
A Tighter Analysis of Work Stealing

Marc Tchiboukdjian1, Nicolas Gast1, Denis Trystram1,
Jean-Louis Roch1, and Julien Bernard2

1 Grenoble University
firstname.lastname@imag.fr
2 Université de Franche-Comté

julien.bernard@lifc.univ-fcomte.fr

Abstract. Classical list scheduling is a very popular and efficient tech-
nique for scheduling jobs in parallel platforms. However, with the in-
creasing number of processors, the cost for managing a single centralized
list becomes prohibitive. The objective of this work is to study the extra
cost that must be paid when the list is distributed among the processors.
We present a general methodology for computing the expected makespan
based on the analysis of an adequate potential function which represents
the load unbalance between the local lists. A bound on the deviation
from the mean is also derived. Then, we apply this technique to show
that the expected makespan for scheduling W unit independent tasks on
m processors is equal to W/m with an additional term in 3.65 log2W .
Finally, we analyze the work stealing algorithm of Arora, Blumofe and
Plaxton and significantly improve the bound on the number of steals.
Moreover, simulations show that our bound is very close to the exact
value, approximately 50% off. This new analysis also enables to study
the influence of the initial repartition of tasks and the reduction of the
number of steals when several thieves can simultaneously steal work in
the same processor’s list.

1 Introduction

List scheduling is one of the most popular technique for scheduling the tasks
of a parallel program. This algorithm has been introduced by Graham [1]. Its
principle is to build a list of ready tasks and schedule them as soon as there exist
available resources. List schedules are low-cost (greedy) algorithms that are not
too far from optimal solutions. Most proposed list algorithms always consider
a centralized management of the list. However, today parallel platforms involve
more and more processors. Thus, the time needed for managing such a centralized
data structure can not be ignored anymore [2]. Practically, implementing such
schedulers induces synchronization overheads when several processors access the
list concurrently. Such overheads involve low level synchronization mechanisms.

A suitable approach to reduce the contention is to distribute the list among
the processors: each processor manages its own list of tasks. When a processor
becomes idle, it randomly chooses another processor and steals some work, i.e.
it transfers some tasks from the victim’s list to its own list. Such a strategy is
called work-stealing (WS). WS has been implemented in many languages and
parallel libraries including Cilk [3], Intel TBB [4] and KAAPI [5].

Related works. WS has been analyzed in a seminal paper of Blumofe and Leiser-
son [6] where they show that the expected makespan of series-parallel precedence
graphs with unit tasks is bounded by E [Cmax] ≤W/m+ O(T∞) where W is the
number of tasks, T∞ is the critical path of the graph and m is the number of
processors. This analysis has been improved in [7] using a proof based on a po-
tential function. However the precedence graph is constrained to have only one
source and out-degree at most 2 which does not model the basic case of inde-
pendent tasks. Simulating independent tasks with a binary tree of dependencies
gives a bound of W/m+ O(logW) as a complete binary tree of W nodes has a
depth of T∞ ≤ log2W . Our new analysis allows to directly devise a result for
the independent tasks case.

Notice that there exist other ways to analyze work stealing where the work
generation is probabilistic and that target steady state results [8–11].

Our analysis shows some similarities with the work of Berenbrink et al. [12].
It is based on computing the expected decrease of a potential function. However,
to simplify the analysis, we introduce an adversary that controls one parameter
of the model, the number of steal requests at each time step.

Contributions. We present a new methodology for studying distributed list
scheduling algorithms. Based on the analysis of the load balancing between two
processors during a steal request, the expected number of steals can be deduced
and a bound on the makespan is derived. The methodology is generic and it is
applied to the case of independent tasks and to the WS algorithm of [7]. Our
new analysis improves the classical bound on the number of steal requests of WS
for scheduling precedence graphs. Constant factors are greatly reduced and are
less than 50% away from values obtained by simulation. Moreover, our analysis
enables to evaluate precisely the impact of several modifications of the WS.

Roadmap. After presenting the model and notations in Section 2, we give the
principle of the analysis in Section 3. We apply this analysis to the case of unit
independent tasks and study the influence of the initial repartition of tasks in
Section 4. Then we extend the analysis for tasks with dependencies in Section 5.
Section 6 quantifies the reduction of steals when several thieves are allowed to
steal the same victim simultaneously. We analyze simulation results in Section 7.

2 Model of the Distributed List

In this section, we give properties a distributed list implementation should follow.
We consider a parallel platform composed ofm identical processors. At time t,

let wi(t) represent the amount of work on processor i. When wi(t) > 0, processor
i is active and executes some work: wi(t+1) ≤ wi(t). When wi(t) = 0, processor
i is idle and intends to steal a random processor j. If processor j has no work,
i.e. wj(t) = 0, the steal fails and processor i will steal again at the next time slot.
Otherwise, a certain amount of work is transfered from processor j to processor
i: wi(t+ 1) +wj(t+ 1) ≤ wj(t). Processor i will resume execution at time t+ 1.
The execution terminates when all the processors are idle, i.e. ∀i, wi(t) = 0. We
also denote the total amount of work on all processors by w(t) =

∑m
i=1 wi(t)

and the number of active processors by α(t) ∈ [0,m]. Thus, between time t and
t + 1, there are m − α(t) steal requests. Notice that when α(t) = 0, all queues
are empty and thus the execution is complete.

To model the contention on the queues, no more than one steal request per
processor can succeed in the same time slot. If several requests target the same
processor, a random one succeeds and all the others fail. This assumption will
be relaxed in Section 6.

This is a high level model of a distributed list. We will show in Sections 4
and 5 how these properties accurately model the case of independent tasks and
the WS algorithm of [7]. We justify here some choices of this model. There is no
explicit communication cost as WS algorithms most often target shared memory
platforms. A steal request is done in constant time independently of the amount
of work transfered. This assumption is not restrictive: for the case of independent
tasks, the description of a large number of tasks can be very short. For instance
a whole subpart of an array of tasks can be represented in a compact way by the
range of the corresponding indices, each cell containing the effective description
of a task (a STL transform in [13]). For more general cases with dependencies,
it is usually enough to transfer a task which represents a part of the graph [7].

3 Principle of the Analysis and Main Theorem

This section presents the principle of the analysis. The main result is Theorem 1
that gives bounds on the expectation of the steal requests done by the schedule
as well as the probability that the number of requests exceeds this bound.

The main idea of our analysis is that we study the decrease of a potential
function Φ(t), instead of studying directly the number of processors that will
run out of work and become idle. The definition of Φ(t) varies depending on
the scenario (see Sections 4 to 6). The diminution of the potential depends on
the number of steal requests, m − α(t). Since α(t) is a complicated random
process, we tackle this problem by assuming that an adversary is choosing the
number of active processors α(t) at each step of the schedule. At the beginning,
the adversary starts with Φ(0) potential. Each time, when she chooses its α(t),
m − α(t) steal requests are generated and diminishes the potential. The more
work requests she creates, the more the potential decreases. She tries to maximize
the number of steal requests before running out of potential.

In the actual system, α(t) is determined by the evolution of the system and
cannot be chosen at time t. The introduction of an adversary provides an upper-
bound on the number of steal requests and has two main advantages. First, its
simplicity makes it applicable in several scenarios, such as the ones presented
in Sections 4 to 6. Moreover, we show in Section 7 that the gap between the
obtained bound and the values obtained by simulation is small.

The analysis of the scenarios of sections 4 to 6 will be done in three steps.

1. First, we define a potential function and we compute the potential decrease
δki (t) when the processor i receives k work requests.

2. Then we compute the expected decrease of the potential between step t and

t+ 1, ∆Φ(t)
def
= Φ(t)− Φ(t+ 1). By linearity of expectation,

E [∆Φ(t)] =

m∑
i=1

m−1∑
k=0

E
[
δki |i receives k requests

]
P {i receives k requests} ,

where E [X|Y] denotes the expectation of X knowing Y . Using the properties
of δki (t), we show that there exists a function h(α) ∈ (0; 1] such that

E [∆Φ(t)|Φ(t) = Φ, α(t) = α] ≥ h(α)Φ

3. Finally, we obtain a bound on the expected number of steal requests E [R]
using Theorem 1 presented in this section. An upper bound on the expected
makespan E [Cmax] can be obtained using the bound on the number of steal.

The following theorem gives an upper bound on the number of steal requests
using a lower bound on the expected decrease of the potential in one step.

Theorem 1. Assume that the potential function Φ(t) satisfies:

– There exists a constant d > 0 such that dΦ(t) ∈ N.
– Φ(t) is non-increasing.
– There exists a function h(α) ∈ (0, 1] such that if α ∈ [1,m − 1] processors

are active at time t and Φ(t) = Φ, then the potential decreases on average by

E [Φ(t)− Φ(t+ 1)|Φ(t) = Φ, α(t) = α] ≥ h(α) · Φ.

Let λ = max1≤α≤m−1
m−α

−m log2(1−h(α))
and Φ(0) be the potential at t = 0. Then

(i) the expected number of steal requests R until Φ(t) ≤ 1 is bounded by

E [R] ≤ λ ·m · log2 Φ(0);

(ii) The deviation from the mean can be bounded by:

P {R ≥ λ ·m · log2 Φ(0) + u} ≤ 2−u/(λm)

Proof. Without loss of generality and to simplify the notation, we assume d = 1.
Let T be the random variable indicating the end of the schedule: T =

min{t|Φ(t) ≤ 1}. The number of steal requests is equal to the number of idle
processors at each time step. The number of steal requests after time t is R(t):

R(t) =

T−1∑
s=t

m− α(s)

The total number of steals is R
def
= R(0).

The sequence α(t) is difficult to study since it depends on the number of
processors at time t− 1 with 0 or 1 tasks, but also the successful or unsuccessful
steals. Therefore, we perform the analysis assuming a worst-case scenario: at each
time t, an adversary can choose α(t) knowing the history of the system but not
the future random choices. This can be seen as a Markov decision process with
total reward criteria, see [14] for more details about Markov decision processes.

We prove by induction on Φ that for all t,

E [R(t)|Φ(t) = Φ] ≤ λm log2(Φ)

For Φ = 1, this is clearly true since in that case T ≤ t and R(t) = 0. Assume
that (3) holds for all t and all φ < Φ. E [R(t)|Φ(t) = Φ] is equal to:

E [R(t)|Φ(t) = Φ] = E [m− α(t) +R(t+ 1)|Φ(t) = Φ]

= m− α(t) + E [R(t+ 1)|Φ(t) = Φ] (1)

By definition of ∆Φ(t), if Φ(t) = Φ, then Φ(t + 1) = Φ − φ with probability
P {∆Φ(t) = φ|Φ(t) = Φ}. Since Φ(t) is non-increasing, ∆Φ(t)≥0. Therefore:

E [R(t+ 1)|Φ(t)=Φ] =

Φ∑
φ=0

E [R(t+ 1)|Φ(t+ 1)=Φ− φ]P {∆Φ(t) = φ|Φ(t)=Φ} .

Let us denote p0
def
= P {∆Φ(t) = 0|Φ(t) = Φ}. Using the induction hypothesis,

and the fact that E [R(t+ 1)|Φ(t+ 1) = Φ] = E [R(t)|Φ(t) = Φ], we get from (1)

(1−p0)E [R(t)|Φ(t)=Φ] ≤ m−α(t)+

Φ∑
φ=1

λm log2(Φ− φ)P {∆Φ(t)=φ|Φ(t)=Φ}

= m−α(t)+λmE [log2(Φ−∆Φ(t))|Φ(t)=Φ]−λm log2(Φ)p0 (2)

where we used the fact that
∑Φ
φ=1(. . .) =

∑Φ
φ=0(. . .)− λm log2(Φ)p0.

Moreover, by Jensen’s inequality (log is concave), we have:

E [log2(Φ−∆Φ(t))|Φ(t) = Φ] ≤ log2(Φ− E [∆Φ(t)|Φ(t) = Φ])

≤ log2(Φ− h(α(t))Φ) (3)

Combining equations (2) and (3), we get:

(1−p0)E [R(t)|Φ(t) = Φ] ≤ (1−p0)λm log2(Φ)+m−α(t)+λm log2(1−h(α(t))).

If α(t) = m, the sum of the two last terms of the equation is negative since
1 − h(α) ≤ 1. If α(t) = 0, the schedule is finished. If 0 < α(t) < m, the sum
of the two last terms is negative by definition of λ (λ corresponds to the worst
choice of α(t)). Dividing on both sides by 1− p0 concludes the proof of (i).

The proof of (ii) is quite similar to the proof of (i). We prove by induction
on Φ that E

[
2R(t)/(λm)−log2(Φ)|Φ(t) = Φ

]
≤ 1. It clearly holds for Φ = 1 since in

that case it is equal to 0. E
[
2R(t)/(λm)−log2(Φ)|Φ(t) = Φ

]
is equal to

Φ∑
φ=0

E
[
2R(t)/(λm)−log2(Φ)|Φ(t+ 1)=Φ− φ

]
P {∆Φ(t)=φ|Φ(t)=Φ}

Using R(t+1) = m−α+R(t) and introducing log2(Φ−φ)− log2(Φ−φ), this equals

Φ∑
φ=1

2
m−α
λm +log2(1−

φ
Φ)E

[
2
R(t+1)
λm −log2(Φ−φ)|Φ(t+1)=Φ−φ

]
P {∆Φ(t)=φ|Φ(t)=Φ}

+ 2
m−α
λm E

[
2
R(t+1)
λm −log2(Φ)|Φ(t+ 1)=Φ

]
p0

≤
Φ∑
φ=1

2
m−α
λm +log2(1−

φ
Φ)P {∆Φ(t)=φ|Φ(t)=Φ}+ 2

m−α
λm E

[
2
R(t)
λm −log2(Φ)|Φ(t)=Φ

]
p0

where we used the induction hypothesis for the inequality.
Then, adding and subtracting the first term of the sum

∑Φ
φ=1, this leads to

(1− 2
m−α
λm p0)E

[
2
R(t)
λm −log2(Φ)|Φ(t)=Φ

]
≤ 2

m−α
λm E [1−∆Φ/Φ|Φ(t)=Φ]− 2

m−α
λm p0

≤ 2
m−α
λm +log2(1−h(α)) − 2

m−α
λm p0

≤ 1− 2
m−α
λm p0.

where we used the definition of λ to show that the first term is less than one.
This shows that E

[
2
R(t)
λm −log2(Φ)|Φ(t)=Φ

]
≤ 1. Therefore by Markov’s inequality:

P {R(t) ≥ λm log2 Φ+ u|Φ(t)=Φ} = P
{

2
R(t)
λm −log2 Φ ≥ 2

u
λm |Φ(t)=Φ

}
≤ 2−

u
λm .

4 Unit Independent Tasks

We apply the analysis presented in the previous section for the case of indepen-
dent unit tasks. In this case, each processor i maintains a local queue Qi of tasks
to execute. At every time slot, if the local queue Qi is not empty, processor i
picks a task and executes it. When Qi is empty, processor i sends a steal request
to a random processor j. If Qj is empty or contains only one task (currently
executed by processor j), then the request fails and processor i will have to send
a new request at the next slot. If Qj contains more than one task, then i is given
half of the tasks (after that the task executed at time t by processor j has been
removed from Qj). The amount of work on processor i at time t, wi(t), is the
number of tasks in Qi(t). At the beginning of the execution, w(0) = W and
tasks can be arbitrarily spread among the queues.

Applying the method presented in Section 3, the first step of the analysis is
to define the potential function and compute the potential decrease when a steal
occurs. For this example, Φ(t) is defined by:

Φ(t) =

m∑
i=1

(
wi(t)−

w(t)

m

)2

=

m∑
i=1

wi(t)
2 − w2(t)

m
.

This potential represents the load unbalance in the system. If all queues have
the same wi(t) = w(t)/m, then Φ(t) = 0. Φ(t) ≤ 1 implies that there is at most
one processor with at most one more task than the others. In that case, there
will be no steal until there is just one processor with 1 task and all others idle.
Moreover, the potential function is maximal when all the work is concentrated
on a single queue. That is Φ(t) ≤ w(t)2 − w(t)2/m ≤ (1− 1/m)w2(t).

Assume that at time t, the queue i has wi(t) ≥ 1 tasks. If it receives one
or more steal requests, it chooses a processor j among the thieves. At time
t + 1, i has executed one task and the rest of the work is split between i and
j. Therefore, wi(t+ 1) = d(wi(t)− 1)/2e and wj(t+ 1) = b(wi(t)− 1)/2c. Thus

wi(t+1)2+wj(t+1)2 = d(wi(t)−1)/2e2+b(wi(t)−1)/2c2 ≤ wi(t)2/2−wi(t)+1.
Therefore, this generates a difference of potential of

δki (t) = δ1i (t) ≥ wi(t)2/2 + wi(t)− 1. (4)

If i receives zero steal requests, it potential goes from wi(t)
2 to (wi(t) − 1)2,

generating a potential decrease of 2wi(t)− 1. The last event contributing to the
change of the potential is that (

∑m
i=1 wi(t))

2/m goes from w(t)2/m to w(t+1)2 =
(w(t)− α(t))2/m, generating a potential increase of 2α(t)w(t)/m− α(t)2/m.

Recall that at time t, there are α(t) active processors and therefore m−α(t)
processors that send steal requests. A processor i receives zero steal requests if
them−α(t) thieves choose another processor. Each of these events is independent
and happens with probability (m − 2)/(m − 1). Therefore, the probability for
the processor to receive one or more steal requests is pr(α(t)):

pr(α(t)) = 1−
(

1− 1

m− 1

)m−α(t)
.

If Φ(t)=Φ and α(t)=α, by summing the expected decrease on each active pro-
cessor δ1i , the expected potential decrease is greater than:∑
i/wi(t)>0

[
pr(α)

(wi(t)2
2

+ wi(t)−1
)

+ (1− pr(α))(2wi(t)−1)

]
− 2w(t)

α

m
+
α2

m

=
pr(α)

2
Φ+

pr(α)

2

(
w(t)2

m
− 2w(t) + 2

m− α
mpr(α)

(2w(t)− α)

)
(5)

≥ pr(α)

2

(
Φ+

w(t)2

m
− 2

w(t)

m
+ 2

(
1− 1

m

)
(w(t)− α)

)
≥ pr(α)

2
Φ

The details of the computation of (5) can be found in Appendix A.
Using Theorem 1 of the previous section, we conclude the analysis by the

following theorem.

Theorem 2. Let Cmax be the makespan of W unit independent tasks scheduled
by work stealing. Then:

(i) E [Cmax] ≤ W

m
+

2

1− log2(1 + 1
e)
· log2W + 1

(ii) P
{
Cmax ≥

W

m
+

2

1− log2(1 + 1
e)
·
(

log2W + log2

1

ε

)
+ 1

}
≤ ε

These bounds are optimal up to a constant factor in log2W .

Proof. Equation (5) shows that E [∆Φ(t)|Φ(t) = φ, α(t) = α] ≤ h(α)Φ with h(α) =
pr(α)/2. Using Theorem 1 (i) and the fact that Φ(0) ≤W 2, the expected number
of steal requests before Φ(t) ≤ 1 is bounded by:

E [R] ≤ λm log2(W 2) = 2λm log2(W),

with λ = max1≤α≤m−1(m−α)/(−m log2(1−h(α))). We show in appendix B that
(m − α)/(−m log2(1 − h(α))) is decreasing in α. Thus its minimum is attained
for α = 1. This shows that λ ≤ 1/(1− log2(1 + 1

e)).
As said before, when Φ(t) ≤ 1, there is at most one processor with at least

one more task than the others. Therefore, there will be a steal request only when
this processor will have one task and the others zero. This happens only once
and generates at most m− 1 steal requests.

At each time step of the schedule, a processor is either computing one task
or stealing work. This shows that m · Cmax = W +R. Thus:

E [Cmax] ≤ W

m
+

2

1− log2(1 + 1
e)

log2W + 1

The proof of the (i) applies mutatis mutandis to prove the bound in proba-
bility (ii) using Theorem 1 (ii).

We now give a lower bound for this problem. Consider W = 2k+1 tasks and
m = 2k processors, all the tasks being on the same processor at the beginning.
In the best case, all steal requests target processors with highest loads. In this
case the makespan is Cmax = k+ 2: the first k = log2m steps for each processor
to get some work; one step where all processors are active; and one last step
where only one processor is active. In that case, Cmax ≥ W

m + log2W − 1.

This theorem shows that the factor before log2W is bounded by 1 and 2/(1−
log2(1 + 1/e)) < 3.65. Simulations reported in Section 7 seem to indicate that
the factor of log2(W) is slightly less. This shows that the constants obtained by
our analysis are sharp.

Initial repartition of tasks. In the worst case, all tasks are in the same queue
at the beginning of the execution. Using bounds in terms of Φ0, one can show
that a more balanced initial repartition leads to fewer steal requests on average.
Suppose that we take a balls-and-bins assignment as the initial repartition: for
each task, we choose a processor at random and put the task in its queue. The
expected value of Φ0 is:

E [Φ0] =
∑
i

E
[
w2
i

]
− W 2

m
=
∑
i

(
Var [wi] + E [wi]

2
)
− W 2

m
=
(

1− 1

m

)
·W

as wi follows a binomial distribution. Since the number of work requests is pro-
portional to log2 Φ0, this initial distribution of tasks reduces the number of steal
requests by a factor of 2 on average.

5 Tasks with Precedences
In this section, we show how the well known non-blocking work stealing of Arora
et al. [7] (denoted ABP in the sequel) can be analyzed with our method which
provides tighter bounds for the makespan. Following [7], a multithreaded com-
putation is modeled as a directed acyclic graph G with a single root node; each
node corresponds to a unit task and edges define precedence constraints. The
out-degree of each node is either 0, 1 or 2. The critical path of G is denoted by
T∞ and W is its total number of nodes.

ABP schedules the DAG G as follows. Each process i maintains a double-
ended queue (called a deque) Qi of ready nodes (the notion of process here
corresponds to our processors). At each slot, an active process i with a non-
empty deque executes the node at the bottom of its deque Qi; once its execution
is completed, this node is popped from the bottom of the deque, enabling – i.e.
making ready – 0, 1 or 2 child nodes that are pushed at the bottom of Qi. At each
top, an idle process j with an empty deque Qj becomes a thief: it performs a steal

request on another randomly chosen victim deque; if the victim deque contains
ready nodes, then its top-most node is popped and pushed into the deque of one
of its concurrent thieves. If j becomes active just after its steal request, the steal
request is said successful. Otherwise, Qj remains empty and the steal request
fails which may occur in the three following situations: either the victim deque
Qi is empty; or, Qi contains only one node currently in execution on i; or, due to
contention, another thief performs a successful steal request on i simultaneously.

Let us first recall the definition of the enabling tree of [7]. If the execution
of node u enables node v, then the edge (u, v) of G is an enabling edge. The
sub-graph of G consisting of only enabling edges forms a rooted tree called the
enabling tree. If d(u) is the depth of a node u in the enabling tree, then its weight
is defined as ω(u) = T∞ − d(u). The weight of the root node is T∞.

To represent the amount of work on each processor, we define wi(t) =
2max{ω(u):u∈Qi(t)}, i.e. the maximum number of tasks that can be activated by
a task in Qi. We first study the repartition of the work during a steal request.

Lemma 1. For any active process i, we have wi(t+ 1) ≤ wi(t). Moreover, after

any steal request from a process j on i, wi(t+ 1) ≤ wi(t)

2
and wj(t+ 1) ≤ wi(t)

2
.

Proof. The proof is derived from [7], Corollary 4 in Section 3: if at t, Qi contains
the k + 1 nodes v0, v1, . . . , vk from bottom to top, then ω(v0) ≤ ω(v1) < . . . <
ω(vk−1) < ω(vk). After the execution of a node u, the maximum weight of its
two enabled children is less than ω(u) − 1. Thus the potential work wi cannot
increase.

We now state that the potential is halved after any steal request by distin-
guishing two cases. First, when a successful steal occurs on i from j, then the
node vk has been stolen and executed by j. Thus, either wi(t + 1) = 0 if Qi is
empty at t+ 1; or wi(t+ 1) = 2ω(vk−1) ≤ 2ω(vk)−1 ≤ wi(t)/2. Besides, after exe-
cution of vk by j, wj(t+ 1) ≤ 2ω(vk)−1 ≤ wi(t)/2. Secondly, if all steal requests
that occur on i are unsuccessful, then there was only one node v0 in Qi whose
execution was processed by i. Then, at t+ 1, wi(t+ 1) ≤ 2ω(v0)−1 ≤ wi(t)/2 and
wj(t+ 1) = 0.

We can now state the following theorem.

Theorem 3. The expected makespan of ABP work stealing verifies:

(i) E [Cmax] ≤ W

m
+

2

1− log2(1 + 1/e)
· T∞ + 1 <

W

m
+ 3.65 · T∞ + 1.

(ii) P
{
Cmax ≥

W

m
+

2

1− log2(1 + 1/e)
·
(
T∞ + log2

1

ε

)
+ 1

}
≤ ε

Proof. The proof is a direct application of Theorem 1 using the potential function
Φ(t) =

∑
i wi(t)

2. Note that we cannot use the same potential as in Section 4
because the total amount of work may be reduced when a steal occurs3.

3 This can happen when the sibling of the stolen task has only one child.

Remark. In [7], the authors established the upper bounds

E [Cmax] ≤ W

m
+ 32 · T∞ and P

{
Cmax ≥

W

m
+ 64 · T∞ + 16 · log2

1

ε

)}
≤ ε

in Section 4.3, proof of Theorem 9. Our bounds greatly improve the constant
factors of this previous result and are close to simulation values (cf. Section 7).

6 Cooperation Among Thieves

In this section, we modify the protocol for managing the distributed list. Previ-
ously, when k > 1 steal requests were sent on the same processor, only one of
them could be served due to contention on the list. We now allow the k requests
to be served in unit time. This model has been implemented in the middleware
Kaapi [5]. When k steal requests target the same processor, the work is divided
into k + 1 pieces. In practice, allowing concurrent thieves increase the cost of
a steal request but we neglect this additional cost here. We assume that the k
concurrent steal requests can be served in unit time. We study the influence of
this new protocol on the number of steal requests in the case of unit independent
tasks.

We use the potential function4 Φ(t) =
∑m
i=1 wi(t)

2. Let us first compute
the decrease of the potential when processor i receives k ≥ 1 steal requests. If
wi(t) > 0, it can be written wi(t) = (k + 1)q + r + 1 with 0 ≤ r < k + 1. After
one time step and k steal requests, the work will be divided in r parts with q+ 1
tasks and k + 1 − r parts with q tasks. By a direct computation, the potential
generated by these steal requests at time t+ 1 can be bounded by:

r(q+1)2 +(k+1−r)q2 = (k+1)q2 +r(2q+1) ≤ 1

k + 1
((k + 1)q + r)

2 ≤ wi(t)
2

k + 1
.

If m−α processors send steal requests, the probability for an active processor
to receive k steal requests is

pk(α) =

(
m− α
k

)
1

(m− 1)k

(
m− 2

m− 1

)m−α−k
The expected diminution of the potential caused by the steals on processor

i is equal to
∑m−α
k=0 δki pk(α). By a direct computation, this is bounded by

m−α∑
k=0

δki pk(α) ≥
m−α∑
k=0

(
1− 1

k + 1

)
wi(t)

2pk(α)

= wi(t)
2

(
1− m− 1

m− α+ 1

(
1−

(
m− 2

m− 1

)m−α+1
))

This shows that E [∆Φ(t)|Φ(t) = Φ|α(t) = α] ≤ h(α)Φ where

h(α) = 1− m− 1

m− α+ 1

(
1−

(
m− 2

m− 1

)m−α+1
)

4 The same potential function as in Section 4 could be used but leads to more complex
computations.

Deriving with respect to α shows that (m− α)/− log2(1− h(α)) is decreasing.
Thus λ = max1≤α≤m(m−α)/−m log2(1−h(α)) = (m−1)/−m log2(1−h(1)).
A direct computation shows that λ ≤ 1/ − log2(1 − 1/e). See Appendix C for
details. Therefore we can copy mutatis mutandis the proof of Theorem 2 to show
that:

Theorem 4. The makespan Ccoop
max of W unit independent tasks scheduled with

cooperative work stealing satisfies:

(i) E [Ccoop
max] ≤ W

m
+

2

− log2(1− 1
e)
· log2W + 1

(ii) P
{
Ccoop

max ≥
W

m
+

2

− log2(1− 1
e)
· log2W + 1 ≥ 2

− log2(1− 1
e)

log2(ε)

}
≤ ε

Compared to the situation with no cooperation among thieves, the number of

steal requests is reduced by a factor 1−log2(1+1/e)
− log2(1−1/e)

≈ 1.20. We will see in Section 7

that this is close to the value obtained by simulation.

7 Experimental Study

Theorem 1 provides upper bound on the expected value of the makespan for the
models considered in Sections 4,5,6. In this section, we experimentally study the
constant factor of the log2W term and show that it is close to the theoretical
result. We focus on independent tasks as it is difficult to generate a realistic
random DAG. Moreover, the DAG with the maximum number of tasks, out-
degree at most 2 and critical path T∞ is a complete binary tree of height T∞.
This is the worst case for the bound given in Section 5 and it is similar to the
independent tasks case.

We developed a simulator that strictly follows the model of Sections 4 and
6. At the beginning, all the tasks are given to processor 0 in order to be in the
worst case, i.e. when the initial potential Φ0 is maximum. Each pair (m,W) is
simulated 10000 to get accurate results, with a coefficient of variation about 2%.

We computed the constant factor 2λ of the log2W term for various number of
processors and tasks. The value goes to a limit between 2 and 3 (cf. Fig. 1). This
gives a constant 2λ ≈ 2.37 for unit independent tasks with standard steal and
2λcoop ≈ 2.08 for unit independent tasks with cooperative steal. The theoretical
values of 3.65 (standard steal) and 3.02 (cooperative steal) are close, only 50%
greater than the simulation values. The difference can be explained by the use of
an adversary in Theorem 1. Moreover, the analysis is fine enough to predict the
advantage of the cooperative steal with a gain of 20% over the standard steal,
close to the experimental gain of 14%.

8 Concluding Remarks

We have presented in this paper a new analysis of work stealing. The main
result is to prove that the expected makespan to schedule a workload of W on
m processors is no more than the best possible absolute lower bound W/m plus
an additive term in 3.65 log2W very close to the value obtained by simulation.

101 103 105

1

1.5

2

2.5

number of processors m

co
n
st

a
n
t

fa
ct

o
r

o
f

lo
g
2
W

Standard Steal

Cooperative Steal

101 103 105

1.1

1.12

1.14

number of processors m

Ratio of Steal Requests

Fig. 1. (Left) Constant factor of log2W against the number of processors for
the standard steal and the cooperative steal. (Right) Ratio of steal requests
(standard/cooperative).

References

1. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM Journal on
Applied Mathematics 17 (1969) 416–429

2. Hoffmann, R., Korch, M., Rauber, T.: Performance evaluation of task pools based
on hardware synchronization. In: Proc. of Supercomputing. (2004)

3. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-
tithreaded language. In: Proceedings of PLDI. (1998)

4. Robison, A., Voss, M., Kukanov, A.: Optimization via reflection on work stealing
in TBB. In: Proceedings of IPDPS. (2008) 1–8

5. Gautier, T., Besseron, X., Pigeon, L.: KAAPI: A thread scheduling runtime sys-
tem for data flow computations on cluster of multi-processors. In: Proceedings of
PASCO. (2007) 15–23

6. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. Journal of the ACM 46(5) (1999) 720–748

7. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multipro-
grammed multiprocessors. Theory of Computing Systems 34(2) (2001) 115–144

8. Berenbrink, P., Friedetzky, T., Goldberg, L.A.: The natural work-stealing algo-
rithm is stable. SIAM Journal of Computing 32(5) (2003) 1260–1279

9. Mitzenmacher, M.: Analyses of load stealing models based on differential equations.
In: Proceedings of SPAA. (1998) 212–221

10. Hendler, D., Shavit, N.: Non-blocking steal-half work queues. In: Proceedings of
PODC. (2002)

11. Gast, N., Gaujal, B.: A Mean Field Model of Work Stealing in Large-Scale Systems.
In: Proceedings of SIGMETRICS. (2010)

12. Berenbrink, P., Friedetzky, T., Goldberg, L.A., Goldberg, P.W., Hu, Z., Martin,
R.: Distributed selfish load balancing. SIAM Journal on Computing 37(4) (2007)

13. Traoré, D., Roch, J.L., Maillard, N., Gautier, T., Bernard, J.: Deque-free work-
optimal parallel STL algorithms. In: Proceedings of Euro-Par. (2008) 887–897

14. Puterman, M.L.: Markov Decision Processes : Discrete Stochastic Dynamic Pro-
gramming. Wiley (2005)

A Proof of Inequality 5 of Theorem 2

In this section, we show that in the case of independent tasks, the expectation of the
potential decrease is greater than Φpr(α)/2.

Recall that the expectation of the potential decrease is greater than:∑
i/wi(t)>0

[
pr(α)

(
wi(t)

2

2
+ wi(t)−1

)
+ (1−pr(α))(2wi(t)−1)

]
− 2w(t)

α

m
+
α2

m

=
pr(α)

2

(∑
wi(t)

2 − w(t)2

m

)
+ pr(α)

(
w(t)2

2m
+ w(t) − α

)
+(1 − pr(α)) (2w(t) − α) − 2w(t)

α

m
+
α2

m

where we used the fact that
∑
i/wi(t)>0 wi(t) = w(t) and that

∑
i/wi(t)>0 1 = α since

α is the number of active processors. A direct computation shows that this is equal to

pr(α)

2
Φ+ pr(α)

(
w(t)2

2m
+ w(t) − α− 2w(t) + α

)
+ 2w(t) − α− 2w(t)

α

m
+
α2

m

=
pr(α)

2
Φ+

pr(α)

2

(
w(t)2

m
− 2w(t) +

2

pr(α)

(
1 − α

m

)
(2w(t) − α)

)
=
pr(α)

2
Φ+

pr(α)

2

(
w(t)2

m
− 2w(t) +

2

m

m− α

pr(α)
(2w(t) − α)

)
(6)

Let define f by

f(α)
def
=

m− α

pr(α)
=

m− α

1 −
(

1 − 1
m−1

)m−α
and compute the derivative f ′.(

1 −
(

1 − 1

m− 1

)m−α)2
· f ′(α) = −

(
1 −

(
1 − 1

m− 1

)m−α)
+ (m− α) · ln

(
1 − 1

m− 1

)
·
(

1 − 1

m− 1

)m−α
= −1 +

(
1 − 1

m− 1

)m−α
·
(

1 + (m− α) ln
(

1 − 1

m− 1

))
≤ −1 +

(
1 − 1

m− 1

)m−α
·
(

1 + (m− α)
−1

m− 1

)
≤ −1 +

(
1 − 1

m− 1

)m−α
· α− 1

m− 1
≤ 0

As f is non increasing for 1 ≤ α ≤ m− 1,

min
1≤α≤m−1

f(α) = f(m− 1) =
1

1 −
(

1 − 1
m−1

)1 = m− 1.

(6) is greater than:

pr(α)

2
Φ+

pr(α)

2

(
w(t)2

m
− 2w(t) + 2

m− 1

m
(2w(t) − α)

)
=
pr(α)

2
Φ+

pr(α)

2

(
w(t)2

m
− 2w(t) + 2w(t)

(
1 − 1

m

)
+ 2

(
1 − 1

m

)
(w(t) − α)

)
=
pr(α)

2
Φ+

pr(α)

2

(
w(t)2

m
− 2w(t)

m
+ 2

(
1 − 1

m

)
(w(t) − α)

)

As w(t)−α(t) ≥ 0 (an active processor has at least one task) the last term is positive.

Moreover, for all w(t) > 1, the second term is positive. Thus, this is greater than pr(α)
2

Φ
which concludes the proof of the inequality:

∑
i/wi(t)>0

[
pr(α)

(
wi(t)

2

2
+ wi(t)−1

)
+ (1−pr(α))(2wi(t)−1)

]
−2w(t)

α

m
+
α2

m
≥ pr(α)

2
Φ

B Computation of λ for the unit tasks

In this section, we compute the constant λ for the unit tasks. We first show that the
quantity (m − α)/ (− log2(1 − pr(α)/2)) is decreasing in α. Then we bound the value
(m− 1)/ (− log2(1 − pr(1)/2)) by (m− 1)/(1 − log2(1 + 1/e)).

Let g(α)
def
= − log2(1− pr(α)/2) and f(α)

def
= (m−α)/g(α). By definition of pr(α),

g(α) can be written:

g(α) = − log2

(
1

2
+

1

2

(
1 − 1

m− 1

)m−α)
= 1 − log2

(
1 +

(
1 − 1

m− 1

)m−α)
.

Denoting p
def
= 1 − 1/(m− 1) and x

def
= pm−α, the derivative of f with respect to α is:

f ′(α) =
ln(1 + pm−α) − ln 2 + pm−α

(
ln(1 + pm−α) − ln 2

)
+ pm−α ln(p)(α−m)

(1 + pm−α)g(α)2 ln 2

=
(ln(1 + x) − ln 2)x+ ln(1 + x) − x lnx− ln 2

(1 + x)g(α)2 ln 2

=
(1 + x) ln(1 + x) − x lnx− (1 + x) ln 2

(1 + x)g(α)2 ln 2

The derivative of (1+x) ln(1+x)−x lnx−(1+x) ln 2 w.r.t. x is ln(1+x)−ln(x)−ln 2 =
ln(1+1/x)− ln 2 > 0. As x < 1, this shows that (1+x) ln(1+x)−x lnx− (1+x) ln 2 <
(1 + 1) ln(1 + 1) − 1 ln 1 − (1 + 1) ln 2 = 0.

Thus, f(α) is decreasing and

λ = max
1≤α≤m−1

1

m
f(α) =

1

m
f(1) ≤ 1

1 − log2

(
1 +

(
1 − 1

m−1

)m−1
)

Using the fact that for all m ≥ 2:(
1 − 1

m− 1

)m−1

= exp

(
(m− 1) ln(1 − 1

m− 1
)

)
≤ exp

(
−(m− 1)

1

m− 1

)
=

1

e
,

we get that 1 − log2

(
1 + (1 − 1/(m− 1))m−1) ≥ 1 − log2(1 + 1/e). This shows that

λ ≤ 1

1 − log2(1 + 1/e)

C Computation of λ for the cooperative steal

In this section, we compute the maximum of (m−α)/−log2(1−h(α)) for 1 ≤ α ≤ m−1
in the case of cooperative thieves. We first show this function is decreasing in α and
then we bound its value in for α = 1.

Let g(α)
def
= − log2(1 − h(α)) with h(α) defined as in Section 6. g(α) is equal to

g(α) = − log2

(
m− 1

m− α+ 1

(
1 −

(
1 − 1

m− 1

)m−α+1
))

Let f(α)
def
= (m − α)/g(α). Let f ′(α) be the derivative of f(α) w.r.t. α. Denoting

p
def
= 1 − 1/(m− 1) and n

def
= m− α+ 1, we define k(p) by:

k(p)
def
= f ′(α)g2(α) ln 2 = − ln(n(1 − p)) + ln(1 + pn) +

n− 1

n

(
1 +

pn ln(p)n

1 − pn

)
The derivative of k(p) w.r.t. p is

k′(p) =
ln(pn)(n− 1)pn−1(p− 1) + (pn − 1)(1 − pn−1)

(p− 1)(pn − 1)2

=
1 − pn−1

(p− 1)(pn − 1)2

(
pn−1 ln(pn)

(1 − n)(p− 1)

1 − pn−1
+ pn − 1

)
Moreover, (1 − pn−1)/(1 − p) = 1 + p+ p2 · · · + pn−2 ≤ n− 1 and since ln(pn) < 0 and
pn−1 > pn, we have:

ln(pn)pn−1 (1 − n)(p− 1)

1 − pn−1
+ pn − 1 ≤ pn−1 ln(pn) + pn − 1 ≤ pn ln(pn) + pn − 1.

Since pn < 1, pn ln(pn) < 0 and pn − 1 < 0. Thus, the last part of the equation
is negative. Since 1 − p is negative, k′(p) ≥ 0. This shows that k′(p) ≤ k(1) = 0.
Therefore f ′(α) ≤ 0 and f(α) ≥ f(1) = (m− 1)/g(1) for 1 ≤ α ≤ m− 1. We have:

g(1) = − log2

m− 1

m
− log2

(
1 −

(
1 −

(
1

m− 1

))m)
≥ − log2(1 − e−1).

This shows that

λ =
1

m
f(1) ≤ 1

m

m− 1

− log2(1 − 1
e
)
≤ 1

− log2(1 − 1
e
)
.

