
University of Richmond

UR Scholarship Repository

Math and Computer Science Faculty Publications Math and Computer Science

12-2017

A Tidy Data Model for Natural Language
Processing Using CleanNLP
Taylor B. Arnold
Mathematics and Computer Science, tarnold2@richmond.edu

Follow this and additional works at: https://scholarship.richmond.edu/mathcs-faculty-publications

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Math and Computer Science at UR Scholarship Repository. It has been accepted for

inclusion in Math and Computer Science Faculty Publications by an authorized administrator of UR Scholarship Repository. For more information,

please contact scholarshiprepository@richmond.edu.

Recommended Citation
Arnold, Taylor. "A Tidy Data Model for Natural Language Processing Using CleanNLP." The R Journal, 9:2 (2017): 248-267.

http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/mathcs?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

A Tidy Data Model for Natural Language

Processing using cleanNLP
by Taylor Arnold

Abstract Recent advances in natural language processing have produced libraries that extract low-
level features from a collection of raw texts. These features, known as annotations, are usually stored
internally in hierarchical, tree-based data structures. This paper proposes a data model to represent
annotations as a collection of normalized relational data tables optimized for exploratory data analysis
and predictive modeling. The R package cleanNLP, which calls one of two state of the art NLP
libraries (CoreNLP or spaCy), is presented as an implementation of this data model. It takes raw text
as an input and returns a list of normalized tables. Specific annotations provided include tokenization,
part of speech tagging, named entity recognition, sentiment analysis, dependency parsing, coreference
resolution, and word embeddings. The package currently supports input text in English, German,
French, and Spanish.

Introduction

There has been an ongoing trend towards converting raw data into a collection of normalized tables
prior to conducting further analyses. This paradigm, recently popularized by Hadley Wickham under
the term “tidy data” (Wickham, 2014), draws on concepts from database and visualization theory to
provide a welcomed theoretical basis for data analysis. There are also many pragmatic benefits to
putting data into a set of normalized tables prior to beginning an exploratory analysis or building
inferential models. When working with normalized data most modeling, data manipulation, and
visualization tasks can be described using a small collection of functions. This makes code more
readable, less-error prone, and allows for better code reuse. As many of these simple functions reduce
to basic database operations, this style of coding can simplify the task of integrating statistical models
into a production codebase. Also, normalized tables can be stored unambiguously as delimited plain
text flat files, allowing for interoperability between programming languages and users.

As both a cause and result of the popularity of this approach, a number of software packages
have been developed to help construct and manipulate collections of normalized data tables. In R,
well-known examples include dplyr (Wickham and Francois, 2016), ggplot2 (Wickham, 2009), magrittr
(Bache and Wickham, 2014), broom (Robinson, 2017), janitor (Firke, 2016), and tidyr (Wickham, 2017).
On the Python side, much of this functionality is included within the pandas (McKinney et al., 2010)
and sklearn (Pedregosa et al., 2011) modules.

While cleaning messy data is often a time-consuming task, deciding on a specific normalized
schema for representing a set of inputs is in most cases relatively straightforward. Outside of po-
tentially removing outliers, missing data, and bad inputs, the process of tidying data is generally a
lossless procedure. At a high-level, data tidying is often simply a reorganization of the raw inputs.
However, if we are working with unstructured data such as collections of text, images, or sound,
converting into a normalized tabular format is significantly more involved. The process of tidying in
these cases becomes synonymous with featurization, whereby structured outputs are algorithmically
extracted from a raw input. For example, from an audio music file we might extract features such as
the overall length, beats per minute, and quantiles of the music’s loudness.

The featurization of raw text, known in natural language processing as text annotation, includes
tasks such as tokenization (splitting text into words), part of speech tagging, and named entity
recognition. Recent advancements in neural networks and heavy investment from both industry and
academia have produced fast and highly accurate annotation libraries such as Stanford’s CoreNLP
(Manning et al., 2014), spaCy (Honnibal and Johnson, 2015), Apache’s OpenNLP (Baldridge, 2005),
and Google’s SyntaxNet (Petrov, 2016). All of these, however, internally represent annotations using
collections of complex, hierarchical, object-oriented classes. While these structures are ideal for
annotation, they are not optimal for exploratory and predictive modeling.

In this paper, we present a method for uniting the cutting edge advancements in natural language
processing with the popular normalized data paradigm. Specifically, we give a data schema repre-
senting the output of an NLP annotation pipeline as a collection of normalized tables. Alongside
this specification, we present the R package cleanNLP that implements this specification over three
distinct back ends. The package contains:

• custom Java code, called by rJava (Urbanek, 2016), that annotates raw text using the CoreNLP
library;

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=broom
https://CRAN.R-project.org/package=janitor
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=cleanNLP

• a custom Python script, called by reticulate (Allaire et al., 2017), that annotates raw text using
the spaCy library;

• a simple, system dependency free, annotation engine using the package tokenizers (Mullen,
2016).

The package cleanNLP also includes tools for converting from the normalized data model into (sparse)
data matrices appropriate for exploratory and predictive modeling. Together, these contributions
simplify the process of doing exploratory data analysis over a corpus of text.

There are several existing R packages that have some similar or complementary features to those in
cleanNLP. The R package tidytext (Silge and Robinson, 2016) also offers the ability to convert raw rext
into a data frame. It is quite similar to the functionality of cleanNLP when using the tokenizers back
end, with the addition of basic sentiment analysis and part of speech tagging for English through the
use of word lists. With all annotations occurring at the token level, results are given as a single table
rather than a normalized schema between many tables as in cleanNLP, which simplifies its application
for new users. As such, tidytext works well for applications that do not need more advanced annotators
such as named entities, dependencies, and coreferences. Given the overlap in general approaches,
it should be relatively straightforward for users to transition from tidytext to cleanNLP when they
find the need for these annotation tasks. There are two existing R packages that also call functions
in the CoreNLP library. The package StanfordCoreNLP (Hornik, 2016c), available only through the
datacube website at Vienna University, integrates into the NLP framework. A similar, standalone
approach is offered by coreNLP (Arnold and Tilton, 2016). Both of these packages run the annotation
pipeline over a corpus of text, call the java class edu.stanford.nlp.pipeline.XMLOutputter, and then
parse the output using the XML package. This approach is not ideal as parsing the output XML
file is computationally time-consuming. It is also error prone because there is no published format
specifying the output of the XML.1 There is also the package spacyr (Benoit and Matsuo, 2017), which
was published after cleanNLP, that offers another way of calling the spaCy library from R. Internally,
spacyr works similarly to the spaCy back end in cleanNLP by calling the Python library and extracting
information into R data types. However, spacyr returns results as a single denormalized data frame
and (perhaps in part as a result of having no easy way of storing them in the one-table output) does
not support the word embeddings feature of the spaCy library.

The package has been designed to integrate into workflows that utilize the many other packages for
text processing available in R, such as those found in the CRAN Taskview NaturalLanguageProcessing.
For example, users may use the framework provided by tm (Feinerer et al., 2008) to manage external
corpora or the classes within NLP (Hornik, 2016a) to run alternative parsers that can be converted
into a tidy framework by way of the from_CoNLL function. The Apache OpenNLP annotation pipeline,
available via openNLP (Hornik, 2016b), for instance, provides several languages not yet supported by
spaCy or the CoreNLP pipeline. Packages that focus on the analysis and modeling of text data can
usually be used directly with the output from cleanNLP; these include lda (Chang, 2015), lsa (Wild,
2015), and topicmodels (Grün and Hornik, 2011). Similarly, general-purpose database back-ends such
as sqliter (Freitas, 2014) can be used to store the tidy data tables; predictive modeling functions may
be used to do predictive analytics over generated term-frequency matrices.

In the following section we illustrate the usage of the R package across all three back ends. Next,
we give a detailed description and justification of our data model. Along the way, we give a high-level
introduction to the ideas behind the underlying NLP annotators. We finish by illustrating a longer
example of using the package to study a corpus of historical speeches made by Presidents of the
United States.

Basic usage of cleanNLP

Before describing the data model for text annotations, it is useful to understand the basic workflow
provided by the R package cleanNLP. We start by writing the opening lines of Douglas Adams’ Life,
the Universe and Everything to a temporary file.

> txt <- c("The regular early morning yell of horror was the sound of Authur",

+ "Dent waking up and suddenly remembering where he was. It wasn't",

+ "just that the cave was cold, it wasn't just that it was damp and",

+ "smelly. It was the fact that the cave was in the middle of",

1This author, who is also the maintainer of coreNLP, has witnessed this first-hand by way of the persistent
bug reports centering around the formatting of the XML output in strange edge cases or over new versions of the
CoreNLP library. The coreNLP will still be maintained for users looking explicitly to access methods from the
Stanford Library, whereas cleanNLP is being developed to provide a simpler interface that is consistent across
various back ends.

https://CRAN.R-project.org/package=tidytext
https://CRAN.R-project.org/package=StanfordCoreNLP
https://CRAN.R-project.org/package=coreNLP
https://CRAN.R-project.org/package=XML
https://CRAN.R-project.org/package=spacyr
https://CRAN.R-project.org/view=NaturalLanguageProcessing
https://CRAN.R-project.org/package=NLP
https://CRAN.R-project.org/package=cleanNLP
https://CRAN.R-project.org/package=lda
https://CRAN.R-project.org/package=lsa
https://CRAN.R-project.org/package=topicmodels
https://CRAN.R-project.org/package=sqliter

+ "Islington and there wasn't a bus due for two million years.")

> writeLines(txt, tf <- tempfile())

The package cleanNLP can be installed directly from CRAN, with binaries available for all major
operating systems. In order to annotate raw text, an NLP back end must first be initalized. Once
this is done, annotation is done by calling the function annotate with a vector of path(s) to the input
documents. We start with an example using the tokenizers back end.

> library(cleanNLP)

> init_tokenizers()

> anno <- run_annotators(tf)

The result of the annotation is a named list of six data frames and one matrix. We can see the elements
of the object by printing out their names.

> names(anno)

[1] "coreference" "dependency" "document" "entity" "sentence"

[6] "token" "vector"

The individual tables can be referenced with the generic R accessor functions (such as `[[`), however
the preferred method is to call the relevant cleanNLP functions of the form get_TABLENAME(). For
example, the tokens table for this example can be accessed with the get_token function.

> get_token(anno)

A tibble: 61 x 8

id sid tid word lemma upos pos cid

<int> <int> <int> <chr> <chr> <chr> <chr> <int>

1 1 0 1 The <NA> <NA> <NA> NA

2 1 0 2 regular <NA> <NA> <NA> NA

3 1 0 3 early <NA> <NA> <NA> NA

4 1 0 4 morning <NA> <NA> <NA> NA

5 1 0 5 yell <NA> <NA> <NA> NA

6 1 0 6 of <NA> <NA> <NA> NA

7 1 0 7 horror <NA> <NA> <NA> NA

8 1 0 8 was <NA> <NA> <NA> NA

9 1 0 9 the <NA> <NA> <NA> NA

10 1 0 10 sound <NA> <NA> <NA> NA

... with 51 more rows

The get functions are preferable because they provide useful options for modifying the output before
returning it. Notice that the annotation process here has split out each word in the input into its own
row. There are also several columns of ids and columns filled with missing values. The specific schema
of the tables will be the focus of discussion in the following section.

The tokenizers back end requires no external dependencies, however it does not support any of
the advanced annotation tasks that illustrate the utility of the cleanNLP package. This explains why
most of the columns in the example are missing. It is included primarily for testing and demonstration
purposes in cases where the other back ends cannot be installed. The spaCy back end uses the Python
library by the same name for the purpose of extracting text annotations. Users must install Python
and the library externally (detailed instructions are provided in the package documentation). Once
installed, the only modification required by the R code is to adjust which init_ function is being
called.

> init_spaCy()

> anno <- run_annotators(tf)

> get_token(anno)

A tibble: 68 x 8

id sid tid word lemma upos pos cid

<int> <int> <int> <chr> <chr> <chr> <chr> <int>

1 1 1 1 The the DET DT 0

2 1 1 2 regular regular ADJ JJ 4

3 1 1 3 early early ADJ JJ 12

4 1 1 4 morning morning NOUN NN 18

5 1 1 5 yell yell NOUN NN 26

6 1 1 6 of of ADP IN 31

7 1 1 7 horror horror NOUN NN 34

8 1 1 8 was be VERB VBD 41

9 1 1 9 the the DET DT 45

table name record primary key foreign keys

document document id ·

token word / punctuation id, sid, tid cid
dependencies token pairs id, sid, tid, tid_target ·

entity set of tokens id, sid, tid, tid_end ·

coreference mentions id, rid, mid sid, tid, tid_end, tid_head
sentence sentence id, sid ·

vector word embedding id, sid, tid ·

Table 1: Tables in the data model and their (composite) primary and foreign keys. All keys are given
by non-negative integers. Namely, id indexes the documents, sid the sentences within a document,
and tid the tokens within a sentence. The cid gives character offsets into the raw input text. Keys rid
and mid are specifically constructed by the coreference annotator.

10 1 1 10 sound sound NOUN NN 49

... with 58 more rows

The output is in the exact some format but now all of the token columns are filled in with useful
information such as the lemmatized form of each word and part of speech codes. Similar details are
also filled into the other fields.

The third and final back end currently available uses the Java library coreNLP. Users must install
Java version 1.8 or higher and link it to R using the rJava. The coreNLP models, which are over 1 GB,
can then be either manually downloaded or grabbed using the helper function download_coreNLP().
Once installed, the back end works just as with the other back ends.

> init_coreNLP()

> anno <- run_annotators(tf)

> get_token(anno)

A tibble: 68 x 8

id sid tid word lemma upos pos cid

<int> <int> <int> <chr> <chr> <chr> <chr> <int>

1 1 1 1 The the DET DT 0

2 1 1 2 regular regular ADJ JJ 4

3 1 1 3 early early ADJ JJ 12

4 1 1 4 morning morning NOUN NN 18

5 1 1 5 yell yell VERB VB 26

6 1 1 6 of of ADP IN 31

7 1 1 7 horror horror NOUN NN 34

8 1 1 8 was be VERB VBD 41

9 1 1 9 the the DET DT 45

10 1 1 10 sound sound NOUN NN 49

... with 58 more rows

The token output here is similar, but not exactly the same, as that produced by the spaCy annotation
engine. The only distinction in the first ten rows is whether the word yell is categorized as a noun
(spaCy) or a verb (coreNLP). While yell can be either part of speech, in context the spaCy interpretation
is correct.

As seen in the code-snippets here, the philosophy behind the design of the cleanNLP package is
to make it as easy as possible to get raw text turned into data frames. All of the functions introduced
here have optional parameters that change the way the back ends are run or how the annotations
are returned. This includes which annotators to run and selecting the desired language model to use.
Complete documentation is available within the R help pages.

A data model for the NLP pipeline

An annotation object is simply a named list with each item containing a data frame. These frames
should be thought of as tables living inside of a single database, with keys linking each table to one
another. All tables are in the second normal form of Codd (1990). For the most part they also satisfy
the third normal form, or, equivalently, the formal tidy data model of Wickham (2014). The limited
departures from this more stringent requirement are justified below wherever they exist. In every case
the cause is a transitive dependency that would require a complex range join to reconstruct.

Several standards have previously been proposed for representing textual annotations. These

https://CRAN.R-project.org/package=rJava

get_document()

id integer. Id of the source document.
time date time. The time at which the parser was run on the text.
version character. Version of the NLP library used to parse the text.
language character. Language of the text, in ISO 639-1 format.
uri character. Description of the raw text location.

Table 2: Schema for the document table. The id field serves as a primary key, and other meta data
fields may be appended that give domain-specific information about each document.

include the linguistic Annotation Framework (Ide and Romary, 2001), NLP Interchange Format
(Hellmann et al., 2012), and CoNLL-X (Buchholz and Marsi, 2006). The function from_CoNLL is
included as a helper function in cleanNLP to convert from CoNLL formats into the cleanNLP data
model. All of these, however, are concerned with representing annotations for interoperability between
systems. Our goal is instead to create a data model well-suited to direct analysis, and therefore requires
a new approach.

In this section each table is presented and justifications for its existence and form are given.
Individual tables may be pulled out with access functions of the form get_*. Example tables are pulled
from the dataset obama, which is included with the cleanNLP package. This gives the annotation
object obtained from the text of the annual speeches Barack Obama made to Congress. These annual
addresses, known as The State of the Union, are mandated by the US Constitution and have been given
by every president since George Washington.

Documents

The documents table contains one row per document in the annotation object. What exactly constitutes
a document is up to the user. It might include something as granular as a paragraph or as coarse as
an entire novel. For many applications, particularly stylometry, it may be useful to simultaneously
work with several hierarchical levels: sections, chapters, and an entire body of work. The solution in
these cases is to define a document as the smallest unit of measurement, denoting the higher-level
structures as metadata. For example, when working with a corpus of texts where each book is broken
into chapters, we would make each document an individual chapter. A metadata field would be
assigned to each chapter indicating which book it is a part of.

The primary key for the document table is a document id, stored as an integer index. By design,
there should be no extrinsic meaning placed on this key. Other tables use it to map to one another
and to the document table, but any metadata about the document is contained only in the document
table rather than being forced into the document key. In other words, the temptation to use keys
such as “Obama2016” is avoided because, while these look nice, trying to make use of them to extract
document-level metadata is error prone and ultimately more verbose than making use of a join with
the document table.

The minimal fields required by the document table are given in Table 2. These are all filled in
automatically by the annotation function. Any number of additional corpora-specific metadata, such
as the aforementioned section and chapter designations, may be attached as well by giving it as an
option to the meta parameter of run_annotators. The document table for the example corpus is:

> get_document(obama)

A tibble: 8 x 5

id time version language uri

<int> <dttm> <chr> <chr> <chr>

1 1 2017-05-21 09:27:55 1.8.2 en 2009.txt

2 2 2017-05-21 09:28:00 1.8.2 en 2010.txt

3 3 2017-05-21 09:28:05 1.8.2 en 2011.txt

4 4 2017-05-21 09:28:10 1.8.2 en 2012.txt

5 5 2017-05-21 09:28:14 1.8.2 en 2013.txt

6 6 2017-05-21 09:28:18 1.8.2 en 2014.txt

7 7 2017-05-21 09:28:22 1.8.2 en 2015.txt

8 8 2017-05-21 09:28:26 1.8.2 en 2016.txt

It may seem that common fields such as year and author should be added to the formal specification
but the perceived advantage is minimal. It would still be necessary for users to manually add the
content of these fields at some point as any other metadata is not unambiguously extractable from the
raw text.

get_token()

id integer. Id of the source document.
sid integer. Sentence id, starting from 0.
tid integer. Token id, with the root of the sentence starting at 0.
word character. Raw word in the input text.
lemma character. Lemmatized form the token.
upos character. Universal part of speech code.
pos character. Language-specific part of speech code; uses the Penn Treebank codes.
cid integer. Character offset at the start of the word in the original document.

Table 3: Schema for the token table. The fields id, sid, and tid serve as a composite key for each token.
A row also exist for the root of each sentence.

Tokens

The token table contains one row for each unique token, usually a word or punctuation mark, in any
document in the corpus. Any annotator that produces an output for each token has its results displayed
here. These include the lemmatizer and the part of the speech tagger (Toutanova and Manning, 2000).
Table 3 shows the required columns contained in the token table. Given the annotators selected during
the pipeline initialization, some of these columns may contain only missing data. A composite key
exists by taking together the document id, sentence id, and token id. There is also a foreign key, cid,
giving the character offset back into the original source document. An example of the table looks like
this:

> get_token(obama, include_root = TRUE)

A tibble: 65,758 x 8

id sid tid word lemma upos pos cid

<int> <int> <int> <chr> <chr> <chr> <chr> <int>

1 1 1 0 ROOT ROOT <NA> <NA> NA

2 1 1 1 Madam madam PROPN NNP 0

3 1 1 2 Speaker speaker PROPN NNP 6

4 1 1 3 , , PUNCT , 13

5 1 1 4 Mr. mr. PROPN NNP 15

6 1 1 5 Vice vice PROPN NNP 19

7 1 1 6 President president PROPN NNP 24

8 1 1 7 , , PUNCT , 33

9 1 1 8 Members members PROPN NNPS 35

10 1 1 9 of of ADP IN 43

... with 65,748 more rows

A phantom token “ROOT” is included at the start of each sentence (it always has tid equal to 0) if
the option include_root is set to TRUE (it is FALSE by default). This is useful so that joins from the
dependency table, which contains references to the sentence root, into the token table have no missing
values.

The field upos contains the universal part of speech code, a language-agnostic classification, for
the token. It could be argued that in order to maintain database normalization one should simply
look up the universal part of speech code by finding the language code in the document table and
joining a table mapping the Penn Treebank codes to the universal codes. This has not been done for
several reasons. First, universal parts of speech are very useful for exploratory data analysis as they
contain tags much more familiar to non-specialists such as “NOUN” (noun) and “CONJ” (conjunction).
Asking users to apply a three table join just to access them seems overly cumbersome. Secondly, it is
possible for users to use other parsers or annotation engines. These may not include granular part of
speech codes and it would be difficult to figure out how to represent these if there were not a dedicated
universal part of speech field.

Dependencies

Dependencies give the grammatical relationship between pairs of tokens within a sentence (Green et al.,
2011; Rafferty and Manning, 2008). As they are at the level of token pairs, they must be represented
as a new table. All included fields are described in Table 4. Only one dependency should exist for
any pair of tokens; the document id, sentence id, and source and target token ids together serve as
a composite key. As dependencies exist only within a sentence, the sentence id does not need to be

get_dependency()

id integer. Id of the source document.
sid integer. Sentence id of the source token.
tid integer. Id of the source token.
sid_target integer. Sentence id of the target token.
tid_target integer. Id of the target token.
relation character. Language-agnostic universal dependency type.
relation_full character. Language specific universal dependency type.

word character. The source word in the raw text.
lemma character. Lemmatized form of the source word.
word_target character. The target word in the raw text.
lemma_target character. Lemmatized form of the target word.

Table 4: Schema for the dependency table. The final four variables are only provided when the option
get_token is set to TRUE. The first five fields together create a composite key for the table.

defined separately for the source and target. Dependencies take significantly longer to calculate than
the lemmatization and part of speech tagging tasks.

The get_dependency function has an option (set to FALSE by default) to auto join the dependency
to the target and source words and lemmas from the token table. This is a common task and involves
non-trivial calls to the left_join function making it worthwhile to include as an option. For example,
the following code replicates the behavior of get_dependency when set to return words and lemmas:

dep <- get_dependency(obama) %>%

left_join(select(get_token(obama, include_root = TRUE),

id, sid, tid, word, lemma),

by = c("id", "sid", "tid")) %>%

left_join(select(get_token(obama, include_root = TRUE),

id, sid, tid_target = tid,

word_target = word, lemma_target = lemma),

by = c("id", "sid", "tid_target"))

The output, equivalently using a call to get_dependency, is given by:

> get_dependency(obama, get_token = TRUE)

A tibble: 62,781 x 10

id sid tid tid_target relation relation_full word lemma

<int> <int> <int> <int> <chr> <chr> <chr> <chr>

1 1 1 2 1 compound <NA> Speaker speaker

2 1 1 0 2 ROOT <NA> ROOT ROOT

3 1 1 2 3 punct <NA> Speaker speaker

4 1 1 6 4 compound <NA> President president

5 1 1 6 5 compound <NA> President president

6 1 1 2 6 appos <NA> Speaker speaker

7 1 1 6 7 punct <NA> President president

8 1 1 6 8 appos <NA> President president

9 1 1 8 9 prep <NA> Members members

10 1 1 9 10 pobj <NA> of of

word_target lemma_target

<chr> <chr>

1 Madam madam

2 Speaker speaker

3 , ,

4 Mr. mr.

5 Vice vice

6 President president

7 , ,

8 Members members

9 of of

10 Congress congress

... with 62,771 more rows

The word “ROOT” shows up in the first row, which would have been NA had sentence roots not been

get_entity()

id integer. Id of the source document.
sid integer. Sentence id of the entity mention.
tid integer. Token id at the start of the entity mention.
tid_end integer. Token id at the end of the entity mention.
entity_type character. Type of entity.
entity character. Raw words of the named entity in the text.
entity_normalized character. Normalized version of the entity.

Table 5: Schema for the entity table. The first three fields serve as a composite key.

explicitly included in the token table.

Our parser produces universal dependencies (De Marneffe et al., 2014), which have a language-
agnostic set of relationship types with language-specific subsets pertaining to specific grammatical
relationships with a particular language. For the same reasons that both the part of speech codes and
universal part of speech codes are included, each of these relationship types have been added to the
dependency table.

Named entities

Named entity recognition is the task of finding entities that can be defined by proper names, catego-
rizing them, and standardizing their formats (Finkel et al., 2005). The XML output of the Stanford
CoreNLP pipeline places named entity information directly into their version of the token table. Doing
this repeats information over every token in an entity and gives no canonical way of extracting the
entirety of a single entity mention. We instead have a separate entity table, as is demanded by the
normalized database structure, and record each entity mention in its own row. The full set of fields
are given in Table 5, with the combination of document id, sentence id, and token id serving as a
composite key.

An example of the named entity table is given by:

> get_entity(obama)

A tibble: 3,035 x 6

id sid tid tid_end entity_type entity

<int> <int> <int> <int> <chr> <chr>

1 1 1 1 2 PERSON Madam Speaker

2 1 1 8 10 ORG Members of Congress

3 1 1 12 14 ORG the First Lady

4 1 1 16 18 GPE the United States

5 1 1 30 30 TIME tonight

6 1 1 43 44 EVENT Chamber,

7 1 2 6 6 NORP Americans

8 1 4 24 25 DATE every day

9 1 8 23 23 TIME tonight

10 1 8 27 27 NORP American

... with 3,025 more rows

The categories available in the field entity_type are dependent on the specific back end used. When
using the coreNLP back end, the entities ‘MONEY’, ‘ORDINAL’ ‘PERCENT’, ‘DATE’ and ‘TIME’ also
have a normalized form. Entities for the spaCy backend offer more granular distinctions, with a full
list contained in the help page for the function get_entity. As with the coreference table, a complete
representation of the entity is given as a character string due to the difficulty in reconstructing this
after the fact from the token table, so the character string has been included as an explicit field.

Coreference

Coreferences link sets of tokens that refer to the same underlying person, object, or idea (Recasens
et al., 2013; Lee et al., 2013, 2011; Raghunathan et al., 2010). One common example is the linking
of a noun in one sentence to a pronoun in the next sentence. The coreference table describes these
relationships but is not strictly a table of coreferences. Instead, each row represents a single mention of
an expression and gives a reference id indicating all of the other mentions that it also coreferences.
Table 6 gives the entire schema of the coreference table. The document, reference, and mention ids

get_coreference()

id integer. Id of the source document.
rid integer. Relation ID.
mid integer. Mention ID; unique to each coreference within a document.
mention character. The mention as raw words from the text.
mention_type character. One of "LIST", "NOMINAL", "PRONOMINAL", or "PROPER".
number character. One of "PLURAL", "SINGULAR", or "UNKNOWN".
gender character. One of "FEMALE", "MALE", "NEUTRAL", or "UNKNOWN".
animacy character. One of "ANIMATE", "INANIMATE", or "UNKNOWN".
sid integer. Sentence id of the coreference.
tid integer. Token id at the start of the coreference.
tid_end integer. Token id at the start of the coreference.
tid_head integer. Token id of the head of the coreference.

Table 6: Schema for the coreference table. Each row is best thought of as a coreference mention, rather
than the coreference itself.

serve as a composite key for the table. Links back into the token table for the start, end and head of
the mention are given as well; these are pushed to the right of the table as they should be considered
foreign keys within this table.

An example helps to explain exactly what the coreference table represents:

> get_coreference(obama)

A tibble: 6,982 x 12

id rid mid mention mention_type number gender

<int> <int> <int> <chr> <chr> <chr> <chr>

1 1 2049 7 the United States PROPER SINGULAR NEUTRAL

2 1 2049 77 the United States of America PROPER SINGULAR NEUTRAL

3 1 2049 102 America PROPER SINGULAR NEUTRAL

4 1 2049 315 America PROPER SINGULAR NEUTRAL

5 1 2049 742 America 's PROPER SINGULAR NEUTRAL

6 1 2049 782 America PROPER SINGULAR NEUTRAL

7 1 2049 939 America PROPER SINGULAR NEUTRAL

8 1 2049 991 America PROPER SINGULAR NEUTRAL

9 1 2049 1003 America PROPER SINGULAR NEUTRAL

10 1 2049 1045 America PROPER SINGULAR NEUTRAL

animacy sid tid tid_end tid_head

<chr> <dbl> <int> <int> <int>

1 INANIMATE 1 16 18 18

2 INANIMATE 8 41 45 43

3 INANIMATE 12 6 6 6

4 INANIMATE 40 12 12 12

5 INANIMATE 103 8 9 8

6 INANIMATE 109 8 8 8

7 INANIMATE 132 5 5 5

8 INANIMATE 138 27 27 27

9 INANIMATE 140 41 41 41

10 INANIMATE 147 4 4 4

... with 6,972 more rows

Here, these are all mentions of the same underlying entity: The United States of America. There is a
special relationship between the reference id rid and the mention id mid. The coreference annotator
selects a specific mention for each reference that gets treated as the canonical mention for the entire
class. The mention id for this mention becomes the reference id for the class. This relationship
provides a way of identifying the canonical mention within a reference class and a way of treating the
coreference table as pairs of mentions rather than individual mentions joined by a given key.

The text of the mention itself is included within the table. This was done because as the mention
may span several tokens it would otherwise be very difficult to extract this information from the token
table. It is also possible, though not supported in the current CoreNLP pipeline, that a mention could
consist of a set of non-contiguous tokens, making this field impossible to otherwise reconstruct.

get_sentence()

id integer. Id of the source document.
sid integer. Sentence id.
sentiment integer. Predicted sentiment; 0 (very negative) to 4 (very positive).

Table 7: Schema for the setence table. The document and sentence ids serve as a composite key.

Sentence level annoations

The sentiment tagger provided by the CoreNLP pipeline predicts whether a sentence is very negative
(0), negative (1), neutral (2), positive (3), or very positive (4) (Socher et al., 2013). There is no native
sentiment model currently supported by spaCy. The sentiment output is placed in a separate table
because it returns information exclusively at the sentence level, unlike any of the other parsers. The
schema, described in Table 7, has the document and sentence ids serving as composite keys, with the
only other field being an integer sentiment code. An example of the output can be seen in:

> get_sentence(obama)

A tibble: 2,988 x 3

id sid sentiment

<int> <dbl> <int>

1 1 1 1

2 1 2 3

3 1 3 1

4 1 4 1

5 1 5 2

6 1 6 1

7 1 7 3

8 1 8 1

9 1 9 1

10 1 10 1

... with 2,978 more rows

The underlying sentiment model is a neural network. While at the moment few annotators exist at the
sentence level, there is currently active research in modeling features that would eventually fit well
into this table such as indicators of mood (Gaikwad and Joshi, 2016), levels of sarcasm (Schifanella
et al., 2016) or a characterization of the sentence’s “style” (Kabbara and Cheung, 2016).

Word vectors

Our final table in the data model stores the relatively new concept of a word vector. Also known
as word embeddings, these vectors are deterministic maps from the set of all available words into a
high-dimensional, real valued vector space. Words with similar meanings or themes will tend to be
clustered together in this high-dimensional space. For example, we would expect apple and pear to
be very close to one another, with vegetables such as carrots, broccoli, and asparagus only slightly
farther away. The embeddings can often be used as input features when building models on top of
textual data. For a more detailed description of these embeddings, see the papers on either of the
most well-known examples: GloVe (Pennington et al., 2014) and word2vec (Mikolov et al., 2013). Only
the spaCy back end to cleanNLP currently supports word vectors; these are turned off by default
because they take a significantly large amount of space to store. The embedding model uses the
fasttext embeddings (Bojanowski et al., 2016), a modification of the GloVe embeddings, which map
words into a 300-dimensional space. To compute the embeddings, set the vector_flag parameter of
init_spaCy to TRUE prior to running the annotation.

Word vectors are stored in a separate table from the tokens table out of convenience rather than as
a necessity of preserving the data model’s normalized schema. Due to its size and the fact that the
individual components of the word embedding have no intrinsic meaning, this table is stored as a
matrix. We can see that there is exactly one row in the word embeddings for every non-ROOT token
in the token table (note that the word embeddings for the obama dataset are not included with the
package as they are too large to be uploaded to CRAN).

> dim(get_token(obama))

[1] 62781 8

> dim(get_vector(obama))

[1] 62781 303

The first three columns hold the keys id, sid, and tid, respectively. If no embedding is computed, the
function get_vector returns an empty matrix.

Using cleanNLP to study State of the Union addresses

The President of the United States is constitutionally obligated to provide a report known as the State
of the Union. The report summarizes the current challenges facing the country and the president’s
upcoming legislative agenda. While historically the State of the Union was often a written document,
in recent decades it has always taken the form of an oral address to a joint session of the United States
Congress. In this final section the utility of the package is illustrated by showing how it can be used
to study a corpus consisting of every such address made by a United States president through 2016
(Peters, 2016). It highlights some of the major benefits of the tidy data model as it applies to the study
of textual data, though by no means attempts to give an exhaustive coverage of all the available tables
and approaches. The examples make heavy use of the table verbs provided by dplyr, the piping
notation of magrittr and ggplot2 graphics. These are used because they best illustrate the advantages
of the tidy data model that has been built in cleanNLP for representing corpus annotations. Relevant
functions are prepended with cleanNLP:: in the following analysis in order to be clear which functions
are supplied by the cleanNLP package.

Loading and parsing the data

The full text of all the State of the Union addresses through 2016 are available in the R package sotu
(Arnold, 2017), available on CRAN. The package also contains meta-data concerning each speech that
we will add to the document table while annotating the corpus. The code to run this annotation is
given by:

> library(sotu)

> library(cleanNLP)

>

> data(sotu_text)

> data(sotu_meta)

> init_spaCy()

> sotu <- cleanNLP::run_annotators(sotu_text, as_strings = TRUE,

+ meta = sotu_meta)

The annotation object, which we will use in the example in the following analysis, is stored in the
object sotu.

Exploratory analysis

Simple summary statistics are easily computed off of the token table. To see the distribution of sentence
length, the token table is grouped by the document and sentence id and the number of rows within
each group are computed. The percentiles of these counts give a quick summary of the distribution.

> library(ggplot2)

> library(dplyr)

> cleanNLP::get_token(sotu) %>%

+ count(id, sid) %$%

+ quantile(n, seq(0,1,0.1))

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1 11 16 19 23 27 31 37 44 58 681

The median sentence has 28 tokens, whereas at least one has over 600 (this is due to a bulleted list in
one of the written addresses being treated as a single sentence) To see the most frequently used nouns
in the dataset, the token table is filtered on the universal part of speech field, grouped by lemma, and
the number of rows in each group are once again calculated. Sorting the output and selecting the top
42 nouns, yields a high level summary of the topics of interest within this corpus.

> cleanNLP::get_token(sotu) %>%

+ filter(upos == "NOUN") %>%

+ count(lemma) %>%

+ top_n(n = 42, n) %>%

+ arrange(desc(n)) %>%

+ use_series(lemma)

https://CRAN.R-project.org/package=sotu

●●

●●●

●

●

●

●●
●●

●

●●●

●●
●●

●
●●

●●

●

●●

●●
●

●

●

●

●

●
●

●
●
●

●

●

●
●●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●
●

●

●●

●●

●●

●

●
●

●

●
●
●●

●

●
●

●●●●
●●

●

●
●●●

●●

●

0

10000

20000

30000

40000

1800 1850 1900 1950 2000

Year

N
u

m
b

e
r

o
f

w
o

rd
s

SOTU Address type ● ●speech written

Figure 1: Length of each State of the Union address, in total number of tokens. Color shows whether
the address was given as a speech or delivered as a written document.

[1] "year" "country" "people" "government"

[5] "law" "time" "nation" "who"

[9] "power" "interest" "world" "war"

[13] "citizen" "service" "duty" "part"

[17] "system" "peace" "right" "man"

[21] "program" "policy" "work" "act"

[25] "state" "condition" "subject" "legislation"

[29] "force" "effort" "treaty" "purpose"

[33] "what" "land" "business" "action"

[37] "measure" "tax" "way" "question"

[41] "relation" "consideration"

The result is generally as would be expected from a corpus of government speeches, with references
to proper nouns representing various organizations within the government and non-proper nouns
indicating general topics of interest such as “tax”, “law”, and “peace”.

The length in tokens of each address is calculated similarly by grouping and summarizing at the
document id level. The results can be joined with the document table to get the year of the speech and
then piped in a ggplot2 command to illustrate how the length of the State of the Union has changed
over time.

> cleanNLP::get_token(sotu) %>%

+ count(id) %>%

+ left_join(cleanNLP::get_document(sotu)) %>%

+ ggplot(aes(year, n)) +

+ geom_line(color = grey(0.8)) +

+ geom_point(aes(color = sotu_type)) +

+ geom_smooth()

Here, color is used to represent whether the address was given as an oral address or a written
document. The output in Figure 1 shows that their are certainly time trends to the address length,
with the form of the address (written versus spoken) also having a large effect on document length.

Finding the most used entities from the entity table over the time period of the corpus yields an
alternative way to see the underlying topics. A slightly modified version of the code snippet used

The R Journal Vol. 9/2, December 2017 ISSN 2073-4859

to find the top nouns in the dataset can be used to find the top entities. The get_token function is
replaced by get_entity and the table is filtered on entity_type rather than the universal part of
speech code.

> cleanNLP::get_entity(sotu) %>%

+ filter(entity_type == "GPE") %>%

+ count(entity) %>%

+ top_n(n = 26, n) %>%

+ arrange(desc(n)) %>%

+ use_series(entity)

[1] "the United States" "America"

[3] "States" "Mexico"

[5] "Great Britain" "Spain"

[7] "Washington" "China"

[9] "Executive" "France"

[11] "Cuba" "Japan"

[13] "Texas" "Russia"

[15] "The United States" "Germany"

[17] "United States" "California"

[19] "Nicaragua" "the Soviet Union"

[21] "Mississippi" "Iraq"

[23] "Alaska" "U.S."

[25] "Philippines" "Panama"

[27] "the District of Columbia"

The ability to redo analyses from a slightly different perspective is a direct consequence of the tidy
data model supplied by cleanNLP. The top locations include some obvious and some less obvious
instances. Those sovereign nations included such as Great Britain, Mexico, Germany, and Japan seem
as expected given either the United State’s close ties or periods of war with them. The top states
include the most populous regions (New York, California, and Texas) but also smaller states (Kansas,
Oregon, Mississippi), the latter being more surprising.

One of the most straightforward way of extracting a high-level summary of the content of a speech
is to extract all direct object object dependencies where the target noun is not a very common word.
In order to do this for a particular speech, the dependency table is joined to the document table, a
particular document is selected, and relationships of type “dobj” (direct object) are filtered out. The
result is then joined to the data set word_frequency, which is included with cleanNLP, and pairs with
a target occurring less than 0.5% of the time are selected to give the final result. Here is an example of
this using the first address made by George W. Bush in 2001:

> cleanNLP::get_dependency(sotu, get_token = TRUE) %>%

+ left_join(get_document(sotu)) %>%

+ filter(year == 2001, relation == "dobj") %>%

+ select(id = id, start = word, word = lemma_target) %>%

+ left_join(word_frequency) %>%

+ filter(frequency < 0.001) %>%

+ select(id, start, word) %$%

+ sprintf("%s => %s", start, word)

Joining, by = "id"

Joining, by = "word"

[1] "take => oath" "using => statistic"

[3] "increasing => layoff" "protects => trillion"

[5] "makes => welcoming" "accelerating => cleanup"

[7] "fight => homelessness" "helping => neighbor"

[9] "allowing => taxpayer" "provide => mentor"

[11] "fight => illiteracy" "promotes => compassion"

[13] "asked => ashcroft" "end => profiling"

[15] "pay => trillion" "throw => dart"

[17] "restores => fairness" "promoting => internationalism"

[19] "makes => downpayment" "discard => relic"

[21] "confronting => shortage" "directed => cheney"

[23] "sound => footing" "divided => conscience"

[25] "done => servant"

Most of these phrases correspond with the “compassionate conservatism" that George W. Bush ran
under in the preceding 2000 election. Applying the same analysis to the 2002 State of the Union, which
came under the shadow of the September 11th terrorist attacks, shows a drastic shift in focus.

George Washington

John Adams

Thomas Jefferson

James Madison

James MonroeJohn Quincy Adams

Andrew Jackson Martin Van Buren

John Tyler

James K. PolkZachary Taylor

Millard Fillmore

Franklin Pierce James Buchanan

Abraham LincolnAndrew Johnson

Ulysses S. Grant

Rutherford B. Hayes

Chester A. Arthur

Grover Cleveland

Benjamin Harrison

William McKinley

Theodore Roosevelt

William Howard Taft

Woodrow Wilson

Warren G. Harding

Calvin Coolidge

Herbert Hoover

Franklin D. Roosevelt

Harry S Truman

Dwight D. Eisenhower

John F. Kennedy

Lyndon B. Johnson

Richard M. Nixon
Gerald R. Ford

Jimmy Carter

Ronald Reagan

George Bush

William J. Clinton

George W. Bush

Barack Obama

PC1

P
C

2

Year

(1790,1813]

(1813,1835]

(1835,1858]

(1858,1880]

(1880,1903]

(1903,1926]

(1926,1948]

(1948,1971]

(1971,1993]

(1993,2016]

Figure 2: State of the Union Speeches, highlighting each President’s first address, plotted using the
first two principal components of the term frequency matrix of non-proper nouns.

> cleanNLP::get_dependency(sotu, get_token = TRUE) %>%

+ left_join(get_document(sotu)) %>%

+ filter(year == 2002, relation == "dobj") %>%

+ select(id = id, start = word, word = lemma_target) %>%

+ left_join(word_frequency) %>%

+ filter(frequency < 0.0005) %>%

+ select(id, start, word) %$%

+ sprintf("%s => %s", start, word)

Joining, by = "id"

Joining, by = "word"

[1] "urged => follower" "called => troop"

[3] "brought => sorrow" "owe => micheal"

[5] "ticking => timebomb" "have => troop"

[7] "hold => hostage" "eliminate => parasite"

[9] "flaunt => hostility" "develop => anthrax"

[11] "put => troop" "increased => vigilance"

[13] "fight => anthrax" "thank => attendant"

[15] "defeat => recession" "want => paycheck"

[17] "set => posturing" "enact => safeguard"

[19] "embracing => ethic" "owns => aspiration"

[21] "containing => resentment" "erasing => rivalry"

[23] "embrace => tyranny"

Here the topics have almost entirely shifted to counter-terrorism and national security efforts.

Models

The get_tfidf function provided by cleanNLP converts a token table into a sparse matrix representing
the term-frequency inverse document frequency matrix (or any intermediate part of that calculation).
This is particularly useful when building models from a textual corpus. The tidy_pca, also included
with the package, takes a matrix and returns a data frame containing the desired number of principal
components. Dimension reduction involves piping the token table for a corpus into the get_tfidif

●● ●●

●● ●● ●●

●● ●●

●● ●●

●● ●● ●●

●● ●● ●●

●● ●● ●●

●● ●● ●●

●● ●● ●●

●● ●● ●●

●● ●● ●●

●● ●● ●●

●● ●●

●● ●● ●●

●● ●●

●● ●● ●●

program, world, tax, effort, growth

dollar, program, expenditure, business, price

system, work, relief, price, construction

world, security, labor, problem, policy

system, duty, question, court, business

island, force, act, authority, right

bank, subject, duty, system, measure

man, business, work, condition, corporation

world, man, freedom, force, life

duty, citizen, treaty, act, right

work, service, appropriation, report, legislation

treaty, subject, duty, act, commerce

program, energy, effort, legislation, policy

gold, citizen, report, condition, silver

child, job, tonight, world, family

policy, condition, legislation, service, problem

1800 1850 1900 1950 2000

Year

Posterior probability ● ● ●0.25 0.50 0.75

Figure 3: Distribution of topic model posterior probabilities over time on the State of the Union corpus.
The top five words associated with each topic are displayed, with topics sorted by the median year of
all documents placed into the respective topic using the maximum posterior probabilities.

function and passing the results to tidy_pca.

> pca <- cleanNLP::get_token(sotu) %>%

+ filter(pos %in% c("NN", "NNS")) %>%

+ cleanNLP::get_tfidf(min_df = 0.05, max_df = 0.95,

+ type = "tfidf", tf_weight = "dnorm") %$%

+ cleanNLP::tidy_pca(tfidf, get_document(sotu))

In this example only non-proper nouns have been included in order to minimize the stylistic attributes
of the speeches in order to focus more on their content. A scatter plot of the speeches using these
components is shown in Figure 2. There is a definitive temporal pattern to the documents, with the
20th century addresses forming a distinct cluster on the right side of the plot.

●

●● ●● ●●● ●●● ●● ●● ● ●●●

● ●● ●● ● ●● ●● ●●●

●● ●●● ●

● ●● ● ●● ●● ●●●● ● ●● ●● ●●● ●● ● ●●

● ●●●● ●● ● ●● ● ● ●●● ●● ●● ●● ●● ●● ●●● ●● ●● ● ●●● ● ●● ● ● ●●●

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

0.00 0.25 0.50 0.75 1.00

Predicted probability

Y
e
a
r

President

George W. Bush

Barack Obama

Figure 4: Boxplot of predicted probabilities, at the sentence level, for all 16 State of the Union addresses
by Presidents George W. Bush and Barack Obama. The probability represents the extent to which the
model believe the sentence was spoken by President Obama. Odd years were used for training and
even years for testing. Cross-validation on the training set was used, with the one standard error rule,
to set the lambda tuning parameter.

Topic models are a collection of statistical models for describing abstract themes within a textual
corpus. Each theme is characterized by a collection of words that commonly co-occur; for example, the
words ‘crop’, ‘dairy’, ‘tractor’, and ‘hectare’, might define a farming theme. One of the most popular
topic models is latent Dirichlet allocation (LDA), a Bayesian model where each topic is described
by a probability distribution over a vocabulary of words. Each document is then characterized by a
probability distribution over the available topics. For a formal description, see Blei et al. (2003) and
Pritchard et al. (2000), the original papers outlining LDA. To fit LDA on a corpus of text parsed by the
cleanNLP package, the output of get_tfidf can be piped directly to the LDA function in the package
topicmodels. The topic model function requires raw counts, so the type variable in get_tfidf is set to
“tf”.

> library(topicmodels)

> tm <- cleanNLP::get_token(sotu) %>%

+ filter(pos %in% c("NN", "NNS")) %>%

+ cleanNLP::get_tfidf(min_df = 0.05, max_df = 0.95,

+ type = "tf", tf_weight = "raw") %

+ LDA(tf, k = 16, control = list(verbose = 1))

The topics, ordered by approximate time period, are visualized in Figure 3. We describe each topic by
giving the five most important words Most topics exist for a few decades and then largely disappear,
though some persist over non-contiguous periods of the presidency. The “program, energy, effort,

legislation, policy” topic, for example, appears during the 1950s and crops up again during the energy
crisis of the 1970s. The “world, man, freedom, force, life” topic peaks during both World Wars, but is
absent during the 1920s and early 1930s.

Finally, the cleanNLP data model is also convenient for building predictive models. The State of
the Union corpus does not lend itself to an obviously applicable prediction problem. A classifier that
distinguishes speeches made by George W. Bush and Barrack Obama will be constructed here for the
purpose of illustration. As a first step, a term-frequency matrix is extracted using the same technique
as was used with the topic modeling function. However, here the frequency is computed for each
sentence in the corpus rather than the document as a whole. The ability to do this seamlessly with a
single additional mutate function defining a new id illustrates the flexibility of the get_tfidf function.

> df <- get_token(sotu) %>%

+ left_join(get_document(sotu)) %>%

+ filter(year > 2000) %>%

+ mutate(new_id = paste(id, sid, sep = "-")) %>%

+ filter(pos %in% c("NN", "NNS"))

Joining, by = "id"

> mat <- get_tfidf(df, min_df = 0, max_df = 1, type = "tf",

+ tf_weight = "raw", doc_var = "new_id")

It will be nessisary to define a response variable y indicating whether this is a speech made by President
Obama as well as a training flag indicating which speeches were made in odd numbered years. This is
done via a separate table join and a pair of mutations.

> meta <- data_frame(new_id = mat$id) %>%

+ left_join(df[!duplicated(df$new_id),]) %>%

+ mutate(y = as.numeric(president == "Barack Obama")) %>%

+ mutate(train = year %in% seq(2001,2016, by = 2))

Joining, by = "new_id"

The output may now be used as input to the elastic net function provided by the glmnet package. The
response is set to the binomial family given the binary nature of the response and training is done on
only those speeches occurring in odd-numbered years. Cross-validation is used in order to select the
best value of the model’s tuning parameter.

> library(glmnet)

> model <- cv.glmnet(mat$tf[meta$train,], meta$y[meta$train], family = "binomial")

A boxplot of the predicted classes for each address is given in Figure 4. The algorithm does a very
good job of separating the speeches. Looking at the odd years versus even years (the training and
testing sets, respectively) indicates that the model has not been over-fit.

One benefit of the penalized linear regression model is that it is possible to interpret the coefficients
in a meaningful way. Here are the non-zero elements of the regression vector, coded as whether the
have a positive (more Obama) or negative (more Bush) sign:

> beta <- coef(model, s = model[["lambda"]][11])[-1]

> sprintf("%s (%d)", mat$vocab, sign(beta))[beta != 0]

[1] "job (1)" "business (1)" "citizen (-1)"

[4] "terrorist (-1)" "government (-1)" "freedom (-1)"

[7] "home (1)" "college (1)" "weapon (-1)"

[10] "deficit (1)" "company (1)" "peace (-1)"

[13] "enemy (-1)" "terror (-1)" "income (-1)"

[16] "drug (-1)" "kid (1)" "regime (-1)"

[19] "class (1)" "crisis (1)" "industry (1)"

[22] "need (-1)" "fact (1)" "relief (-1)"

[25] "bank (1)" "liberty (-1)" "society (-1)"

[28] "duty (-1)" "folk (1)" "account (-1)"

[31] "compassion (-1)" "environment (-1)" "inspector (-1)"

These generally seem as expected given the main policy topics of focus under each administration.
During most of the Bush presidency, as mentioned before, the focus was on national security and
foreign policy. Obama, on the other hand, inherited the recession of 2008 and was more focused on the
overall economic policy.

https://CRAN.R-project.org/package=glmnet

Conclusions

In this paper a normalized data model for representing text annotations has been presented and
rationalized. We have also demonstrated how the R package cleanNLP implements this data model
using various, configurable back ends. Our focus has been to illustrate why this general approach
and specific implementation is both powerful and easy to integrate into existing data pipelines. It
is expected that some users will utilize the entirety of the underlying annotation pipelines, internal
R structures, and helper functions. Others may use the package as a convenient wrapper around
either the CoreNLP or spaCy libraries. In either extreme, or anywhere in between, our approach
provides powerful tools for applying exploratory, graphical, and model-based techniques to textual
data sources.

The cleanNLP package continues to be actively developed. In particular, we hope to include
new sentence-level annotations as they are integrated into the spaCy and CoreNLP libraries. While
major releases are available on CRAN, new features are added periodically on the development
branch located at: https://github.com/statsmaths/cleanNLP. Bug reports, feature and collaboration
requests can all be made using the GitHub issues page.

Bibliography

J. Allaire, K. Ushey, Y. Tang, and D. Eddelbuettel. reticulate: R Interface to Python, 2017. URL https:

//github.com/rstudio/reticulate. [p249]

T. Arnold and L. Tilton. coreNLP: Wrappers Around Stanford CoreNLP Tools, 2016. R package version
0.4-2. [p249]

T. B. Arnold. sotu: United States Presidential State of the Union Addresses, 2017. URL https://CRAN.R-

project.org/package=sotu. R package version 1.0.2. [p258]

S. M. Bache and H. Wickham. magrittr: A Forward-Pipe Operator for R, 2014. URL https://CRAN.R-

project.org/package=magrittr. R package version 1.5. [p248]

J. Baldridge. The openNLP project. URL: http://opennlp. apache. org/index. html,(accessed 2 February 2012),
2005. [p248]

K. Benoit and A. Matsuo. spacyr: R Wrapper to the spaCy NLP Library, 2017. URL http://github.com/

kbenoit/spacyr. R package version 0.9.0. [p249]

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of machine Learning research, 3
(Jan):993–1022, 2003. [p263]

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with subword information.
arXiv preprint arXiv:1607.04606, 2016. [p257]

S. Buchholz and E. Marsi. Conll-x shared task on multilingual dependency parsing. In Proceedings
of the Tenth Conference on Computational Natural Language Learning, pages 149–164. Association for
Computational Linguistics, 2006. [p252]

J. Chang. lda: Collapsed Gibbs Sampling Methods for Topic Models, 2015. URL https://CRAN.R-project.

org/package=lda. R package version 1.4.2. [p249]

E. F. Codd. The relational model for database management: version 2. Addison-Wesley Longman Publishing
Co., Inc., 1990. [p251]

M.-C. De Marneffe, T. Dozat, N. Silveira, K. Haverinen, F. Ginter, J. Nivre, and C. D. Manning.
Universal Stanford dependencies: A cross-linguistic typology. In LREC, volume 14, pages 4585–92,
2014. [p255]

I. Feinerer, K. Hornik, and D. Meyer. Text mining infrastructure in R. Journal of statistical software, 25(5):
1–54, 2008. URL https://doi.org/10.18637/jss.v025.i05. [p249]

J. R. Finkel, T. Grenager, and C. Manning. Incorporating non-local information into information
extraction systems by Gibbs sampling. In Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics, pages 363–370. Association for Computational Linguistics, 2005. [p255]

S. Firke. janitor: Simple Tools for Examining and Cleaning Dirty Data, 2016. URL https://CRAN.R-

project.org/package=janitor. R package version 0.2.1. [p248]

https://github.com/statsmaths/cleanNLP
https://github.com/rstudio/reticulate
https://github.com/rstudio/reticulate
https://CRAN.R-project.org/package=sotu
https://CRAN.R-project.org/package=sotu
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=magrittr
http://github.com/kbenoit/spacyr
http://github.com/kbenoit/spacyr
https://CRAN.R-project.org/package=lda
https://CRAN.R-project.org/package=lda
https://doi.org/10.18637/jss.v025.i05
https://CRAN.R-project.org/package=janitor
https://CRAN.R-project.org/package=janitor

W. Freitas. sqliter: Connection wrapper to SQLite databases, 2014. URL https://CRAN.R-project.org/

package=sqliter. R package version 0.1.0. [p249]

G. Gaikwad and D. J. Joshi. Multiclass mood classification on twitter using lexicon dictionary and
machine learning algorithms. In Inventive Computation Technologies (ICICT), International Conference
on, volume 1, pages 1–6. IEEE, 2016. [p257]

S. Green, M.-C. De Marneffe, J. Bauer, and C. D. Manning. Multiword expression identification with
tree substitution grammars: A parsing tour de force with french. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, pages 725–735. Association for Computational
Linguistics, 2011. [p253]

B. Grün and K. Hornik. topicmodels: An R package for fitting topic models. Journal of Statistical
Software, 40(13):1–30, 2011. URL https://doi.org/10.18637/jss.v040.i13. [p249]

S. Hellmann, J. Lehmann, and S. Auer. Nif: An ontology-based and linked-data-aware NLP interchange
format. Working Draft, 2012. [p252]

M. Honnibal and M. Johnson. An improved non-monotonic transition system for dependency parsing.
In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages
1373–1378, Lisbon, Portugal, September 2015. Association for Computational Linguistics. URL
https://aclweb.org/anthology/D/D15/D15-1162. [p248]

K. Hornik. NLP: Natural Language Processing Infrastructure, 2016a. URL https://CRAN.R-project.org/

package=NLP. R package version 0.1-9. [p249]

K. Hornik. openNLP: Apache OpenNLP Tools Interface, 2016b. URL https://CRAN.R-project.org/

package=openNLP. R package version 0.2-6. [p249]

K. Hornik. StanfordCoreNLP, 2016c. URL http://datacube.wu.ac.at/src/contrib/. R package
version 0.1-1. [p249]

N. Ide and L. Romary. A common framework for syntactic annotation. In Proceedings of the 39th Annual
Meeting on Association for Computational Linguistics, pages 306–313. Association for Computational
Linguistics, 2001. [p252]

J. Kabbara and J. C. K. Cheung. Stylistic transfer in natural language generation systems using
recurrent neural networks. EMNLP 2016, page 43, 2016. [p257]

H. Lee, Y. Peirsman, A. Chang, N. Chambers, M. Surdeanu, and D. Jurafsky. Stanford’s multi-pass
sieve coreference resolution system at the CoNLL-2011 shared task. In Proceedings of the Fifteenth
Conference on Computational Natural Language Learning: Shared Task, pages 28–34. Association for
Computational Linguistics, 2011. [p255]

H. Lee, A. Chang, Y. Peirsman, N. Chambers, M. Surdeanu, and D. Jurafsky. Deterministic coreference
resolution based on entity-centric, precision-ranked rules. Computational Linguistics, 39(4):885–916,
2013. URL https://doi.org/10.1162/coli_a_00152. [p255]

C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D. McClosky. The Stanford CoreNLP
natural language processing toolkit. In ACL (System Demonstrations), pages 55–60, 2014. [p248]

W. McKinney et al. Data structures for statistical computing in Python. In Proceedings of the 9th Python
in Science Conference, volume 445, pages 51–56. van der Voort S, Millman J, 2010. [p248]

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words
and phrases and their compositionality. In Advances in neural information processing systems, pages
3111–3119, 2013. [p257]

L. Mullen. tokenizers: A Consistent Interface to Tokenize Natural Language Text, 2016. URL https:

//CRAN.R-project.org/package=tokenizers. R package version 0.1.4. [p249]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in python. Journal of Machine Learning
Research, 12(Oct):2825–2830, 2011. [p248]

J. Pennington, R. Socher, and C. D. Manning. GloVe: Global vectors for word representation. In
EMNLP, volume 14, pages 1532–1543, 2014. URL https://doi.org/10.3115/v1/D14-1162. [p257]

G. Peters. State of the Union Addresses and Messages, 2016. URL http://www.presidency.ucsb.edu/

sou.php. [p258]

https://CRAN.R-project.org/package=sqliter
https://CRAN.R-project.org/package=sqliter
https://doi.org/10.18637/jss.v040.i13
https://aclweb.org/anthology/D/D15/D15-1162
https://CRAN.R-project.org/package=NLP
https://CRAN.R-project.org/package=NLP
https://CRAN.R-project.org/package=openNLP
https://CRAN.R-project.org/package=openNLP
http://datacube.wu.ac.at/src/contrib/
https://doi.org/10.1162/coli_a_00152
https://CRAN.R-project.org/package=tokenizers
https://CRAN.R-project.org/package=tokenizers
https://doi.org/10.3115/v1/D14-1162
http://www.presidency.ucsb.edu/sou.php
http://www.presidency.ucsb.edu/sou.php

S. Petrov. Announcing SyntaxNet: The world’s most accurate parser goes open source. Google Research
Blog, May, 12:2016, 2016. [p248]

J. K. Pritchard, M. Stephens, and P. Donnelly. Inference of population structure using multilocus
genotype data. Genetics, 155(2):945–959, 2000. [p263]

A. N. Rafferty and C. D. Manning. Parsing three German treebanks: Lexicalized and unlexicalized base-
lines. In Proceedings of the Workshop on Parsing German, pages 40–46. Association for Computational
Linguistics, 2008. [p253]

K. Raghunathan, H. Lee, S. Rangarajan, N. Chambers, M. Surdeanu, D. Jurafsky, and C. Manning. A
multi-pass sieve for coreference resolution. In Proceedings of the 2010 Conference on Empirical Methods
in Natural Language Processing, pages 492–501. Association for Computational Linguistics, 2010.
[p255]

M. Recasens, M.-C. de Marneffe, and C. Potts. The life and death of discourse entities: Identifying
singleton mentions. In HLT-NAACL, pages 627–633, 2013. [p255]

D. Robinson. broom: Convert Statistical Analysis Objects into Tidy Data Frames, 2017. URL https:

//CRAN.R-project.org/package=broom. R package version 0.4.2. [p248]

R. Schifanella, P. de Juan, J. Tetreault, and L. Cao. Detecting sarcasm in multimodal social platforms.
In Proceedings of the 2016 ACM on Multimedia Conference, pages 1136–1145. ACM, 2016. [p257]

J. Silge and D. Robinson. tidytext: Text mining and analysis using tidy data principles in R. The Journal
of Open Source Software, 1(3), 2016. URL https://doi.org/10.21105/joss.00037. [p249]

R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts. Recursive deep
models for semantic compositionality over a sentiment treebank. In Proceedings of the conference on
empirical methods in natural language processing (EMNLP), volume 1631, page 1642. Citeseer, 2013.
[p257]

K. Toutanova and C. D. Manning. Enriching the knowledge sources used in a maximum entropy
part-of-speech tagger. In Proceedings of the 2000 Joint SIGDAT conference on Empirical methods in
natural language processing and very large corpora: held in conjunction with the 38th Annual Meeting of
the Association for Computational Linguistics-Volume 13, pages 63–70. Association for Computational
Linguistics, 2000. [p253]

S. Urbanek. rJava: Low-Level R to Java Interface, 2016. URL https://CRAN.R-project.org/package=

rJava. R package version 0.9-8. [p248]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009. ISBN
978-0-387-98140-6. URL https://doi.org/10.1007/978-0-387-98141-3. [p248]

H. Wickham. Tidy data. Journal of Statistical Software, 59(i10), 2014. URL https://doi.org/10.18637/

jss.v059.i10. [p248, 251]

H. Wickham. tidyr: Easily Tidy Data with ’spread()’ and ’gather()’ Functions, 2017. URL https://CRAN.R-

project.org/package=tidyr. R package version 0.6.1. [p248]

H. Wickham and R. Francois. dplyr: A Grammar of Data Manipulation, 2016. URL https://CRAN.R-

project.org/package=dplyr. R package version 0.5.0. [p248]

F. Wild. lsa: Latent Semantic Analysis, 2015. URL https://CRAN.R-project.org/package=lsa. R
package version 0.73.1. [p249]

Taylor Arnold
Department of Mathematics and Computer Science
University of Richmond
Richmond, VA 23173 USA
tarnold2@richmond.edu

https://CRAN.R-project.org/package=broom
https://CRAN.R-project.org/package=broom
https://doi.org/10.21105/joss.00037
https://CRAN.R-project.org/package=rJava
https://CRAN.R-project.org/package=rJava
https://doi.org/10.1007/978-0-387-98141-3
https://doi.org/10.18637/jss.v059.i10
https://doi.org/10.18637/jss.v059.i10
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=lsa
mailto:tarnold2@richmond.edu

	University of Richmond
	UR Scholarship Repository
	12-2017

	A Tidy Data Model for Natural Language Processing Using CleanNLP
	Taylor B. Arnold
	Recommended Citation

	A Tidy Data Model for Natural Language Processing using cleanNLP
	Introduction
	Basic usage of cleanNLP
	A data model for the NLP pipeline
	Documents
	Tokens
	Dependencies
	Named entities
	Coreference
	Sentence level annoations
	Word vectors

	Using cleanNLP to study State of the Union addresses
	Loading and parsing the data
	Exploratory analysis
	Models

	Conclusions

