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In sequential decision problems with indefinite horizons, the length of an appropriate plan

ning horizon is an important issue. Data far in the future is difficult to forecast accurately, 

and yet myopia must be avoided. Recently, progress has been made in proving the existence 

of, and then discovering, forecast and solution horizons. These are horizons long enough to 

guarantee that the optimal initial decision or decision sequence found is optimal over any 

longer horizon (including the infinite horizon). The decision maker may implement this deci

sion or sequence with confidence, and then uncover subsequent decisions in a rolling horizon 

fashion. 

Solution horizon procedures typically consist of solving finite horizon problems, increasing 

the horizon until some stopping criterion is satisfied. Two questions then arise: 

1. (Solution Horizon Existence) Is there a horizon long enough to guarantee optimality? 

2. (Solution Horizon Discovery) How long a horizon is needed to know that optimality is 

guaranteed? 

Nearly all solution horizon existence and discovery results have required a unique optimal 

initial decision (see Bean and Smith 1984; Hopp, Bean, and Smith 1987; Bes and Sethi 1988). 

However, Ryan and Bean [1987] show that in discrete decision problems, such a ~·equirement 

may be difficult to meet. Moreover, discrete decisions arise in many problems, including 

production planning, capacity expansion and equipment replacement. 

Recently, Schochetman and Smith [1987] began to attack problems with multiple optima 

by studying the convergence of sets of finite horizon optimal solutions. They showed that 

if these sets converge as the horizon is lengthened, then a solution horiwn may be found 

by making appropriate selections from the sets. In this paper we force set convergence by a 

suitable construction of the finite horizon sets. Rather than merely finding optimal solutions, 
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our algorithm finds the sets of solutions optimal to their own state. Similar ideas appear in 

Bean and Smith [1986] and Chand and Morton [1986]. We provide a simple structural con

dition under which these sets converge. Further, we derive an easily implemented selection, 

or tie-breaking rule, for selecting one solution from each finite horizon set. The sequence of 

selected solutions converges to an infinite horizon optimal strategy. 

These constructions lead to a straightforward tie-breaking algorithm for choosing one of 

potentially many optimal strategies. Our stopping rule, while not requiring uniqueness, may 

still fail when there is more than one optimal initial decision. However, as illustrated by 

an example, even when the algorithm fails to stop, the optimal strategies can be recognized 

readily by examining the finite horizon sets. \Vhen applied to regeneration point problems, 

the algorithm generalizes the forward algorithms of Shapiro and Wagner [1967] and Bean 

and Smith (1984]. 

Section 1 is a mathematical statement of the problem and assumptions. In Section 2 we 

review concepts of set convergence and apply them to discrete infinite horizon optimization. 

The construction of finite horizon solution sets, conditions under which they converge, and 

the algorithm and stopping rule appear in Section 3. In Section 4 we apply the algorithm 

to capacity expansion problems and discuss the results of computational tests. Finally, 

Section 5 contains conclusions. 

1 Problem Definition and Assumptions 

\Ve model the infinite horizon sequential decision problem as in Bean and Smith [1986] with 

an infinite directed decision network (N, A, C) where N is the set of nodes or decision points, 

A is the set of arcs or decisions, and C : A 1-+ ~ is a cost function. 

We impose three structural assumptions on (N, A). First, we require that there be a 
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unique root node with in-degree one. Second, we assume that all node out-degrees are non-

zero and uniformly bounded. Finally, we assume that the cumulative in-degrees of all nodes 

are finite, where the cumulative in-degree of a node is the sum of its in-degree and all in

degrees of nodes from which there is a directed path to that node. From these assumptions 

we can number the nodes N = {O, 1,2, ... } such that (i,j) EA only if i < j (Skilton 1985, 

p. 230). Hence the node numbers can serve as a surrogate for time. Moreover, it follows 

that there is a directed path from the root node 0 to each node i which can be continued 

over the infinite horizon. 

A path through the network, ( i 0 , i 1 , ••. ), where i0 = 0, represents a feasible strategy 

7r = (7ri, 7r2, ... ) in which the nth decision 7rn = (in, in+I)· Let IIn be the set of decisions 

available after n - 1 decisions have been made. We assume the decisions in IIn are indexed 

by a subset of {O, 1, ... , M}, where M is uniform over n. Associated with each node i is a 

time Ti, called a decision epoch, such that i :::; j if and only if Ti :::; T;. We assume Ti -t oo 

as i -too. 

Denote the set of feasible strategies (or paths) by II ~ x~1 IIn. \Ve define a metric on 

x~=i{0,1, ... ,M} as follows: for 7r, fr E x~=i{O,l, ... ,M}, 

00 

p(7r,fr) = L,8nl1rn -frnl, 
n=l 

where ,8 < M~i • Under this metric, the closeness of strategies is measured by agreement 

in early decisions. This metric induces a topology on II which is identical to the product 

topology; therefore II is a compact metric space (see Bean and Smith 1986). 

Let ik(7r) denote the kth node visited by strategy 7r, where i 0 (7r) = 0. The cost of 7r is 

given by 
00 

J?r = L C{in(7r), in+I(7r)). 
n=O 
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We assume that /'Ir is uniformly convergent over 7r E II. The problem we wish to solve is: 

The minimum exists since II is compact and /'Ir is a uniformly convergent sequence of contin

uous functions and therefore continuous over 7r E II. A strategy ir is termed infinite horizon 

optimal if it minimizes f'lr· We will also refer to these as optimal strategies. An optimal 

initial decision is an initial decision for some optimal strategy. Let II* and IIi: denote sets of 

optimal strategies and optimal initial decisions, respectively. 

The solution horizon approach involves solving finite horizon problems. We define the 

T-horizon cost of 7r as 

{nlTin(,,.):$T} 

We also define the following finite horizon sets of strategies: 

II*(T) = { 7r E IIl7r E arg min f'lr(T)} 

Il(i) = {7rl7r E argmin I: C(in(7r),in+1(7r))} 
{7rli=i1<(7r) for some k} n<k 

fi(T) = {7rl7r E fl(in(7r)), n such that 7in-i(7r) < T ~ Tin(7r)}· 

The set II*(T) is the set of T-horizon optimal strategies, while Il(i) is the set of strategies 

optimal to node i. The set fi(T) is the set of strategies optimal to their own node at or just 

beyond time T. We will refer to this as the set of T-horizon efficient strategies. In a discrete 

time capacity expansion or production planning problem, these are the strategies optimal to 

their own capacity or inventory level at time T, respectively. Note that II*(T) s;; fi(T). A 

subscript of k on any set of strategies will denote the corresponding set of kth decisions. 

A solution horizon is a time, T, such that for T ;?: T, IIi:(T) = {7r;}, for some fixed 

7ri' E II;:. A general solution horizon is a time, T, such that for T ~ t, IIi(T) s;; II;:. Most 
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algorithms in the literature have required the existence of solution horizons. In this paper, 

we provide an algorithm that selects an optimal initial decision from Ili' in the presence of a 

general solution horizon. 

2 Set Convergence in Discrete Infinite Horizon Opti
mization 

Previous authors (Bean and Smith 1984, Schochetman and Smith) have found solution hori

zons by showing that if rr• = { ?r•}, then an arbitrary choice 1r•(T) E II*(T) converges to ?r• 

as T --+ oo. If optimal strategies are not unique, a natural extension is to seek convergence of 

the sets II*(T) to the set rr•. We have found such convergence to be rare, and have studied 

instead the convergence of fi(T) to rr•. To lay a foundation for this development, we first 

review and apply some concepts of set convergence for closed subsets of a compact metric 

space. 

Definition: Let II(T) ~ II. We say that II(T) is a T-horizon set if membership in 

II(T) is determined by decisions made at or before time T {inclusive). 

Schochetman and Smith introduce set convergence in infinite horizon optimization, using 

the Hausdorff metric for closed and hence compact sets. As this metric is built up from the 

strategy metric, p, set convergence is closely related to individual strategy convergence. To 

establish and then exploit convergence of a sequence of finite horizon closed sets {II(Tn)} to 

the optimal set rr•, we will use the following results for the discrete case. 

Rl. Set convergence means that subsequential limits are limits. Define lim inf II(Tn) to be 

the set of all 1r E II such that there exists ?rn E II(Tn) for all n such that 1rn --+ 1r. 

Define lim sup II(Tn) to be the set of all 1r E II such that there exists a subsequence 
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{Tk} of {Tn} and 7rk E II(Tk) such that 7rk-+ 7r. Then liminfII(Tn) ~ limsupII(Tn)· 

Schochetman and Smith show that II(Tn) -+ II* in the Hausdorff metric if and only if 

lim sup II(Tn) = lim inf II(Tn) = II*. 

R2. Set convergence is equivalent to early decision agreement. II(Tn) -+ II* if and only if, 

for any L, there exists NL such that if n ~NL, then 

1. for any 7r E II*, there exists 7rn E II(Tn) such that 7rk = 7rk, 1 ~ k ~ L, and 

2. for any 7rn E II(Tn), there exists 7r E II* such that 7rk = 7r/:, 1 ~ k ~ L. 

In particular, if II(Tn) -+II* and 7rk = 7rz for all 7r E II*, 1 ~ k ~ L, then there exists 

NL such that if n ~NL, then 7r/: = 7rz, 1 ~ k ~ L, for all 7rn E II(Tn)· 

R3. Set convergence implies convergence of nearest-point selections. Let p be a point for 

which there is a unique 7r E II* minimizing p(p, 7r ). Then p is called a uniqueness point 

for II*. Let sp(II') be a strategy minimizing p(p, 7r) over 7r E II'. The function Sp(·) is 

called a nearest-point selection. From Schochetman and Smith, II(Tn) -+ II* implies 

sp(II(Tn)) -+ sp(II*). 

In the following, we show that the finite horizon and infinite horizon sets of strategies 

involved in solving an infinite horizon problem are necessarily closed. Next we define a 

unique lexicographic order for strategies and show that it is identical to the one obtained 

by ordering according to distance from the point 0 = 0, measured by p. These results, 

together with the continuity of p, imply that 0 is a uniqueness point for II* and interpret 

so(·) as a simple tie-breaking rule, analogous to one used for resolving degeneracy in linear 

programming. 

Lemma 1 The sets II* and II(T), where IT(T) is any T-horizon set, are closed. 
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Proof: IT* is closed since !tr is continuous in 7r and IT is oompact. For IT(T), note that 

there are a finite number of partial strategies up to time T. If IT(T) is finite then it 

is closed. Suppose that IT(T) is infinite and that 7r is a cluster point of IT(T). Let 

{ 7rn }~=l be such that 7rn E IT(T) for all n and 7rn -+ 7r in p. Then { 7rn }~1 is Cauchy, 

which implies that for some N, {7rn, n ~ N} are in agreement with one another and 

with 7r up to time T. Therefore 7r E IT(T). Thus IT(T) contains all its cluster points, 

and IT(T) is closed. • 

Definition: Let a= (ai,a2, ••• ) and b = (bi,b2 , ••• ). We say that a-< b (a is lexico

graphically smaller than b) if and only if a =f b and, if n0 is the smallest n such that an 1- bn, 

A strategy if is the lexico minimum of IT' if if -< 7r for all 7r E IT', 7r =f if. 

Lemma 2 F'or any closed set IT' E IT, s8(IT') is the lexico minimum element of IT' and 

therefore is unique. 

Proof: We will show that: 

1. p( (), 7r) attains its minimum on 7r E IT', 

(1) and (2) imply that p(O, 7r) attains its minimum at the unique lexico minimum point 

of IT'. 

1. Follows immediately from the continuity of p and compactness of IT. 

2. Suppose 7r
1 -< 7r

2• Then for some n0 we have 
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By assumption, 7r! - 7r~ ~ -M for n ~ n0 • Then 

00 

p(0,7r2) -p(0,7rl) = I: ,Bn(7r~ _ 7r~) 
n=no 

M,Bno+l . ,B 1 
> ,ano - > 0 smce < M 
- 1-,B +1 

Hence, 

Now suppose 7r1 f. 7r 2 • Either 7r1 = 7r 2 or 7r1 >- 7r2 • If 7r
1 = 7r

2 then p(0,7r1
) = 

p(B, 7r 2). Suppose 7r1 >- 7r2 • Then by the same argument as above, p(O, 7r
1

) > 

p(O, 7r
2
). Hence 

Lemmas 1 and 2 imply that we can apply result R3 whenever any sequence of Tn-horizon 

sets, {II(Tn), n EN}, converges to II*. To summarize, we have: 

Theorem 3 If {II(Tn)} is some collection of Tn -horizon sets, then the lexico minimum 

element of II(Tn) converges to the lexico minimum element of II* whenever II(Tn) -+ II*. 

Proof: Follows from result R3 and Lemma 2. 1 

Assuming II(Tn) -+II*, Theorem 3 suggests the following algorithm: 

Solve increasing length finite horizon problems, identifying for each Tn the lexico 

minimum element of II(Tn)· 

The sequence of strategies thus generated converges to the lexico minimum infinite horizon 

optimal strategy. 
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3 A Tie-Breaking Algorithm 

Having seen that a tie-breaking algorithm can follow from set convergence, we now establish 

conditions for set convergence to occur. Various concepts of reachability (McKenzie 1976) 

have been used to identify solution horizons in the presence of a unique optimum (Lasserre 

1986, Bean and Smith 1986). We show that a reachability condition guarantees the con

vergence of the efficient sets fi(T) to II* even in the absence of a unique optimum. This 

convergence leads to a tie-breaking algorithm for identifying solution horizons. Further, 

reachability sometimes can be determined simply from the problem structure. 

Let g( i) be the minimum cost from the root node to node i and g'( i) be the minimum 

cost from i through the infinite horizon. Let g( Ii) be the cost of a minimum cost path from 

the root node over the infinite horizon which passes through node i. By the principle of 

optimality, g(li) = g(i) + g'(i). 

As in Bean and Smith [1986], define weak reachability as follows: 

Definition: A sequence of nodes {in}, in -+ oo, is weakly reachable if, for all t: > 0, 

there exists an Ne such that for all n 2:: Ne, there is a j ( n), an i~, and a path from iJ(n) to 

i~ at cost Cn with 

where ij(n) is a node for some optimal strategy, ij(n) -+ oo, and en -+ 0. 

Bean and Smith show that g(in) -+fas n-+ oo if and only if {in} is weakly reachable. 

Let i ( 7r, T) be the node for 7r at its first decision epoch greater than or equal to T. Thus 

i( 7r, T) represents the head of the decision arc for 7r that ends at or just after time T. Let 

{Tn} be any sequence of finite horizons such that Tn -+ oo. 

Theorem 4 If all sequences {ik} ~ N, ik-+ oo, are weakly reachable then fI(Tn)-+ II'". 
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Proof: We will show that 

1. lim sup fi(Tn) ~ II*, 

2. II* ~liminffi(Tn)· 

(1) and (2) imply that lim sup fi(Tn) = lim inf fi(Tn)· The result then follows from 

result RI in Section 2. 

I. Suppose 7r E limsupfi(Tn)· Then there exists {Tk} ~ {Tn} and 7rk E fi(Tk) such 

that 7rk ~ 7r. Let ik = i(7r,Tk)· Then ik ~ oo and g(ik) = f'trk(Tk)· From the 

uniform convergence of f 1rk, we have 

But 

since { ik} is weakly reachable. Hence f 1r = f, and 7r E II*. 

2. Suppose 7r E II*. By the principle of optimality, 7r is optimal to each node it 

traverses. Thus 7r E Il(in) for each n where in = i(7r, Tn)· Hence, 7r E fi(Tn) for 

all n and 7r E lim inf fi(Tn)· 1 

Lemma 5 If g(i) ~ g(j) whenever Ti < Tj, then all sequences {in} ~ N, in ~ oo, are 

weakly reachable. 

Proof: Choose any {in} ~ N, in ~ oo, and any f > 0. Let {i~} be {in(7r)} for some 

7r E II*. Let 
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and 

., .. 
in = ij(n)+i • 

Then en= C(ij(n)' ij(n)+l) -+ 0 as n -+ oo since f < oo. By the uniform convergence 

of f1r over 7r E IT, there exists N( such that jg'(in)I < €./2 and jg'(i~)I < €./2. Then for 

g(lin) - g(li~) = g(in) - g(i~) + g'(in) - g'(i~) < f, 

smce 

g( in) - g( i~) :::; 0 

by hypothesis and 

g'(in) - g'(i~) ~ !g'(in)I + lg'(i~)I < f. 

Theorem 6 If g(i) :::; g(j) whenever Ti < T;, then fi(Tn) -+IT*. 

Efficient set convergence, therefore, follows from a simple structural property: that the 

minimum cost to a node is monotonic in the time to reach that node. In general, this property 

will only hold for a restricted class of problems where the decision network has oeen pruned 

sufficiently. For example, in the next section, we show that it holds in a general model 

of capacity expansion. However, in general weak reachability must be established directly 

(see Bean and Smith [1986] for several applications where weak reachability holds). In the 

meantime, either this result or Theorem 4, together with Theorem 3, yields the following 

corollary. Let 1r(Tn) and 7r* be the lexico minimum elements of fi(Tn) and IT*, respectively. 

Corollary 7 If either of the conditions of Theorem 4 or Theorem 6 are satisfied, then 

7r(Tn) -+ 7r*. 
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We can now present an algorithm for the case when efficient sets converge to the optimal 

set. Let IT(T) be the set fi(T) with, for any node n, ties between strategies optimal up to n 

broken by choosing the lexico minimum. Note that 7t(T) is its lexico minimum. 

Tie-Breaking Algorithm 

1. Let {Tn}~=l be any sequence of finite horizons with Tn -+ oo. Set n ...__ 1. 

2. Solve the Tn-horizon problem to obtain IT(Tn)· 

3. If for each 7r(Tn) E Il(Tn) and for all l ~ k ~ L, 7rk(Tn) = 1tk(Tn), then stop. Otherwise, 

set n +-- n + 1 and go to step 2. 

Theorem 8 Suppose the condition of Theorem 4 or 6 is satisfied. Then 

(i) If each strategy in II* has the same first L decisions, { 7ri', 7!"2, ... , 7rzJ, then the algorithm 

will stop in finite time. 

(ii) If the Algorithm stops at Tn, then 1l"k 

minimum of IT*. 

Proof: 

1rk(Tn), 1 ~ k ~ L, where 7r* is the lexico 

(i) By hypothesis, fi(Tn) -+ II*. Then, from result R2 in Section 2, we have 7ri: = 7rz, 

1 ~ k ~ L, for each 7rn E fi(Tn) and each 7r E II*. Thus, since 7r(Tn) E Il(Tn) ~ 

fi(Tn) and 1r(Tn) E fi(Tn), we have 7rk(Tn) = 1rk(Tn) = 7l"Z, 1 ~ k ~ L. 

(ii) For simplicity, we present the proof for L = 1. By the principle of optimality, 

7r* ~ fi(Tn). Let n* be the node for 7r* at or just beyond time Tn. Then 7r1 (Tn) 

and 7ri' both initiate paths that are optimal to n*. By the definition of IT(Tn), 

1r1 (Tn) ~ 7ri'. Now suppose 1r1 (Tn) < 7ri'. Then a new strategy, ir, could be formed 
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by following ;r(Tn) to n* and continuing with 7r* beyond n*. Then ir E II* and 

ir -< 7r*. This contradicts the definition of 7r*. 1 

Though uniqueness of the optimal initial decisions is sufficient for the algorithm to stop, 

it is not necessary. The next subsection gives an example in which the algorithm stops in 

the presence of infinitely many optimal strategies. Further, the minimal solution horizon 

may be shorter than that discovered by the Algorithm. We can distinguish between two 

types of horizons. A Jore.cast horizon for the first L decisions is a finite horizon at which 

the algorithm's stopping rule is satisfied. It is called a forecast horizon since data beyond 

that time are irrelevant to the optimality of the first L decisions. A solution horizon for L 

is a time T such that if T' > T, then ;rk(T') = 7rz, 1 ~ k ~ L, for some 7r* E II*. From 

Theorem 8, the existence of a forecast horizon follows from uniqueness of the first L optimal 

decisions. From Corollary 7, a solution horizon exists regardless of uniqueness. For long 

enough T, the first L optimal decisions of ?r(T) agree with those of 7r*. However, in practice 

the solution horizon may be discovered in retrospect, once a forecast horizon has been found. 

The minimal solution horizon for L is no longer than the corresponding forecast horizon. 

Due to the lexico minimum selection rule, whether it is shorter depends on the (arbitrary) 

assignment of indices to decisions. If leading optimal decisions have low indices, the solution 

horizon is likely to be relatively short; if they have high indices, the two horizons will be the 

same. Similarly, the extraction of fi(T) from fi(T) also depends on the indices assigned to 

decisions. The minimal forecast horizon might be identified by testing the stopping rule for 

every possible numbering of initial decisions in each iteration. We did not implement this 

enhancement in our computations. 
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3.1 Regeneration Point Problems 

The tie-breaking algorithm is simplified when applied to regeneration point problems. Recall 

that a decision epoch, T, is a regeneration point if the feasible decisions and costs beyond 

T are independent of the sequence of decisions up to time T. A problem formulation has 

regeneration point structure, or is a regeneration point problem, if the decision epochs for 

all strategies are regeneration points. Then the decision network may be aggregated so 

that there is at most one node for each point in time. Further, without loss of optimality, 

the network may be pruned so that g( i) ~ g(j) for Ti < T;. Examples include the dis

counted knapsack problem of Shapiro and Wagner and production planning problems with 

the Wagner-Whitin property. 

Assume that the maximum time between any two nodes on the same path is bounded 

by T. Then fi(T) = Ur'e[T,T+T] II*(T'). Also, letting 7r*(T) -be the lexico minimum strategy 

in II*(T), it follows that fi(T) = { 7r*(T'), T' E [T, T + r]}. The tie-breaking algorithm stops 

when (7rj(T'), 7ri(T'), ... , 7ri(T')) is the same for each T' E [T, T + r]. This stopping rule 

is similar to that of Bean and Smith [1984), but will be satisfied more often due to the 

tie-breaking scheme. 

Shapiro and Wagner showed that the infinite horizon discounted knapsack problem is 

solved by following a "turnpike" of least average cost decisions. If there is more than one 

such decision, then II* is the (infinite) set of all possible sequences of them. However, in 

the knapsack problem, one can show that II*(T) --+II* (Ryan 1988). Then by Result R3 in 

Section 2, 7r* (T) --+ 7r*, therefore 7rj(T) = 7rj for all T sufficiently large, where 7r*(T) and 

7r* are the lexico minimum T-horizon and infinite horizon optimal solutions, respectively. 

Then 7rj(T') = 7rj(T) for all T sufficiently large and T' E [T,T+r]. Hence, for T sufficiently 

large, all solutions in fi(T) have the same initial decision, so that the tie-breaking algorithm's 
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stopping rule is satisfied for L = 1. In fact, the tie-breaking algorithm is a generalization of 

the Shapiro-Wagner algorithm. 

4 Application to Capacity Expansion 

\Ve now apply the convergence results and algorithm to a general capacity expansion model. 

As in Bean and Smith [1985], suppose we are given a continuous demand function D(t), which 

may be satisfied by any of a finite set of replicable facilities, indexed by i = 1, ... , n. Facility 

i incurs a fixed installation cost Fi and provides Xi units of capacity. No undercapacity is 

allowed and costs are discounted. The case when D(t) = dt is equivalent to the discounted 

knapsack problem. 

We can assume without loss of optimality that a new facility is never deployed until all 

existing capacity is exhausted. Therefore, restrict II to contain only strategies with this 

characteristic. The nodes in the decision network then represent installation epochs. Bean 

and Smith further argue that if Ti < T; and g( i) > g(j) for some pair of nodes i and j, then 

i, resulting from a situation of low capacity at high cost, cannot be an installation epoch 
' 

for an optimal strategy. Once all such dominated nodes are pruned from the network, the 

condition of Theorem 6 is immediately satisfied. Therefore fi(Tn) --+ II* and ?r(Tn) -+ ?r*. 

4.1 Co1nputational Experience 

The Tie-Breaking Algorithm can be implemented as a traditional forward dynamic program

ming procedure, with little additional bookkeeping. We tested it using telephone capacity ex

pansion problems from the literature, randomly generated problems, and a specially-designed 

example. Dominated nodes were pruned from the network as they were discovered by the 

dynamic programming procedure. 
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For the four telephone link capacity expansion examples in Bean and Smith [1985), the 

algorithm identified forecast horizons for the initial decision that were comparable to those 

previously computed. In addition, the first ten optimal decisions were discovered with fore

cast horizons of approximately 50 years or less. For the exponential demand example of 

Smith [1979), the forecast horizon for the first decision was eleven years, and the first nine 

decisions were uncovered with a 40-year horizon. Thus, for problems appearing in the liter-

ature, the tie-breaking algorithm performs as well as previous algorithms, but also uncovers 

more of the optimal strategy. 

To further test the algorithm while simulating real capacity decision problems, we gen

erated five random sets of nine facilities each. The capacities were generated uniformly 

between 0 and 100,000 units of capacity. Facility fixed costs were assigned according to the 

Dixon-Clapp relation (Yaged 1975): 

F.,· = I< x~--r 
' ' 

where / is an economy of scale factor, and I< is a constant (set to 1 for convenience). For 

these randomly generated facilities, the indices assigned to decisions were unrelated to the 

relative sizes of the facilities. Thus, a lexico minimum selection is completely a~·bitrary. As 

noted previously, there is no way to predict whether solution horizons will be strictly shorter 

than the corresponding forecast horizons. 

To construct the first type of demand function tested, we generated incremental demands 

randomly between 10,000 and 50,000 units. Thus the average facility of 50,000 units would 

exhaust in one to five years. Each set of facilities was tested twice, giving a total of ten test 

problems. The interest rate was set to 10.5 percent, as in the literature, and the economy of 

scale factor to 0.5. In all ten problems, the optimal solution (up to the first ten decisions) 

was to always install the largest (and eventually least average cost) facility. 
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Figure 1 shows forecast horizons in number of decisions implemented for each L, 1 :S 

L :S 10. The best case, worst case, and average over all ten test problems are displayed for 

comparison. The Lth set of bars from the bottom gives the horizon length needed to discover 

the optimal £1h decision. For L = 1, the forecast horizon ranged between 6 and 12.5 years, 

with an average of 9 years. In order to normalize over the random facility sizes, we report the 

horizons in terms of the average number of installations required to reach them efficiently. 

That is, the horizontal axis gives, rather than T, the average number of decisions up to time 
I 

T for strategies in fI(T). An alternate way of interpreting the graph is that, for example, 

on average for L = 5, when eight installations are required to reach a given time horizon 

efficiently, the first 5 facilities installed by any lexico minimum efficient strategy are optimal. 

Notice that, after a delay of approximately four installations, the forecast horizons increase 

with a linear slope of nearly one with the number of decisions uncovered. 

In some instances, solution horizons were considerably shorter than the corresponding 

forecast horizons. Figure 1 also displays solution horizons for the average case. 

In order to judge the algorithm's performance when the optimal strategy contains a 

Yariety of decisions, we designed a second type of random demand function. We started with 

a sine wave with amplitude 50,000 and period 20 years. In an application such as along a 

telephone link, incremental demand may be negative as traffic is diverted to other parts of 

the network. To this cyclic pattern we added random annual increments of between 0 and 

25,000 units.. The interest rate was held at 10.5 percent, but the economy of scale factor 

changed to 0.3 to provide a wider gap between costs of large and small facilities. Once again, 

each facility set was tested with two demand functions for a total of ten test problems. In the 

optimal strategies, large facilities alternated with smaller ones in an unpredictable sequence. 

Figure 2 shows the best, average, and worst case forecast horizons for the cyclic demand 
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Figure 1: Forecast horizons for the linear demand function, measured by the average number 
of decisions implemented by efficient strategies. The best, average, and worst case forecast 
horizons are shown as well as solution horizons for the average case. 
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Figure 2: Forecast horizons for the cyclic demand function. 

function, measured again by efficient facility installations. Though they are less smooth than 

for linear demand, they once again increase approximately linearly in the number of optimal 

decisions discovered, with a slope slightly more than one. The figure also gives a comparison 

of the corresponding solution and forecast horizons for the average case. 

The unevenness of the successive forecast horizons can be attributed to the cyclic de

mand. As the horizon length, T, increased through years of declining demand, the sets 

iI(T) typically remained unchanged. Subtracting capacity was not allowed, and there was 

no reason to add more. Then, as demand started to increase again, strategies in fi(T) 

were re-evaluated. As demand grew rapidly, several successive optimal decisions might be 

determined all at once with a small increase in T. 

The longest forecast horizons occurred with a facility set in which the capacities of the 
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two largest facilities differed by less than 0.5 percent. Most of the computational effort was 

spent resolving ties between these two facilities, leading to solution and forecast horizons of 

nearly 50 years for the first decision. Such a situation would be unlikely in practice. For the 

other four facility sets, forecast horizons for L = 1 were between 7.5 and 28 years and the 

corresponding solution horizons were between 0 and 9 years. 

'Ve also tested the algorithm with an example specially constructed to defeat the stopping 

rule. In this example D(t) = e0·1t - 1, a special case of exponential demand as studied by 

Smith [1979]. There are two facilities, with X 1 = 2, F1 = 1, X2 ~ 0.1052, and F2 ~ 0.3314. 

The interest rate is set at 0.4. Let 7!" 1 = (1,1,1, ... ) be the strategy of installing facility 

1 indefinitely. Let 7!" 2 = (2, 1, 1, 1, ... ) be the strategy of installing facility 2 once, then 

facility 1 indefinitely. One can show that both 7!" 1 and 7!" 2 are both infinite horizon optimal. 

Note that decision epochs for 7!"1 and 7!" 2 never coincide: decision epochs for 71"
1 occur when 

D(t) = X2n for some integer n and those for 7!" 2 occur when D(t) = 0 or X 1 + X 2m for some 

integer m. V/e can also show that each strategy is optimal to its own decision epochs and 

non optimal to the other strategy's decision epochs. It follows that fi 1 (T) = {l, 2} for all 

T, and the tie-breaking algorithm's stopping rule is never satisfied. Details are contained in 

Ryan [1988]. 

However, the algorithm is still informative when applied to this example. The finite 

horizon efficient sets quickly settle into a pattern, allowing recognition that both optimal 

strategies are at least near-optimal. Moreover, the lexico minimum efficient strategies (un

derlined) converge to (1, 1, ... ). Efficient sets for selected finite horizons are shown in Table 

][. Notice that nonoptimal leading sequences soon disappear from fi(T) as T increases. 
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T= 1 T=5 T = 10 T = 15 T=20 T= 25 
21 2222221 2222221 21222221 2111221 21111122222222221 

l 222221 222221 2122221 211121 2111112222222221 
22 22221 22221 212221 21111 211111222222221 

2221 2221 21221 1111 21111122222221 
221 221 2121 2111222 2111112222221 
21 21 211 211111222221 

1 1 ll 21111122221 
2111112221 
211111221 
21111121 
2111111 
111111 

Table 1: Efficient sets, fI(T), for an example where the stopping rule fails. 

5 Conclusions 

Solution horizon methods for solving infinite horizon problems have been burdened by the 

requirement of a unique optimum. As shown by Ryan and Bean, and illustrated by our 

example, such an assumption may not be true or easily verified. The tie-breaking algorithm 

is an efficient approach for finding solution horizons in the presence of multiple optima. 

\Vhen the stopping criterion is not met, the nature of the set convergence allows a decision 

maker to intelligently select so as to approximate them by solving finite horizon problems. 

In future research, we hope to develop bounds on the nearness to optimality of finite horizon 

efficient solutions. Such bounds will allow the derivation of near-solution horizons. 
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