions may be more effective in improving long-

term health outcomes when they target asymptomatic individuals who are predicted to be at 

high risk for the condition of interest [2, 3]. The condition of interest typically has the 

following characteristics: 1) its seriousness may result in a high risk of mortality or 

significantly affect the quality of life; 2) early detection/intervention can make a difference 

in disease prognosis; and importantly but subtly 3) its event rate is low. A prevention 

approach to medicine relies on the development of risk scores to stratify individuals into 

different risk groups. Early intervention strategies are typically recommended to subjects 

who are in the high-risk group.

In the prevention paradigm, the use of risk scores as population screening tools is 

increasingly advocated in clinical practices, e.g. 2013 American College of Cardiology/

American Heart Association guideline on the assessment of cardiovascular risk [4]. In a 

systematic review on risk prediction for type 2 diabetes, forty-six algorithms were identified 

[5]. Another study established several risk score systems to predict congestive heart failure 

for childhood cancer survivors who are at an elevated risk due to treatment toxicity [6]. One 

of the defining characteristics of screening is a low event rate in the targeted asymptomatic 

population. Taking the aforementioned two diseases as an example, the crude prevalence of 

undiagnosed type 2 diabetes, a common disease, was low at 3.5% in 1987 and 5.7% in 1992 

[7], while the cumulative event rate of congestive heart failure by 35 years post childhood 

cancer diagnosis was 4.4% [6]. The event rate is much lower for other serious conditions 

such as cancer, multiple sclerosis, AIDS, and dementia. A low event rate and a focus on 

prevention necessitate the development of screening tools such as risk scores.

Before a risk scoring system is adopted for clinical screening, evaluation of its predictive 

accuracy is critical. The most popular accuracy metric used in the clinical literature is the 

area under the receiver operating characteristic (ROC) curve (AUC). The AUC is a summary 

index of two accuracy metrics: true positive rate (TPR) and false positive rate (FPR). In the 

literature, TPR is also referred to as sensitivity, and 1–FPR is referred to as specificity. These 

two metrics are both outcome conditional. In other words, they evaluate the ability to predict 

the classification of risk score given the as-yet unknown outcome [8]. Thus the AUC does 

not reflect the ability of predicting the future outcome conditional on the risk score. Indeed, 

one influential article criticized the outcome conditional metrics such as TPR, FPR, and 

AUC as being of little use for clinicians because clinical interest almost always focuses on 

prediction [9]. In contrast, a risk score conditional measure, such as positive predictive value 

(PPV), does reflect the ability to predict the future outcome. A risk score with high 

sensitivity and specificity, and thus a high AUC, can have poor PPV when applied to low-

prevalence populations. This limitation is often overlooked by clinicians and biomedical 

researchers. Despite its popularity, studies confirm that the AUC is insensitive in evaluating 

risk prediction models. For example, including a marker with a risk ratio of 3.0 showed little 

improvement on the AUC, while it could shift the predicted 10-year disease risk for an 
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individual patient from 8% to 24% [10]. This magnitude of difference in risk would result in 

different recommendations on follow-up/intervention strategies.

Compared to the AUC, in some clinical applications such as screening, the PPV provides an 

attractive metric to assess the predictive performance of the risk score [11]. The PPV is 

calculated with data from a prospective cohort, where the risk scores are computed using 

baseline information and the outcome is followed prospectively. Originally, the PPV was 

defined for a dichotomous test. Moskowitz and Pepe (2004) extended the definition of PPV 

for a continuous risk score [11]. Assuming that the higher the risk score, the greater the 

individual risk, the PPV is defined as the probability of having the disease when the risk 

score value is larger than a given cut-off value z,

PPV(z) = Pr {D = 1|Z ≥ z} and NPV(z) = Pr {D = 0|Z < z}, (1)

where D = 1 indicates the presence of the disease, and D = 0 indicates the absence of the 

disease. Zheng et al. (2008) further generalized the definition to accommodate the censored 

event time outcome [12]. Since the PPV is threshold dependent, as seen in (1), it is often 

evaluated at several fixed quantiles of the risk scores [12]. Such evaluations allow the 

comparison across different risk score systems [11, 13]. However, the selection of 

specificities or quantiles can be subjective, and it is possible that different systems could 

outperform others, depending on the cut-off points selected [14].

For the above reasons, a threshold-free summary metric for the PPV is attratcive to facilitate 

its clinical usage. Two curves of PPV have been investigated in the literature. Raghavan et al. 

(1989) and Zheng et al. (2010) considered a curve of PPV versus quantiles of the risk score 

[14, 15]. However, they did not provide a summary index of the proposed PPV curve. A 

second curve is called the precision-recall (PR) curve, which was proposed in the 

information retrieval community [15, 16], where precision is equivalent to the PPV and 

recall is equivalent to the TPR. The relationship of PR and ROC curves and the area under 

them has been discussed[17, 18]. It has been shown that the PR curve of a risk score system 

dominates that of another system if its ROC curve is also dominant [17]. However, such a 

relationship does not exist for the area under these two curves [18]. Two recent papers 

illustrated the advantage of using the area under the PR curve over the AUC for predicting 

low prevalence diseases [19, 20]. We refer to the summary metric for the area under the PR 

curve as the average positive predictive value (AP) [19]. These previous research on the area 

under the PR curve have only considered binary outcomes. However, for many clinical 

applications, the outcome is time to event.

In this paper, we make the following contributions in the assessment of risk scoring systems. 

First, we define a time-dependent AP, APt0 for censored event time outcomes. We propose a 

robust nonparametric estimator of APt0 without modeling assumptions on the relationship 

between the risk score and event time. Second, we extend the definition and estimation 

procedure of APt0 to the setting of competing risks, which broaden the use of APt0 in a 

variety of studies. Third, we provide a statistical inference procedure to compare two risks 

Yuan et al. Page 3

Stat Med. Author manuscript; available in PMC 2019 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



scores in terms of the APt0. Fourth, we provide an R package to implement our method. The 

paper is organized as follows. In Section 2, we introduce the definition and interpretation of 

APt0. In Section 3, we present estimators in absence and presence of competing risks, and 

the inference procedures for obtaining 95% confidence interval and comparing two 

competing risk scores. In Section 4, we conduct a simulation study to investigate the 

performance of the proposed estimation and inference procedures in finite samples. In 

Section 5, we illustrate the proposed metric APt0 by analyzing two risk score systems with 

data from the Childhood Cancer Survival Study [21]. We conclude with a discussion and 

suggestions for future work in Section 6.

2. Time-dependent Average Positive Predictive Values

Consider a continuous risk score Z. Let T be the time to the event of interest. Time-

dependent PPV and TPR [12, 22] are defined as

PPVt0
(z) = Pr {T < t0 |Z ≥ z} and TPRt0

(z) = Pr {Z ≥ z |T < t0} . (2)

In the above setting, the event status is time-dependent, i.e., Dt0 = I(T < t0), where I(·) is an 

identity function. Consequently, the PPV and TPR are also functions of t0.

Following Yuan et al. [19], we define APt0, as the area under the time-dependent PR curve 

{(TPRt0 (z), PPVt0 (z)), z ∈ ℛ},

APt0
= ∫

ℛ
PPVt0

(z)dTPRt0
(z) . (3)

Note that the TPR describes the distribution function of Z in subjects who experience the 

event of interest by time t0, i.e. T < t0. It can be shown that APt0 = EZ1 {PPVt0(Z1)}, where 

Z1 denotes the risk score for subjects with T < t0. In the real data example of Section 5, we 

will show that AP is estimated to be 0.107 at t0 = 35 years for a risk score system. That is, 

by 35 years post diagnosis, we expect that on average 10.7% of the subjects with a high risk 

score (compared to the risk score of a randomly selected subject who experiences the event 

before t0) will experience the event of interest.

In addition, PPVt0(z) can be written as PPVt0(z) = P(Z ≥ z | T < t0)P(T < t0)/P(Z ≥ z) = πt0 
{1 − F1(z)} / {1 − F(z)}, where F1(z) = Pr(Z < z | T < t0) = P(Z1 < z) is the distribution 

function of the risk score Z1 for subjects with T < t0, F(z) = P(Z < z) is the distribution 

function of the risk score Z for the target population, and πt0 = Pr(T < t0) is the event rate by 

time t0 in the target population. Thus, the AP can be written as
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APt0
= πt0∫ℛ

1 − F1(z)
1 − F(z) dF1(z) . (4)

A perfect risk score system would always assign higher values to subjects with T < t0, 

compared to subjects with T ≥ t0, i.e. P(Z ≥ Z1 | T ≥ t0) = 0. This leads to APt0 = 1 from 

equation (4). A non-informative risk score system would randomly assign risk scores to both 

subjects with T < t0 and T ≥ t0. i.e., P(Z ≥ z | T ≥ t0) = P(Z ≥ z | T < t0) for each z, which 

leads to APt0 = πt0. Thus, the theoretical range of APt0 is [πt0, 1].

3. Estimating and Comparing APt0

3.1. Nonparametric Estimator of APt0 for a single risk score

Often, the event times of some subjects are censored due to the end of the study or loss to 

follow up. Due to censoring, one can only observe X = min{T, C} where C is the censoring 

time, and δ = I(T < C). Let {(Xi, δi, Zi), i = 1, ⋯, n} be n independent realizations of (X, δ, 

Z).

In the presence of censoring, event status at t0, I(Ti < t0), may not be observed for some 

subjects. We suggest using the inverse probability weighting (IPW) to account for censoring 

[23, 24]. The proposed estimator is a nonparametric estimator, which does not imposes any 

assumptions on the relationship between the risk score Z and the event time T. The time-

dependent PPV and TPR are estimated by

PPVt0
(z) =

∑i = 1
n wt0, iI(Zi ≥ z)I(Xi < t0)

∑i = 1
n I(Zi ≥ z)

and TPRt0
(z) =

∑i = 1
n wt0, iI(Zi ≥ z)I(Xi < t0)

∑i = 1
n wt0, iI(Xi < t0)

,

where ŵt0,i is the inverse of the estimated probability that the time-dependent event status 

I(Ti < t0) is observed, specifically

wt0, i =
I(Xi < t0)δi

𝒢(Xi)
+

I(Xi ≥ t0)
𝒢(t0)

, (5)

where 𝒢̂(c) is a consistent estimator of the survival function of the censoring time, (c) = 

Pr(C ≥ c). Under the assumption of independent censoring, i.e., the censoring time C is 

independent of both the event time T and the risk score Z, (c) can be obtained by the 

nonparametric Nelson-Aalen or Kaplan-Meier estimator. If the censoring time C depends on 

the risk score Z, additional model assumptions might be required. For example, a 

proportional hazards (PH) model could be fit to estimate z(t) = Pr(C ≥ c | Z = z). Note that 

the weights have expectation 1 given (Ti, Zi).
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Based on the estimated PPVt0 (z) and TPRt0 (z), APt0 can be estimated by

APt0
=

∑ j = 1
n I(X j ≤ t0)wt0, jPPVt0

(Z j)

∑i = 1
n I(X j ≤ t0)wt0, j

. (6)

Uno et al. [23] shows that PPVt0
(z) and TPRt0

(z) are both consistent estimators. Thus, APt0
 is 

also a consistent estimator of APt0 for any given value of t0.

In practice, we often deal with discrete risk scores, where tied risk scores are common. 

Following Pepe's proposal [25], we modify the above estimator (6) to accommodate tied risk 

scores by replacing PPVt0
(Z j) with

PPVt0
(Z j) =

∑i = 1
n wt0, i{I(Zi > Z j) + 1

2 I(Zi = Z j)}I(Xi < t0)

∑i = 1
n {I(Zi > Z j) + 1

2 I(Zi = Z j)}
.

To construct confidence intervals, we suggest the nonparametric bootstrap [26] method. 

Specifically, let APt0
𝔹 = APt0

b , b = 1, 2, ⋯, B  denote the estimated APt0 obtained from B 

bootstrape resamples. A 95% confidence interval (CI) for the APt0 is given as 

( APt0
𝔹, 0.025, APt0

𝔹, 0.975), where APt0
𝔹, 0.025 and APt0

𝔹, 0.975 are the 2.5% and 97.5% empirical 

percentiles of the APt0
𝔹 , respectively.

3.2. Estimator of APt0 under competing risks

In many studies, the event time of main interest might not be observed because of other 

events rather than censoring. These other events are referred to as the competing risk events. 

For example, in Section 5, we analyze a data set from the Childhood Cancer Survival Study 

[21]. The event of main interest is the occurrence of congestive heart failure (CHF). 

However, the CHF event might not be observed due to death from other causes such as 

cancer recurrence and progression [27]. In this section, we describe a straightforward 

extension of the IPW estimator of time-dependent AP to accommodate competing risks; see 

Li et al. [28] and Blanche et al. [29] for a similar extension for the estimation of time-

dependent AUC under competing risk.

Let us take the Childhood Cancer Survival Study as an example. Let ε denote the event type. 

Specifically εi = 1 if the subject i experienced a CHF event; εi = 2 if the subject i 
experienced death from other causes. Let Δi = δiεi, and Δi = 0 if censored, = 1 if an CHF 

event is observed, = 2 if a death due to other causes is observed. Accordingly, let Ti1 and Ti2 

denote the time to type 1 event and type 2 event respectively. The observed data in this 
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example is denoted as  = {(Xi, Δi, Zi}, where Xi = min{Ti1, Ti2, Ci}, and Zi denote the risk 

scores. Here the censoring Ci is due to administrative reasons such as the end of follow up, 

and thus we assume Ci is independent of both Ti1 and Ti2.

In the presence of competing risks, subjects who experience the event of interest are those 

with Xi < t0 and Δi = 1. Based on this definition, for a risk scoring system Z, the time-

dependent PPV and TPR for CHF are defined as

PPVt0
CHF(z) = Pr {T < t0, Δ = 1|Z ≥ z} and TPRt0

CHF(z) = Pr {Z ≥ z |T < t0, Δ = 1} .

Consequently, the time-dependent AP is defined as APt0
CHF = ∫ PPVt0

CHF(z)dTPRt0
CHF(z).

With the observed data , the PPV and TPR can be estimated by

PPVt0
CHF(z) =

∑i = 1
n wt0, iI(Zi ≥ z)I(Xi < t0)I(Δi = 1)

∑i = 1
n I(Zi ≥ z)

, TPRt0
CHF(z)

=
∑i = 1

n wt0, iI(Zi ≥ z)I(Xi < t0)I(Δi = 1)

∑i = 1
n wt0, iI(Xi < t0)I(Δi = 1)

,

where wt0, i
C  is the same as the one given in equation (5). Note that the weights have 

expectation 1 given (Ti1, Ti2, Zi). Under competing risks, conditioning on (Ti1, Ti2, Zi), 

whether or not an event (type 1 or 2) is observed before time t0 depends on only the 

censoring distribution. Thus, the weights remain the same as equation (5).

3.3. Comparing two risk scores

We consider comparing two risk scores Z1 and Z2 in terms of APt0. In many studies, both 

risk scores Z1 and Z2 are calculated for each individual. With paired data, we can quantify 

the relative predictive performance of Z1 vs. Z2, using the difference or ratio of their 

respective time-dependent AP, specifically

ΔAPt0
= APZ1, t0

− APZ2, t0
and rAPt0

= APZ1, t0
/APZ2, t0

,

where APZ1,t0 and APZ2,t0 denote the time-dependent AP for Z1 and Z2 at t0 respectively.

The AP difference ΔAPt0 and AP ratio rAPt0 can be estimated by ΔAPt0
= APZ1, t0

− APZ2, t0
and rAPt0

= APZ1, t0
/APZ2, t0

 respectively, where APZ1, t0
 and APZ2, t0

 are the the 
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nonparametric estimator APt0
 in (6) of Z1 and Z2 respectively. The bootstrap method 

descried in Section 3.1 can be used to construct a CI for ΔAPt0 or rAPt0, and test H0 : ΔAPt0 
= 0 or H0 : rAPt0 = 1 for any given time point t0. Specifically, for ΔAPt0 and rAPt0, the CI 

could be obtained based on the empirical distribution of the B bootstrap counterparts of 

ΔAPt0
, denoted by ΔAPt0

b = APZ1, t0
b − APZ2, t0

b , and of rAPt0
, denoted by 

rAPt0
b = APZ1, t0

b /APZ2, t0
b , respectively, where APZ1, t0

b  and APZ2, t0
b  are the estimated APt0 for 

Z1 and Z2 based on the same bootstrap resample, b = 1, ⋯, B.

4. Simulation study

We conducted a simulation study to examine the performance of the time-dependent AP 

estimator in finite samples. In this simulation study, we considered two risk scores U1 and 

U2. They were generated from a standard normal distribution N(0, 1). The event time 

associated with both risk scores for the i-th subject was generated from the following model

log (Ti) = 7.2 − 1.1Ui1 − 2.5Ui2 − 1.5 log (Ui1
2 ) + εT ,

where εT ∼ N(0, 1.5). This setting provides an example where the ROC curves of the two 

risk scores cross at time t0 = 8, shown in Figure 1, with AUCU1,t0 and AUCU2,t0 are similar 

in values. On the other hand, the PR curve of U1 dominates that of U2 over the most range of 

the TPR with APt0 of U1 greater than that of U2.

The censoring time Ci was generated following Ci = min(Ai, Bi + 1) where Ai ∼ Uniform(0, 

50), and Bi ∼ Gamma(25, 0.75). This configuration results in about 50% of censoring 

overall. Let Xi = min(Ti, Ci), δi = I(Ti ≤ Ci). In this setting, the censoring time is 

independent of both the event time and risk scores.

We considered three prediction time points t0 where the corresponding event rates, r = P(Ti < 

t0), are 0.01, 0.05 and 0.1, respectively. To allow a reasonable number of events by t0, we 

generated the data {(Xi, δi, U1i, U2i), i = 1,…, n} with sample size n being 2000 and 5000 

(Tables 1 and 2). In each table, we report the summary statistics of the estimators of two 

time-dependent APs for two risk scores as well as the two forms of the comparison between 

these two risk scores, ΔAPt0 = APU1,t0 − APU2,t0 and rAPt0 = APU1,t0/APU2,t0. The 

summary statistics are calculated based on 1000 repetitions, and they are bias, empirical 

standard error (ESE) of the estimator, average standard errors from bootstrap (ASEb), and 

the empirical coverage probability (ECOVPb) of 95% confidence intervals obtained from 

1000 bootstrap resamples as described in Section 3.

These results show that the estimators of both time-dependent APs and the comparisons 

have small biases for all t0 values and different sample sizes. The bias decreases with 

increasing event rate and increasing sample size. Also, the standard errors ASEb obtained 

from bootstrap were close to the empirical standard errors. Thus, the confidence intervals 
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attained the nominal coverage probabilities for both smaller sample size 2000 and larger 

sample size 5000.

We remark that this simulation provides an illustrative example of the relationship between 

ROC curve and PR curve as well as the relationship between the AUC and the AP [17, 18]. 

When the ROC curves of two competing risk scores cross, the PR curves cross too. In 

situations like this, the AUC and the AP may rank the risk scores differently. In our 

simulation setting, U2 outperforms U1 according to the AUC, which indicates that U2 is 

better at discriminating between subjects who experiences the event before t0 and those who 

are event-free. On the other hand, U1 outperforms U2 according to the AP, which suggests 

that U1 is a better screening tool for stratifying subjects into different risk groups.

5. Data Analysis

In this section, we illustrate the use of APt0 metric with a data set from the Childhood 

Cancer Survivor Study [21]. This cohort follows children who were initially treated for 

cancer at 26 US and Canadian institutions between 1970 and 1986 and who survived at least 

5 years after their cancer diagnosis. Among the survivors, cardiovascular disease has been 

recognized as a leading contributor to morbidity and mortality [30]. To inform future 

screening and intervention strategy for congestive heart failure (CHF) in this population, 

Chow et al. [6] developed several risk score systems using the CCSS data and validated them 

on external cohorts. For the purpose of illustration, we chose two of these risk scores and 

evaluated their predictive performance using the proposed APt0.

We included 11,457 subjects in our analysis from the CCSS study who met the original 

study inclusion criteria and had both risk scores. In this data, a total of 248 subjects 

experienced the CHF and 842 subjects died due to other causes by the end of last follow up. 

Between the two risk scoring systems we focused on in this data analysis, the simpler model 

used information on age at cancer diagnosis, sex, whether the patient was exposed to chest 

radiotherapy, and whether the patient was exposed to a particular chemotherapy agent. We 

refer to this model as the simple model. The more elaborate model, known as the heart dose 

model, included detailed clinical information on the average radiation dose to the heart and 

the cumulative dose of the specific chemotherapy agent, along with age at diagnosis and sex. 

This is an example where a simple risk score system utilizes minimum treatment 

information and can be used for any patient by virtually all clinicians, while the more 

complex risk score system demands specific dose information which may not be readily 

available to clinicians providing long-term follow-up care. We obtained the original risk 

scores of the simple model and the heart dose model from the reference study [6]. Briefly, 

these scores were constructed via linear combinations of the corresponding covariates, 

where the regression coefficients were obtained from Poisson regression models.

The outcome of interest in this data analysis is the time to the occurrence of CHF. However, 

the CHF event might not be observed due to death from other causes such as cancer 

recurrence and progression [27], which are competing risk events. Since the CHF is our 

main interest, we only show the results for CHF. Table 3 reports the estimated APt0 with 

95% CIs for both the simple model (denoted by APs,t0) and heart dose model (denoted by 
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APh,t0) at t0 = 20 and 35 years post-diagnosis where the corresponding estimated event rates 

were 1.2% and 4.4% respectively. These two models were compared using the difference 

and ratio of AP, i.e. ΔAPt0 = APh,t0 − APs,t0 and rAPt0 = APh,t0/APs,t0. In addition, we also 

provided the estimated time-dependent AUC (AUCt0) at these two time points as well as the 

difference and ratio of AUCs between these two models ΔAUCt0 = AUCh,t0 − AUCs,t0 and 

rAUCt0 = AUCh,t0/AUCs,t0. To illustrate the time-varying performance for each model as 

well as the comparison between these two models over time, the estimates of APt0, AUCt0, 

ΔAPt0, ΔAUCt0, rAPt0, and rAUCt0 versus t0 = 15, 16, ⋯, 34, 35 were plotted in Figure 2. 

Note that the time-dependent AUC for CHF is also estimated using the extension of the IPW 

estimator under competing risks [28, 29].

The results in Table 3 show that the heart dose model outperforms the simple model at both 

time points. For example, the estimated AP20 of the heart dose model is 0.072, which 

indicates that by 20 years post-diagnosis, using the risk score from the heart dose model, we 

expect that on average 7.2% of subjects with a high risk score (compared to the risk score of 

a randomly selected subject who experiences the event before t0) will experience heart 

failure. This AP is six times of the event rate 1.2%, which corresponds to the AP of a non-

informative risk score system. In contrast, the estimated AP20 of the simple model is 0.037, 

roughly half of that of the heart dose model ( rAP20 = 1.95 with 95% CI: 1.42 - 2.90; 

ΔAP20 = 0.035 with 95% CI: 0.015 - 0.077). At 35 years post diagnosis, the heart dose model 

is significantly better than the simple model with rAP35 = 1.46 (95% CI: 1.26 - 1.71) and 

ΔAP35 = 0.034 (95% CI: 0.020 - 0.055). Indeed, the plots (c) and (e) in Figure 2 show that in 

terms of the APt0, the heart dose model outperforms the simple model at identifying the high 

risk subjects from the targeted population at all time points considered. On the other hand, 

the plots (d) and (f) in Figure 2 show that the AUCs are similar between these two models 

towards the end of time period. Especially, ΔAUC is not significantly different from 0 after 

t0 = 31. For example ΔAUC35 = 0.008 (95% CI: -0.016 - 0.029, p-value=0.47) and 

rAUC35 = 1.01 (95% CI: 0.98 - 1.04), shown in Table 3. It suggests that according to the 

AUC, the heart dose model performs similar when compared to the simple model towards 

the end of the time period under consideration. If, due to incorporating more information, 

the heart dose model is indeed superior to the simple model in terms of identifying the high 

risk individuals, the results in Table 3 and Figure 2 implies that the AP might be a better 

metric for discriminates the risk prediction performance than the AUC does.

6. Discussion

One main goal of clinical risk prediction is to screen the asymptomatic population and to 

stratify them for tailored intervention. Accuracy measures such as PPVt0 is preferred for this 

purpose. However, the calculation of PPVt0 demands a threshold for continuous risk scores, 

which can create practical difficulties for evaluating risk score systems, especially when 

more than two systems are compared. In this paper, we defined and interpreted APt0, which 

is the area under the time-dependent precision-recall curve, for event time data. We proposed 

a nonparametric estimator of APt0 as well as a difference estimator and a ratio estimator of 

APt0 for comparing two competing risk score systems. We also extend the estimation 
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procedure to the setting of competing risks. We suggested the use of the bootstrap method 

for inference, which is broadly applicable in practical settings. We also developed an R 

package APtools for download available in CRAN which implements our method for 

binary and survival outcomes. Our proposed metric is of interest when the outcome being 

examined is infrequent, as often the case with disease screening.

AUC has been the most widely used performance metric in the clinical research community. 

A number of authors have pointed out that the AUC is informative on the classification 

performance and discrimination power [31, 12, 19]. However, for some clinical settings such 

as screening, AUC might not be the optimal metric for assessing the predictive accuracy 

performance [11, 12]. Consistent with the criticism on the insensitivity of the AUC in 

evaluating risk prediction models [10], our data analysis illustrated that using the AUC as the 

metric, the performance of the simple model and the heart dose model appears close towards 

the end of the time period under consideration. However, based on the AP, the heart dose 

model outperforms the simple model at all times.

McIntosh and Pepe [32] showed that the true risk probability P(T < t0 | Z) is the optimal risk 

score function of a marker Z because the ROC curve is maximized at every point. Thus, the 

AUC is maximized under the true risk probability. The relationship between the ROC curve 

and the PR curve implies that the true model also optimizes the PR curve [17], which means 

that the AP is maximized under the true model. Therefore, both AUC and AP are proper 
scoring rules [33], but not strictly proper scoring rules. This is because they are both order-

based metrics, so the optimal risk scores are not unique.

In practice, finding the true model is challenging because the disease mechanisms are often 

complicated. The available risk score systems are usually not optimal. When comparing 

different non-optimal risk score systems, the ranking of their AUCs and APs are not 

necessarily concordant; our simulation study in Section 4 gives such an example. Risk 

scores which perform well in separating individuals experienced event of interest from 

event-free individuals (as measured by the AUC) may perform poorly in identifying a higher 

risk subpopulation (as measured by the AP). We are not suggesting that AP can replace 

AUC. When the objective is screening through risk stratification, compared to the AUC, the 

AP as the summary metric of PPV is an alternative metric, which might be better suited, for 

evaluating the usefulness of the risk scores and comparing the predictive performance 

among competing risk scores.

In comparing AUCs of different risk scores, the comparison takes the form of the difference 

rather than the ratio almost exclusively in the literature. In comparing APs, we prefer to use 

the ratio of APs. First, the form of ratio has been used in [12] to compare PPV. In addition, 

AP depends on the event rate. Taking the ratio provides a measure of comparative effect 

size, and gives an “honest” comparison of different risk scores with the influence of the 

event rate minimized. Particularly, for a single risk score Z, the ratio APz,t0/πt0 can be 

regarded as the relative predictive performance of Z compared to a non-informative risk 

score.
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Zheng et al. [12, 14] proposed to use the curves of PPVt0 versus risk score quantiles as an 

assessment tool for quantifying predictive accuracy. One curve corresponds to one particular 

value of t0, which limits its ability to assess the accuracy across time points. In contrast, 

plotting APt0 against time could facilitate visualizing the performance of different risk score 

systems over time in one single plot.

Making the appropriate choice of prediction accuracy metrics is guided by primary research 

interests. Discrimination is a key component in evaluating the performance of the risk 

scores. Other aspects are also important such as calibration, which captures how well the 

predicted risks agree with the actual observed risks.

Another relatively new method for the evaluation of prediction models is the decision curve 

analysis (DCA) which uses the concept of net benefit [34, 35]. APt is similar to DCA in that 

they are both developed specifically for evaluating prediction performance with clinical 

utility in mind. Both are relatively easy to understand and to apply by clinical researchers, 

and can be directly applied to a validation dataset. In addition, neither requires information 

on the cost of treatment or patient values to compare competing models. There are also 

important differences between these two methods. AP is a threshold free summary index of 

the Precision-Recall curve, but the net benefit relies on threshold probability values. We can 

plot APt vs. time plot to inspect the prediction performance overtime, which is not feasible 

in DCA analysis without specifying a threshold probability for net benefit. APt is an overall 

metric of prediction accuracy while the DCA is decision-analytic in nature and facilitates an 

informed decision based on the clinical values of the prediction model. In addition, to carry 

out DCA for competing models, one assumption is that all models to be compared are well 

calibrated, which is not necessary for AP because it is a rank-based statistic.

Unlike the AUC, the AP is event rate dependent and should be estimated in a prospective 

cohort or population-based study. AP cannot be estimated from a case-control study; the 

estimate will be of very little use because the prevalence rate is artificially fixed by the study 

design. While the range of the AUC is always between 0.5 and 1, the range of AP is between 

the event rate and 1. While AP's wide range could be advantageous in differentiating risk 

score systems, caution is needed when re-evaluating risk score systems in other study 

populations for the same outcome. This is because the underlying event rate may differ 

among populations. Thus, it is possible that AP will select different risk score systems as 

superior for the same outcome in different study populations.

For future work, we will consider estimating the time-dependent AP with multiple risk 

factors, as well as the incremental value of AP by adding new risk factors such as 

biomarkers on top of an existing risk profile. In addition, similar to the partial AUC, partial 

AP could be defined as the area over a certain range of interest, such as those at the low 

values of TPR where PPV is typically high.
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Figure 1. 
The ROC curves in the left panel and the precision-recall curves in the right panel for the 

two risk scores U1 and U2 at t0 = 8 when the event rate is 5%. In the right panel, the dotted 

curve for the non-informative marker corresponds to cumulative incidence rate of the event 

in the target population. The numbers shown in graph correspond to the AUC and the AP 

values.
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Figure 2. 
CCSS Data analysis: panel (a) shows the estimates of the time-dependent AP with interest as 

CHF for the simple model APs, t0
CHF and heart dose model APh, t0

CHF; panel (b) shows the 

estimates of the time-dependent AUC with interest as CHF for the simple model AUCs, t0
CHF

and heart dose model AUCh, t0
CHF; panel (c) shows the estimates of ΔAPt0

CHF = APh, t0
CHF − APs, t0

CHF, 

the difference of the time-dependent AP between the heart dose model and the simple model 

with interest as CHF; panel (d) shows the estimates of ΔAUCt0
CHF = AUCh, t0

CHF − AUCs, t0
CHF, the 

difference of the time-dependent AUC between the heart dose model and the simple model 

with interest as CHF; panel (e) shows the estimates of rAPt0
CHF = APh, t0

CHF/APs, t0
CHF, the ratio of 

the time-dependent AP of the heart dose model over that of the simple model with interest as 

CHF; panel (f) shows the estimates of rAUCt0
CHF = AUCh, t0

CHF/AUCs, t0
CHF, the ratio of the time-

dependent AUC of the heart dose model over that of the simple model with interest as CHF. 

The dotted lines in panels (c) to (f) represent the pointwise 95%CI for ΔAPt0
CHF, ΔAUCt0

CHF, 
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rAPt0
CHF, and rAUCt0

CHF, respectively. In all the plots, the dash line for the non-informative 

marker corresponds to cumulative incidence rate of the event in the target population.
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Table 3

Estimated APt0
CHF and AUCCHF

t0 with 95% CIs for two risk scoring systems at t0 = 20 and 35 years, 

respectively. The first comparison is difference measured by ΔAUC and ΔAP, and the second comparison is 

ratio measured by rAP and rAUC.

t0 Event rate Risk score system APCHF AUCCHF

20 years 0.0120 Simple 0.037 (0.028, 0.051) 0.786 (0.746, 0.824)

Heart dose 0.072 (0.047, 0.120) 0.820 (0.780, 0.859)

Δ 0.035 (0.015, 0.077) 0.035(0.013, 0.056)

Ratio 1.95 (1.42, 2.90) 1.04 (1.02, 1.07)

35 years 0.0440 Simple 0.073 (0.062, 0.088) 0.812 (0.778, 0.846)

Heart dose 0.107 (0.088, 0.135) 0.820 (0.784, 0.856)

Δ 0.034(0.020, 0.055) 0.008 (-0.016, 0.029)

Ratio 1.46 (1.26, 1.71) 1.01 (0.98, 1.04)
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